ONGSBERG

Precision Cutting Systems

Bachelor’s thesis

Kongsberg Table Tracker

University of
South-Eastern Norway

Faculty of Technology, Natural Sciences and

Maritime Sciences
Campus Kongsberg

Kongsberg Table Tracker

This page was intentionally left blank.

Kongsberg Table Tracker

Course: TS3000 Bacheloroppgave
Date:
Title: Kongsberg Table Tracker

Project group: 13

Group members:
Ole William Skistad Huslende
Tormod Smidesang
Elvin Andreas Pedersen
Magnus Trillhus Olsnes

Internal supervisor:
Olaf Hallan Graven

External supervisors:
Martin Kvalbein
Hakon Weirud
Anders Hove

Project partner:
Kongsberg Precision Cutting Systems

Kongsberg Table Tracker

Acknowledgments

We would like to sincerely thank our external supervisors, Lars-Ole Aamodt, Anders
Hove, Martin Kvalbein, and Hakon Weirud for providing us with the resources and op-
portunity to complete this project. We have been extremely lucky to have multiple su-
pervisors that has shown real interest in this bachelor project. We are especially grateful
for their continuous support and guidance throughout the process. Also a quick thanks
to Heidi Sundby for providing sustenance at Kongsberg Precision Cutting Systems.

We also give our heartfelt thanks to our internal supervisor, Olaf Hallan Graven, for
sharing his guidance throughout the entirety of the Kongsberg Table Tracker project.
His insight, experience, and thoughtful advice during our many meetings have been of
great importance to our progress and learning, especially within the academic field.

Finally, we thank the University of South-Eastern Norway for providing us with the
opportunity to undertake this research. We also acknowledge the support of the faculty,
who have provided us with the resources and knowledge necessary to succeed.

Kongsberg Table Tracker

Abstract

The topic of this report is the research and development of a prototype application
that provides remote monitoring of cutting tables. This is to improve the workflow
of production facilities that utilize these types of machines. This was done by using an
existing Application Programming Interface (API) that collects information from a table.
The information was aggregated from multiple sources into a functioning application
that displays relevant information to the user. The result was a working prototype with
an intuitive user interface as well as an architecture that supports future expansion.
This application has great future potential for both managers and operators, while also
contributing to ongoing research and development.

Kongsberg Table Tracker

This page was intentionally left blank.

Kongsberg Table Tracker CONTENTS

Contents
Acknowledgments
Abstract

List of Figures
List of Tables

List of Code Segments

Glossary

1 Introduction
1.1 OVerview o
1.2 Group Members
1.3 Inmitials In Section Headers

2 Domain

2.1 Cutting Table
2.2 i-cut Production Console
2.3 Kongsberg HUB
3 Problem
3.1 Kongsberg Precision Cutting Systems
3.2 Existing Software and Limitations
3.3 Problem Statement
4 Theory
4.1 Framework
4.2 Programming Languages oL
4.3 Graphical User Interface
4.4 Model-View-ViewModel
4.5 JSON . . . e
4.6 Networking
4.7 Testing Code
5 Project Management
5.1 Organizational Structure
5.2 Supervisor Communication
5.3 Project Risk Analysis
5.4 Website e
6 Development Process
6.1 Methodology
6.2 Software Tools.
6.3 Coding Practices

10

11

13

14
14
14
15

16
16
17
18

19
19
19
20

Kongsberg Table Tracker CONTENTS

7 Requirements 38
7.1 System Requirements 38
7.2 Test Implementation oL 39

8 Software Architecture 43
8.1 High-Level System Specification 43
8.2 Architecture 45
8.3 Model 46
8.4 VIeW . . . 46
8.5 ViewModel 50
8.6 SErviCes o 51
87 Data Flow 51
8.8 Architecture Diagramo 52

9 Implementation 54
9.1 Development Environment L. 54
9.2 Traceability 5%
9.3 Model o, 55
0.4 VIEW . . . 61
9.5 ViewModel 67
9.6 Services 75
9.7 Data Flow 76
9.8 Test Results 76

10 Results 79

11 Product Risk Analysis 80

12 Challenges 81
12.1 Project 81
12.2 Technical 81

13 Conclusion 83

14 Future Work 84
14.1 Cross platform 84
14.2 Server certificates 84
14.3 Scan service efficiency oL o 84
14.4 Better handling of table editing 84
14.5 Preferences 84
14.6 Installer 85

15 References 86

A User Stories 90

B Use case 92

C System requirements 94

Kongsberg Table Tracker CONTENTS

D Task System Requirements 95
E GUI Mockups 97
F Detailed View Description 101
G Unit Testing Report 112
H Regression Test 125
I TDD Model To ViewModel Messaging 141
[.L1 Context 141
[.2 Options Considered 141
[.3 Decision e 142
[4 TImpact 143
.6 Related Documents 143
J Application User Manual 144
K Code Documentation 152
L Timesheet 437

Kongsberg Table Tracker LIST OF FIGURES

List of Figures

0 3 O Ui W N

Kongsberg Ultimate 64 Source: [1] 16
i-cut Production Console, Source: [2] 18
Mustration of layouts, Source: [3] 23
Levels of testing 27
Scrum schedule before Easter 34
Scrum schedule after easter 0L 34
Goodand Bad If 37
Context diagram 43
Use case diagram 44
MVVM . 45
Models 46
Navigation diagram 48
MainPage mockup created in draw.io 49
ViewModels 20
MVVM dataflow 52
Architectural diagram 53
Traceability 55
Model 56
API Serivee o7
MainPage screenshot with annotated Ul elements 61
InfoPanelContentView screenshot from ActivePage 65
TableContext 67
TableContextViewModels 68
SubViewModels 70
External ViewModels oo 72
TableContext-ViewModel-View 75
TimeLinePage screenshot with annotated Ul elements 101
MetaStatisticsPage screenshot with annotated Ul elements 103
StatusPage screenshot oo 105
ActivePage screenshot with annotated Ul elements 106
HistoryPage screenshot oo 107
StatisticsPage screenshoto 0oL 108
AddTable popup screenshot L. 109
DiscoverTable popup screenshot 109
TableFilter popup screenshot 110
Settings popup screenshot L 110
CustomStatistics popup screenshot 111
ColumnSelector popup screenshot 111
Timesheet 438

Kongsberg Table Tracker LIST OF TABLES

List of Tables

© 00 1O U i W N =

Overview of Group Members L. 15
RPN value ranges and corresponding risk levels 32
Project Risk table oo 32
Priority system 38
Requirement and related test T-1 41
Example of regression test T-1 41
List all pages & popups. 47
Regression Test Example — Establish Connection and Add Tables 79
Product risk table oo 80

10

Kongsberg Table Tracker LIST OF CODE SEGMENTS

List of Code Segments

= O 00 3 O O Wi

Event Listener 58
Event Handler 60
MainPage code-behindo 63
Include InfoPanel namespace in page 65
Implement InfoPanel on page 65
ActivePage constructor parameters 65
Set content for InfoPanel 65
UtcTimeSpanToLocalConverter 66
TimeLine code-behind 0L 102
MetaStatisticsPage code-behindo 0L 104

11

Kongsberg Table Tracker Glossary

Glossary

NET Software framework by Microsoft. 22-26, 35, 38, 45, 56, 58, 73, 82, 84
API Application Programming Interface. 4, 18, 26, 39, 43, 46, 59, 81

C# C Sharp - general-purpose high-level programming language. 21, 22, 35, 81
CLI Command Line Interface. 21, 22

CNC Computer Numerical Control. 19

CSS Cascading Style Sheet. 32

DCS Digital Cutting System. 16

DNS Domain Name System. 25, 76
GUI Graphical User Interface. 20-23, 30, 41, 46

HTML HyperText Markup Language. 23, 32

HTTP HyperText Transfer Protocol. 26, 56

IDE Integrated Development Environment. 22, 32, 35, 36
IP Internet Protocol. 75, 76

iPC i-cut Production Console. 1620, 36, 54, 55, 69, 81, 82
JSON JavaScript Object Notation. 21, 24-26, 46, 56, 58, 59, 75

Kongsberg HUB Service that runs on all computers where i-cut Production Console
is installed, provides an API for interacting with cutting tables. 16, 20, 21, 39, 41,
43, 46, 51, 52, 54-58, 65, 74, 75, 81, 82, 84

KPC Kongsberg Precision Cutting. 17

KPCS Kongsberg Precision Cutting Systems. 14, 16, 18-20, 31-33, 35, 36, 38, 40, 45,
54-58, 61, 78, 79, 81, 84

KPU Kongsberg Production Unit. 16, 18

KTT Kongsberg Table Tracker. 19, 20, 33, 46, 47, 49, 54, 61, 64, 65, 84, 109
LAN Local Area Network. 83

MAUI Multi-platform App User Interface. 21-24, 35, 38, 45, 56, 73, 82

MultiCam A U.S.-based company that produces CNC cutting machines. Acquired by
Kongsberg Precision Cutting Systems in 2021 to expand their cutting solutions
portfolio. 19

12

Kongsberg Table Tracker Glossary

MVVM Model-View-ViewModel. 21, 24, 43, 45, 52

PDF Portable Document Format. 35

POCO Short for Plain Old Class Object, a class that does not have any methods, just
pure data. 25

REST Representational State Transfer. 18, 26, 46
RPN Risk Priority Number. 31, 80

SSE Server-Sent Events. 26, 43, 58

UI User Interface. 17, 21, 22, 24, 45, 46, 51, 52, 84
URL Uniform Resource Locator. 26
USN University of South-Eastern Norway. 32

UX User Experience. 21-23, 30, 46, 47, 49, 65

XAML Extensible Application Markup Language. 21, 22, 24, 46, 61, 62, 64, 76, 107

13

Kongsberg Table Tracker 1 INTRODUCTION

1 Introduction

1.1 Overview OH |TS

In recent years, the packaging industry has undergone a technological revolution, driven
by the surge in e-commerce and increasing consumer demand for delivered goods. The
need for innovative, efficient, and sustainable packaging solutions has never been greater.
One company that aims to meet this demand is Kongsberg Precision Cutting Systems
(KPCS). They have been making creative and efficient cutting tables used in the packag-
ing, label, and manufacturing industry for decades. Their standalone production devices
allow users to upload design files and precisely cut a wide range of materials, enabling
greater flexibility and creativity in the packaging process. However, a current limitation
is that these standalone cutting tables are not remotely accessible or integrated with each
other. The lack of monitoring and management of the production process creates chal-
lenges. Therefore, this report aims to explore how the problem can be solved by enabling
remote tracking and interaction with the production units. This will enhance oversight,
coordination and overall efficiency for the production.

1.2 Group Members MO |EP

A project group was established shortly after the semester began. Two students initiated
the group formation and recruited two additional members. The group consisted of four
students by the time the project started. One member participated remotely the first
month due to an exchange program abroad, which required early planning for digital
collaboration.

KPCS was selected as the external company partner. The connection was made through
one of the group members who works there, and the company provided a suitable assign-
ment for the bachelor project.

To ensure effective collaboration, group roles and responsibilities were defined early. This
allowed the team to begin work efficiently and manage tasks in a structured manner.

14

Kongsberg Table Tracker

1 INTRODUCTION

Name: Elvin Andreas Pedersen
Initials: EP

Discipline: Software Engineer
Project Role: GUI developer

Name: Ole William Skistad Huslende

Initials: OH

Discipline: Software Engineer

Project Role: Scrum-master and fullstack developer

Name: Tormod Smidesang

Initials: TS

Discipline: Software Engineer

Project Role: Git responsible and fullstack developer

KONGSBERG
g

Name: Magnus Trillhus Olsnes

Initials: MO

Discipline: Software Engineer

Project Role: Documentation lead and test developer

Table 1: Overview of Group Members

1.3 Initials In Section Headers TS |OH

Inspired by the reports of bachelor projects from previous years, we have added the initials
of the person who wrote a particular (sub)section to the header of said (sub)section.
Another set of initials in italics to the right of the aforementioned initials indicates who
has proofread the same (sub)section. A subsection that lacks these initials should be
assumed to be the responsibility of the set of people listed in its parent section header.

15

Kongsberg Table Tracker 2 DOMAIN

2 Domain EP |MO

Technical terms essential for understanding this report are further explained in the "Glos-
sary” section at the beginning of the report. Readers can refer to this for clarification
if needed. The domain of this report is Digital Cutting System (DCS) and will mostly
refer to KPCS and their solutions. KPCS has defined what they call a Kongsberg Pro-
duction Unit (KPU), which consists of four main components. First is the Kongsberg
cutting table. Second is a Windows PC, which contains the last two components, namely
Kongsberg HUB and i-cut Production Console (iPC). The following chapters will explain
the components in more detail, as they are essential for a complete understanding of the
context later on.

2.1 Cutting Table

A cutting table operates in a wide range of industrial sectors such as corrugated packag-
ing production, protective packaging production, display production, signage production,
labels & decal production, and sample making. [4] A cutting table refers to a flatbed ma-
chine controlled by a computer. It is designed to cut, crease, or engrave on different types
of materials. [5] [6] Figure 1 shows a picture of the Kongsberg Ultimate table, the most
recent addition to the KPCS collection. A table usually consists of a flat and durable
surface in which the material is placed. This surface can move or rotate on some models
and is especially useful for factory automation. Above the cutting surface is the tool head,
which works according to the instructions provided by iPC. It is mounted to a beam that
enables movement along the x-axis of the table. The tool head moves along the y-axis
of the table by traversing the beam. The table has a durable surface that is resistant to
cutting, but can also have something called a cutting mat or sacrificial underlay. This is
an extra protective layer that prevents excessive wear and tear after continuous use. It
can cover the entire, or just parts of the cutting surface.

Figure 1: Kongsberg Ultimate 64 Source: [1]

16

Kongsberg Table Tracker 2 DOMAIN

Some of the most common materials used on cutting tables are corrugated materials,
folding carton & paper, cardboard, rigid board, foam materials, aluminum & ACM and
wood-based materials. [4] In order to handle such a versatile set of materials, it is also
necessary to have the right tools for the job. Modern cutting tables often support a wide
range of different tools. Knives are used to directly cut materials, and some cut using
vibration. Creasing tools use downforce to compress the material, creating imprints or
folds. Milling tools cut by rotating at high speeds and chip away at the material. [7]
Drilling tools are used to create holes, often for screws or joint connectors. The main
difference between the two are that drilling moves along the z-axis and milling can move
along all three axes. There are also a multitude of other specialized tools. [8] The cutting
table can also utilize vacuum to move and secure the material while operating. This helps
to ensure a higher level of precision and stability. iPC dynamically adjust the vacuum
strength based on what type of material is used. [9] The Kongsberg Precision Cutting
(KPC) tables also have a smart modular design, which provides more flexibility. It can
have multiple tools mounted at the same time and swap them out easily when needed.
Some tables also support additions like roll-to-roll or pallet-to-pallet automation by using
a feeder/stacker configuration, greatly increasing production efficiency. [10]

2.2 i-cut Production Console

With the Kongsberg tables follows an application/User Interface (UI) called iPC, see
Figure 2. It works as the control software for the table and UI for the operator. iPC
allows the operator to upload job files or even create simple designs and layouts directly
within the software. The operator can customize runs (one instance of running a job)
and calibrate the table by setting up materials and settings for each job. Each job can be
run on it’s own, or combined into batches or layouts. In short, the whole production can
be controlled and run from iPC. Every iPC also comes with a Kongsberg HUB. [11] [2]

17

Kongsberg Table Tracker 2 DOMAIN

Figure 2: i-cut Production Console, Source: [2]

2.3 Kongsberg HUB

Disclaimer: The source of the information in this section is not disclosed in this report,
in accordance with the wishes of KPCS.

Cutting tables with iPC 3.0 and newer all have a Kongsberg HUB - Representational
State Transfer (REST) API running in the background. The HUB stores all of the job
information from the table. Through the HUB it becomes possible to fetch information
from the table externally and display it outside of the KPU. Information of interest
includes table properties, resources, job lists, and statistics. It also provides options for
interaction with the table. Some external interactions include uploading jobs, deleting
jobs, and setting certain configurations. [11]

18

Kongsberg Table Tracker 3 PROBLEM

3 Problem EP |MO

This chapter will explain more of the background regarding the Kongsberg Table Tracker
(KTT) project. The first section will be a more in-depth introduction to KPCS, which is
defined as the customer in this report. The second section deals with a problem KPCS
is facing, and the third contains the definition of the problem this report aims to solve.

3.1 Kongsberg Precision Cutting Systems MO |EP

KPCS became an independent business in 2021, though its origins date back to 1965
in Kongsberg, Norway. Before becoming a company, the technology that later inspired
KPCS was developed as part of the former weapon factory in Kongsberg. At that time,
machines used punch cards for metal cutting, and one incorrect punch could cause ex-
pensive mistakes. To avoid this, engineers created a drawing table system to plan the
cuts before entering data into the machine. This was important because the metal plates
used for cutting could cost up to 10,000 NOK in the 1960s a large amount of money at
that time. This solution reduced errors and costs and became the foundation for a new
business idea.

In 1965, some individuals saw the potential and started a company focused on these
drawing tables. From there, the technology evolved into the digital cutting solutions
used today. [12]

The company combines expertise, technology, and innovation to deliver high-quality dig-
ital cutting and Computer Numerical Control (CNC) solutions. As the first diversified
provider of both digital and CNC cutting machines, KPCS manufactures and distributes
two of the industry’s leading brands: Kongsberg and MultiCam. [12]

The Kongsberg product line offers highly durable and precise digital cutting solutions for
the packaging, signage, display, and manufacturing industries. These solutions help busi-
nesses optimize production by increasing speed, safety, and efficiency without restricting
creative potential. While research and development remain in Kongsberg, Norway, man-
ufacturing takes place in Brno, Czech Republic. The company also maintains a strong
global service network with experienced engineers and certified service partners to ensure
continuous production. [12]

MultiCam, known for its U.S.-made cutting equipment, provides a range of CNC routers,
digital cutters, and waterjet cutting machines. These machines serve various industries,
including signage, digital finishing, aerospace, automotive, sheet metal, woodworking,
and plastics fabrication. [12]

KPCS operates under the ownership of OpenGate Capital and is headquartered in Ghent,
Belgium. The company also has a North American head office in Ohio, USA. [13] [4]

3.2 Existing Software and Limitations EP |MO

The current software used by Kongsberg cutting tables is called iPC, and is defined in
Chapter 2.2. The iPC provides an intuitive overview and easy control over the Kongsberg
table; however, it has one noticeable drawback. What it currently lacks is a way for the

19

Kongsberg Table Tracker 3 PROBLEM

user to efficiently receive information from the table remotely. In order to get the status
or progress of the table, the user has to physically visit the table and check the produc-
tion console. KPCS have recived request from their customers to provide a solution that
allows them to access this information from a remote location.

It is important to mention that there are currently other solutions that can retrieve and
display information from the table, but KPCS wishes to develop their own solution and
not rely on third party tools.

3.3 Problem Statement EP |MO
Problem Definition

Currently, KPCS does not have a local solution that provides remote view of the iPC.
For customers, this can affect the monitoring and management of the cutting tables.
This project aims to build an application that remotely collects information from the
iPC through the Kongsberg HUB KPCS will take over the application at the end of the
semester. They expect it to meet a certain quality standard so that they can continue to
develop and eventually release it to their customers.

Problem Impact

Without a remote monitoring solution, operators have to rely on less efficient methods
to obtain information from the cutting tables. This can lead to wasted time and reduced
productivity. By solving this problem, operators will gain more flexibility and control over
their production. They can check on job progress/status from their office, rather than
having to inspect the table in person. This will save them time, increase productivity,
and is especially useful with multiple cutting tables involved in production. The KTT
application should be considered a “quality of life” improvement for operators.

Project Scope

The scope of the project is to create a prototype application that collects and displays
information from multiple Kongsberg tables via a Graphical User Interface (GUI). The
application shall include a page with an overview of the tables and a page for a detiled
view from each table where jobs and status is displayed. Further requirements will be
defined in Chapter 7.

20

Kongsberg Table Tracker 4 THEORY

4 Theory

This chapter presents important theory and key concepts on which the project is based
upon. Understanding them is essential to understand how the system is designed, imple-
mented, and tested. The first section explains the framework for the application which
serves as the structural backbone of the system. Following that is a short description of
each programming language used within the Framework. The next section delves into
GUI & User Experience (UX), and best practices. To provide a clear architectural under-
standing, there is also a section that explains what the MVVM (Model-View-ViewModel)
design pattern is and why it is so important. After that comes a separate section regarding
JavaScript Object Notation (JSON), which plays a central role in how data is structured,
followed by networking principles relevant to how data is sent and retrieved from exter-
nal systems, such as the Kongsberg HUB. The last section is about testing, highlighting
strategies and tools used to ensure the reliability and maintainability of an application.

4.1 Framework EP |MO

NET Multi-platform App User Interface (MAUI) is a framework that has evolved from
Xamarin.Forms and focuses on cross-platform development. It is possible to build native
apps on Windows, macOS, iOS, and Android in one single project, saving developers
time and effort. [14] The .NET MAUI framework uses Extensible Application Markup
Language (XAML) & C# as programming languages. When combined with the commu-
nity tool kit and Model-View-ViewModel (MVVM) architecture (more about that later),
building intuative and modern applications becomes possible, even for beginners. [15]
NET MAUI also supports the "Hot Reload” in Visual Studio, which means you can
build and view a GUI in real time. [16]

4.2 Programming Languages EP |MO
XAML

XAML stands for eXtensible Application Markup Language and is created by Microsoft.
It is used to build interfaces in applications [17] [18] and helps to separate Ul and code
logic. See Chapter 4.3 for more details on XAML.

C#

C#, pronounced C Sharp, is a Microsoft-developed programming language. It is used
to build many types of programs, like desktop applications, mobile apps, websites, and
games. C# is part of the .NET platform and acts as the main coding language. C# is an
object-oriented language, which means it is based on objects and classes. This makes the
code easy to organize and reuse, especially for bigger and more complex systems. C# has
a simple and modern syntax, and is similar to other languages such as Java and C++.

4.3 Graphical User Interface EP |MO

Introduction

A User Interface is the connection for communication between a user and a digital system.
There are different types of Uls, such as Command Line Interface (CLI), GUI, Touch UI,

21

Kongsberg Table Tracker 4 THEORY

Voice UI, Menu-driven UI, and many more. [19] A CLI can be challenging to learn, and
to make computers more accessible to less technical users, GUI was developed.

A GUI is a visual layer that utilizes graphical elements such as pages, buttons, sliders,
icons, etc., to present information to the user in a more intuitive way. Instead of manually
entering commands into a CLI, the user interacts with visual components that represent
different functions of the system. All commands are set and executed behind the scenes,
and only the necessary elements are presented to the user. This makes the system ap-
pear less complex and can increase productivity because one click can trigger multiple
commands and the learning curve for the system is more beginner friendly.

UX is an important key word in relation to GUI development. The user experience can
be defined by looking at the system from a users perspective. Does the system provide
a good or bad experience? Does the layout and navigation make sense? Are the colors
creating confusion or do they enhance the system message? [19] [20]

Why does GUI matter?

One of the main reasons why a good GUI matters for an application is that it is one of
the main deciding factors for the customer. In this day and age, there is no shortage
of applications to choose from and the competition is fierce. In order to succeed in the
targeted market, it is important to present a better user experience than the competition.
Development speed and versitility can make or break a startup, and this is where .NET
MAUI has several advantages. As mentioned, it gives the ability to target multiple
platforms at once, all in one single project.

Developer tools and Enviorment

For NET MAUI development, the usual choice for Integrated Development Environment
(IDE) is "Visual Studio” [21] as it is under the Microsoft umbrella, just like .NET MAUIL
It is worth mentioning that there are other options out there, for example JetBrains
"Rider” [22]. The "hot reload” within Visual Studio is a very useful tool as it lets you see
changes in real time while developing. [16] When building a GUI, it is actually possible
to do it in both C# and XAML, but the norm is to use xaml for pages and C# for code.

Project structure

Before diving deeper into the building block of a GUI in .NET MAUI, it is important
to understand the basics of the project structure. When a new MAUI project is first
generated, it will create three important XAML files along with their code-behind. The
three files are called App.xaml, AppShell.xaml and MainPage.xaml. The App class (xaml
file + code-behind) derives from the Application class and is the entry point of the
application. What that means is that it sets the global resources and the root page. The
code-behind of App handles the startup logic. AppShell is responsible for the navigation
structure within the application and the code-behind is used for registering routes. The
MainPage is the first content page that is loaded in the application. This is usually what
is set as the root page mentioned earlier. [23]

22

Kongsberg Table Tracker 4 THEORY

Core Components

Navigation is the mechanism that allows the user to move between different pages. Well
structures navigation is at the core of a good UX. Navigation can be done in different
ways, such as stack-based, tab-based and shell-based. For stack-based, pages are pushed
on to or popped from the stack. Tab-based includes a tab, typically a bar of sorts, with
tabs as chilren. The more modern way is Shell navigation. It allows the developer to set
routes for different pages, which can provide clean and easy navigation flow across the
application. [24]

Pages are the screen that the user intaracts with and the most common is ContentPage
(MainPage is of type ContentPage). The ContentPage has a property called ”"content”,
which is only able to hold one control. This will in most cases be a type of layout. If a
project has the CommunityToolKit included, one can also use the toolkit:popup, perfect
for smaller interactions with the user. [25] [26]

Layouts or containers are used to decide how elements (also known as UI controls) are
placed inside a page. The usual layouts are StackLayout (vertical/horizontal), Absolute-
Layout, Grid, and FlexLayout. See 3. The stacklayout takes each control and stacks
them after one another. It is very useful as a container for smaller parts of the GUI.
Up next is the AbsoluteLayout. As the name suggests, it uses absolute values to decide
where the controls are placed. It can be useful for improving the cetain controls or parts
in the GUL. A Grid is built on rows and columns much like a table. Controls can be
places in the "coordinates” of the grid and also span over several rows or columns. The
height and width can be static (numeric value), automatically fit the content (Auto), or
take the remaining space on the page (*). Grid provides excellent control over the GUI,
and is often used as a parent to other layouts. Lastly, there is the FlexLayout. It is very
similar to the flexbox layout in HyperText Markup Language (HTML), and works like
a stacklayout, but with the extra functionality of wrapping its elements in new rows or
columns. This can be used on pages that display a list that vary in size. [3]

R e N e A
\. J -~/ - \. J
StackLayout AbsoluteLayout Grid FlexLayout

Figure 3: Illustration of layouts, Source: [3]

Controls is a term that can mean different things depending on the context, but generally
speaking, it refers to smaller visual elements in a layout. The following is a list of some
of the most widely used controls in .NET MAUI [27]

23

Kongsberg Table Tracker 4 THEORY

o BoxView o Entry o ProgressBar
« Button e Frame
e CheckBox o Image * RadioButton
o CollectionView o ImageButton . SerollView
o ContentView o Label
o DatePicker o Picker o Slider
4.4 Model-View-ViewModel OH |TS

The Model-View-ViewModel architectural pattern is widely used in software devel-
opment to promote a clear separation between an application’s Ul and its underlying
business logic. This separation enhances maintainability, testability, and scalability [28].

Components of MVVM

The View is the UI layer that presents data to the user and captures user interactions. In
technologies like .NET MAUI, the view is often defined using XAML, allowing developers
and designers to work on the Ul separately from the underlying code.

The Model represents the application’s data and business logic. It defines the data
structures and implements the operations to manage and manipulate this data. The
model is unaware of the UI.

The ViewModel serves as an intermediary between the Model and the View. It exposes
data from the Model in a form that the View can easily consume. It handles user com-
mands, processing input and updating the Model accordingly. The ViewModel facilitates
data binding, ensuring synchronization between the Model and the View.

Benefits of MVVM

One key benefit of MVVM is the separation of concerns. By decoupling the UI from the
business logic, MVVM allows developers to modify the UI without impacting the core
logic and vice versa. This leads to cleaner and more organized codebases.

Another important benefit is enhanced testability. With the business logic encapsulated
in the ViewModel, developers can write unit tests for this layer without involving the UI,
which leads to more reliable and maintainable code.

MVVM also allows for improved collaboration. Developers and designers can work con-
currently on the same application. Designers can focus on creating the Ul in XAML,
while developers implement the logic in the ViewModel and Model. This streamlines the
development process and helps avoid conflicts.

4.5 JSON TS |OH

JSON;, short for JavaScript Object Notation, is a data format for easy storage and trans-
mission of data. It can be easily read and modified by both people and software. In JSON,
data is stored in name/value pairs, separated by commas and organized into objects with
curly brackets. [29]

24

Kongsberg Table Tracker 4 THEORY

NET has built in support for converting data to and from JSON format (processes called
serialization and deserialization, respectively) [30]. While the supported data types are
normally limited to primitives such as number types, strings, booleans and POCOs, .NET
makes it possible to manually add support for other types through JsonSerializerOptions
[31]

4.6 Networking TS |OH
IP addresses

An IPv4 address is a unique identifier for a device on a network. It consists of 32 bits
which are usually represented in dotted decimal format (example: 192.168.100.43). An
IP address is divided into a host part that identifies the device and a network part that
identifies the network. These parts are distinguished by using a subnet mask. Subnet
masks also consist of 32 bits, but unlike IP addresses, they have all their bits set to 1
until a certain point after which all the bits are set to 0. The left part of the subnet mask
(where the bits are all 1) is the network part of the IP address. The right part (where the
bits are all 0) is the host part of the IP address. An example subnet mask 255.255.255.0
has the first 24 bits set to 1 and the remaining 8 bits set to 0 (a network with this subnet
mask is sometimes referred to as a class C network, which can have at most 254 devices).
This subnet mask can also be represented with a forward slash followed by the amount
of 1-bits. Combining the examples used in this section, the IP address and subnet mask
could collectively be represented this way: 192.168.100.43/24. [32]

DNS

A Domain Name System (DNS) server keeps a record of hostnames and their associated
IP address. It handles DNS requests where someone wants the IP address associated
with a hostname and returns the hostname if it knows it [33]. A reverse DNS lookup is
the same thing, but the other way around [34].

HTTP

The HyperText Transfer Protocol (HTTP) is an application-layer protocol used for com-
munication between clients and servers over the internet. It operates on a request-
response model, where a client, such as a web browser or some other application, sends
an HTTP request to a server, which then responds with the requested resources or data.
HTTP is stateless, meaning each request is independent, and it supports various methods
like GET, POST, PUT, and DELETE to perform different actions. [35]

In .NET, HTTP communication is primarily handled through the HttpClient class, part
of the System.Net.Http namespace, which provides an API for sending HTTP requests
and processing responses. HttpClient supports asynchronous operations, making it well-
suited for applications where responsiveness is critical. HttpClient can be configured with
custom headers, timeouts, and authentication credentials to interact with REST APIs
or other web services. This enables .NET applications to perform secure and efficient
HTTP-based communication. [36]

25

Kongsberg Table Tracker 4 THEORY

Server-Sent Events (SSE)

Server-Sent Events (SSE) is a technology to receive updates automatically from a server
through an HyperText Transfer Protocol (HTTP) connection [37]. In .NET, it is possible
to subscribe to Server-Sent Events (SSE) using the HttpClient.GetStreamAsync method
[38]

REST API

REST (Representational State Transfer) is a standardized way for applications to com-
municate over the internet. It uses HTTP methods (GET, POST, etc.) to perform
operations on resources, or end-points, which are identified by a Uniform Resource Lo-
cator (URL). A REST API enables applications to send requests to a server (such as
retrieving or updating data) and receiving responses, typically in JSON format. [39]

26

Kongsberg Table Tracker 4 THEORY

4.7 Testing Code MO |EP

Levels of Testing

ACCEPTANCE
TEST

Test the final system

SYSTEM TEST

Test the entire system

INTEGRATION TESTS

Test integrated components

UNIT TESTS

Test individual components

Figure 4: Levels of testing

There are many ways to test code, but the four main testing strategies are unit testing,
integration testing, system testing, and acceptance testing. These are the most common
and cover different levels of the software. As seen in the image above (4), these four
levels are often shown as a pyramid, where unit tests are at the bottom and acceptance
tests are at the top. There are also other types of testing, such as performance testing,

27

Kongsberg Table Tracker 4 THEORY

security testing, and usability testing. However, the four shown in the image are the most
important and commonly used in most projects.

Unit testing MO |EP

Unit testing is a software testing method where individual components or functions of a
program are tested separately to ensure they behave as expected. It is one of the first
levels of testing and is typically written and maintained by developers during develop-
ment. Unit tests focus on small, isolated pieces of code, such as functions or methods,
using known inputs to verify expected outputs.

Unit testing helps catch bugs early, improves code reliability, and makes future changes to
the codebase safer. Automated testing frameworks like JUnit, NUnit, and PyTest are of-
ten used to streamline the process. Good unit tests are fast, repeatable, and independent
from each other [40)].

Integration testing MO |EP

Integration testing is a software testing level that focuses on verifying how different mod-
ules or components of a system work together. While unit testing checks the internal
correctness of individual units, integration testing ensures that the interfaces and inter-
actions between those units function as expected.

This type of testing is important for identifying issues such as incorrect data handling be-
tween modules, interface mismatches, or unexpected side effects. It is typically performed
after unit testing and before system testing. Common approaches include top-down,
bottom-up, and big bang integration.

By using integration testing, development teams can find problems that only appear when
modules are combined, which helps improve the reliability of the full system [41].

System Testing MO |EP

System testing is a type of software testing where the complete system is tested as a
whole. It is usually done after unit testing and integration testing. The goal is to check
if the full software works as it should, based on the requirements [42].

This type of testing includes both functional and non-functional checks. Functional test-
ing makes sure that features do what they are supposed to do, while non-functional
testing may include performance, security, and usability.

System testing is important because it shows how all parts of the application work to-
gether. It also helps to find problems that only happen when everything is running at
the same time.

System testing is also important for identifying gaps between what the system does and

what the user expects. It gives a complete picture of the software quality and is often
one of the final steps before acceptance testing [43].

28

Kongsberg Table Tracker 4 THEORY

Acceptance testing MO |EP

Acceptance testing is a type of software testing done to check if the system meets the
needs of the user or customer. It is usually the last step before the software is released.
The goal is to make sure the software works well in real-world situations and does what
it is supposed to do [44].

This kind of testing is often done by the customer, the end user, or a testing team. They
test the whole system by using it like a normal user would. If the system passes the
acceptance test, it means the software is ready to be used.

Regression testing MO |EP

Regression testing is a type of software testing done to make sure that new changes in
the code do not break parts of the system that were already working. It is often done
after a bug fix, feature update, or other code change. The goal is to check that the rest
of the system still behaves correctly.

These tests can be done manually or automatically. In many projects, important tests are
repeated to confirm that everything still works as before. This helps avoid introducing
new problems when making updates [45].

29

Kongsberg Table Tracker 5 PROJECT MANAGEMENT

5 Project Management

5.1 Organizational Structure MO |EP

The project team has four members. Each member has their own main responsibilities,
but all members contribute to the software development process. Since Scrum is used,
the team is structured to stay organized and to make sure everyone knows their respon-
sibilities.

Elvin is the GUI developer, which means he is responsible for the graphics and UX.

Ole William Is the full-stack developer and Scrum Master. He makes sure the Scrum
principles are followed, sprints run properly, and progress is tracked. This role also helps
facilitate discussions and keeps the workflow smooth.

Magnus oversees documentation, which means he makes sure reports, technical docu-
ments, and important notes are well written and up-to-date. He is also responsible for
ensuring that the documentation is delivered on time.

Tormod focuses mainly on software development and GitHub, and also acts as Product
Owner. This role includes setting specific goals for each Scrum sprint.

Group Dynamic MO |EP

The group has a positive and effective working relationship. Members cooperate well and
support each other when needed. There are no major problems, and communication stays
clear throughout the project. Important tasks are understood, and regular meetings help
keep the work organized and on track. Each member understands their role and follows
the plan.

The group is split into two parts. Tormod and Ole William mostly work on the backend,
while Magnus and Elvin work on the GUI. The two groups talk often and have meetings.
This helps the project come together.

Team Building MO |EP

All group members knew each other before the project started, since we had been in
the same class for two and a half years. Because of this, we did not focus much on
teambuilding in the beginning. Teambuilding is often important for new groups, as
it helps members cooperate and understand each other better, which can improve the
group’s dynamic and effectiveness.

At first, we postponed teambuilding because we were unsure what kind of activity we
should do. Later, one group member suggested that we could play a video game together.
The group agreed, and we played World of Warcraft together a couple of times. This
helped strengthen our teamwork in an informal way.

30

Kongsberg Table Tracker 5 PROJECT MANAGEMENT

5.2 Supervisor Communication

Internal MO |EP

The group was assigned an internal supervisor from the school. He had experience in
computer science and engineering and provided useful feedback and advice throughout
the project. Communication with Olaf happened mainly through email, and his replies
were always fast and helpful. Weekly meetings were held every Wednesday. During
these meetings, Olaf supported the group with many parts of the project, including
documentation, the application, presentations, and more.

External OH |TS

KPCS provided multiple external supervisors from their R&D division in Teknologi-
parken. They also provided each group member an office as well as conference rooms
available for booking. Thursdays and Fridays are spent at the office and meetings with
the external supervisors are held every Friday. The schedule is decided prior to the meet-
ing and the content varies from code reviews, functionality requests or changes to make
the application more user friendly. Supervisors help solve challenges that arise during
the development process. Direct communication with experienced developers makes for
a good source of valuable feedback.

5.3 Project Risk Analysis MO |EP

In terms of project management, things like missed deadlines, team conflicts, and chang-
ing requirements could slow us down. To prevent this, good communication, proper
planning, and staying ahead of potential problems are key.

Risk such as software bugs, security vulnerabilities, and integration issues could affect
quality. These can be managed through testing, code reviews, and quality assurance.

Risk calculation

The Risk Priority Number (RPN) method is used to help measure the level of risk in a
project. [46] It gives a number that is calculated by multiplying three factors:

« Probability shows how likely it is that the risk will happen.
o Impact shows how big the problem will be if the risk happens.

» Detection shows how easy or hard it is to notice or stop the risk before it becomes
a problem.

Detection is important because some risks are easy to prevent, while others are harder to

catch. If a risk is hard to detect, it is more dangerous, even if it does not happen often.
The RPN is calculated like this:

RPN = Probability x Impact X Detection

The table below shows how RPN values are used to decide the overall risk level.

31

Kongsberg Table Tracker 5 PROJECT MANAGEMENT

1-14 LOW
15-29 MODERATE
30-49 HIGH

50 and above EXTREME

Table 2: RPN value ranges and corresponding risk levels

KPCS goes bankrupt Loss of client 1 5 2 10 LOW
Missed deadline Project delay 2 4 2 16 MODERATE
Team conflict Inefficient working enviroment 1 3 3 9 LOW
Requirements changes Extra workload 2 3 3 18 MODERATE
Legal issues Project shutdown 1 5 2 10 LOW
Software bugs during development | Unstable system during testing 3 3 2 18 MODERATE
Software bugs after release Unstable system for end-users 2 4 3 24 MODERATE
Table 3: Project Risk table
5.4 Website EP |MO

The project website is built using HTML and Cascading Style Sheet (CSS) in Webstorm
IDE. The HTML is built using semantic elements, where divs are replaced with proper
elements such as header, nav, section and article. This makes the documents more
organized and flexible for future modifications. The CSS is initially generatet using
Al, and further modified to suit out standards. Classes are used in HTML for styling
porpuses. New content within the same class adapts the same style as revious content.
The WebStorm project is also linked to GitHub as a backup solution. The tool used
for uploading the website is filezilla. The project website is hosted on University of
South-Eastern Norway (USN)’s server at https://itfag.usn.no/grupper/D13-25/.

32

https://itfag.usn.no/grupper/D13-25/

Kongsberg Table Tracker 6 DEVELOPMENT PROCESS

6 Development Process

6.1 Methodology OH |TS

Our product is a plug-in software for the existing infrastructure in KPCS. Because of
this, an iterative approach would be the most optimal strategy. Iterating will make us
able to respond to the feedback given by KPCS and makes the development process more
effective. The project model for which we opted is the scrum model, the reason for this
is because we wanted to match the KPCS workflow. They have a simplified scrum model
where they do stand-ups 2 times a week, but we wanted a more comprehensive scrum
model so we started with the daily stand-ups. This agreement was made early in the
project to ensure consistent communication and to keep the team updated on progress,
especially since we meet physically on a regular basis.

Defining scrum roles

Although Scrum is a relatively flexible framework, we aimed to adhere to its structure
as accurately as possible at the beginning of the project. Through regular sprint retro-
spective meetings, we continuously evaluated and adjusted our approach based on what
worked best for our team. As part of this process, we defined the classical Scrum roles
to establish clear responsibilities. This resulted in less time being spent on reviews and
retrospects both because they became more efficient and beacuse they felt like a waste
of time.

e Product owner: Tormod Smidesang is responsible for communicating the prod-
uct goal for the bachelor project. We see the bachelor project as the product. He
is also responsible for setting the sprint goals each week.

e Scrum master: Ole William Skistad Huslende is responsible for making sure
that the product owners goals are being meet. Also responsible for the scrum events
throughout the week.

» Developer team: is responsible for the making of the individual tasks that needs
to be done within the sprint, making sure that each task is a small subsection of
the sprint goal. They also need to set estimated time on each of their tasks.

Typical work week
The typical week before and after Easter of KTT is shown in 5 and 6

33

Kongsberg Table Tracker

6 DEVELOPMENT PROCESS

Tuesday Wednesday Thursday Friday
Sprint Planning Stand-up Stand-up Sprint Review
60 min 15 min 15 min 30 min
Supervisor meeting Sprint Retrospective
60 min 15 min
Client meeting
60 min
Figure 5: Scrum schedule before Easter
Monday Tuesday Wednesday Thursday Friday
Sprint Planning Stand-up Stand-up Stand-up Sprint Review
60 min 15 min 15 min 15 min 30 min

60 min

Supervisor meeting

Sprint Retrospective
16 min

Client meeting
60 min

These are the key components of our sprint week taken from [47]:

Figure 6: Scrum schedule after easter

e Sprint: a time box that encompasses all the other Scrum events. In our case 1

week.

o Backlog: is a list of all the tasks for the whole project.

e Sprint planning: is a meeting with the developers, scrum master and project
owner planning the tasks for the next sprint.

34

Kongsberg Table Tracker 6 DEVELOPMENT PROCESS

o Stand-up: is a meeting held every day where you walk through the three questions
shown below:

— What did I work on yesterday?
— What am I working on today?

— What issues are blocking me?

e Sprint review: is a meeting to summarize the previous sprint. We did this
both with the external supervisor and internally. With the supervisor we show the
progress that has been done and internally we update each other of the project
state.

e Sprint retrospective: is a meeting with the entire scrum team talking about how
to optimize and do the scrum model more effectively for our use.

6.2 Software Tools TS |OH
Programming language

There was some confusion in the beginning as to which programming language we should
use. The initial document describing the assignment listed C# (with NET MAUI) as an
absolute requirement, while our external advisors said it was only a suggestion and that we
could use whatever we wanted. Since one of the goals of our project is to create software
that can be extended by the client afterwards, it makes sense to use the programming
language they suggested. .NET MAUI is a framework for making cross-platform desktop
and mobile apps in C# [48]

Visual Studio

Visual Studio is an IDE by Microsoft and has support for NET MAUI. It is also the IDE
we have used in previous courses so we are familiar with it and we all had it installed
already. Visual Studio also has built-in support for GitHub and Copilot. [21]

GitHub

We set up a GitHub repository for the codebase and a repository for our TEX documen-
tation. The client has requested the code base repository remains private for the time
being, while the documentation repository will remain private because the final compiled
Portable Document Format (PDF) document is all we need to present.

Jira OH |TS

We used the software tool Jira to make our scrum boards and to manage the backlog.
This is the same software used in KPCS. In addition, we started to link git-commits with
tasks in Jira. This is helpful for documentation, where we can look up a Jira task, and
see which commit and what code implemented the solution to the task.

35

Kongsberg Table Tracker 6 DEVELOPMENT PROCESS

i-cut Production Console

i-cut Production Console (or iPC for short) is a software used to connect to and control
KPCS cutting tables. The software includes Kongsberg HUB, which is the main interface
our project interacts with and thus a key piece of software for us to be able to test our
own software. See 2.2 for more information. [2]

Overleaf

Overleaf is an online IXTEX editor with support for collaboration for premium users. We
have used Overleaf to write this document. Magnus purchased a premium plan so that
we could collaborate together. The document was linked to GitHub as some of us have
experienced connection problems with Overleaf before. That way, we will always have a
copy of the report available. [49]

Doxygen

Doxygen is used to organize documentation written with comments in our codebase. It
generates a pdf document that is included as an appendix in this report (Appendix K).
Because we feel that comments make our codebase cluttered, we made a separate branch
in our git repo only for writing comments for Doxygen.

ChatGPT/Copilot

We are using ChatGPT as a development tools. It helps write IXTEX, auto ceomplete
code, and is helpful for questions along the way. It is important for us that ChatGPT is
used in a sensible manner, where it only acts as a tool to help us in a way that does not
take away key learning points of this project.

Draw.io
Draw.io is a free online diagram making software. We have used it to make various
diagrams throughout the project. [50]

WebStorm

WebStorm is an IDE developed by JetBrains and was selected for website development
primarily because it is easy to use. It also has several useful features such as code
completion, error detection, and git integration. [51]

6.3 Coding Practices OH |TS

The product of this project is intended to be further developed and shipped by KPCS.
To make a smoother transition, their coding standards must be implemented. There are
some in-house rules, and the rest follows the Microsoft Framework Design Guidelines.
The in-house rules consists of if statements, indenting and dependency injection. The
naming conventions and the specific information can be looked up at [52]

36

Kongsberg Table Tracker 6 DEVELOPMENT PROCESS

Some of the rules from KPCS

Rule 1: Always use brackets in if statements.

Example Good:

1 if (this)

o8 |

3 doThat();
4 }

Example Bad:
1 if (this) doThat();
5

if (this)

doThat();

[B R]

Figure 7: Good and Bad If

Rationale: single line If statements complicates debugging, and brackets increases read-
ability and clearly limits the scope of the statement.

Rule 2: Use four spaces instead of tab when indenting. Can be set up in Visual Studio
to ensure correct indention.

Rationale: Readability suffers if not all indents are the same.

Rule 3: Resource Acquisition is Initialization

Stick to the constructor for dependency injection.

37

Kongsberg Table Tracker 7 REQUIREMENTS

7 Requirements

This chapter explains the system requirements for the project. In the beginning of the
semester, the company KPCS gave us the main goals for the system. These goals helped
us understand what the system should do. From that, we created the system requirements
explained in the following section.

7.1 System Requirements OH |TS
Below are the original project goals set by KPCS at the start of the semester.

1. Make a GUI to show the customer what happens their Kongsberg Cutting tables
2. Include job lists, current jobs and recently run jobs

3. GUI that can run on both PC and mobile device (cross platform)

4. Add and remove jobs from job list

5. Use .NET MAUI

Weekly meetings with KPCS quickly led to the creation of a list of user stories, derived
from the original requirements. These user stories formed the basis for our initial draft of
the system requirements. In collaboration with KPCS, we prioritized and ranked these
requirements. As the project progressed, several requirements were revised, some were
updated or replaced due to an evolving understanding of the system, while others were
added based on new requests for functionality.

User stories shown in Appendix A are created based on the original project goals. They
have the standard structure of As a, I want, So that and the acceptance criteria are
structured with Given, When, Then. This is to clearly formulate what the user is
requesting from the system. The user stories are further broken down into Use Cases,
shown in Appendix B. Each of the use cases has one or more requirements attached to
them. The requirements are clear goals that are central for the implementation process.
In Appendix C is the complete overview from user stories, use cases and requirements.
This shows a clear red line from user request to application design. The test method
in Appendix H covers every requirement and if every test is passed the product is to be
considered success.

Priority System OH |TS

The requirements have a priority ranking from A-C, and are explained in Table 4.

Essential requirements that must be implemented for the application to work
These should be implemented but are not required for the system to work
These are more features that would be nice to have if there is time left

Table 4: Priority system

38

Kongsberg Table Tracker 7 REQUIREMENTS

7.2 Test Implementation MO |EP

In this chapter, we will explain how we set up the different types of tests during the
project. This includes unit tests, integration tests, system tests, acceptance tests, and
regression tests. We describe how we wrote the tests, how we prepared the system for
testing and why we did software testing.

Why test our code?

Testing was an important part of the project. It helped the team find bugs early and
confirm that the application worked as expected. Because the system connects to phys-
ical machines and real-time data from the Kongsberg HUB, it was important to make
sure that all components worked correctly together.

Testing gave confidence that the application would perform well in real use. For example,
it helped check that table statuses were correct, that job data was displayed properly,
and that buttons and features responded in the right way. Without testing, small errors
could have caused wrong information, broken views, or connection problems.

Testing also made it easier to make changes during the development. After each update
or fix, the tests helped check that the most important parts still worked. This was espe-
cially useful in a system that has both frontend and backend communication.

Software testing is known to improve reliability and reduce future problems. It supports
a better user experience and lowers the risk of failure after delivery [53].

Test Strategy

As mentioned in the theory in Chapter 4.7, testing plays an important role in the devel-
opment process.

The testing strategy for this project included several layers of testing to ensure the quality
and stability of the system.

Unit Test Implementation

These tests were written using the xUnit testing framework in Visual Studio. We followed
the Arrange-Act—Assert pattern to structure the tests in a clear and consistent way.

[54]

To test functions that communicate with the backend or external services, we used mocked
dependencies. For example, we created a custom FakeHttpMessageHandler to simulate
different HT'TP responses without needing a real server. This allowed us to test API
methods like GetActiveJobs, CheckAuthentication, and Request AccessToken under con-
trolled conditions. We also created fake services such as FakeApiService and modified
service classes to accept injected HTTP clients, making it possible to isolate the logic
being tested.

Unit tests were organized by separating them into folders based on layers (models, ser-
vices, utilities), and further by class name. This made it easy to locate and run specific
test scenarios. The tests covered multiple input cases per method using the [Fact] at-
tribute to ensure behavior was correct for different types of data. Some methods were

39

Kongsberg Table Tracker 7 REQUIREMENTS

tested with valid and invalid inputs, including edge cases like null values and format
mismatches.

While smaller helper methods were not tested, the tested areas focused on parts of the
system that interact with job data, table logic, or authentication. These are critical for
backend stability and catching logic bugs early.

This limited but focused unit test coverage was complemented by broader system and
acceptance testing, which together helped ensure a stable and reliable application.

Integration Test Implementation

We tested how different parts of the code worked together. For example, we tested the
connection between the user interface and the backend logic. The goal was to make sure
that when something was done in the frontend, the correct part of the backend responded.
This helped us see if the parts were connected in the right way and shared data correctly.
We did not test everything at once, only how parts of the system talked to each other.

System Test Implementation

We also did system testing to check the full system from start to finish. This means
we tested the whole application, not just parts of it. We tried to use the system like a
real user would, to see if everything worked together as expected. This included testing
different features, checking that the user interface showed the correct information, and
making sure the system gave the right results. System testing helped us find problems
that only happen when all parts of the system are running at the same time.

Acceptance Test Implementation

was done through a final meeting with KPCS, where the team presented the application
and walked through the main features. Although the customer did not test the system
directly, they had followed the development throughout the project and provided feed-
back along the way. During the session, the team demonstrated key functionalities and
explained how the system meets the specified requirements. The walkthrough included
navigating the interface, showing how jobs are uploaded and managed, and explaining
how the application handles table communication and status updates. The goal of this
session was to verify that the delivered system matched the expectations and requirements
set earlier in the project.

Regression Testing

Regression testing was performed manually by the project group at the end of the devel-
opment phase. The purpose was to confirm that recent changes and final updates had
not introduced new errors. The team used structured test cases that were already created
earlier in the project, based on user stories, use cases, and system requirements. These
tests helped verify that all core functionality still worked as expected.

40

Kongsberg Table Tracker 7 REQUIREMENTS

The group executed the tests step by step, checking that the system behaved correctly.
For example, Test T-1 checked that a connection to the Kongsberg HUB could be es-
tablished and that tables could be added using valid parameters. It verified that tables
appeared in the GUI and no error messages were shown.

Test T-2 confirmed that table statuses were correctly displayed in the application and
matched the actual state of the physical tables. Other tests confirmed that job data was
shown and updated as expected.

This played an important role in making sure that the application was still stable after
all final code changes. It gave the team confidence that the full system could be delivered
without breaking existing features.

This structured testing approach made it possible to trace each test back to its require-
ment, and further to the related use case and original user story. The same trace could
also be followed forward — from user story to use case, requirement, and finally to the
specific test. This traceability improved the structure and quality of both the develop-
ment and testing process.

As you can see in the table below, we can see which requirement the test is built upon
and we can trace it all the way back to the user story. For the full regression test report
see Appendix H

R-1.1.1 | The application shall establish connection | Establish connec- T-1 [Pass/Fail]
to the cutting table tion with the HUB

Table 5: Requirement and related test T-1

Regression test example

Example: Test T-1 — Establish connection and add tables

1 Open Kongsberg Hub Client Configurator on the
Kongsberg Table.

2 Press add table in the application and write the
IP and Hostname.

3 Write in the ClientID and the clientSecret. The table should appear in
the GUI with correct in-
formation, including name,
status, image, and job data.

4 Click Confirm. Table should now appear in
the interface.

Table 6: Example of regression test T-1

41

Kongsberg Table Tracker 7 REQUIREMENTS

Test coverage

The system was not fully covered by unit tests. Only the most important functions were
tested, such as reading job data and checking table status. This helped the team find
problems early in the backend, but smaller functions and helper methods were not tested.
Other types of tests, like system tests and acceptance tests, were more complete. These
tests followed a clear plan and tried to test all the main features of the application. The
goal was to make sure that everything the user needed was working. The team tested
the system step by step using real scenarios, so it was possible to find problems even in
parts that were not covered by unit tests.

This combination of focused unit testing and broader manual testing helped make the
system more stable and reliable.

42

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

8 Software Architecture

This chapter covers the architecture of the software program. It begins with going through
the functional operations the user of the application are allowed to do. Then explaining
the rationale behind the use of MVVM architecture pattern. Following this, the chapter
details the core components of the system and how they interact. Keeping in mind how
the data flows between the components. The section concludes with a diagram that shows
the planned structure of the application.

This chapter outlines the key components of the design using MVVM architectural pat-
tern. The application collects data from an external system called the Kongsberg HUB
via RESTful API calls and SSE to provide the user with real time information. This chap-
ter is intended to map out the main components of the system. The following section
describes the responsibility of the model, view, view model and the supporting service
layer.

8.1 High-Level System Specification OH |TS

The Kongsberg Table Tracker applications main objective is to let a table operator in-
teract with the cutting table remotely as shown in Figure: 8. The operator interacts
with the software to handle job lists and view requested statistics. All the data viewed
is collected from the Kongsberg HUB. If the operator has multiple tables in the factory
they should also be able to view them.

Qperator
[Person]

\iews table data and handles jobs

Kongsberg Table Tracker
[Software System]

Allows Operator to view
table data and handle jobs

Requests the table data

Kongsberg HUB
[Software System]

Stores all the data collected by the table

Figure 8: Context diagram

43

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

Use case diagram of the application

The software system lets the operator add, delete and edit the information about the
tables. This will make a list of tables where the operator is able to select a cutting
table to get more information. Inside the single cutting table, the user should be able to
manage the job lists as well look at information about them.

O ==Exfend==
\ ==Include:=

User

Figure 9: Use case diagram

44

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

8.2 Architecture
Choosing the Right Architecture MO | TS

In the early stages of the project, we needed to make a plan of how we would do the
architecture. We had to look up different architecture patterns for the .NET MAUI
framework. But before we got the time to do the reasearch, we had our first meeting
with KPCS and they gave us some requirements to follow. This is because KPCS wants to
build on our project after we hopefully have completed the base product, which naturally
gave us more motivation for this project. One of these requirements was that we had to
use the MVVM architecture when we coded. Since this architecture is the standard for
NET MAUTI applications, we would naturally have come to the same conclusion ourselves.

Architecture pattern OH |TS

The MVVM architecture helps us maintain a clear separation of concerns between the
business logic(Model), user interface (View), and interaction logic (ViewModel). This
structure makes the codebase cleaner, more modular, and easier to manage. Addition-
ally, it improves maintainability by decoupling the UI from the business logic, reducing
the risk of errors when making changes to one part of the system.

Another key advantage of MVVM is that it makes testing easier. Since the business
logic (ViewModel) is separate from the UI, it can be tested independently, allowing us
to perform unit testing more effectively. This ensures that the core functionality of the
application works correctly without relying on the user interface.

Furthermore, MVVM simplifies UI updates by allowing the ViewModel to act as a bridge
between the Model and the View as shown in Figure: 10. This enables automatic updates
of UI elements when data changes, making it easier to create a dynamic and responsive
user interface. Lastly, the MVVM architecture supports scalability, allowing the project
to grow and evolve without requiring major code refactoring.

N e N e

«—Model Change Event—

Ul Event

View —PropertyChanged Events— ViewModel Model

Update:

ViewModel Data Read

% A& % A&

Figure 10: MVVM

45

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

8.3 Model OH |TS

The model layer defines the data structure used throughout the application as shown in
Figure: 18. These models represent the format of information exchanged between the
external REST API and the system itself. Each model has properties that map directly
to the JSON fields provided by the server. The primary model used in this application is
the table model, which encapsulates a table. This class is not directly deserialized into
but is used to hold all the model objects from the API calls. The lightweight classes
used for deserialization are job, statistics, properties and trends. They represent the
information from the API. They cover all the important aspects the Kongsberg HUB has
to offer. The last important responsibility for the model layer is the event handler. The
ApiService has the responsibility of handling the APT calls as well as listening to events.
The Kongsberg HUB sends out events via server sent events. They must be retrieved in
the model and the model has responsibility to update itself so that the other structures
in the application gets the updates.

Models
Api Service
; 7 I 7 }
Properties Jobs Events Trends Statistics
\ \ | \ |
v
Table Model
Figure 11: Models
8.4 View EP |MO

The View represents the Ul layer and is mostly written in XAML. The view does not
contain business logic, since it should only focuses on the GUI and UX. By using the
code-behind, it is possible to implement dependency injection and connect the view to
a viewmodel. This is to enusre that the two conerns (GUI and business logic) are kept
seperate.

In order to keep the GUI consisten, reusable and maintainable throughout the develop-
ment process, it is important to use common resources. Two files that contribute to this
are Colors.xaml and Styles.xaml. Specific colors are set and reused, ensuring the app
maintain a consistant theme across different pages. Styles can help shape the controls
used across pages. Margin, padding, background color, spacing, states, etc. are some of
the properties that defines how each control will look. In the actual page, theese colors
and styles are adopted through the Style property in the different controls.

The KTT application concists of several Pages and Popups that serve different purposes.
Table 7 further explain what the purpose of each page is.

46

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

Page Purpose

MainPage Application entry point. Displays all tables.
StatusPage New window of MainPage, but without functionality
TimeLinePage Shows a list of tables and their jobs on a timeline.
MetaStatisticsPage Display statistics gathered from all connected tables.
ActivePage Display joblist for a single table

HistoryPage Display job history for a single table

StatisticsPage Display statistics for a single table

AddTablePopup For adding tables

EditTablePopup For editing existing tables

DiscoverTablePopup Scan for tables on the same LAN

TableFilterPopup Select filters for tables on MainPage

SettingsPopup Select language and delete all table credentials
ColumnSelectiorPopup | Select categories from job list that are displayed
CustomStatisticsPopup | Select a custom time span to collect statistics from

Table 7: List all pages & popups

Navigation is also an essential part of the UX. The navigational strucutre for the KTT
application is explained in Figure 12.

47

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

SettingsPopup

L h]
| Multiple Tables |
i StatusPage i
| 'y i
i MainPage «—» TimelinePage |«—»{ MetaStatistics :
| TableContext i
i ActivePage o HistoryPage o’ StatisticsPage : »
h i
Popups
i AddTablePopup DiscoverTablePopup i ELLL R R L
: ! Popup
—:n-«: EditTableFopup TableFilterPopup i
i ! CustomStatistics |
| i Popup [

Figure 12: Navigation diagram

48

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

Layouts of the pages are important because they have a significant impact on the UX. A
well designed layout lets the user navigate the application intuitively, without the need
of prior knowledge. A layout includes elements such as navigation structure, spacing
between components and positioning of control. A good layout stays consistent to avoid
confusion, and helps guide the users attention to the important parts of the page. Figure
13 shows a mockup of MainPage in the KT'T application. The top bar is responsible
for navigation, and works like a tab-bar. The main content of the page is the tables in
the middle of the mockup. Each element represents a different table, and shows that by
displaying table name, active job and current status of the table. See Appendix E for a
collection of mockups for all the content pages in the application.

MainPage

= 2
-
TableMame TableMame TableMame
Active job Active job Active job
Status Status Status
.
~
TableMame TableMame TableMame
Active job Active job Active job
Status Status Status
.
[rorte J o | i]

Figure 13: MainPage mockup created in draw.io

49

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

8.5 ViewModel OH |TS

The viewmodel layer defines the intermediary between the model and the view. The
viewmodel layer encapsulates the applications presentation logic as well as holding the
data for each of the views. It exposes data and commands to the view, so the view
can interact with the model. The viewmodels should be connected to the pages, and
it should get the appropriate data from the model layer. In the design, the viewmodel
layer consists of the table context which is the viewmodels corresponding to a single
table and the external viewmodels that holds the data of all the connected tables. The
main components in the table context as shown in 14 are the active jobs, history jobs,
statistics and preview. The active jobs holds the current job list on the table so the view
can display it. It also has the logic for interacting with the jobs, like adding and deleting.
The history jobs are the list of the jobs that have been run. The statistics data are the
history of everything from information about the table, what a customer has ordered,
what material has been used and so on. This has to be extracted from the data in the
model. Then you have the preview this is the data that gets exposed to show essential
data of the table. The external viewmodels as shown in 14 consist of the main, timeline
and meta statistics. The main previews and handles all the tables and lets you add, edit
and remove this is done by commands that the view binds to. The timeline holds a list of
all the active jobs for each table, so you can se how production will continue. Lastly there
are the meta statistics that merge the important statistics from each table, essentially
holding the statistics for the whole factory.

ViewModels
Table context
Active Jobs History Jobs . .
ViewModel Vi ew?/,lod ol Statistics ViewModel Preview ViewModel
External
Timeline ViewModel M@f:ﬁﬁ;‘j‘zfs Main ViewModel

Figure 14: ViewModels

20

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

8.6 Services OH |TS

The application must support multiple tables. The table context is the collective name
for the model and viewmodels for the single table. All the components of a table are
instantiated in a single table context component, like a singleton. The TableContext
service is the service that handles multiple tables and it should expose the data from the
table contexts to the external viewmodels. It is the intermediary between the single table
viewmodels and the multiple table viewmodels. The tables should not disappear when
you restart the applications so the service is also responsible for saving and loading the
tables.

8.7 Data Flow OH |TS

The data flow of the system follows a Model-View-ViewModel (MVVM) architec-
ture, ensuring a clean separation of concerns and a scalable design. Figure: 15 illustrates
the interaction and messaging structure within the system.

Messenger Buses

The application utilizes two primary messenger buses:

1. External Messenger:

o Facilitates communication across the entire application.

o Connects the single table with viewmodels using data from multiple tables.
2. Table Context Messenger:

o Dedicated to handling messages related specifically to the table context.

o Connects the Table Context Model, ViewModel, and Ul Page in a localized,
modular way.

Data Flow Overview

1. Kongsberg HUB:

o Acts as the central data source, responsible for both sending and receiving
data.

e Sends data to the appropriate Table Context Model based on incoming re-
quests or commands.

» Can receive messages back from the Ul layer.
2. Table Context Model:

e Processes incoming data from the Kongsberg HUB.
» Propagates the data to the Table Context ViewModel.

o Publishes messages through the Table Context Messenger for localized up-
dates.

3. Table Context ViewModel:

51

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

e Receives data from the model and manages its presentation logic.
» Sends data change messages to update the Ul

¢ Acts as a mediator between the model and the view.
4. Table Context Page:

o Observes and reflects changes triggered by the ViewModel.

e Sends user commands back through the messaging chain.
5. Tables ViewModels and Pages (Second Layer):

o Communicate with the individual table context via the External Messenger.

External Messenger

Table Context Messenger

«—Sends Data—> —Propagates data—> ——Data Stream—»

Table Context
Kongsberg HUB Table Context Model ViewModel Table Context Page

'« -Requests Data- « -Requests Data~ « -Observe Data- -

,,,,,,,,,,,,,,,,,,,

Data Change Callback

T Data Stream™ >
Tables ViewModels Tables Page

< Observe Data —

Data Change Callback

Figure 15: MVVM dataflow

8.8 Architecture Diagram OH |TS

The final iteration of our design is shown in Figure: 16. This diagram clearly illustrates
the data flow throughout the application. It starts at the Kongsberg HUB, where all data
is stored. Both the ApiService and the table model represent core parts of the MVVM
structure.

Data is first retrieved by the ApiService and then populated into the table model, which
in turn represents a single table. This table model transfers the appropriate data into
the corresponding viewmodels. One viewmodel, for example, manages the active jobs
for that particular table. It allows users to add or remove jobs. Additionally, the model
sends data to the history job module, which shows the produced jobs.

The design incorporates a statistics module that aggregates table specific statistics. The
preview viewmodel acts as the central component for the main page, displaying the
relevant information for that spesific table. There is a clear layering within the table
context that includes all necessary models, views, and viewmodels to represent a single
table.

52

Kongsberg Table Tracker 8 SOFTWARE ARCHITECTURE

A separate table context service is responsible for managing all table contexts, thereby
aiding the meta-statistics viewmodel, timeline viewmodel, and main viewmodel in access-
ing table data. The meta statistics module aggregates data across all tables, while the
timeline viewmodel provides an visualization of upcoming active jobs. The main page
serves as the primary entry point of the application, and the status panel is a simplified
version of the main page. Displaying the current status of all the connected tables. With
this architecture we make a scalabe and thought out application that will cover all the
requirements.

Kongsberg HUB

Kongsberg Table Tracker
Table Context
API Service
!
Table Model
I 7 7 v
Active Jobs History Jobs -) .)
Vi iteat ViewModel Statistics ViewModel Preview ViewModel
Active Jobs Page History Jobs Page Statistics Page

|

Table Context

E ViewModel Service
View |
L v | | |

Meta Statistics
ViewModel

Timeline ViewModel Main ViewModel

| | ! !

Meta Statistics Page Timeline Page Main Page Status Page

Figure 16: Architectural diagram

53

Kongsberg Table Tracker 9 IMPLEMENTATION

9 Implementation

This chapter is about the implementaion of what was designed in the previous chapter. It
covers important aspects of how the team worked towards actually building the product.
It is organized in a logical manner, starting with the developer environment, traceability,
and then a bottom up approach for the application.

9.1 Development Environment
Folder structure TS |
/

| Models
ApiProperties
Enums
ApiQueue
Enums
ApiSSE
ApiStatistics
L;,Enums
ApiTrends
| _Services
| Utilities
iA,Converters
| ViewModels

tPopups
TableContextViewModels
LA,SubViewModels
| Views
Components
Popups
TableContextViews

External libraries EP |TS

One of the most important external libraries included in the KTT application is the
CommunityToolKit.Mvvm by Microsoft. It drastically reduces boilerplate and improves
code clarity. It is no longer necessary to write INotifyPropertyChange, ICommand and
PropertyChanged notification. Instead, it is possible to use [ObservableProperty] in the
ViewModel. When the View is bound to this property, it automatically updates when a
change occurs. Another useful tool is the [RelayCommand], which does the same as the
[ObservableProperty], but for functions instead of variables.

Local installation of iPC TS |OH

Because our application has to rely on the presence of a Kongsberg HUB, we received
license keys to iPC from KPCS so that we could install it on our own laptops. Unfortu-
nately, we are not able to install iPC on any laptops running a Home Edition of Windows.
This means that only half of our group has access to a Kongsberg HUB on their own
machine.

54

Kongsberg Table Tracker 9 IMPLEMENTATION

Network setup TS |OH

If a local installation of iPC is not available, we need a computer network that lets us
talk to a Kongsberg HUB. Over at KPCS, their local network has numerous cutting
tables available, each running an instance of the Kongsberg HUB. However, when we
are working from somewhere else, we have no cutting tables available. For example,
the network configuration on the university Wi-Fi (eduroam) prevents us from accessing
services on other computers connected to the same Wi-Fi. For this reason, we have
a network switch in our room at Bergseminaret that we connect our laptops to with
ethernet cables. This way, even though half the group are unable to install iPC on their
laptops, they still have access to a Kongsberg HUB through the network whether we are
in Bergseminaret or at KPCS

9.2 Traceability TS |OH

=0

1 Task ID commlts
ull re
l (ex. KTT-123) P q

Jira GitHub Visual Studio

Figure 17: Traceability

In order to work in an efficient and organized manner, we put our user stories, use
cases and derived requirements into Jira and linked them together. From there, we
made specific code implementation tasks and linked them to the relevant requirements.
Tasks are automatically assigned an identifier in the format KTT-xxx, where xxx is a
number. We linked our Jira project to our GitHub repository so that we could make
git branches directly from Jira. These branches are then given names that begin with
the task identifier. By ensuring our branches, commits and pull requests all begin with
this task identifier, Jira will keep track of them so that we can see which commit in the
repository implemented which requirement. Git also integrates nicely with Visual Studio
so we can right click somewhere in the code and select Git, then Blame to see which
commit introduced which line of code. From there, we can see the task identifier, leading
us to the connected task. Since the task is linked to a requirement, we can see a clear
line all the way from a user story down to each line of code used to implement it and vice
versa. A table showing the tasks and which requirement they are linked to can be found
in Appendix D

9.3 Model OH |TS

The model section talks about how the model layer was implemented in software archi-
tecture. In Figure: 18 you see the implementation structure of the layer. It includes
the Models, the ApiService and the table model. Each of them is explained in the next
sections.

95

Kongsberg Table Tracker 9 IMPLEMENTATION

42 TableModel

G ApiService

Api Server Sent Events

¥ KongsbergTableTracker.Models.ApiSSE

Api Properties Api Queue

{} KongsbergTableTrackerMadels.ApiProperties {1} KongsbergTableTracker.Models. ApiQueus

{8 KongsbergTableTracker.Models.ApiProperties.Enums {1} KongsbergTableTracker Models.ApiQueue.Fnums

Api Statistics Api Trends

{1 KongsbergTableTracker.Models.ApiStatistics {# KongsbergTableTracker.Models.ApiTrends

{3} KongsbergTableTracker.Models.ApiStatistics Enums

Figure 18: Model

Models

KPCS has defined classes that they send as responses to HTTP requests. Each of the
endpoints has specific classes implemented. They get delivered in JSON format and
the standard .NET deserializer inputs the content into the models. There are some
Enums that need to use its own serializer options to input the correct data into. This is
mainly to get a shorter name of the Enum value. The models hold all the data from the
endpoint. The data is separated into 5 main categories jobs queue, history job queue,
table properties, table statistics and property trends. Their properties and explanations
are all shown in Appendix K.

ApiService

ApiService is the bottom layer of our application. It is the service that connects to the
Kongsberg HUB. In .NET MAUTI this is done through the HttpClient class. All the prop-
erties and methods are shown in Figure: 19. A new ApiService is added with every new
table, it configures its own HttpClient and the correct base address. The base address
is the "https://ip + path”. When the HttpClient is configured it has to get an authen-
tication token from the Kongsberg HUB. This is done by sending a POST request with
the clientld and clientSecret received from the user. The response is then included as a
bearer token in the HttpClient so that every subsequent request made by it will have the

26

Kongsberg Table Tracker

9 IMPLEMENTATION

token in the package. Then it sets up the event listener and gathers all the data from
the Kongsberg HUB, from almost every endpoint.

The endpoints are not disclosed in the report by request from KPCS, but they can be

found in the code.

@8 <startEventListener>d_ 20

@ accessTokenExpiration
@ apiPort

@ badCredentials

@ badlpAddress

@ debugOutput

@ eventBuffer

@ eventListenerCancellationToken
@ eventListenerStream
@ eventlistenerTask

@ httpClient

@ httpHandler

@ jsonSerializerOptions
@ messenger

@ tableAuthentication

% ApiService
@ ApiService
@ CredentialsUpdated
@ DeleteAsync
@ DeletelobTask
@ EnsureValidAuthentication
@ Eventlistener
@ Extract)sonFromPrefixedMessage
@ GetActivelobs
@ GetAllTableProperties
@ GetAsync
@ GetEvent
@ GetHello
@ GetHistoryJob

@ GetHistoryJobs

Figure 19: API Serivce

o7

@ GetimageOfiob

@ GetimageOfTable

@ GetProductionStatistics
& GetPropertyTrends

@ IsEventListenerRunning
@ PostActivelob

@ PostAsync

@ PutAsync

@ RequestAccessToken
@ SetlpAddress

@ SetOrderedCopies

@ StartEventlistener

@ StopEventListener

Kongsberg Table Tracker 9 IMPLEMENTATION

Authentication

The user inputs the clientld and clientSecret generated by the Kongsberg Hub Client
Configurator application made by KPCS. The credentials are then sent back into the
stack to the ApiService class. The class sends a POST request to the Kongsberg HUB
and receives an authentication token. This token is saved in an authentication class and
used in the HttpClient class. The authentication class also has a property that records
the time the token was set. Each time you make a request via the HttpClient it checks
the time and if it’s over 14 days, as set by the Kongsberg HUB, it will then ask for a new
access token.

Event Listener

The event listener is shown in Listing: 1. It is run on a separate thread that is called
a Task in .NET. The Task is given a cancellation token that can be used to stop the
task when necessary. The StreamReader class from .NET subscribes to the SSE from
the Kongsberg HUB. The StreamReader is setup in a StartEventListener function. The
Kongsberg HUB sends out the event in the format of a stream. The "event description”
is filtered out because in the current Kongsberg HUB version, it does not contain any
important information. The rest of the stream gets formatted and checked to see if its
valid JSON format. The events get enqueued to the event buffer that the event handler
can read from.

Listing 1: Event Listener

1 public async Task EventListener(CancellationToken token)

2 {

3 Debug.WriteLineIf (debugOutput, $"EventListener() called");

4 Debug.WriteLineIf (token.IsCancellationRequested,
$"attempted to begin listening for events on
{httpClient.BaseAddress?.Host}, " +

6 $"but the cancellationtoken was already set to cancel");

7 while (!token.IsCancellationRequested)

{

9 try

10 {

11 while (!eventListenerStream.EndOfStream &&

Itoken.IsCancellationRequested)

12 {

13 string? response = await
eventListenerStream.ReadlLineAsync (token) ;

14 if (!string.IsNullOrEmpty(response) &&
Iresponse.Contains("event: DeviceUpdated"))

15 {

16 var json = ExtractJsonFromPrefixedMessage(response);

17 eventBuffer.Enqueue(json);

18 +

19 }

20 }

21 catch (TaskCanceledException)

22 {

23 Debug.WriteLineIf (debugOutput, $"EventListener():

98

Kongsberg Table Tracker 9 IMPLEMENTATION

TaskCanceledException caught" +
24 $"\n\tcancellationtoken.iscancellationrequested:
{token.IsCancellationRequested}");

25 }

26 catch (Exception ex)

27 {

28 Debug.WriteLineIf (debugOutput, $"ApiService.EventListener():

caught exception: {ex.GetType()}");

29 if (!token.IsCancellationRequested)

30 {

31 Debug.WriteLineIf (debugOutput, $"Error in
ApiService.EventListener ()
({httpClient.BaseAddress?.Host}): {ex.GetType()}\n\tTrying
again in 5 seconds");

32 await Task.Delay(TimeSpan.FromSeconds(5));

33 }

34 }

35 }

36 Debug.WriteLineIf (debugOutput, "EventListener finished executing");
s7 }

Data Loading

The other main component of the ApiService is the data loading aspect. The ApiService
has template functions for GET, POST, PUSH and DELETE. The functions are used in
the single function for each of the endpoints. They return the deserialized data model
to the table model. The main data areas is the table job queue, history job queue, table
properties, property trends and statistics. The table model class requests an initialization
and the API serves it.

Table Model

The main model used though the application is the Table Model. The class holds all the
information of that table. The credentials are saved in the model. It holds an ApiService
as well as all the models returned from ApiService. Its main functionality is the data
initialization and the event handler.

Initialization

When the table is made in the view and credentials are propagated back to the model
you instantiate the table model with the ApiService inside. The model then requests all
the data by calling the functions in ApiService. They return the models deserialized from
each of the endpoints.

FEvent Handler

The ApiService is then connected to the event stream from the hub and fills a queue with
each of the events. This queue is a queue of JSON string corresponding with each event.
The table model has a task running on a separate thread the code is shown in the code
segment 2. That task gets an event from the service and finds the type of event it is.
Then call that event specific function. The functions updates the table model and sends
out messages to the viewmodels listening.

39

Kongsberg Table Tracker

9 IMPLEMENTATION

w

28

29

30

31

32

33

35

36

37

38

39

45

46

{

Listing 2: Event Handler

private async Task HandleEvents(CancellationToken token)

Debug.WriteLineIf (debugQutput, $"TableModel.HandleEvents(): starting
event handler");
Debug.WriteLineIf (token.IsCancellationRequested, $"Error in
TableModel.HandleEvents() :\n" +
$"\tattempted to start event handler for {Name}, but the token was
already set to cancel");
while (!token.IsCancellationRequested)
{
string eventData = apiService.GetEvent();
if (!string.IsNullOrEmpty(eventData))
{
JsonDocument jsonEvent = JsonDocument.Parse(eventData) ;
JsonElement root = jsonEvent.RootElement;
if (root.TryGetProperty("Action", out JsonElement elementValue))
{
string? eventAction = elementValue.GetString();
if (Enum.TryParse(eventAction, out EventAction eventType))
{
switch (eventType)
{
case EventAction.TablePropertiesChanged:
OnNewTablePropertyReceived(eventData) ;
break;
case EventAction.QueueEntryAdded:
OnQueueEntryAddedReceived(eventData) ;
break;
case EventAction.QueueEntryUpdated:
OnQueueEntryUpdatedReceived(eventData) ;
break;
case EventAction.QueueEntryMoved:
OnQueueEntryMovedReceived (eventData) ;
break;
case EventAction.QueueEntryRemoved:
OnQueueEntryRemovedReceived (eventData) ;
break;
case EventAction.HistoryEntryAdded:
OnHistoryEntryAddedReceived(eventData) ;
break;
case EventAction.HistoryEntryRemoved:
OnHistoryEntryRemovedReceived(eventData) ;
break;
case EventAction.EventLogAdded:
break;
default:
Debug.WriteLineIf (debugOutput, $"Unknown event
type: {eventActionl}");
break;

60

Kongsberg Table Tracker 9 IMPLEMENTATION

47 }

48 }

49 }

50 else

51 {

52 await Task.Delay(100, token);

53 }

54 }

55 Debug.WriteLineIf (debugOutput, $"TableModel.HandleEvents(): stopping
event handler for {Namel}");

56 }

9.4 View EP |MO

This section describes the view layer of the K'T'T application. Each page consists of two
parts: a XAML file that contains the visuals of the page, and a code-behind that is
responsible for initialization and connection to the business logic behind. The following
subsections provide an overview of the Main Page in the application. Figure 27 is a
screenshot with annotation for different elements on MainPage. Following that is a section
of the page structure/layout, and relevant code. It is worth mentioning that icons found
in the applications are either provided by KPCS, or found in the free Font Awesome
library. See licence [55]. For a more detailed explanation of all the different pages, see
Appendix F

Overview of MainPage

Kongsberg Table Tracker = @

A =l Kongsberg Table Tracker

Elvin U-bord

Version 3.2.0 o
Connected 1 Connected

Shaker.cgf Duobox KPCS.cgf

Production Time: Copy: Production Time:
00:00:00 0/50 00:00:47

T1 DESKTOP-OILHATL

5 Reconnect .
Version 3.2.0 o Version 3.2.0

Connected Edit i Connected
testjob9.cut Delete ~ MAJSMOTT 250410_JEPT_pdf.cut

ol Copy: Production Time: Pod Production Time:
p 0/1500 00:00:00 /0 00:02:42

Figure 20: MainPage screenshot with annotated Ul elements

1. Navigation bar - Container for navigation-buttons and page detail.

2. Home button — Navigate to MainPage when pressed.

61

Kongsberg Table Tracker 9 IMPLEMENTATION

3. Timeline button — Navigate to TimeLinePage when pressed.
4. Meta Statistics button — Navigates to MetaStatisticsPage when pressed.
5. Page detail label - On main page, it displays application name.
6. Table details - Table name, iPC version, connection and job name.
7. Table Image - Image of table model.
8. Satus - Display status for table and current job.
9. Copies - Completed copies and total ordered copies.
10. Production time - Production time of the job.
11. Table item - Collection item of a specific table.
12. Right click options - Right click brings up a selection menu.
13. Add table button - Open popup for manual entry off a table.
14. Discover table button - Open popup and scan selected interface for tables.
15. Table filter button - Filter tables without credentials.
16. Status button - Open new window of main page, without functionality.
17. Settings button - Open popup for application settings.

18. Bottom bar - Container for main page buttons.

Structure

As mentioned in the Theory chapter, a ContentPage can only hold one piece of content.
On MainPage, that content is a Grid Container, which further divides the page into
three rows. The first row (Grid.Row=0) is a custom navigation bar(4) and is of type
ContentView. The NavBarContentView is defined in a separate XAML file, and injected
into the MainPage. This makes the navigation bar more reusable and maintainable for
further development. The navigation bar contains three different hover:buttons(1,2,3)
that each navigates to a different page. A hover:button is a custom class that is derived
from the ImageButton class, and includes animations for when the pointer is hovering
over the button icon. All buttons also have tooltips so that the user can get a more
detailed description, other than the icon. The NavBar also includes a page description
label(5), to inform the user of which page they are on. The navigation bar works like a
regular tab bar and stays consistent while navigating between MainPage, TimeLinePage
and MetaStatisticsPage.

The next row (Grid.Row=1) is also of type ContentView. This ContentView takes up the
main section of the window, and is called TablesContentView. Just like the navigation
bar, it is also injected from a separate XAML file. The reason TablesContentView is
made this way, is because it is used on both the MainPage and StatusPage. It contains
a CollectionView of all the tables that have been added by the user. Each table item (6)

62

Kongsberg Table Tracker 9 IMPLEMENTATION

displays a table with name, iPC version, connection status, table status, job status, job
copies, image of the table and production time. It also has a right click option (Menu-
Flyout) that lets the user reconnect, edit or delete a table from the CollectionView (7).
By left-clicking the table, the user will navigate to the ActivePage of that specific table.
The navigation bar will change to display navigation buttons for specific table related
pages (ActivePage, HistoryPage and StatisticsPage).

The last row (Grid.Row=2) is the bottom bar(13), and is a Grid wrapped in a Frame. It
contains five different buttons. The first button (8) opens a popup for manually adding
tables. A table item is added to the CollectionView when confirm is clicked. The next
button (9) opens the discover tables popup. Here the user is able to select an interface
(wifi, ethernet) and scan for any connected tables. Only client id and secret needs to be
entered manually. The next button opens a table filter pop up (10). Here the user is able
to select if tables with missing credentials should be displayed or not. The next button
(11) opens a page similar to main page in a new window. The purpose of this window
is to display table statuses on a separate screen, while still having the ability to use the
application. The last button (12) in the bottom bar is the settings button. It opens a
popup where the user can switch language. There are currently two options to choose
from, English and Norwegian. The settings also has a "delete all credentials” button that
deletes all saved table credentials from disk.

Code-behind

The code-behind for the MainPage is shown in Listing 3. It shows that MainPage takes in
a MainViewModel and a TablesContentView as constructor parameters. BindingContext
is set to the MainViewModel. This enables data binding between view and viewmodel.
From line 14, it shows an override of the OnAppearing() function. This function is called
when the page becomes visible. In this case, it reloads the content of the page to prevent
Ul states from persisting unexpectedly. This might happen when the control caches
previous states after the user navigates away from the page and returns.

Listing 3: MainPage code-behind

1 using KongsbergTableTracker.ViewModels;
3 namespace KongsbergTableTracker.Views;

5 public partial class MainPage : ContentPage

6 {

7 public MainPage(MainViewModel mainViewModel, TablesContentView
tablesContentView)

8 {

9 InitializeComponent () ;

10 BindingContext = mainViewModel;

11 TablesContentView.Content = tablesContentView;

12 }

13

14 protected override void OnAppearing()
15 {

16 base.0OnAppearing() ;

63

Kongsberg Table Tracker 9 IMPLEMENTATION

18 if (BindingContext is MainViewModel mainViewModel)

19 {

20 var ReloadTablesContentView = new
TablesContentView(mainViewModel) ;

21 TablesContentView.Content = ReloadTablesContentView;

ContentViews

Why you used ContentViews ContentViews are used to make reusable controls that are
defined in a seperate XAML file. [56] In the KTT application, ContentViews are used for
the list of tables on MainPage and StatusPage, the InfoPanel on ActivePage and Histo-
ryPage, the NavigationBar on most pages and TimeLine for a table. The InfoPanel is
explained in more detail below.

The InfoPanel in Figure 21 is one of the ContentViews used in the KTT application. It
contains several elements, and is used in ActivePage and HistoryPage. It is divided into
four parts. Starting from the left are the TableStatus, JobStatus, ProductionInfo and
RemainingTime. The first two elements are components that will be explained further
in the next section. The ContentView is placed in the NameSpace "KongsbergTable-
Tracker.Views.Components”.

64

Kongsberg Table Tracker 9 IMPLEMENTATION

Listing 4: Include InfoPanel namespace in page

1 xmlns:local=
2 "clr-namespace:KongsbergTableTracker.Views.TableContextViews"

Listing 5: Implement InfoPanel on page

1 <ContentPresenter x:Name='"InfoPanelViewHost" />

Listing 6: ActivePage constructor parameters

1 public ActivePage(TableContextService tableContextService,
InfoPanelContentView infoPanelContentView)

V]

Listing 7: Set content for InfoPanel

1 InfoPanelViewHost.Content = infoPanelContentView;

-\ Production Time: Remaining Time On Table:

1/5 00:00:00 00:00:02
Winter.cgf Producing Copy: Remaining Time On Job:
1 00:00:10

Replace material

Figure 21: InfoPanelContentView screenshot from ActivePage

Components

The ktt application also includes several different custom Components in the View folder.
They are called HistoryTimeLine, ProgressWheel and StatusTimeWheel. The InfoPanel-
ContentView (21) contains one of them, which is the ProgressWheel. The ProgressWheel
is defined in a .cs file and consists of the ProgressWheel class (derived from GraphicsView)
and a ProgressWheelDrawable (derived from IDrawable). The ProgressWheel works like
a canvas and the ProgressWheelDrawable takes instructions and draw them.

Converters

The KTT application also utalize converters to transform data values between the View-
Model and the View through data bindings. One example used is the UtcTimeSpan-
ToLocalConverter. TimeSpans from the Kongsberg HUB comes in UTC, so to create a
better UX, a converter transforms the time from UTC to local time. Listing 8 shows the
converter function.

65

Kongsberg Table Tracker 9 IMPLEMENTATION

Listing 8: UtcTimeSpanToLocalConverter

public object? Convert(object? value, Type targetType, object? parameter,
CultureInfo culture)

{
if (value is TimeSpan utcTime)
{
var utcDateTime = DateTime.UtcNow.Date + utcTime;
var localTime = utcDateTime.ToLocalTime() .TimeOfDay;
return localTime;
}
return value;
}

66

Kongsberg Table Tracker 9 IMPLEMENTATION

9.5 ViewModel
Table Context TS |OH

In order to keep our table-specific viewmodels up to date with the received data, we
have made a class to store both the table model, the viewmodels that target a single
table and a table context messenger. Collectively, we have named these a TableContext,
which is created and stored in the table context service whenever a table is introduced
to the system, be it tables added manually by a user, tables loaded from disk or tables
discovered on the network.

TableContext

TableContextView

TableContextViewhodels

Figure 22: TableContext

67

Kongsberg Table Tracker 9 IMPLEMENTATION

Table Context Base TS |OH

This is the base ViewModel that all the ViewModels inside the TableContext inherit
from. It contains things that most or all of the TableContext viewmodels use, like refer-
ences to the service provider, the TableContext/Meta messengers, the name of the table
and a reference to the TableModel. The base ViewModel also receives the messages Re-
setViewModelMessage and LoadModelDataMessage. There are reset and load functions
you can override in each child viewmodel.

TableContextViewModels

CB TableContextBaseViewModel

CB TableActiveViewMaodel % TableStatisticsViewModel Qg TablePreviewViewMaodel % TableHistoryViewModel

SubViewModels

Figure 23: TableContextViewModels

68

Kongsberg Table Tracker 9 IMPLEMENTATION

Table Preview TS |OH

The TablePreviewViewModel is responsible for providing the table info panels on the
main page with information from their respective instance of the table model. This
includes the table name, version of iPC, current job status, table image and connection
status. By subscribing to the messages RunningJob, TablePropertyChangedMessage and
ConnectionStatusChangedMessage, the TablePreviewViewModel can keep these fields
updated with information from the model. Because ConnectionStatusChangedMessage
can be sent from many places and those messages only converge in this viewmodel, these
messages are propagated here from the per-table messenger to the meta messenger when
a table connection changes status. This is done in order to update the filtered list of
tables in TableContextService

Table Job Lists OH |TS

The TableActiveViewModel is the binding context of the ActivePage. It takes the active
jobs from the model and makes them accessible to the View. This is the same job list
shown in iPC. This ViewModel implements job handling. It sorts the jobs based on
actions from the view and updates the job list in real time by listening to the tablemodel.
When pressing the add button in the view it executes the AddActiveJobAsync which
opens a file explorer and lets you add a job in zip format to the table. You can also delete
jobs by pressing the trash symbol in the view. The HistoryViewModel is the binding
context for the HistoryPage, it is almost the same as ActiveViewModel except that it
shows the history job list and removed adding job functionality.

69

Kongsberg Table Tracker 9 IMPLEMENTATION

Table Statistics OH |TS

One statistics entry is structured in a 3-layer structure. The first layer is the JobStatistics
that shows all the information about the jobs produced. Then in the next layer is a list of
JobRunStatistics, which is each time the job gets started and stopped. Then for each job
run you have a list of JobLayersStatistics which holds the data for each layer. A layer has
information about what type of tool is used. So, if multiple tools are used in one run you
have a list of JobLayerStatistics inside the JobRunStatistic. That data is encapsulated
in classes which are already loaded inside the model. Those models will be encapsulated
into a viewmodel for extracting only the important data and to bind to the view. Those
viewmodels we call SubViewModels. They are primarily used in the StatisticsViewModel
but also represented as a JobTask which is used in Active and HistoryViewModel. They
are mapped out in figure 24

SubViewModels

CB CustomerTotalProducedCopiesViewModel % JobStatisticsViewModel
€ CustomerViewModel € JobRunStatisticsViewMadel €8 ToolDistanceViewModel

% JoblayerStatisticsViewMode|

€8 JobTaskViewModel €8 MaterialTotalProducedCopiesViewModel

Figure 24: SubViewModels

70

Kongsberg Table Tracker 9 IMPLEMENTATION

The statistics viewmodel is the binding context for the StatisticsPage. It gathers data
from the statistics endpoint and generates information based on data important to the
user. The StatisticsPage has 4 buttons you can press one daily, one weekly and a monthly
which sets UTC time in the viewmodel and sends a request to the model about gathering
information from that period. This then gets propagated back into the viewmodel with
all the data in a list of JobStatisticsViewModels. With JobStatistics we can loop though
the JobStatiscViewModel and gather the customers that each of the jobs was produced
for and aggregate them using a dictionary with the CustomerViewModel as key and the
amount of copies produced as value. If the job does not have a defined customer it just
defaults to “not specified”. Then you can go one step further and loop though the Runs.
There you can do the same process only changing the key with a string representing
the material name. Then the last layer is the production layer where the information
about the distance traveled by each tool is stored. This can then be multiplied with the
number of multipasses and number of copies to produce total distance cut in the material.
This will generate 3 different dictionaries which represent production done by the table.
They must then be cast into a display friendly viewmodel holding the customer and the
number of copies, the material name and the amount of copies, and lastly the name of
the tool and the distance cut. Those classes gets added into an ObservableCollection and
displayed in the view.

It also sends a property trend message with the Status as key, gathering all the data
about when the table was busy,idle or off. This is used to calculate the time the table
was in each state. The endpoint returns a list of properties where each has the start and
end point of the status. You can then loop though the list and search for each property
and add the time from that instance to the next shift in status. This is then calculated
into total busy, idle and off times inside the timespan. But the first instance of status
inside the timespan might not be defined with a property trend you have to fill that in
with unknown time. From all of that you can find the utilization score of the table.

External OH |TS

With the implementation of the table specific viewmodels that hold information about a
single table there are also external viewmodels connected to the display and handling of
multiple tables. The external viewmodels are Main, Timeline and Meta Statistics. There
are also popups connected to buttons inside each of the external viewmodels. Some
of the popups have their own viewmodel and some do not, depending on the required
functionality of the page. The external viewmodels are shown in Figure: 25

71

Kongsberg Table Tracker 9 IMPLEMENTATION

ViewModels
PopupViewModels

48 SettingsViewModel 48 EditTableViewModel

<48 AddTableViewModel

€4 TableFilterViewModel

% DiscoverTablesViewModel

% CustomStatisticsViewMaodel

% TimelineViewModel % MetaStatisticsViewModel % MainViewMaodel

Figure 25: External ViewModels

72

Kongsberg Table Tracker 9 IMPLEMENTATION

Main OH |TS

The first page you enter is the MainPage. This page has a corresponding viewmodel
called the MainViewModel. It is used for data binding as we will describe in section
9.7. The main viewmodel constructor injects the IServiceProvider container from .NET
MAUTI and the TableContextService. The MainViewModel is responsible for getting the
TableContext list from the TableContextService for display. It also handles the Table-
Contexts. The MainViewModel has many commands the view can bind to. They all
correspond to a way of handling the TableContext list or navigation. The GoToTable
command takes a TableContext as a parameter. The command sets the parameter as the
ActiveTable inside the TableContextService. Then navigates to the ActivePage which
uses the ActiveTable’s ActiveJobsViewModel member to set the binding context. The
AddTable command launches a popup for adding a TableContext. The EditTable com-
mand launches a popup almost the same as AddTable. The popup makes you able to
edit the credentials on that table. The DeleteTable command removes a TableContext
from the TableContextService. The ReconnectTable command takes the TableContext
as a parameter and calls the function InitializeTable on the parameter. Then you have
commands for navigation to the DiscoverTablePopup. The last commands are used to
navigate to the TableFilterPopup and SettingsPopup. All the popups are described in
section 9.5

TimeLine TS |OH

This viewmodel has a Task that is activated when the TimelinePage is opened. It simply
runs a loop that waits 5 seconds before it sends an UpdateTimestampsMessage over the
MetaMessenger. This message then reaches each instance of TimelineContentView to
ensure the timestamps have an opportunity to update regularly without each and every
one of them having their own Task with delay.

Meta Statistics OH |TS

The TableStatisticsViewModel holds all the data for a specific table. Then there is the
external viewmodel format of the StatisticsPage. The MetaStatisticsViewModel holds
commands to buttons that request data from a timespan defined by the user. It sends a
request to the Table StatisticsViewModel that gathers the same data as it did standalone.
It knows that it was requested by the MetaStatisticsViewModel and returns itself. The
MetaStatiticsViewModel aggregates the same information using dictionaries. This is then
displayed as an ObservableCollection of customers, material and tool distances. It also
displays the status time and the utilization by adding up the times.

Popups TS |OH

AddTable

This viewmodel handles the verification of user input when adding a table manually
through the Add Tables popup window. If the user clicks confirm and the entry fields all
pass the verification, then a TableContext is created with the information provided by
the user and added to the list in TableContextService. This viewmodel uses a TableEn-
tryFieldValidator that checks if each field contains a value that can be used. The confirm
button is disabled when a field has an invalid value

73

Kongsberg Table Tracker 9 IMPLEMENTATION

CustomStatistics
This viewmodel handles custom timespans provided by the user in the form of a before
date and an after date from the popups in TableStatisticsPage and MetaStatisticsPage

DiscoverTables

This viewmodel handles the interactions between the user and the TableScan service.
The user can select a network interface and request a scan on it. The interface list is
filtered to exclude network interfaces that are not connected to class C networks. An
abort scan button is shown while a scan is in progress. When a scan is completed, the
queue of tables returned from the TableScan service is added to the TableContext service

EditTable

This viewmodel is very similiar to the AddTable viewmodel. The major difference is that
it doesn’t add a new table, but edits an existing one and re-initializes it when the user
clicks confirm

Settings
This viewmodel handles user input from the Settings popup. Currently, the only settings
are changing language and deleting all credentials from both memory and disk.

TableFilter

This viewmodel sets table filters based on user input. The filters are passed to the
TableContext service. Currently, the only filter available is to filter out tables that are
not connected to their respective Kongsberg HUB

74

Kongsberg Table Tracker 9 IMPLEMENTATION

9.6 Services TS |OH

Madel - ViewModel - View
ViewModels

% TableScanService % TableContextService

TableContext

Figure 26: TableContext-ViewModel-View

Table Context Service

The TableContext service encapsulates a list of every TableContext that has been cre-
ated. When a table is added /removed to/from the list of TableContexts, the name and
[P address of every table in the table list is serialized to JSON and stored on disk. When
the application is launched, it will load the list from disk (if it exists) and put the con-
tents back into the list of TableContexts. The TableContext service also has a filtered
list of TableContexts, where user defined filters determine which TableContexts go from
the main list of TableContexts into the filtered list. If the user has not enabled any
filters, the filtered list is identical to the main list. By the time this was written, there
was only one filtering option implemented. The option to filter out tables that did not
have a connection to a Kongsberg HUB. However, the ground work for adding filtering
options has been laid out, so adding more filters later should be fairly trivial. In order to
keep the filtered list up to date, the TableContext service has subscribed to Connection-
StatusChangedMessage through the meta messenger, so that the function to update the
filtered list is called whenever a table changes connection status.

Table Scan Service

Having to manually input a bunch of table names and Internet Protocol (IP) addresses is
annoying, so we added a function to scan the network for cutting tables. This is done by
sending a request to every single IP address on the network using one of the Kongsberg
HUB endpoints that don’t require authentication to get a response and checking the
response. The user selects a network interface to scan on, and a list of IP addresses is
generated based on the IP address and subnet mask associated with the user selected
network interface. To generate this list, we first get the network and broadcast addresses.
To get the network address, do a bitwise AND operation between the host IP address
and the subnet mask. As for the broadcast address, do a bitwise OR operation between
the host IP address (can optionally be substituted for the network address if it is already
calculated) and the bitwise inverse of the subnet mask. Both the network address and
subnet mask are converted to unsigned integers. By subtracting the network address
from the broadcast address, we get the amount of IP addresses on the network. Then we

75

Kongsberg Table Tracker 9 IMPLEMENTATION

can run a loop and add every IP address from the network address up to the broadcast
address (not including either as they are not eligible for assignment to any device) to a
list. From there we run a Task for every IP address in the list. Each Task sends a request
to the IP address and checks if the response is successful, in which case it tries to do a
reverse DNS lookup on the IP address just to have a name for the table. In case the
reverse DNS fails, a default name of "Unknown” is set for the new table. At the end of
the Task, when the table has been discovered and the reverse DNS request is completed,
the new table is added to a queue. After all the Task objects have either finished or
expired, the list is returned to the DiscoverViewModel, where the list of discovered tables
is added to the list of all tables in the TableContext service.

9.7 Data Flow
Messenger OH |TS

The main messaging system of the application is the community toolkit IMessenger. That
was chosen after a technical design document was created mapping out the pros and cons
of IMessenger, Events and Direct push. The document is located in Appendix 1. The
[Messenger is a messenger thats sends classes. Each of those classes is defined in the dif-
ferent layers of the system. There are currently 2 messengers in the application. One is
named TableContextMessenger and is injected into every TableContextViewModel. That
handles the messages between the TableModel and the TableContextViewModels. The
TableModel sends out a message for Reset, Init and each of the events. They are re-
ceived by a viewmodel that has instantiated the IRecipient and the viewmodel makes the
function public void receive(typeof(Message)). Then each time the message is sent, the
viewmodels can do the appropriate data updating. Then you have the MetaMessenger,
it is used to communicate between the external viewmodels and the TableContextView-
Models. The implementation is the same as the TableContextMessenger and is currently
used for the MetaStatisticsViewModel to send request for data and the ConnectionSta-
tusChanged message.

Binding mechanics OH |TS

As mentioned earlier, each of the views has their own viewmodel. The viewmodel is
injected into the code-behind of the views, then assigned as the binding context for that
page. Each of the viewmodels inherits from ObservableObject class. The properties
are bound to the view using {Binding} command inside the XAML page. All the
properties inside the view are prefixed with [ObservableProperty| which is a function
added by the NuGet package named CommunityToolKit .Mvvm. The properties are
then registered to the INotifyPropertyChanged automatically. This makes updates in
the view automatic. The commands implemented in the viewmodel are either using
ICommand or the Toolkit version [RelayCommand]|, those are then bound to the view.

9.8 Test Results MO |EP

In this chapter, we will present the results from the different tests we performed during
the project. This includes unit testing, integration testing, system testing, acceptance
testing. We describe what was tested, what worked well, and which bugs or problems

76

Kongsberg Table Tracker 9 IMPLEMENTATION

we discovered. The goal is to show how the system behaved during testing and what we
learned from it.

Unit Testing Results
Unit Test Example: GetActiveJobsTest.cs

This unit test checks the method GetActiveJobs from the ApiServiceWithClient class.
The purpose of the method is to call a REST API to fetch active job data and convert
the response into usable objects for the system.

The test was written using the xUnit framework and follows the Arrange-Act—Assert
pattern:

o Arrange: A fake HT'TP handler is set up to simulate different API responses. This
allows us to control the input to the method without needing a real server.

o Act: The GetActiveJobs method is called using the fake client.

o Assert: The returned result is compared to the expected outcome to check that
the method behaves correctly.

Test Scenarios:
1. Scenario 1: API returns valid job data
e A JSON string with one job is returned from the fake API.
e The test checks that the result is not null.

o It also checks that the returned list contains one job with the correct ID and
name.

2. Scenario 2: API returns "null"

e A plain JSON value "null" is returned.

o The method is expected to return null and not throw any exceptions.

Result: Both test scenarios passed. The method returned the correct results and handled
the edge case without crashing.
Lessons learned:

o Using custom HTTP handlers is an effective way to simulate API behavior in unit
tests.

o Testing with edge cases, like null responses, makes the system more robust.

o Small, focused unit tests help make the code easier to maintain and understand.

For the full unit testing report, see Appendix G.

Integration Testing Results

Integration testing was performed manually. The team used the application and verified
that the frontend correctly communicated with the backend. Views were checked, buttons
were pressed, and data was confirmed to be correct. This helped discover bugs that were
not covered by unit tests. Now the application runs smooth and nothing unexpected
happens when you navigate through the application using the different buttons.

77

Kongsberg Table Tracker 9 IMPLEMENTATION

System Testing Results

During this testing phase, we found some bugs. One problem happened when we moved
too fast between pages. If we clicked quickly or changed screens before the app was
ready, it sometimes gave an error or crashed. We also had some issues with the timeline.
Sometimes the timeline did not show the correct data. These bugs were fixed by improving
how the app loads and updates the data. System testing helped us find these problems
that we did not see in unit or integration testing.

Acceptance Testing

At the end of the project, the team had a final meeting with the stakeholder from KPCS.
In this meeting, the full application was demonstrated. The group walked through all
the main features, including table overview, job handling, and the status display. The
stakeholder followed the walkthrough and confirmed that the system worked as expected.
All the agreed requirements were met, and the stakeholder was satisfied with the result.
This meeting marked the successful completion of the acceptance testing.

Bugs discovered

During testing, we found some bugs in the system. One bug happened when we moved
too quickly between pages in the app. If we clicked fast or switched views quickly, the app
sometimes gave an error or crashed. This did not happen every time, but often enough
that we noticed it.

We also had some problems with the timeline. Sometimes the timeline did not show the
correct data, or it was not updated when it should have been. This was likely because
the app did not get the new data in time, or because things were happening at the same
time in the background. We worked on fixing this by improving how the app loads and
updates the timeline.

Summary

We tested the system in different ways to make sure everything worked as it should. Unit
tests helped us check small parts of the code and making sure the functions behaved
like they should. These tests made it easier to find bugs early and made the code more
stable. Integration testing helped us check that the frontend and backend worked well
together. System testing showed us how the app worked when everything was running,
and helped us find bugs like crashes when clicking too fast or problems with the timeline.
In the acceptance test, the stakeholder saw the full system and confirmed that it met the
requirements.

The tests showed that most of the system worked well, but also helped us find and fix
some problems. After fixing the bugs, the system became more stable and ready to use.

78

Kongsberg Table Tracker 10 RESULTS

10 Results MO |EP

Regression Test

The test plan was executed together with two employees from KPCS. We went through
all the planned tests step by step to ensure that the core functionality of the system
still worked as expected. This included checking things like table setup, job handling,
dashboard features, and the timeline view. The KPCS employees observed the testing
and gave feedback along the way. Below are the results from the regression test: for the
full regression test report see Appendix H

Table 8: Regression Test Example — Establish Connection and Add Tables

Test ID T-1

Test Name Establish connection and add tables
Requirements R-1.1.1, R-1.1.2, R-3.3.3, R-5.1.1

Tested

Steps 1. Open Kongsberg Hub Client Configurator.

2. Press ”Add Table” and enter IP and Hostname.
3. Enter Name, IP address, ClientID, and
ClientSecret.

4. Press Confirm.

5. Repeat steps 14 to add a second table.
Expected Result The table appears in the GUI with the correct
name, connection status, image, and job data. Af-
ter repeating the steps, two tables should be visi-
ble.

Tester -

Date -

Pass /Fail —

79

Kongsberg Table Tracker 11 PRODUCT RISK ANALYSIS

11 Product Risk Analysis MO |EP

While the project team focused on managing risks during the development phase, it is also
important to consider risks related to the product itself. These risks affect the final user
experience, the system’s long-term usability, and the reliability of the delivered software.
Product risks include potential problems such as incorrect functionality, system instabil-
ity, or unclear user interfaces. These issues can lead to user dissatisfaction or increased
maintenance in the future. Below are some identified product-related risks that were
considered during the project

As explained earlier in Section 5.3, the risk evaluation is based on the RPN method. This
helps compare different risks by using probability, impact, and detection values.

The following table presents the most important product-related risks identified in the
project.

Product Risk Explanation Probability (1-5) | Impact (1-5) | Detection (1-5) | RPN | Overall Risk

Software bugs The software may crash or behave 3 3 2 18 MODERATE
incorrectly in certain cases.

Incorrect data display Job or table data might not show the 1 4 3 12 LOW
correct status or timing.

User misunderstanding The user interface could be unclear 2 2 2 8 LOW
or confusing, causing wrong usage.

Integration with backend fails The connection to the Kongsberg 1 3 3 9 LOW
HUB might be unstable or slow.
Missing functionality Some features expected by the cus- 2 3 3 18 MODERATE
tomer might not be implemented
fully.
Long term usage The system might not perform well 3 4 2 24 MODERATE

over time if more tables or jobs are
added in the future.

High memory usage during data processing | The system may use too much 3 3 2 18 MODERATE
memory when processing or retriev-
ing data over specific time periods,
which could lead to performance is-
sues or crashes.

Table 9: Product risk table

80

Kongsberg Table Tracker 12 CHALLENGES

12 Challenges
12.1 Project MO |EP

During the project, we had some challenges that affected our work. One group member,
Elvin, was in Belgium as an exchange student. His semester there overlapped with ours,
so he had to try and contribute to the project while also preparing for his exams before
coming back to Norway. This made communication and planning a bit more difficult in
the early phase.

In the beginning, most of us also had little to no experience with C# but we had written
a lot of c++ code so it was not so different from that. This meant we had to spend extra
time learning the language and tools.

We had problems with the working space too. Our usual room in Bergseminaret, was
under renovation and had a lot of noise. We then got a new room which had seen better
days. Two of the group members wanted to return to our old room despite the noise. So
we settled it like real men would, and that is of course with rock paper scissors.

Even though we had some small challenges during the project, we worked well together
as a group. We had good communication and helped each other when something was
difficult. We did not have any major conflicts or problems in the group, and we are happy
with how we worked as a team throughout the project.

12.2 Technical
No access to iPC from the start TS |OH

At the start of the project, we did not have license keys to iPC and were only able to
test our application when we were at KPCS. We initially tried to solve this by making
a fake Kongsberg HUB in Python using the Flask framework to deliver dummy data on
the same endpoints as the Kongsberg HUB. The first few endpoints from the Kongsberg
HUB API were simple enough to add to the Python script, but it would have taken way
too long to make a complete fake Kongsberg HUB. Thankfully, we received license keys
from KPCS, so we could scrap the Python script and free up those resources to work on
more important things.

Development versions of the HUB TS |OH

Throughout the project, we have been testing our application against different devel-
opment builds of the Kongsberg HUB. Some of those versions do not always behave as
expected. Sometimes the Kongsberg HUB did not include certain key data in the event
messages it sent to our application, which made our application not respond in the way
we had anticipated. This was confusing at first, and we had to investigate the cause of
the problem through extensive debugging messages. It wasn’t until we inspected the data
received from the Kongsberg HUB in Postman that it became clear that we had not done
anything wrong on our end. In situations like this, where the cause of the error is outside
our area of responsibility, we deduced that the appropriate course of action is to send a
bug report to KPCS and leave our application as is.

Kongsberg HUB also doesn’t expose enough data for us to be able to accurately replicate

81

Kongsberg Table Tracker 12 CHALLENGES

the job/copy counter (the orange wheel). There will be some discrepancies between the
job/copy counter in our app and the one in iPC.

JSON deserialization TS |OH

The live data we receive from the Kongsberg HUB is sometimes in the format of an object
(or nested objects) where one or more members are set to null. Our original code could not
handle updates like this and would overwrite the entire object when only one of its fields
needed an update. We were unable to solve this problem ourselves and used generative
AT to come up with a solution. See TableModel.UpdateJobTask(JobTask, JobTask) and
its helper function UpdateJobTaskMemberOfClassType(object?, object, Type)

Scan service on bigger networks TS |OH

The scan service uses a lot of system resources in its current state when trying to run a
scan on a network bigger than a class C network. As an example, RAM usage has been
observed well above 2GB. For this reason, a seemingly arbitrary restriction was placed on
the size of networks that can have scans performed on them. This restriction can easily
be removed at some point in the future when the scan service is rewritten to be more
resource efficient.

Auto-generated files EP |MO

With a .NET MAUI project, there are many files that are generated automatically. It
can be challenging since all group members are new to the framework. Issues can occur
when two different branches are merged, and the auto-generated files have been modified
by the helpers.

Cross-platform EP |MO

The initial plan was to develop an application that would work on both Windows and
Android. It was quickly decided that the team lacked the necessary "man-power” to
deliver a good result on both platforms.

82

Kongsberg Table Tracker 13 CONCLUSION

13 Conclusion EP |MO

The goal for this project was to create a prototype application that could be used for
remote monitoring of multiple tables on a Local Area Network (LAN). The application
should display information from the tables in real time, and also include features such as
table status, job list, job status, adding and deleting jobs. This application would be a
helpful tool for operators, managers, and developers alike. During the development pro-
cess, all members had to learn new coding languages, libraries and architectures. Even
with limited knowledge, the team systematically worked towards a solution, one step at
a time. The challenges that occured during the process, was solved with good communi-
cation, both within the team, but also by consulting supervisors. By using tools such as
Draw.io, Jira, and Git, the team was able to work systematically on pre-assigned tasks.
Progress was smooth, and the skill level of the team increased visibly every week. The
outcome of the project was a success. The prototype application was completed within
the time frame, and feedback from supervisors was positive. The application satisfied
almost all the requirements set, with the exception of cross-platform. The teamwork
within the group has been above all expectations, and all members are proud of the final
product, Kongsberg Table Tracker.

83

Kongsberg Table Tracker 14 FUTURE WORK

14 Future Work

Since this project is to be handed over to KPCS at the end of the semester, it is important
to include information that will be helpful to the team that takes over the project. That
is the purpose of this chapter.

14.1 Cross platform EP |MO

One of our initial requirements was to include support for cross-platform in the KTT
application. After consulting with kpcs early in the project, we came to an agreement to
only focus on Windows development, as it is the most important target platform. The
reason this issue was brought up, was the realization of how time consuming it would be
to focus on multiple platforms at the same time. With only four members on the group,
it was decided that we would drop the requirement of cross-platform. It is however
important to note that the foundation is already there. The application does launch in
the android emulator, but is missing the touch-friendly controls to be usable.

Another thing that should be implemented is the use of more ContentViews. The appli-
cation has pages that are very similar, StatisticsPage and MetaStatisticsPage, MainPage
and StatusPage, and ActivePage and HistoryPage. Only the MainPage and StatusPage
share a ContentView. It would be a good idea to do the same for the other pages, in
order to reduce duplicated code.

It has also been pointed out by an external tester that it would be helpful to include
tooltip of status text on the table preview.

Another Ul related improvement is adding highlighting to the navigation bar, so the user
can better see which page they are currently on.

14.2 Server certificates TS |OH

When we began using HttpClient for communicating with the Kongsberg HUB, we didn’t
handle server certificate validation properly. It was bypassed altogether, leaving a security
hole in our application. This must be remedied before public release.

14.3 Scan service efficiency TS |OH

Make the TableScan service more resource efficient so that the class C network restriction
can be removed.

14.4 Better handling of table editing TS |OH

Currently, in the edit table popup, editing any field (or even no fields at all, just clicking
confirm) will force the table to re-initialize. Some checks on the new values should be
done to avoid potentially unnecessary refreshing of data.

14.5 Preferences TS |OH

Insufficient research was conducted prior to implementing user preferences, resulting in
a subpar homemade solution when a perfectly good easy-to-use option already exists
in .NET, simply called Preferences. The homemade solution should be replaced with
Preferences.

84

Kongsberg Table Tracker 14 FUTURE WORK

14.6 Installer TS |OH

An installer should be made, to allow users to install the application and its prerequisities.
We made an attempt at this, but it refused to install on any computer due to a lack of a
trusted certificate. No further work was put into this due to other tasks taking priority.

85

Kongsberg Table Tracker 15 REFERENCES

15

1]

2]

3]

[4]

[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

K. P. C. Systems, “Kongsberg ultimate 64,7 2025, accessed: 10-Feb-
2025. [Online|. Available: https://www.kongsbergsystems.com/en/cutting-systems/
tables/ultimate/ultimate-64

——, “i-cut production console,” 2025, accessed: 15-May-2025. [Online]. Available:
https://www.kongsbergsystems.com/en/i-cut-production-console

davidbritch, “Layouts,” 2024, accessed May 17, 2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet /maui/user-interface /layouts/
?view=net-maui-8.0

K. P. C. Systems, “Digital cutters for every application,” 2025, accessed:
15-May-2025. [Online]. Available: https://www.kongsbergsystems.com/en/

——, “Advanced digital cutting machines for signage, display & corrugated
production,” 2025, accessed: 15-May-2025. [Online]. Available: https://www.
kongsbergsystems.com/en/solutions/digital-cutting-machine

Thorpe. (2025) What is the digital cutting machine? Accessed 18-May-2025. [On-
line|. Available: https://www.igolden-cnc.com/what-is-the-digital-cutting-machine/

Wikipedia, “Tooling,” 2025, accessed: 15-May-2025. [Online|. Available:
https://en.wikipedia.org/wiki/Milling_(machining)

K. P. C. Systems, “Tooling,” 2025, accessed: 15-May-2025. [Online]. Available:
https://www.kongsbergsystems.com/en/cutting-systems/tooling

—, “Kongsberg ¢ series: Technical specifications,” 2025, accessed: 15-May-2025.
[Online]. Available: https://www.kongsbergsystems.com/en/kongsberg-c

——, “i-cut production console,” 2025, accessed: 15-May-2025. [Online]. Available:
https://www.kongsbergsystems.com/en /i-cut-production-console

M. Kvalbein, “Personal communication with martin kvalbein, software engineer at
kpcs,” 2025, conducted on 16 May 2025.

K. P. C. Systems, “About the company,” 2025, accessed: 10-Feb-2025. [Online].
Available: https://www.kongsbergsystems.com /en/about/company

—— (2023) About. Accessed 18-Feb-2025. [Online]. Available: https://www.
linkedin.com/company /kongsbergpcs/about/

davidbritch, “What is .net maui?” 2025, accessed: 15-May-2025. [Online|. Available:
https://learn.microsoft.com/en-us/dotnet /maui/what-is-maui?view=net-maui-8.0

Wikipedia, “net framework,” 2025, accessed: 15-May-2025. [Online]. Available:
https://en.wikipedia.org/wiki/. NET_Framework

davidbritch, “Xaml hot reload for .net maui,” 2025, accessed: 15-May-2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet/maui/xaml/hot-reload?view=
net-maui-8.0

86

https://www.kongsbergsystems.com/en/cutting-systems/tables/ultimate/ultimate-64
https://www.kongsbergsystems.com/en/cutting-systems/tables/ultimate/ultimate-64
https://www.kongsbergsystems.com/en/i-cut-production-console
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/layouts/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/layouts/?view=net-maui-8.0
https://www.kongsbergsystems.com/en/
https://www.kongsbergsystems.com/en/solutions/digital-cutting-machine
https://www.kongsbergsystems.com/en/solutions/digital-cutting-machine
https://www.igolden-cnc.com/what-is-the-digital-cutting-machine/
https://en.wikipedia.org/wiki/Milling_(machining)
https://www.kongsbergsystems.com/en/cutting-systems/tooling
https://www.kongsbergsystems.com/en/kongsberg-c
https://www.kongsbergsystems.com/en/i-cut-production-console
https://www.kongsbergsystems.com/en/about/company
https://www.linkedin.com/company/kongsbergpcs/about/
https://www.linkedin.com/company/kongsbergpcs/about/
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-8.0
https://en.wikipedia.org/wiki/.NET_Framework
https://learn.microsoft.com/en-us/dotnet/maui/xaml/hot-reload?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/xaml/hot-reload?view=net-maui-8.0

Kongsberg Table Tracker 15 REFERENCES

[17] ——, “Xaml,” 2025, accessed: 15-May-2025. [Online]. Available: https:
//learn.microsoft.com/en-us/dotnet /maui/xaml/?view=net-maui-8.0

[18] Wikipedia, “Markup language,” 2025, accessed: 16-May-2025. [Online]. Available:
https://en.wikipedia.org/wiki/Markup_language

[19] C. Hashemi-Pour, “user interface (ui),” 2025, accessed: 17-May-2025. [On-
line]. Available: https://www.techtarget.com /searchapparchitecture/definition/
user-interface- Ul

[20] S. Levy, “graphical user interface,” 2025, accessed: 17-May-2025. [Online|. Available:
https://www.britannica.com/technology /graphical-user-interface

[21] Microsoft. (2025) Visual Studio: IDE and Code Editor for Software Developers and
Teams. Accessed 11-Feb-2025. [Online]. Available: https://visualstudio.microsoft.
com/

[22] JetBrains, “Jetbrains: Developer tools for professionals and teams,” 2025, accessed:
17-May-2025. [Online|. Available: https://www.jetbrains.com/lp/rider-maui

(23] davidbritch, “Get started with .net maui xaml,” 2025, accessed: 15-May-
2025. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/maui/xaml/
fundamentals/get-started ?view=net-maui-8.0

[24] m. M. davidbritch, Saccomani, “Visual states,” 2024, accessed May 17, 2025.
[Online]. Available: https://learn.microsoft.com/en-us/dotnet/maui/user-interface/
visual-states?view=net-maui-8.0

[25] T. bijington, jfversluis, “Popup,” 2024, accessed May 17, 2025. [Online|. Available:
https://learn.microsoft.com/en-us/dotnet /communitytoolkit /maui/views/popup

[26] g. davidbritch, “Layouts,” 2024, accessed April 16, 2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet /maui/user-interface/layouts/
?view=net-maui-8.0

[27] j. davidbritch, marius-bughiu, “Controls,” 2024, accessed May 17, 2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/
?view=net-maui-8.0

[28] Microsoft, “Model-view-viewmodel (mvvm) pattern,” 2024, accessed March 25,
2025. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/architecture/
maui/mvvm

[29] (2025) Introducing json. Accessed 18-May-2025. [Online]. Available: https:
//www .json.org/json-en.html

[30] Microsoft, “System.text.json namespace,” 2025, accessed 18-May-2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet/api/system.text.json

[31] ——, “How to write .net objects as json (serialize),” 2025, accessed 19-May-
2025. [Online]. Available: https://learn.microsoft.com/en-us/dotnet /standard/
serialization /system-text-json/how-to

87

https://learn.microsoft.com/en-us/dotnet/maui/xaml/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/xaml/?view=net-maui-8.0
https://en.wikipedia.org/wiki/Markup_language
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.britannica.com/technology/graphical-user-interface
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/lp/rider-maui
https://learn.microsoft.com/en-us/dotnet/maui/xaml/fundamentals/get-started?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/xaml/fundamentals/get-started?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/visual-states?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/visual-states?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/maui/views/popup
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/layouts/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/layouts/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://learn.microsoft.com/en-us/dotnet/api/system.text.json
https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/how-to
https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/how-to

Kongsberg Table Tracker 15 REFERENCES

[32]

[33]

Cisco. (2025) Configure ip addresses and unique subnets for new users. Accessed
18-May-2025. [Online]. Available: https://www.cisco.com/c/en/us/support/docs/
ip/routing-information-protocol-rip/13788-3.html

Cloudflare. (2025) What is dns? — how dns works. Accessed 19-May-2025. [Online].
Available: https://www.cloudflare.com/learning/dns/what-is-dns/

[34] ——. (2025) What is reverse dns? Accessed 19-May-2025. [Online]. Available:

[37]

[38]

[39]

[40]

[41]

[42]

[43]

https://www.cloudflare.com/learning/dns/glossary /reverse-dns/

Mozilla. (2025) An overview of http. Accessed 18-May-2025. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP /Guides/Overview#
http_messages

Microsoft, “Make http requests with the httpclient class,” 2025, accessed 15-May-
2025. [Online|. Available: https://learn.microsoft.com/en-us/dotnet /fundamentals/
networking /http/httpclient

Wikipedia, “Server-sent events,” 2025, accessed 18-May-2025. [Online]. Available:
https://en.wikipedia.org/wiki/Server-sent_events

Microsoft, “Httpclient.getstreamasync method,” 2025, accessed 18-May-2025.
[Online]. Available: https://learn.microsoft.com/en-us/dotnet/api/system.net.http.
httpclient.getstreamasync?view=net-9.0

Wikipedia, “Rest,” 2025, accessed 18-May-2025. [Online]. Available: https:
//en.wikipedia.org/wiki/REST

Nickolay Bakharev. (2023) Unit testing: Definition, examples, and critical best
practices. Accessed 8-Apr-2025. [Online]. Available: https://brightsec.com/blog/
unit-testing/

GeeksforGeeks, “Integration testing — software engineering,” 2025, ac-
cessed: 2025-05-18. [Online]. Available: https://www.geeksforgeeks.org/
software-engineering-integration-testing/

Randall W. Rice. (2022) What is system testing? an in-depth guide. Accessed
8-Apr-2025. [Online]. Available: https:https://www.practitest.com/resource-center/
article/what-is-system-testing-form/

Guru99. (2024) System testing in software testing. Accessed 18 May 2025. [Online].
Available: https://www.guru99.com/system-testing.html

S. Das. (2024) What is acceptance testing? Accessed 8-Apr-2025. [Online].
Available: https://www.browserstack.com/guide/acceptance-testing

Guru99. (2024) What is regression testing? learn with example. Accessed May
2025. [Online]. Available: https://www.guru99.com/regression-testing.html

SixSigma.us, “Risk priority number (rpn) in fmea,” 2024, accessed:
17 May 2025. [Online]. Available: https://www.6sigma.us/six-sigma-articles/
risk-priority-number-rpn/

88

https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
https://www.cloudflare.com/learning/dns/what-is-dns/
https://www.cloudflare.com/learning/dns/glossary/reverse-dns/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Overview#http_messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Overview#http_messages
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://en.wikipedia.org/wiki/Server-sent_events
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstreamasync?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstreamasync?view=net-9.0
https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/REST
https://brightsec.com/blog/unit-testing/
https://brightsec.com/blog/unit-testing/
https://www.geeksforgeeks.org/software-engineering-integration-testing/
https://www.geeksforgeeks.org/software-engineering-integration-testing/
https:https://www.practitest.com/resource-center/article/what-is-system-testing-form/
https:https://www.practitest.com/resource-center/article/what-is-system-testing-form/
https://www.guru99.com/system-testing.html
https://www.browserstack.com/guide/acceptance-testing
https://www.guru99.com/regression-testing.html
https://www.6sigma.us/six-sigma-articles/risk-priority-number-rpn/
https://www.6sigma.us/six-sigma-articles/risk-priority-number-rpn/

Kongsberg Table Tracker 15 REFERENCES

[47]

[54]

[55]

[56]

[57]

[58]

K. Schwaber and J. Sutherland, “The scrum guide,” 2020, accessed: 10-
Feb-2025. [Online]. Available: https://scrumguides.org/docs/scrumguide/v2020/
2020-Scrum-Guide-US.pdf

Microsoft. (2025) .net multi-platform app ui (.net maui). Accessed 11-Feb-2025.
[Online]. Available: https://dotnet.microsoft.com/en-us/apps/maui

Overleaf. (2025) Latex editor features & benefits. Accessed 11-Feb-2025. [Online].
Available: https://www.overleaf.com/about/features-overview

JGraph. (2023) draw.io. Accessed 11-Feb-2025. [Online|. Available: https:
//www.drawio.com/

JetBrains. (2025) Webstorm: The javascript and typescript ide, by jetbrains.
Accessed 11-Feb-2025. [Online]. Available: https://www.jetbrains.com/webstorm/

Microsoft. (2023) Framework design guidelines. Accessed 20-May-2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet /standard /design-guidelines/

BrowserStack, “Introduction to code based testing and its importance,” 2025,
accessed: 17 May 2025. [Online]. Available: https://www.browserstack.com/guide/
code-based-testing

Microsoft, “Unit test basics,” 2025, accessed: 19-May-2025. [Online]. Available:
https://learn.microsoft.com/en-us/visualstudio/test /unit-test-basics?view=vs-2022

F. Awsome. (2025) Free license — font awesome. Accessed 19-May-2025. [Online].
Available: https://fontawesome.com/license/free

g. davidbritch, “Contentview,” 2024, accessed May 20, 2025. [Online].
Available: https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/
contentview?view=net-maui-8.0

Microsoft. (2024) Messenger. Accessed 20-May-2025. [Online]. Available: https:
//learn.microsoft.com/en-us/dotnet /communitytoolkit /mvvm /messenger

——. (2025) Handle and raise events. Accessed 20-May-2025. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet /standard /events/

89

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://dotnet.microsoft.com/en-us/apps/maui
https://www.overleaf.com/about/features-overview
https://www.drawio.com/
https://www.drawio.com/
https://www.jetbrains.com/webstorm/
https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/
https://www.browserstack.com/guide/code-based-testing
https://www.browserstack.com/guide/code-based-testing
https://learn.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022
https://fontawesome.com/license/free
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/contentview?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/user-interface/controls/contentview?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/messenger
https://learn.microsoft.com/en-us/dotnet/communitytoolkit/mvvm/messenger
https://learn.microsoft.com/en-us/dotnet/standard/events/

Kongsberg Table Tracker A USER STORIES

A User Stories

Status Change
As an operator

I want to see when a table on the local network has changed status or needs
interaction

So that the factory can maintain optimal efficiency, and I can focus on other tasks
while the table is running

Given I have the application open and it is connected to the table.

When the table status changes or requires interaction

Then I should be notified

Job Preparation
As a floor manager

I want to manage jobs remotely

So that I can stay productive in my office

Given I have the application open, and it is connected to the table
When I upload and delete jobs

Then the table receives the change and displays it

Data view
As an operator

I want to observe all the relevant job data on my table

So that I can keep track of my table without being physically present.
Given I have connected the table to the application

When I open the application

Then I can view relevant data in a structured way.

Custom view
As an operator

I want a system that I can customize to view relevant data
So that I dont get flooded with irrelevant information
Given I have the application running

When I move and filter data

Then the application shows the filtered data.

Multiple tables
As a shop-floor manager

I want to have a visual interface to present data from multiple tables
So that I can keep track of job data from all my tables in one place
Given I have mulitple tables connected to the same local network
When I open the application and add the table credentials

Then I can see an overview of the tables

90

Kongsberg Table Tracker A USER STORIES

Job statistics report
As a shop-floor manager

I want to see daily, weekly and monthly production statistics
So that I have a full overview of my production

Given the table has produced jobs in the past

When user requests a report

Then a report is generated based on the data from the table

Cross-platform compatibility
As a shop-floor manager

I want to see table information on diffrent types of devices
So that I can stay updated wherever I am

Given I have the application open

When using either a desktop or a handheld device

Then it should display the corresponding user interface

91

Kongsberg Table Tracker B USE CASE

B Use case

Table status change
The system shows the operator when a table on the local network changes status.
Operator

Notification handling
The system shows information about the status of the table
Operator

Add job remotely
The systems allows the operator to add jobs from the table using a separate device
Shop-floor Manager

Remove job remotely
The systems allows the operator to remove jobs from the table using a seperate
device

Shop-floor Manager

Remote job configuration
The systems allows the operator to configure job setttings remotely before starting
the job

Shop-floor Manager

View job data remotely
The system allows the operator to view the relevant job data from a remote device
Operator

Data synchronization
The system ensures that the job data is updated in real-time
Operator

Data presentation
The system organizes and displays the job data in a structured way
Operator

92

Kongsberg Table Tracker B USE CASE

Data customization
The applications graphical user interface is customizable to display desired data
Operator

Multiple table support
The application shows an overview of the different tables and their current status
Shop-floor Manager

Scan for multiple tables
The application can scan for tables on the LAN
Shop-floor Manager

Generate production statisticts
The system generates a production report based on daily, weekly and monthly statis-
tics.

Shop-floor Manager

Display Production Report
The system presents the production report in a stuctured format when requested
by user.

Shop-floor Manager

Handheld device
The system work on both a desktop and a handheld device
Shop-floor Manger

93

Kongsberg Table Tracker C SYSTEM REQUIREMENTS

C System requirements

R-1.1.1 | The application shall establish connection to A
the cutting table
R-1.1.2 | The application shall retrieve table status A
from the HUB
R-1.2.1 | The application shall display the status A
change in exactly the same way as the ta-
ble

R-1.2.2 | The application shall show what the operator B
needs to fix

UC-1.1 | Table status change

US-1 Status Change
UC-1.2 | Notification handling

View data remotely The application shall display job data from A

a table elsewhere on the network
R-3.2.1 | The application shall handle events sent from A

s the HUB
W R R e T i R-3.2.2 | The application shall query the HUB for po- A
tentially outdated information on startup
R-3.3.1 | The application shall have a list of jobs A
R-3.3.2 | The application shall display the job data B
US-3 Data view when the job is clicked

UC-3.3 | Data presentation R-3.3.3 ;[g;l;:ie:pphcatlon shall display an overview of A
R-3.3.4 | The application shall provide a visually ap- B

pealing and well-structured GUT

R-5.1.1 | The application needs to be able to connect
to multiple tables
R-5.1.2 | The application needs to show the different A

UC-5.1 | Multiple table support statuses of the tables
R-5.1.3 | The application needs to be able to securely B
US-5 Multiple tables ;tl?tr; table information locally on the com-
UC-5.2 | Scan for multiple tables R-5.2.1 | The application shall allow the user to scan C

for multiple tables on a class C network

US-7 Type of application | UC-7.1 | Handheld device The application should both work on a hand-
held device (Android) and windows

94

Kongsberg Table Tracker

D TASK SYSTEM REQUIREMENTS

D Task System Requirements

KTT-110

R-1.1.1

KTT-100, KTT-99, KTT-
98, KTT-159, KTT-171,
KTT-178, KTT-184, KTT-
233, KTT-237

KTT-111

R-1.1.2

KTT-191, KT T-225, KT1-
193

KTT-112

R-1.2.1

KTT-192, KTT-198, KT1-
200, KTT-268, KTT-194,
KTT-228

KTT-113

R-1.2.2

KTT-268

KTT-119

R-2.1.1

KTT-100, KTT-257

KTT-120

R-2.2.1

KTT-189

KTT-121

R-2.3.1

KTT-298

KTT-125

R-3.1.1

KTT-168, KIT-185, KTT-
258, KTT-243, KTT-252,
KTT-284

KTT-127

R-3.2.1

KTT-193, KTT-224, KTT-
240, KTT-245, KTT-248,
KTT-255, KTT-275

KTT-128

R-3.2.2

KTT-130

R-3.3.1

KTT-195, KT T-101

KTT-131

R-3.3.2

KTT-158, KI'T-160, KTT-
181, KTT-230, KTT-282,
KTT-175

KTT-165

R-3.3.3

KTT-163, KIT-176, KT1-
177, KTT-173, KTT-180,
KTT-182, KTT-183, KTT-
158, KTT-277

KTT-207

R-3.3.4

KTT-206, KT T-209, KTT-
221, KTT-222, KTT-223,
KTT-226, KTT-231, KTT-
241, KTT-239, KTT-235,
KTT-252, KTT-286, KTT-
179, KTT-2094, KTT-290,
KTT-188, KTT-196, KTT-
277, KTT-278, KTT-279,
KTT-284, KTT-287, KTT-
289, KTT-299, KTT-210,
KTT-301, KTT-174, KTT-
169

KTT-134

R-4.1.1

KTT-256

KTT-135

R-4.1.2

KTT-272, KTT-280

KTT-137

R-4.1.3

KTT-261, KTT-273

95

Kongsberg Table Tracker D TASK SYSTEM REQUIREMENTS

KTT-140 R-5.1.1 KTT-208, KTT-210

KTT-141 R-5.1.2 KTT-268

KTT-251 R5.1.3 KTT-270, KT T-242

KTT-250 R-5.2.1 KTT-260

KTT-150 R-6.1.1 KTT-262, KITT-267, KT'T-
292

KTT-151 R-6.2.1 KTT-281, KTT-293, KTT-
310, KTT-304, KTT-302,
KTT-223, KTT-287, KTT-
289, KTT-299

96

Kongsberg Table Tracker E GUI MOCKUPS

E GUI Mockups

97

MainPage

kain TanesLine MetaSiai=fics
TableMame TableMame TableMame
Active job Active job Active job
Status Status Status
TableMame TableMame TableMame
Active job Active job Active job
Status Status Status

TimeLinePage
Main TeneLine MetaSiai=fios

[Date |
TrmeStamp TmeStamp
TableMame Jabhame Jabame JabMame Jabhame
Tablelmage
[Date |

TableName

Tablelmage

MetaStatisticsPage

ListOfTableMames
TimeLineList
Last20Jobs Customer Materials AllToolDistances
JobDetails o
JobToolDistances Utilization

ActivePage

HideDetils JObDDetails

Detail 1

Detail 2

Detail 3

Remaining Table Time
RemainnglabTime

HistoryPage

TableMame

PageDescription

HideDetils JobDetails

TableName

Detail 1
Detail 2
Detail 3

Detail 4

Remaining TableTime
RemaininglabTime

PageDescription

TimelLine

JobList

Customer

Materials

AllToolDistances

JobDetails

JobToolDistances

Utilization

Moanth

Download Statistics

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

F Detailed View Description

Overview of TimeLinePage

Kongsberg Table Tracker =]

N =l Planned Jobs

Elvin
318 PM 3:18 PM 3118 PM 318 PM

Shaker.cgf Batch-20250425102631.queus Winter.cgf summer.cgf spring.cgf

U m

341PM 3:41 PM 3:41PM 3:41 PM

Duobox KPCS.cgf Ellipsis 100x1000.cut Circle500.cut proval_Ultimate_mod_Singleltem.cu Vagues_kpcs-mod 1_pdfic
t

!
22ma6s '1 55 . 45 ‘ 20s l"’__{

May 20
1214 AM 5:35 AM 831 AM 1:53 PM

testjob9.cut testjob1.cut slett_denne.cut testjob2.cut testjob3.cut

8h55m50s . 5h21m26s . 2h55m58s . 5h21m2eés .

DESKTOP-OILHATL May 21

Figure 27: TimeLinePage screenshot with annotated UI elements

1. Navigation bar — Contain navigation buttons and page description.
2. Table — Table image and name. Each table has one dedicated row.
3. Job — Job item, with name and time duration.

4. Estimated finished — Estimated time of when the job is expected to finish.

Structure

The timeline page is built on a Grid with two rows. The first row is reserved for the
navigation bar. The rest is allocated to a list of tables with their jobs.

101

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

Code-behind

Listing 9: TimeLine code-behind

1 using KongsbergTableTracker.ViewModels;
3 namespace KongsbergTableTracker.Views;

5 public partial class TimelinePage : ContentPage

6 {

7 public TimelinePage(TimelineViewModel timelineViewModel)
s |

9 InitializeComponent();

10 BindingContext = timelineViewModel;

11 }

12

13 protected override void OnAppearing()

14 {

15 base.OnAppearing() ;

16 if (BindingContext is TimelineViewModel timelineViewModel)
7 {

18 timelineViewModel.OnPageAppearing() ;

19}

20 }

21

22 protected override void OnDisappearing()

23 {

21 base.OnDisappearing();

25 if (BindingContext is TimelineViewModel timelineViewModel)
26 {

27 timelineViewModel.OnPageDisappearing() ;

28 }

" }

30 F

102

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

Overview of MetaStatisticsPage

f 5l All tables Meta statistics

KONGSBERGX20 U-bord Elvin

Timeline |
KONGSBERGX20

Last 20 jobs Customer Materials Tool Distances

Table Name Name Copies Finished Name ountry City Address Copies Name

NotSpecified ot Specified Not Specif

Job Details

Total jobs: 86
Total copies produced: 1359

Utilization score:

M i 2025-05-1216:31 - 2025-05-19 16:31

Figure 28: MetaStatisticsPage screenshot with annotated Ul elements

1. Navigation bar — Navigation bar and page description.
2. Tables — A list of tables that have been collected data from.

3. Timeline — A scrollView of all the different timelines for each table. Timeline
displays the different jobs that have been completed.

4. Job list — A list of the last 20 jobs from all tables.
5. Job details — Shows details about selected job (dark blue highlight).

6. Customer — Displays a list of all customers and how many customer is registered
on each.

7. Material — Displays a list of used materials, and how many copies for each.

8. Tool distances — Display tool distance for all tables on all jobs.

9. Tool distance — Display tool distance for a single selected job.
10. Table Utilization — Display total time all tables have spent in the different states.
11. Utilization chart — Pie chart of table utilization.

12. Production info — Display total jobs, total produced copies and total utilization
score from all tables.

13. Task bar - Contains buttons used on the page.

14. Day - Collect statistics for 24 hours back in time.

103

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

15. Week - Collect statistics from for the week.
16. Month - Collect statistics from the last month.

17. Custom time - Opens a popup where the user can select before and after date
and time to collect statistics from.

18. Time period - Shows what time periode the statistics displayed is collected from.

Structure

MetaStatisticsPage is structured with multiple nested grids. The main grid concists of
five rows and two columns, where the right column is set to be three times the size of the
left column. The first row is reserved for the navigation bar. The second display the list
of tables that have been used to collect statistics. On row three is the timeline for all the
tables in the list above. All previous rows have spanned accross both columns, but not for
row four. The left column in this row contains the job list and detials. The right column
is a new nested grid. It contains customer, materials, tool distances and utilization. The
bottom row is the task bar where the time periode for the statistics collected is decided.

Code-behind

The code-behind for the MetaStatisticsPage is clean, simple and straight forward. It takes
in a MetaStatisticsViewModel as constructor parameter and sets the binding context to
said ViewModel. This is what could be called a textbook example of a code-behind with
mvvm is architecture. For the following examples, the code-behind will not be explained,
as it is mostly similar.

Listing 10: MetaStatisticsPage code-behind

1 using KongsbergTableTracker.ViewModels;

V]

; namespace KongsbergTableTracker.Views;

5 public partial class MetaStatisticsPage : ContentPage

o {

7 public MetaStatisticsPage(MetaStatisticsViewModel metaStatisticsViewModel)
s o

9 InitializeComponent () ;

10 BindingContext = metaStatisticsViewModel;

104

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

Overview of StatusPage

The StatusPage page is mostly similar to the MainPage. The differance is that it has no
functionaloty, meaning the navigation bar, task bar and other functionality is removed
or diabled. This page is purely for displaying purposes, so that the user can use the app
on one screen, and display the status of all the tables on a seperate screen.

Elvin U-bord

Version 3.2.0
Connected

Shaker.cgf

Connected
Duobox KPCS_cgf.cut

Copy: Production Time: Production Time:
1010 00:01:53 00:07:29

KONGSBERGX20

Version 3.1.1 ? l o
Connected < "‘ -
Sale with diamond_1pdf.cut »

& Production Time:
00:17:08

Figure 29: StatusPage screenshot

105

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

Overview of ActivePage

Kongsberg Table Tracker - O

' RO (] Elvin Active Jobs

Name Copies Material Production time Estimatedlw) Job Details

File name: Shaker.cgf
Shaker.cgf 10 & Erflute 00:01:53 30m28s Customer:
Due date:

Modified on: 2025-05-19 15:17

Dimensions: 800 X 1235 mm
2 Batch-20250425102631.queue 00:00:00 Ordered Copies: 10
Material: E-Flute

Cutting Profile:
. s Tooling Preset:
2 Winter.cgf Paper 50g 00:00:00
Optimization Preset: Kongsberg Default
Production Preset:

Mapping: Kongsberg Default
4] Summer.cgf Paper 50g 00:00:00 Eogiyaiediinh)
Remaining time: 00:00:00

Estimated time: 00:30:28

10.

11.

12.

13.
14.

15.

= Final production time: 00:01:53
[]

Production Time: Remaining Time On Table:
10110 00:01:53 00:00:00
Shaker.cgf Producing Copy:

| Pause
10

Figure 30: ActivePage screenshot with annotated Ul elements

. Navigation bar — Navigation bar, now in table context.

Home button — Navigate to MainPage.
Active button — Navigate to ActivePage.

History button — Navigate to HistoryPage.

. Statistics button — Navigate to StatisticsPage.

. Job list — CollectionView of all jobs and categories sorted in a grid.
. Job — A specific job item. Dark blue mean the job is selected.
Task bar — Container for page specific buttons.

Add job — Lets the user uplad a job (.zip).

Delete job — Deletes the selected job from the job list.

Job details — Details appear when job is selected. Shows details for the selected
job.

Hide details — Lets the user hide the job details. Click a job item to make it
re-appear.

Set ordered copies — Lets the user set ordered copies amount on the selected job.
Table status — Shows the current status of the table.

Job status — Shows current status and progression of the job(s).

106

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

16. Time and copies — Show total job production time and current copy in production.

17. Time details — Shows estimated time left on table and job.

Structure

ActivePage is built with grid as the main layout. It has four rows and two columns.
The top row is reserved for the navigation bar. The job list is located in the second
row, left column. The JobDetails are located in the right column, and also span into
the row below. The task bar is in row three, left column. When the detail panel is
hidden, the right column gets the width changed to 0, therefore the left column recives
the entire width of the page. The last row is where the InfoPanelContentView is located.
It is defined in a separate XAML file, so that it can be used on both ActivePage and
HistoryPage.

Overview of HistoryPage

Kongsberg Table Tracker = @

AP DOM History Jobs

Name Copies Material Productiontime Estimated time Remaining time Due date

{ Shaker.cgf 1 E-Flute 00:00:03 0s

%]D Winter.cgf Paper 50g 00:01:24 21m49s

||- Portrait.cgf 00:00:03

%]D Winter.cgf Paper 50g 00:04:15 1h27m40s

Production Time: Remaining Time On Table:
10/10 00:01:53 00:00:00
Shaker.cgf Producing Copy: Remaining Time On Job:
10 00:00:00

Figure 31: HistoryPage screenshot

Structure

HistoryPage is similar to ActivePage, but with some adjustments. The job list is of
completed jobs. There is no button for adding jobs or setting copies, since this is a list of
"what has been”. There is also some changes to the columns, where the SortNumber (ID)
is removed. There is also an additional column, although not visible here, that display
the finished time for the job. Figure 31 also shows how both pages look with the job
details hidden.

107

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

Overview of StatisticsPage

Kongsberg Table Tracker - o
A b DO Elvin Statistics

Timeline

18 Ap: 25 Apr 02 May 09 May 16 May 19 May

Job List Customer Materials Tool Distances

Name Copies Finished Name Country City Addre Name Copies
HeavyDuryCrease

2025-05-19 9680.84 m

Winter.cgf 50 1222 NotSpecified NotSpecified NotSpecfied NotSpe MNotSpecified 5584

2025-05-18 Kongsberg Sample Material - Cutting

Porwait.cgf ! 1703 Profile

Winter.cgf 200 %?;:;-05-1 9 Kongsberg Sample Material

Job Details Utilization

(o Total busy time 1d2h21mSs T
Total production time:
Total idle time 3d11h7m54s
Rejected copies:
Total off time 26d4h4m23s
Successful copies

Total unknown time 6h26m37s

D w ‘ M‘ = 2025-04-18 15:27 - 2025-05-19 15:27

Figure 32: StatisticsPage screenshot

Structure

StatisticsPage is structured in the same way as MetaStatisticsPage, but is now in a table
context. That means it only concers one table. Notice that the list of tables is gone.
There is also an additional button on the right side on the task bar (bottom right). This
is a button that let’s the user download a .csv file of the currently displayed time periode.
Also notice that no job is selected at the moment, therefore there is no tool distance in
the bottom left pane. It will only display when a job from the list is selected.

108

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

Overview of Popups

The KTT application contains many popups from the CommunityToolKit library. They
mostly concists of two parts, the header and body. They are explained in the pages where
they are relevant above. Under are screenshots of each of them.

AddTablePopup

Add Table

Name is required

P Address or hostname

IP address/hostname is required

Client Secret

Confirm Cancel

Figure 33: AddTable popup screenshot

The button on the AddTablePopup is gray because required fields are empty. The Edit-
TablePopup looks the same as AddTablePopup, but fills the filds with information stored
in the table item on appearing and has a different header.

DiscoverTablePopup

Discover tables

Ethernet

This function is currently only available
for class C networks. Only network
interfaces that are connected to a class
C network will be listed

Discover tables

Figure 34: DiscoverTable popup screenshot

109

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

TableFilterPopup

Filter

D Hide disconnected tables

Figure 35: TableFilter popup screenshot

SettingsPopup

Settings
Select language (app must be restarted)

English (United States)

Delete all credentials

Figure 36: Settings popup screenshot

110

Kongsberg Table Tracker F DETAILED VIEW DESCRIPTION

CustomStatisticsPopup

Select Time Period

After

5/19/2025 &

Before

5/19/2025 =

Confirm Cancel

Figure 37: CustomStatistics popup screenshot

ColumnSelectorPopup

Filter

Sort Order
Preview

MName

Copies

Status

Information

Job ID

Figure 38: ColumnSelector popup screenshot

111

Kongsberg Table Tracker G UNIT TESTING REPORT

G Unit Testing Report

112

Unit Testing

Introduction

Unit testing is a method used to check that small parts of an application work the right way.
Each test looks at one method or function and checks the result based on what you give it. The
goal is to find bugs early, make the system more stable, and help developers make changes
safely. (more info here..)

In this project, | used unit testing to check important features that talk to the backend and
handle different parts of the system. | used xUnit in Visual Studio to write our tests, and | used
'Fact' to mark each scenario. The reason | say scenarios is because inside one test class | can
have multiple ‘fact’ attributes. The ‘fact attribute tells the system “This is a unit test! “. They are
different test scenarios for the function, in other words different inputs to the function. So to
fully test a function | need to have multiple ‘fact’ attributes depending on the function so | can
test all the different inputs, this gives me the outputs for the different inputs and | can see if
they failed or not in the test explorer where | run the tests.

If the test fails

So if an input gives a unexpected output | can check the generated error message. For example
one time | gave 3.14 as an expected output and | got 3,14 back with a comma, this is because |
had my computer set to Norwegian so | just needed to change it to a comma. And this is good
because the logic of the function worked and passed. But sometimes the logic of the function
does not work as expected and then we have to find that function and fix it right away.

How | organized the tests

To organize the tests, | set up multiple test environments, one for models, one for services and
so on. And inside the models test environment | have folders of the classes and inside there |
have the functions in the classes | test. So, for example | want to test a function called
‘ConvertValue()’. That function is located In Models -> TableModel. So this is how the file
structure looks like in the test environment also. This makes it very easy for us to find a specific
test.

| followed the Arrange-Act-Assert (AAA) format. First, | set up things (Arrange), then ran the
method (Act), and finally checked the result (Assert).

Why We Used Mocks

To test methods that talk to the backend, | used mock objects to fake the server. This way, |
didn’t need to connect to a real server. | used a class called FakeHttpMessageHandler to return
fake HTTP responses, so | could test success, failure, or errors.

| also made a class called ApiServiceWithClient. It is based on ApiService, but we changed it to
let us set the HttpClient from outside. This helped us test how the API service works without
changing the main code.

Another class | used was FakeApiService. It helped us test login and security. | used it to return a
fake token so | could test logic that depends on being logged in, without calling a real server.

These mocks helped us test only the parts of code we wanted. The tests ran fast, didn’t depend
on the network, and | could run them again and again with the same result.

Why These Functions Were Tested
The GetActivelobs method was tested because it reads job data from a backend API. It is
important that this information is read correctly.

The CheckAuthentication method was tested because it checks if the user has permission. This
keeps the system safe.

The GenerateLocallpList method looks for devices on the network. | tested it to make sure it
finds only the right devices.

The RequestAccessToken method sends the client ID and secret to get a token. This token is
used to login. | tested this to make sure it works for both good and bad inputs.

The FindProperty method was tested because it reads data from a list of properties and tries to
turn it into the correct type, like a number or an enum. | tested it to make sure it returns the
right value and doesn’t crash when something is missing or wrong.

The ConvertValue method was tested because it takes a string and a data type and tries to
return a real value like an integer, double, boolean, or enum. | tested different types and inputs,
including wrong ones, to make sure the method gives the correct result or a safe default
when needed.

1.0 - GetActivelobsTest.cs
TaskID KTT254-UNITTEST/APIServiceTests/GetActivelobsTest.cs

Purpose
The GetActivelobs method in the ApiServiceWithClient class retrieves active job data from a
REST APl and returns it as a structured object.

These tests aim to:
* Confirm correct parsing of valid JSON responses from the API.
* Ensure that null API responses are handled appropriately.

Testing Technique
Structure:

* Arrange: A fake HTTP response is set up using the FakeHttpMessageHandler.
* Act: The GetActivelobs method is called.
* Assert: The output is validated to ensure it matches expectations.

Test Cases

e Scenario 1: API returns a valid JobQueue

* Setup: A JSON response with one job is simulated.

* Expected Result: The returned object should not be null. The JobTasks list should contain one
item with expected ID and name.

* Test Pass Criteria: The response is correctly deserialized and matches expected structure.

e Scenario 2: APl returns "null"

* Setup: A plain JSON value "null" is returned from the simulated API.
* Expected Result: The method should return null.
* Test Pass Criteria: The application handles the null response without errors.

Importance of This Test

* Validates the method’s ability to interact with external services and handle different response
formats.

* Ensures stability and accuracy of job-related data consumed by the application.

* Helps identify issues in deserialization or incorrect assumptions about API data.

Test Result
Both tests pass using the custom HTTP handler, confirming that the method performs correctly
with valid and null API responses.

Lessons Learned

* Custom HTTP handlers are effective for testing HTTP client behavior.

* Including tests for edge cases like null values improves reliability.

* |solated, focused unit tests make the codebase more maintainable over time.

2.0 - CheckAuthenticationTests.cs
TaskID: KTT266-UNITTEST/APIServiceTests/CheckAuthenticationTests.cs

Purpose
The CheckAuthentication method in the ApiServiceWithClient class validates user credentials by
communicating with the backend API.

These tests aim to:

* Ensure that the method returns true for valid credentials.

* Ensure that the method returns false or handles the result correctly for invalid or unauthorized
access attempts.

Testing Technique
Structure:

* Arrange: A simulated HTTP response is configured with a specific status code or content.
* Act: The CheckAuthentication method is invoked using this fake setup.
* Assert: The returned result is evaluated for correctness (true or false).

Test Cases
e Scenario 1: API returns success for valid credentials

* Setup: FakeHttpMessageHandler is configured to return an HTTP 200 OK response.
* Expected Result: The method should return true.
* Test Pass Criteria: The application correctly interprets successful authentication.

e Scenario 2: API returns unauthorized for invalid credentials

* Setup: A 401 Unauthorized response is simulated.
* Expected Result: The method should return false.
* Test Pass Criteria: The method handles the authentication failure.

Importance of This Test

* Authentication is a critical security function and must be validated under different conditions.
* Ensures users cannot access the system with incorrect credentials.

* Helps prevent false positives or negatives in authentication logic.

Test Result
Tests confirm that the CheckAuthentication method accurately interprets both valid and invalid
APl responses.

Lessons Learned

* Simulating both success and failure scenarios is essential for robust authentication logic.
* Fake HTTP handlers provide a simple yet effective method for isolating the logic from real
backend systems.

* Clear assertion logic improves test readability and reliability.

3.0 - GenerateLocallpListTEST.cs
Path: KTT264-UNITTEST/TableScanServiceTests/GeneratelLocallpListTEST.cs

Purpose
The GeneratelocallpList method in the TableScanService class scans a local subnet range and
identifies reachable IP addresses where table devices may be hosted.

These tests aim to:
* Ensure that the method returns a complete and accurate list of reachable IPs.
* Confirm that unreachable or invalid addresses are excluded from the result.

Testing Technique
Approach:

A custom test double or simulation is used in place of actual network calls. This avoids
depending on real network availability while preserving the logic of iterating IP ranges.

Structure:

* Arrange: A set of mock network responses is prepared.
* Act: The GeneratelocallpList method is executed.
* Assert: The method is verified to return only reachable IP addresses.

Test Cases
e Scenario: Simulated subnet with mixed reachable/unreachable IPs

* Setup: Simulate a subnet where only some IPs respond.
* Expected Result: The method should only include the reachable IPs.
* Test Pass Criteria: The returned list matches the simulated available addresses.

Importance of This Test

* This method underpins the discovery of table devices on the local network.

* Verifying its correctness is essential to ensure that all available devices are detected reliably.
* Helps identify potential issues in IP filtering or timeout logic.

Test Result
The method correctly returns the expected list of reachable IP addresses based on the
simulation.

Lessons Learned

* Validating network-dependent logic in isolation helps improve reliability and test coverage.
* Designing for testability in service methods leads to cleaner architecture.

* Mocking or faking system calls is a powerful technique in integration-level testing.

4.0 - RequestAccessToken.cs
Path: KTTUnittesting/APIServiceTests/RequestAccessTokenTests.cs

Purpose
This method is responsible for authenticating a client using a client ID and client secret, and
returning an access token received from the backend API.

These tests aim to:

* Ensure the method returns null if the Clientld or ClientSecret is missing or invalid.

* Verify that a valid token is returned when credentials are correct and the APl responds with
success.

* Confirm that the method handles unauthorized responses correctly by returning null when the
APl denies access (401 Unauthorized).

Testing Technique
Approach:

Tests were written using the xUnit framework with [Fact] attributes. The method's backend
communication was simulated using a FakeHttpMessageHandler to control the HTTP response.

Structure:

* Arrange: Configure a fake HTTP response with desired status and content.

* Act: Call the RequestAccessToken method with different inputs.

* Assert: Validate whether the result is null or a valid TableAuthentication object depending on
the scenario.

Test Cases

Scenario 1: Missing or invalid input

* Setup: Use null, empty, or whitespace values for Clientld or ClientSecret.
* Expected Result: Method returns null.

* Test Pass Criteria: No HTTP call is made, and the method exits early.

Scenario 2: Valid credentials and successful response

* Setup: Fake a 200 OK response with a valid JSON access token.

* Expected Result: A TableAuthentication object is returned with correct values.
* Test Pass Criteria: Deserialization and return of the token object succeeds.

Scenario 3: Invalid credentials (401 Unauthorized)

* Setup: Fake a 401 Unauthorized response.

* Expected Result: Method catches the exception and returns null.

* Test Pass Criteria: No unhandled exception; method handles the case cleanly.

Importance of This Test

* Verifies the app can correctly authenticate with the backend using secure credentials.
* Ensures users without proper credentials are denied access.

* Confirms the application handles failed authentication attempts gracefully.

Test Result
All three key scenarios pass. The method returns correct values for valid input, handles
unauthorized access as expected, and validates inputs up front.

Lessons Learned

* Testing both positive and negative paths helps ensure the method is reliable and secure.
* Early input validation prevents unnecessary backend calls.

* Controlled HTTP simulation

5.0 - FindPropertyTests.cs
Task ID: KTT276-UNITTEST/TableModelTests/FindPropertyTests.cs

Purpose

The FindProperty<T> method in the TableModel class retrieves a value from the model's
Properties list by matching a given name and converting its string value to the expected type T.
This method supports various types, including strings, booleans, and enums such as
TableStatuses.

These tests aim to:

* Verify that the method returns null when the Properties list is missing.

* Ensure the method handles unmatched property names correctly.

* Confirm that the method returns null if a property's value is not set.

* Validate that the method converts valid string values to the correct type.

Testing Technique

Structure:

* Arrange: A TableModel is created with either a valid or null Properties list.

* Act: The FindProperty<T> method is invoked with a specific Name and type.

* Assert: The returned result is checked for correctness (expected value or null).

Test Cases

Scenario 1: Properties list is null

* Setup: A TableModel is created with its Properties list set to null.

* Expected Result: The method returns null.

* Test Pass Criteria: The method handles the missing list safely without throwing an exception.

Scenario 2: No matching property found

* Setup: The list contains a property with a different name than the one requested.
* Expected Result: The method returns null.

* Test Pass Criteria: The method does not return unrelated or incorrect data.

Scenario 3: Property value is null

* Setup: A property with the correct name exists, but its Value is null.

* Expected Result: The method returns null.

* Test Pass Criteria: No conversion is attempted; the method returns the default value safely.

Scenario 4: Valid property is found and converted

* Setup: A property with name Status, value "Busy", and data type TableStatuses is added.
* Expected Result: The method returns the enum value TableStatuses.Busy.

* Test Pass Criteria: The string is correctly parsed and returned as the expected enum type.

Importance of This Test

* Ensures that TableModel can safely handle missing, incomplete, or incorrect data from the
backend.

* Confirms the logic for string-to-type conversion works as intended across different types.
* Protects against potential runtime errors when accessing or interpreting properties
dynamically.

Test Result
All four tests passed successfully. This confirms that the method behaves correctly for both edge
cases and normal input scenarios.

Lessons Learned
* Testing null and non-matching conditions helps catch overlooked failure paths.
* Generic methods offer flexibility, but their behavior must be verified for different expected

types.
* Including realistic and failure-based scenarios leads to more robust and maintainable code.

6.0 - FindPropertyTests.cs
TaskID: KTT-291-UNITTEST/Models/TableModel/FindPropertyTests.cs

Purpose

The FindProperty<T> method in the TableModel class retrieves a property by name from the
table's Properties list and attempts to convert its value to the specified generic type. These unit
tests are designed to:

* Confirm that the method returns null if a property's value is not set.
* Validate that the method converts valid string values to the correct type.

Testing Technique
Structure:

* Arrange: A TableModel is created with either a valid or null Properties list.
* Act: The FindProperty<T> method is invoked with a specific Name and type.
* Assert: The returned result is checked for correctness (expected value or null).

Test Cases

Scenario 1: Properties list is null
* Setup: A TableModel is created with its Properties list set to null.
* Expected Result: The method returns null.
* Test Pass Criteria: The method handles the missing list safely without throwing an
exception.

Scenario 2: No matching property found
* Setup: The list contains a property with a different name than the one requested.
* Expected Result: The method returns null.
* Test Pass Criteria: The method does not return unrelated or incorrect data.

Scenario 3: Property value is null
* Setup: A property with the correct name exists, but its Value is null.
* Expected Result: The method returns null.
* Test Pass Criteria: No conversion is attempted; the method returns the default value
safely.

Scenario 4: Valid property is found and converted
* Setup: A property with name Status, value "Busy", and data type TableStatuses is added.
* Expected Result: The method returns the enum value TableStatuses.Busy.
* Test Pass Criteria: The string is correctly parsed and returned as the expected enum type.

Importance of This Test

* Ensures that TableModel can safely handle missing, incomplete, or incorrect data from the
backend.

* Prevents potential runtime errors due to invalid type conversions.

* Confirms that the method supports strong typing while working with dynamic data.

* Increases reliability of business logic and Ul elements that depend on correctly typed property
values.

Test Result
All test scenarios passed successfully, confirming that FindProperty<T> behaves as expected
across null, missing, invalid, and valid data cases.

7.0 - ConvertValueTests.cs
TaskID: KTT-295-UNITTEST/Models/TableModel/ConvertValueTests.cs

Purpose

The ConvertValue<T> method in the TableModel class is responsible for converting a string and
an associated DataType enum into a strongly typed value of type T. This unit test ensures that
the method:

* Correctly converts supported data types (int, bool, double, string, enums, etc.).
* Gracefully returns default values when conversion fails.
* Does not throw exceptions for invalid inputs.

Testing Technique

Structure:

* Arrange: A TableModel instance is created using test-safe dummy dependencies.
* Act: The ConvertValue<T> method is called using reflection with different input values.
* Assert: The output is checked for correct type and expected value.

Test Cases

Scenario 1: Convert valid int
* Setup: DataType is Int32, value is "123".
* Expected Result: The method returns integer 123.
* Test Pass Criteria: The string is parsed and returned as an integer.

Scenario 2: Convert valid boolean
* Setup: DataType is Boolean, value is "true".
* Expected Result: The method returns boolean true.
* Test Pass Criteria: The string is parsed and returned as a boolean.

Scenario 3: Convert valid double
* Setup: DataType is Double, value is "3.14".
* Expected Result: The method returns double 3,14.
* Test Pass Criteria: Conversion respects system culture and returns expected numeric
value.

Scenario 4: Convert valid enum
* Setup: DataType is TableStatuses, value is "ldle".
* Expected Result: The method returns TableStatuses.Idle.
* Test Pass Criteria: The enum string is parsed into the correct enum value.

Scenario 5: Invalid int conversion
* Setup: DataType is Int32, value is "abc".
* Expected Result: The method returns default int (0).
* Test Pass Criteria: Conversion fails without exception.

Importance of This Test

* Ensures that dynamic string values from APIs or serialized data can be safely and accurately
interpreted.

* Verifies resilience of the conversion logic in the presence of malformed input.

* Supports stable behavior of higher-level methods relying on parsed property values.

* Helps prevent runtime crashes due to unhandled format exceptions.

Test Result

At first, | tried using a period for decimal numbers, but it didn’t work. Since my system is in
Norwegian, | had to use a comma instead. All test cases passed successfully after that,
confirming that ConvertValue handles localization correctly and returns the expected values.

8.0 - TimeSpanToDHMSConverterTests.cs
TaskID: KTT-296-UNITTEST /Utilities/Converters/TimeSpanToDHMSConverterTests.cs

Purpose

The TimeSpanToDHMSConverter class takes a TimeSpan object and converts it into a string
that shows days, hours, minutes and seconds using short words like 'd’, 'h’, 'm" and 's". If the
value is not a TimeSpan, or if it is empty, it returns the text 'Unknown'. [tested this function
to make sure it gives the correct string for different TimeSpan values.

Testing Technique

[wrote unit tests using the xUnit framework. [made a test helper called
TimeSpanToDHMSConverterAccessor to call the Convert method with reflection. I also
made fake AppResources values like AbbreviatedDay = 'd' to make the test work without
touching the real code.

Test Cases
Scenario 1: The input is null. The expected result is 'Unknown'.

Scenario 2: The input is 10 seconds. The expected resultis '10s'.
Scenario 3: The input is 1 minute and 15 seconds. The result should be '1m15s’'.
Scenario 4: The input is 1 hour, 2 minutes and 3 seconds. The result should be '1Th2m3s'.

Scenario 5: The input is 2 days, 3 hours, 4 minutes and 5 seconds. The result should be
'2d3h4mb5s'.

Scenario 6: The input is 2 years, 0 days,0 hours, 0 minutes, 0 seconds, the result should be
‘730d,0h,0m,0s".

Importance of This Test

This test is important because it makes sure the converter shows the time in a nice and
simple way for the user. If the result is wrong, the app could show confusing text or crash. It
also makes sure that empty input returns 'Unknown'.

Test Result

All test cases passed. The converter gives the expected output for every TimeSpan tested. |
did not test culture-specific formats because the values are hardcoded like 'd’, 'h’, etc.

Lessons Learned

[learned that using reflection is helpful when I cannot access the method directly. I also
learned that making fake AppResources is useful when I cannot change the real app code.

Kongsberg Table Tracker H REGRESSION TEST

H Regression Test

125

Regression Test for KTT

1.Content

REGTESSION TEST FOI KT T ..ueuieurirneessiesssesssessssssssssssssessssssssssssssssssssss s ssssssssssssssssasssessssssssssssessses s s sssesssesssss s sssesssnssssssssasssasss st sssnsssnssaesas 1
2. DS CIIPEION cceuu et rieuetreeareeseeseeeesseesses et seess et ess s s s s e s s s E RS ER £ E S £ E AR AR R R R R AR R AR AR AR 1
3 Pr TR QUISITES c.uueureeeeueesresseesesseesessees s st ess s s e s s e s e S s ae R AR SRR £ R AR R AR AR AR R 2
. TESTINIZ «.vvueerreurerseessesssessessssssessssssesssesssssses s esse s s RS seEnEE R R AR AR R AR AR AR R AR R AR R e 2
Test 1 - Establish connection and add tables...... s ssesssssssss s sssssssssssessssssssssssssssss 2
TEST 2 -GEL LADLE STATUS ..eereeuerueeseesseeessessseesseesseessse e esssessees s s s s s s s ss RS R R S RS E SRR R R SRR R R e bR nen 3
TEST 3 UPLOAA JOD evurreuieeeeeeeesrersseessees e ssseesssessesssse s ssssessass s s s ees s SRR R R EE SRR R R SRR R R E R 4
Test 4 Set MAtEITIal/@AIL JOD ... s s 5
TEST 5 JOD DALA coeuuevueeuresseeesesrssessseessessseessssssseessssssessssesssessssessasssessssssssassssssses s s e s e RS E R AR AR SRR E SRR R 6
TESt 6 EVENE NANALINE covevrereeeeeeeeeeeesseerssesseessseses s sssessssesessss s s ss s ss a8 £ SRR RS R R 7
Test 7 Query for outdated INfOIMAtION ... s b s s ses bbb nes 7
Test 8 Testing daShDOAIT fEATUIE ... s s s sesbsRenenpanes 8
TEST O DALA fIIEEIINE ceuvreereerueeeseeeueeiseests et ssse et sseesssesssseses s b e s 8RR 8 R8RSR RSB R 8
TEST 10 MULLIPIE TADIES c.evevuersresssessnessssssssssssses s ssssssssss s s st s s s s RS R R 9
Test 11 DiSplaying the tiIMe FEPOTLScueenirriesseseesseessessseessesssssssessseesssss s sssess s s s ssse st s sess s b s s R s e asnsnnns 9
TESE 12 JOD REPOT T ciiiriirerineseinsesssissesssssss s s st sessss s s s s s s s s e e e 10
TESt 14 TESEING GUIcureeett bbb RS R E b E R Re R 0s 11
TEST 15 SCAN SEIVICE .urreureeereersreruseesseesseesssesssessseessessssesssesssessssessessssesssassssssssssssesssesssessssssssesssesssessssesssesssasssessssesssesssasssessssssssessssessasssmssasesssases 11
TeSt 16 TIMELINE JOD AISPIAY ..urvrurrererrerrrermreermseeessesessessseesssessssess s sssesssse s sss s s e ss RS seRR e 12
Test 17 OPerator FEQUITEA ACLIONS ...uieersreesrsessssssssssseesssssssssssssssssssssssesssss s s st s sss s ssass s sssssssass s s sssssssssssnssssssssasssnees 13
Test 18 Store table INOITATION. ... e eres e ess s s ees s s e s bR R bR R 14
TeSt 13 MULLIPIE PIAtFOIIINS wuuvurieerereerssssrssssss s s s ss s st s s s s s e e s 14

5. TEST RESUILS .cceuceeeeueeteetsecesee st cssee s ses bbb 88 R RS £ER££8 8RR EE RS R R 15

2. Description

These tests are part of the regression testing for our application. The goal is to make sure that everything still
works as expected after all development is finished. Each test checks a core part of the application to confirm that
no bugs or issues have been introduced during the project. For example, we test if the system can still connect to
the Kongsberg HUB, if it is possible to add new tables, and if the table statuses are shown correctly. We also check
that job data appears with the correct estimated duration and that the operator gets the right information.

The tests include which requirements are being tested, what needs to be ready before the test starts, the steps the
tester must follow, and what should happen if the test is successful. It also shows who performs the test and
whether the result is a pass or a fail. These tests help us make sure that the application is stable and ready to be
delivered.

3. Prerequisites

HUB is up and running and connected and the network connectivity is stable and we have valid credentials for the
tables to connect later in the tests.

4.Testing

Test 1 — Establish connection and add tables
Requirements tested: R-1.1.1, R-1.1.2, R-3.3.3

TestID: T-1
Steps | Test Comment Visual
1 Open Kongsberg Hub
Client Configurator on the
Kongsberg Table
2 Click add table in the

application and write in
the IP and Hostname

3 Write in the ClientID and
the Client Secret.

Add Table

Table Name
MName is required

P Ad

Confirm

4 Click Confirm Table appears .

in the GUI with Verdon 320

correct Connected

information. testjob9.cut

I j Copy: Production Time:
0/1500 00:00:00

Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 2 -Get table status
Requirements tested: R-1.1.2, R-1.2.1, R-5.1.2

Test ID: T-2
Steps | Test Comment Visual
1 Open the Home page on | You need to already tp
Version 3.2.0

the application where have one or more Connected

the table(s) is/are tables connected. testjobQ.cut

displayed

l j Copy: Production Time:
0/1500 00:00:00

2 Check if the status is The table status is

displayed in an intuitive | shown on the bottom

way, such as correct left.

color and text

3 Click on a table The statuses should
match eachother
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 3 Upload job
Requirements tested: R-2.1.1, R-3.3.1

TestID: T-3
Steps | Test Comment
1 Click on a connected table, The file explorer

and then click the "add
button" to manually add a
job.

should open and
you can choose
the job to upload

2. Select a job from your
local computer and upload
it

ZIP file

ELEPHANTCOD.cgf

Winter.cgf

0/1500
testjob9.cut

MR ARTWORKPANELTEST1
MR Autumn

R Display

MR Duobox KPCS

MR Durobox2020

MR ELEPHANTCOD

B Enfocus_Print CUT

M= JDF PDF Birds

3 After adding a job, delete it | Should disappear
by selecting it and click the | from the job list AR Pl
delete button
Winter.cgf
0/1500
testjob9.cut
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass
Test 4 Set material/edit job
Requirements tested: R-2.3.1
Test ID: T-4
Steps | Test Comment Visual
1 Click on a job Job details should
appear on the right.
2 Then click on a job and set the) Job Details

number of copies in the job
details tab, click ok

File name: ELEPHANTCOD.cgf
Customer:

Due date:

Modified on: 2025-05-14 15:46
Dimensions: 420 X 297 mm

Ordered Copies 1

Material: Paper 50g
Cutting Profile:
Tooling Preset:

Optimization Preset: Kongsberg Default

Production Preset:

Mapping: Kongsberg Default

3 Check if the job details Should update
"Ordered copies" was updated | automatically, Set ordered copies
to set number ordered copies has Enter desired number of copies
been set to 10 in this 10
example.
Cancel
4 Verify on IPC The IPC should now | Job Info:
be updated with the -
new data File butterfly_ ACM.cut
Customer:
Due Date:
Modified on: 5/14/2025 5:32:09 PM
Dimensions: 82.2 x 68.3 mm
Flute Direction: Unknown
Ordered Copies: Set...
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass
Test 5 Job Data
Requirements tested: R-3.3.1,R-3.3.2
Test ID: T-5
Steps | Test Comment Visual
1 Click on a connected table You should see a list of

all active jobs on the
table

2 Click on one of the jobs Job d.etails. SUCIMB IR i name: simple_ellipse.cut
the right side of the P —
page Due date:
Modified on: 2025-05-15 09:29
Dimensions: X mm
Ordered Copies: 100
3 Click on another job The job data should . File name: Cirde500.cut
change to match the job ,
Customer:
youare on Due date:
Madified on: 2025-05-14 16:21
Dimensions: X mm
Ordered Copies: 1
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 6 Event handling
Requirements tested: R-3.2.1

TestID: T-6
Steps Test Comment Visual
1 1. Add a job to the queue from a table Should update the KTT
Application (Active jobs)
2 2. Locate the table on the KTT app and click | Should show the new data
on it
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass
Test 7 Query for outdated information
Requirements tested: R-3.2.2
Test ID: T-7
| Steps | Test | Comment | Visual

1 Disconnect the application

2 Change some data on the HUB Delete, add or edit some
jobs in IPC for example

3 Reconnect the application The new data should be
there

Tester Magnus Trillhus Olsnes

Date May 2025

Pass/Fail Pass

Test 8 Testing dashboard feature
Requirements tested: R-4.1.1

TestID: T-8
Steps Test Comment Visual
1 Click on the dashboard button Should be in the bottom
right on the home page
2 Exit dashboard, change the order of the

tables with the drag and drop or use the
filtering function

3 Open the dashboard again The dashboard should
now be updated

Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 9 Data filtering
Requirements tested: R-4.1.3

TestID: T-9

Steps Test Comment Visual

1 Click on the filter button on A Pop up window
the table overview (Home should appear in
Page) the middle of the

screen

2 Check the 'Hide disconnected | Should see it .
tables' box to filter out tables | update right away Filter
that are not connected

Hide disconnected tables

3 Click "outside" the pop up All connected
window to exit tables should now
show
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 10 Multiple tables
Requirements tested: R-5.1.1

TestID: T-10
Steps | Test Comment Visual
1 Click the add table button in the application

and enter the Credentials for a table

2 Click Done The table should be
added to the table
overview on the home
page

3 Do step 1-2 again Should add more tables

Tester Magnus Trillhus Olsnes

Date May 2025

Pass/Fail Pass

Test 11 Displaying the time reports
Requirements tested: R-6.2.1

TestID: T-11
Steps | Test Comment Visual
1 Navigate to the statistics Should open up
page the statistics page
for all tables.
2 Click on D(Day), W(Week), The app should R,
M(Month) show the time
from the start Tatal unknown t
date to the end
date next to the
2025-05-14 1234 - 2025-05-15 12:34
buttons, they

should match

on a table and click on the
statistics button and repeat

the job statistics

your input
3 Click on the calendar and A pop up should Select Time Period
pick a start and end date appear in the
middle of the Al
screen
5/15/2025 &
42
Before
5/15/2025 &
Confirm Cancel
4 Click confirm Data should
update for the
given time
5 Navigate to home page, click | The same but for

steps 1-4
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass
Test 12 Job Report
Requirements tested: R-6.1.1
TestID: T-12
Steps | Test Comment Visual
1 Click on a table and navigate to the table
statistics page

2 Locate the download CSV button in the File explorer should come
bottom right and click download up and you can save it on

your computer

3 Open the file The job report should be
displayed

Tester Magnus Trillhus Olsnes

Date May 2025

Pass/Fail Pass

Test 14 Testing GUI

- Precondition for this test: Tester is not part of the dev team

Requirements tested: R-3.3.4

TestID: T-14
Steps | Test Comment Visual
1 Have the tester(s) try out the application.
Testers will give their opinion if the GUI is
easy to understand, navigate and pleasant to
look at.
2 Collect feedback from the testers The app should be
intuitive and easy to use
for anyone
Testers Ole Magnus (KPCS)
Date May 2025
Feedback Feedback in the results section of this file

Test 15 Scan Service

- Preconditions: Be on a C class network and on the same network

Requirements tested: R-5.2.1

TestID: T-15
Steps Test Comment Visual
1 In the bottom left, click the scan A pop up window

function button should appear.

2 Select your current network .
connection Discover tables
Ethernet 4
VMware Network Adapter VMnet1
VMware Network Adapter VMnet8
Wi-Fi
This function is currently only available for|
Discover tables class C networks. Only networl(?nterfaces
that are connected to a class C network
will be listed
3 Click Discover tables All tables on the
network should be
updated to the table
overview on the home
page
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 16 Timeline job display
Requirements tested: R-4.1.2

TestID: T-16

Steps | Test Comment Visual

1 Navigate to | The timeline
the timeline | should S-;?'
contain a
list of jobs
for all the
tables
connected
to the
application

with the
different
statuses of
the jobs.
2 Scroll to the | Statuses of
right to the tables 12:16 PM 538 PM
view all the | should show _ testjob8.cut DUROBOX2020.cgf
jobs of a g
table 5h21m26s - 5h21m26s 3 Unknown duration
Forste U bordet nede
11:13 AM 11:13 AM
simple_ellipse.cut Ellipsis 100x1000.cut Circle500.cut
I 9Im53s @ 55 I!
Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 17 operator required actions
Requirements tested: R-1.2.2

TestID: T-17

Steps Test Comment Visual
1 Click a table
2 Locate status Her you should see
message the different statuses testjob2.cut
for the table in real
time

E testjob3.c1.t

0/1500
testjob9.cut

pd Disconnected

3 Go on IPC to update | The status should
a table change in the
application too

Tester Magnus Trillhus Olsnes
Date May 2025
Pass/Fail Pass

Test 18 Store table information
Requirements tested: R-5.1.3

TestID: T-18

Steps Test Comment Visual

1 Exit the application

2 Open the application Tables should still be
there with the correct
credentials, so you should
not have to add or scan
for them again

Tester Magnus Trillhus Olsnes

Date May 2025

Pass/Fail Pass

Test 13 Multiple platforms
Requirements tested: R-7.1.1

TestID: T-13

Steps Test Comment Visual

1 Go through the testing | The emulator
routine again, but with | should ongsbergTableTracker ~ P Android Emulator ~ [>
the application mirror the
running on a desktop N
smartphone next to the | version.
desktop application
(same configuration)

Tester Magnus Trillhus Olsnes

Date May 2025

Pass/Fail Fail

5. Test Results

Test ID Comment

T-1 OK

T-2 OK

T-3 OK

T-4 OK

T-5 OK

T-6 OK

T-7 OK

T-8 OK

T-9 OK

T-10 OK

T-11 OK

T-12 OK

T-13 We have not had the time, but the app could in the
future run on mobile devices. Since we developed the
app in .NET MAUI, the support is there.

T-14 1. The pop up window when you choose a date could
be a little more intuitive.
2. A way to tell where you are in the application,
especially home page.
3. More tooltips around the application. Else it was
very good

T-15 OK

T-16 At the moment we are not handling all the statuses, but
still enough to pass our test

T-17 OK

T-18 OK

Kongsberg Table Tracker I TDD MODEL TO VIEWMODEL MESSAGING

I TDD Model To ViewModel Messaging

Document Information

Field Details
Title Handling Communication Between a Self-Updating Model
and the ViewModels
Author Ole William Skistad Huslende
Date 14.4.2025
Status Proposed / Approved / Rejected
Reviewed By Tormod Smidesang
Summary

This document evaluates methods for real-time communication between a self-updating
Model (using Server-Sent Events) and multiple ViewModels in an MVVM architecture.
The options compared are:

o IMessenger from CommunityToolkit. MVVM
« Event-based communication

o Direct push from Model to ViewModel

The goal is to identify the most and MVVM friendly solution.

I.1 Context
What is the technical problem?

The Model layer receives updates via SSE and must notify ViewModels. The structure
lacks MVVM implementaion

What is the goal?

o Ensure real-time updates
e Maintain MVVM separation of concerns
o Allow for testing, scalability, and maintainability

o Prevent memory leaks and threading issues

I.2 Options Considered
Option 1: IMessenger (MVVM Toolkit)

Overview: Use [Messenger to publish messages from the Model. ViewModels implement
IRecipient to receive them.
Pros:

141

Kongsberg Table Tracker I TDD MODEL TO VIEWMODEL MESSAGING

o Fully decoupled

Built-in thread safety

Scalable to many ViewModels
» Easy to mock and test
o Compatible with .NET MAUI
Cons:
o Slightly more boilerplate

» Requires clear message naming conventions

Option 2: Event-Based Communication

Overview: Models expose events which ViewModels subscribe to.
Pros:

» Real-time updates

e Preserves loose coupling

« Compatible with INotifyPropertyChanged
Cons:

e Manual threading control required

« Risk of memory leaks if unsubscribing is missed

o Complexity increases with multiple events

Option 3: Direct Push

Overview: The Model holds references to ViewModels and updates them directly.
Pros:

« Simple and immediate updates

Cons:
o Tight coupling violates MVVM principles
« Difficult to test and maintain

« Not scalable to multiple ViewModels

1.3 Decision

Chosen Option: Option 1 — IMessenger
Selected for clear MVVM structur and it integrates well with the existing .NET MAUI
ecosystem.

142

Kongsberg Table Tracker I TDD MODEL TO VIEWMODEL MESSAGING

Trade-offs
« Additional boilerplate

» Requires message naming conventions and structure

I.4 Impact
Changes Introduced

o Integrate IMessenger in the communication layer
» Refactor Models to send messages

o Update ViewModels to use IRecipient

Affected Components
e Model Layer

o ViewModel Layer

Timeline

e 1-2 days: Initial setup and message structure

o 1 week: Migration of all SSE-related features

1.5 Related Documents
o CommunityToolkit. MVVM — Messenger [57]

« .NET Events [58]
o MVVM structure [28]

143

Kongsberg Table Tracker J APPLICATION USER MANUAL

J Application User Manual

144

User Manual for the KTT Application

Description

This manual will help you understand how to use the KTT application. The application is made for users who work
with Kongsberg cutting tables. It shows you what the tables are doing and lets you upload and manage jobs on
them.

The guide starts with an overview of the features on the different tables so the user can familiarize themselves
with the buttons and features before diving into the steps for using the application.

Then the guide starts from the beginning, when you first open the application. It explains to the user how to do
different tasks step by step. You will learn how to add a table, scan for tables, upload jobs, and see statistics and
history from the tables. There is also a part about changing the language in the settings.

Each part of the manual gives you clear steps, explains what happens, and has space for pictures so it is easier to
follow. This guide is made to be easy to read, even if you are new to the system.

Please have the application open and follow the steps along with the guide. Now let’s start with the Page overviews
to get a sniff of the features and the buttons.

1. Main Page Overview

When you enter the application, you arrive at the Home Page. Below is an overview of the buttons and features
available on this page:

Feature Description Image
Table Cards Displays connected tables Farste U bordet nede
with name and status. Click Gomresd]
for more details. Rkl ks
[2) e
1.Add Table 1. Add anew table
using IP, hostname,
2.Scan Button client ID and secret.
2. Discover tables on
3.Filter Button the same network.

3. Filter to hide
disconnected tables.

1.Dashboard Button 1. Open dashboard to view
tables.

2. Settings Button
2. Access language
selection.

1.Home Button
2.Timeline Button

3. MetaStatistics for tables
button

1.Return to mainpage

2. View a timeline of jobs
across all tables.

3. View total production
time for all tables.

2. Table Overview

Once you enter a table new features arise, below is an overview of the buttons and features available on this page:

Feature

Description

1. Add Job button
2. Delete Job button

1.Adds a job to the table
2.Deletes a job on the table

1.Hide job details button
2. Set copies button

1.Removes the jobdetails on the
screen until you click a job again
2.Manually set number of copies for
a specific job

1.Home button
2.ActiveJobs button
3.HistoricalJobs button
4.Statistics button

1.Return to MainPage

2.View the Active jobs

3.View the Historical jobs

4. View the statistics for the current
table you are on.

Job Details

File name: Duobox KPCS_cgf.cut
Customer:

Due date:

Modified on: 2025-05-19 14:52
Dimensions: 450 X 320 mm

Ordered Copies: 50

Material: Folding Carton

Cutting Profile:

Tooling Preset: Test cut with Laser

3.MetaStatisticsPage Overview

Once you click the statistics button inside a table (metastatistics), new features arise, below is an overview of the
buttons and features available on this page:

Feature Descripiton

1.Set day button 1.View data from the last 24h

2.Set week button 2.View data from the last week

3.Set month button 3.View data from the last month
4.Custom Date button 4.view data from set date
1.Download button Download a CSV file to view the data

3.StatisticsPage Overview

Once you click on the statistics, the same features exist as in 3 except for the download button.

Steps:

1. Adding a Table (Main Page)

Step Description Visual
1 Click on the add table button and write in the
credentials given for the table. Your table
should now be added to the application

2. Scanning for Tables (Main Page)

Step

Description

Visual

Click on the Scan button and choose the
network type, for example ethernet or wifi and
then on “discover tables” Note! this runs in the
background and may take a minute

3.Filtering tables (Main Page)

Step

Description

Visual

1

Click on the filter button and check off “Hide
disconnected tables” Now you should only see the
connected tables

4.Dashboard function (Main Page)

Step Description Visual
1 Click on the dashboard button, the dashboard should
come out as a separate page. ’
5.Settings (Main Page)
Step Description Visual
1 Click on the settings button, here you can select your

language. Please restart the application after doing so.

6.Timeline (Main Page)

Step

Description

1

Click on the timeline button to get the timeline of the

tables connected with their current jobs.

7.Table Statistics (Main Page)

Step

Description

1

Click on the Statistics for tables button, here you will

get statistics data for the tables

8.Table Statistics (Table statistics)

Visual

Step

Description

1

Once on this page, you have the option to change
dates from where you get the data from, so you
can retrieve data for the last day, week, month or
choose a date yourself.

9.View jobs (Main Page)

Visual

2025-05-13 02:10

Total unknown tim

- 2025-05-20 02:10

Visual

Forste U bordet nede

Connected

Duobox

Step Description

1 On main page, you can enter a table by simply
clicking on it.

2 Once inside the table, you can view all the jobs,

both historical and active.

KPCS_cgf.cut

1 m Duobox KPCS_cgf.cut

Ellipsis 100x1000.cut

10.Adding or deleting jobs (Table)

Step Description Visual
1 Once inside the table click on the add job button to

upload a job from your computer.
2 Then select a job and click on the delete button, this

will delete the selected job.

11.Job Details (Table)

Step Description Visual

1 When you enter a table, click on a job to get the job 3) Job Details

details for the selected job - —
File name: Ellipsis 100x1000.cut

Customer:
Due date:
Modified on: 2025-05-15 15:12

Dimensions: X mm

Ordered Copies: 1

12.Set number of copies (Table)

Steps Description

1 Once inside a table, on job details you can click the
set copies button to select the number of copies you
want for the job.

2 A pop up window will appear, and you can type in

Set ordered copies
the number and simply press ok P

Enter desired number of copies

Ordered copies

Cancel

13.Historical jobs (Table)

Step Description Visual
1 Click on the historical jobs button to
view the list of historical jobs on the
table you are currently on

14.Statistics for a table (Table)

Step Description Visual
1 When on a table, select the
statistics button and view all
the data for the table you
are currently on

Kongsberg Table Tracker K CODE DOCUMENTATION

K Code Documentation

152

Kongsberg Table Tracker

Generated by Doxygen 1.9.1

1 Hierarchical Index

1.1 Class Hierarchy e e

2 Class Index
21 Class List e

3 Class Documentation

3.1 ActivePage Class Reference e
3.1.1 Detailed Description
3.1.2 Constructor & Destructor Documentation oo
3.1.2.1 ActivePage() e

3.1.3 Member Function Documentation
3.1.3.10nAppearing() i

3.2 AddTablePopup Class Reference e
3.2.1 Detailed Description e
3.2.2 Constructor & Destructor Documentationo
3.2.2.1 AddTablePopup()« .

3.2.3 Property Documentation
3.23.1CloseCommand

3.3 AddTableViewModel Class Reference
3.3.1 Detailed Description
3.3.2 Constructor & Destructor Documentation o
3.3.2.1 AddTableViewModel()

3.3.3 Member Function Documentation
3.33.1SetPopup() e

3.3.4 Property Documentation
3.3.4.1 ClientldError e
3.3.4.2ClientSecretError
3.834.3IpError. . . .
3.34.4IsFormValid
3.3.45NameError

3.4 ApiService Class Reference e
3.4.1 Detailed Description
3.4.2 Constructor & Destructor Documentation o
3.4.2.1 ApiService() e e

3.4.3 Member Function Documentation
3.4.3.1 CredentialsUpdated()
3.4.3.2DeleteAsync()

3.4.3.3 DeletedobTask()

3.4.3.4 EnsureValidAuthentication() Lo

3.4.3.5 EventlListener()

3.4.3.6 ExtractdsonFromPrefixedMessage()

3.4.3.7 GetActivedobs()

Generated by Doxygen

3.4.3.8 GetAllTableProperties() o 23

3.4.3.9 GetAsync< TResponse >() . .« . v v v v i i i e 23
3.43.10GetEvent() L 24

34311 GetHello() 24

3.4.3.12 GetHistorydob() 24

3.4.3.13 GetHistorydobs() 25

3.4.3.14 GetlmageOfdob() 25

3.4.3.15 GetlmageOfTable() o e 25

3.4.3.16 GetProductionStatistics()o 26

3.4.3.17 GetPropertyTrends()« o o e 26

3.4.3.18 IsEventListenerRunning() Lo 26

3.4.3.19 PostActivedob() 27

3.4.3.20 PostAsync< TRequest, TResponse >() 27

3.4.3.21 PutAsync< TRequest >() o . o o 28

3.4.3.22 RequestAccessToken() 28

3.4.3.23 SetlpAddress()o e 29

3.4.3.24 SetOrderedCopies() v o v e 29

3.4.3.25 StartEventListener() 29

3.4.3.26 StopEventListener() 30

3.4.4 Member Data Documentation 30
3.4.4.1 jsonSerializerOptions 30

3.5App Class Reference e e e 30
3.5.1 Detailed Description L e 31
3.5.2 Constructor & Destructor Documentation Lo 31
B52TADP0) « v e e e 31

3.5.3 Member Function Documentation L 32
3.5.3.1 CreateWindow() o o e 32

3.6 AppShell Class Reference e 32
3.6.1 Detailed Description 33

3.7 ColumnDefinition Class Reference 33
3.7.1 Detailed Description 34

3.8 ColumnSelectorPopup Class Reference 34
3.8.1 Detailed Description L 35
3.8.2 Constructor & Destructor Documentation L. 35
3.8.2.1 ColumnSelectorPopup() 35

3.8.3 Property Documentation e 35
3.8.3.1 ClosePopupCommand e 35

3.8.3.2 ColumnDefinitions L 36

3.9 ConnectionStatusChangedMessage Class Reference 36
3.9.1 Detailed Description L e 37

3.10 CopyTime Class Reference e 37
3.10.1 Detailed Description L 37

Generated by Doxygen

3.10.2 Property Documentation L e 37
3.10.2.1 CopyEnded 37

3.10.2.2 CopyStarted L 38

3.11 CurrentStatistics Class Reference 38
3.11.1 Detailed Description 38

3.12 CurrentStatisticsMessage Class Reference oo 38
3.12.1 Detailed Description 39

3.13 Customer Class Reference e 39
3.13.1 Property Documentation Lo 40

A3 11 Address . . . L L L e 40

3131.2C0Yy . . e e 40
3.13.1.3C0untry . .. e 40

3.13.1.4 Customerld L 40

3315 Name . . o e 40

3.13.1.6 PostalCode 41

3.14 CustomerTotalProducedCopiesViewModel Class Reference 41
3.14.1 Detailed Description 42

3.15 CustomerViewModel Class Reference 42
3.15.1 Detailed Description L 43
3.15.2 Constructor & Destructor Documentation 43
3.15.2.1 CustomerViewModel() 43

3.15.3 Member Function Documentation Lo 43
3531 Equals() o 43
3.15.3.2GetHashCode() e 44

3.16 CustomStatisticsPopup Class Reference 44
3.16.1 Detailed Description e 45
3.16.2 Constructor & Destructor Documentation 45
3.16.2.1 CustomStatisticsPopup() 45

3.16.3 Member Data Documentation 46
3.16.3.1 CustomStatisticsViewModel L 46

3.16.4 Property Documentationo 46
3.16.4.1 CloseCommand 46

3.17 CustomStatisticsViewModel Class Reference 46
3.17.1 Detailed Description L e 47
3.17.2 Constructor & Destructor Documentation 47
3.17.2.1 CustomStatisticsViewModel() o 47

3.17.3 Member Function Documentation L 48
31731 SetCaller() e 48
3.17.3.2SetPopup() e e 48

3.18 DiscoverTablesPopup Class Reference i 48
3.18.1 Detailed Description 49
3.18.2 Constructor & Destructor Documentation oL 49

Generated by Doxygen

3.18.2.1 DiscoverTablesPopup() 50

3.19 DiscoverTablesViewModel Class Reference 50
3.19.1 Detailed Description e 51
3.19.2 Constructor & Destructor Documentation 51
3.19.2.1 DiscoverTablesViewModel() o 51

3.19.3 Member Function Documentation L 51
3.19.3.1 AbortScan() o o e 52

3.19.3.2 DiscoverTables() 52

3.19.4 Property Documentationo 52
31941 Interfaces L 52

3.20 EditTablePopup Class Reference e 52
3.20.1 Detailed Description e e 53
3.20.2 Constructor & Destructor Documentation L. 53
3.20.2.1 EditTablePopup() 53

3.20.3 Property Documentation Lo 54
3.20.3.1 CloseCommand 54

3.21 EditTableViewModel Class Reference o 54
3.21.1 Detailed Description e e 55
3.21.2 Constructor & Destructor Documentation oL, 55
3.21.2.1 EditTableViewModel() 55

3.21.3 Member Function Documentation Lo 56
3.21.3.1 SetPopup() .« . o . e 56

3.21.4 Property Documentationo 56
3.21.4.1 ClientldErroro 56

3.21.4.2 ClientSecretError L 56

32143 1IpError e 56

32144 1sFormValid 57

3.21.45 NameError L 57

3.22 EnumMemberJsonConverter< T > Class Template Reference 57
3.22.1 Detailed Description L 58
3.22.2 Member Function Documentationo Lo 58
32221 Read() e 58
B2222WHHE() © © o v o o e e e e e 59

3.23 HalfValueConverter Class Reference 59
3.23.1 Detailed Description e e e 60
3.23.2 Member Function Documentation oo 60
3.23.21Convert() e e e e e e e 60
3.23.22C0nvertBack() 61

3.24 HistoryEntryAddedEvent Class Reference 61
3.24.1 Detailed Description e 61
3.24.2 Property Documentationo 61
3.24.2.1 ACtion L 61

Generated by Doxygen

3.24221D . . L e 62

3.25 HistoryEntryAddedMessage Class Reference, 62
3.25.1 Detailed Description e 63

3.26 HistoryEntryRemovedEvent Class Reference 63
3.26.1 Detailed Description 63
3.26.2 Property Documentationo 63
3.26.2.1 Action . . . L L e 63

3.26.2.21D . .. e e 64

3.27 HistoryEntryRemovedMessage Class Reference 64
3.27.1 Detailed Description 65

3.28 HistoryPage Class Reference e 65
3.28.1 Detailed Description e 66
3.28.2 Constructor & Destructor Documentationo L. 66
3.28.2.1 HistoryPage() 66

3.28.3 Member Function Documentation 66
3.28.3.1 0OnAPPearing() - - - « « v e e e e e e 66

3.29 HistoryTimeline Class Reference i 67
3.29.1 Detailed Description e e e 68
3.29.2 Constructor & Destructor Documentation o 68
3.29.2.1 HistoryTimeline() 69

3.29.3 Member Data Documentation 69
3.29.3.1 EndProperty 69

3.29.3.2 ltemColorProperty 69

3.29.3.3 ltemsProperty L L 69

3.29.3.4 SelectedColorProperty 70

3.29.3.5 SelectedJobltemProperty L 70

3.29.3.6 StartProperty 70

3.29.3.7 TimelineColorProperty 70

3.29.3.8 VerticalLineColorProperty 71

3.29.4 Property Documentation 71
32941 ENnd e 71
3.29.4.21temColor 71

32943 HemMS L e 71

3.29.4.4 SelectedColor 71
3.29.4.5SelecteddJobltem L 72
3.29.4.6Start L e e 72

3.29.4.7 TimelineColor e 72

3.29.4.8 VerticalLineColor 72

3.30 HistoryTimelineDrawable Class Reference 73
3.30.1 Detailed Description 73
3.30.2 Constructor & Destructor Documentation 73
3.30.2.1 HistoryTimelineDrawable() 74

Generated by Doxygen

vi

3.30.3 Member Function Documentation 74
3.30.3.1 Draw() L 74

3.31 HoverablelImageButton Class Reference L Lo 74
3.31.1 Detailed Description e 76
3.31.2 Constructor & Destructor Documentation 76
3.31.2.1 HoverablelmageButton() 76

3.31.3 Member Data Documentation 76
3.31.3.1 HoverBorderColorProperty o 76

3.31.3.2 HoverBorderWidthProperty 77

3.31.3.3 HoverCornerRadiusProperty 77

3.31.3.4 HoverOpacityProperty 77

3.31.4 Property Documentation 77
3.31.4.1 HoverBorderColor 77

3.31.4.2 HoverBorderWidth 77

3.31.4.3 HoverCornerRadius 78

3.31.4.4 HoverOpacity o o e 78

3.32 IdentificationField Class Reference 78
3.32.1 Detailed Description e e 78
3.32.2 Property Documentation 78
3.32.2.1 BoundingBox 79

3.32.2.2 EncodingDetails 79

3.3223 Matrix e e 79

3.32.24 Value e 79

3.33 InfoPanelContentView Class Reference 80
3.33.1 Detailed Description L 80

3.34 InvertBoolConverter Class Reference 81
3.34.1 Detailed Description 81
3.34.2 Member Function Documentation 82
3.34.2.1C0NVvert() e e e 82
3.34.22ConvertBack() 82

3.35 JoblLayerStatisticsViewModel Class Reference oL 83
3.35.1 Detailed Description e e 83
3.35.2 Constructor & Destructor Documentation oL 84
3.35.2.1 JobLayerStatisticsViewModel() oo 84

3.35.3 Member Function Documentation 84
3.35.3.1 UpdatedobLayerStatistics() 84

3.36 JobListColumnSpanConverter Class Reference 84
3.36.1 Detailed Description 85
3.36.2 Member Function Documentation Lo 85
3.36.2.1 Convert() L e 85
3.36.2.2C0onvertBack()o 86

3.37 JobQueue Class Reference o e 86

Generated by Doxygen

vii

3.37.1 Detailed Description e e e 86
3.37.2 Property Documentationo 86
3.37.2110d . L e e 87
3.37.22JdobTasks 87

3.38 JobRunStatisticsViewModel Class Reference o 87
3.38.1 Detailed Description L 88
3.38.2 Constructor & Destructor Documentation 88
3.38.2.1 JobRunStatisticsViewModel() o 88

3.38.3 Member Function Documentation o 88
3.38.3.1 UpdateJobRunStatistics() 89

3.38.4 Property Documentation e 89
3.38.4.1 JobLayerStatistics 89

3.39 JobStatisticsViewModel Class Reference 89
3.39.1 Detailed Description e 90
3.39.2 Constructor & Destructor Documentation 90
3.39.2.1 JobStatisticsViewModel() 90

3.39.3 Member Function Documentation o 91
3.39.3.1 UpdatedJobStatistics() 91

3.39.4 Property Documentation 91
3.39.4.1JobRUNS L L e 91

3.40 JobStatusToColorConverter Class Reference 91
3.40.1 Detailed Description L 92
3.40.2 Member Function Documentation L 92
3.40.2.1CoNvert() o e e 92
3.40.2.2ConvertBack() 93

3.41 JobTask Class Reference e 93
3.41.1 Detailed Description L 95
3.41.2 Property Documentation 95
34121 Amount . . L L L e 95
3.41.2.2 AmountProduced L 95
3.41.23 AmountRejected L 96
3.41.24 CreationDate 96
3.41.25Customer L e 96
3.41.26 CutPreviewUnc e 96
3.41.2.7 CuttingProfileName 96
3.41.28CUtUNC e e 96
3.41.2.9 DescriptiveName 97
3.41.210DueDate L 97
3.41.211 Externalld 97
3.41.212FinishDate e 97
341213 1d . . . e 97
3.41.2.14 IdentificationFields L 97

Generated by Doxygen

viii

341.215JdfUnc L 98
3.41.216Jobld 98
3.41.217 JobPartld e 98
3.41.2.18 JobPreview L 98
3.41.2.19 JobPriority 98
3.41.2.20 MappingPresetName L 98
3.41.2.21 MaterialBoardName L 99
3.41.2.22 MaterialName L 99
3.41.2.23 MediaThickness 99
341224 MediaX e 99
3.41.225MediaY L e e 99
3.41.2.26 ModificationDate 99
341227 Name e 100
3.41.228 OpenlniPC e 100
3.41.2.29 OptimizationPresetName 100
3.41.2.30 OriginalCutFileUnc 100
3.41.2.31 OverruleMaterialCutPresets 100
3.41.2.32 PrintPreviewUnc L 100
3.41.2.33 ProductionPresetName 101
3.41.2.34 ProductionTimes 101
3.41.2.35 ProductionType e 101
3.41.236 SortOrder e 101
3.41.237 StartDate 101
341.238Status e 101
3.41.2.39 StatusInfo L 102
3.41.2.40 TaskOperator e 102
3.41.2.41 ToolingPresetName 102
3.41.2427Type . . . o 102

3.42 JobTaskViewModel Class Reference 103
3.42.1 Detailed Description 103
3.42.2 Constructor & Destructor Documentation o 0oL 104
3.42.2.1 JobTaskViewModel() 104

3.42.3 Member Function Documentationo 104
3.42.3.1 UpdatedobTask() 104

3.43 LoadModelDataMessage Class Reference 104
3.43.1 Detailed Description L 105
3.44 MainPage Class Reference e 105
3.44.1 Detailed Description L 106
3.44.2 Constructor & Destructor Documentation o 106
3.44.2.1 MainPage()« . o e 106

3.44.3 Member Function Documentationo o 107
3.44.3.1 OnAppearing() - . -« -« o 107

Generated by Doxygen

3.45 MainViewModel Class Reference 107
3.45.1 Detailed Description L 108
3.45.2 Constructor & Destructor Documentationo oL 108

3.45.2.1 MainViewModel() 108
3.45.3 Member Function Documentationo 109
3.45.3.1 DeleteTable() e 109
34532 EditTable() 109
3.45.3.3GoToTable() o e 109
3.45.3.4 ReconnectTable() 110
3.45.3.5 TableDragStarting() 110
3.45.3.6 TableDrop() 111
3.45.4 Property Documentation 111
3.45.4.1 DeleteTableCommand 111
3.45.4.2 EditTableCommand 111
3.45.43 GoToTableCommand 111
3.45.4.4 ReconnectTableCommand 112
3.45.45Tables e 112

3.46 MaterialTotalProducedCopiesViewModel Class Reference 112
3.46.1 Detailed Description L 113

3.47 MetaStatisticsMessage Class Reference L L o 113
3.47.1 Detailed Description 114

3.48 MetaStatisticsPage Class Reference 114
3.48.1 Detailed Description L e 115
3.48.2 Constructor & Destructor Documentation 115

3.48.2.1 MetaStatisticsPage() 115

3.49 MetaStatisticsViewModel Class Reference 115
3.49.1 Detailed Description L 117
3.49.2 Constructor & Destructor Documentationo 117

3.49.2.1 MetaStatisticsViewModel() 117
3.49.3 Member Function Documentation Lo o 117
3.49.3.1 GetDayStatistics() 117
3.49.3.2 GetMonthStatistics() 117
3.49.3.3 GetWeekStatistics() o o 118
3.49.3.4 MergeAndGetTop20()« o v i i e 118
3.49.3.5Receive() 118
3.49.3.6 RequestProductionStatistics() oL 118

3.50 MillimetersToMetersConverter Class Reference 119
3.50.1 Detailed Description 120
3.50.2 Member Function Documentation oo 120

3.50.2.1Convert() L 120
3.50.2.2ConvertBack()o 120
3.51 NavBarContentView Class Reference i 121

Generated by Doxygen

3.51.1 Detailed Description e e 122

3.51.2 Constructor & Destructor Documentationo, 122
3.51.2.1 NavBarContentView() 122

3.51.3 Member Function Documentation 122
3.51.3.1 GoToPage() o o o e 122

3.51.4 Member Data Documentation 123
3.51.4.1 IsTablePageProperty 123
3.51.4.2 PageSubTitleProperty 123
3.51.4.3 PageTitleProperty 123

3.51.5 Property Documentation 124
3.51.5.1IsTablePage 124
3.51.5.2PageSubTitle 124
3.51.53PageTitle e 124
3.51.54TabClicked e e 124

3.52 OverruleMaterialCutPresets Class Reference 124
3.52.1 Detailed Description L 125
3.52.2 Property Documentationo 125
3.52.2.1 FocusOnTableTop o o 125
3.52.2.2 UnconditionalExtraToolLift o 125

3.53 PercentageToProgressConverter Class Reference, 125
3.53.1 Detailed Description 126
3.53.2 Member Function Documentation oo 126
3.53.2.1C0oNnvert() e 126
3.53.22C0nvertBack()o 127

3.54 ProductionTimes Class Reference o 127
3.54.1 Detailed Description e 128
3.54.2 Property Documentationo 128
3.54.2.1 EstimatedTimeAllCopies 128
3.54.2.2 EstimatedTimeLastCopy 128
3.54.2.3 ManualHandlingAfterLastCopy o 128
3.54.2.4 ManualHandlingBeforeFirstCopy 128
3.54.2.5 RemainingTimeAllCopies« . o 129
3.54.2.6 RemainingTimeLastCopy 129
3.54.2.7 TotalProductionTime 129

3.55 ProgressWheel Class Reference e 129
3.55.1 Detailed Description 131
3.55.2 Constructor & Destructor Documentation 131
3.55.2.1 ProgressWheel() 131

3.55.3 Member Data Documentationo 131
3.55.3.1 CircleBackgroundColorProperty o 131
3.55.3.2 CircleFillColorProperty e 131
3.55.3.3 InnerCircleSizeProperty L 132

Generated by Doxygen

xi

3.55.3.4 InnerProgressProperty 132

3.55.3.5 OuterCircleSizeProperty 132

3.55.3.6 OuterProgressProperty 132

3.55.4 Property Documentation 133
3.55.4.1 CircleBackgroundColor 133

3.55.4.2 CircleFillColor e 133

3.55.43 InnerCircleSize L 133

3.55.4.4 INnerProgress 133
3.55.4.50uterCircleSize e 133

3.55.4.6 OUterProgress o o e 134

3.56 ProgressWheelDrawable Class Referenceo 134
3.56.1 Detailed Description e 135
3.56.2 Constructor & Destructor Documentation, 135
3.56.2.1 ProgressWheelDrawable() o 135

3.56.3 Member Function Documentation 135
356.3.1Draw() e 135

3.57 PropertyTrends Class Reference 135
3.57.1 Detailed Description e e e 136
3.57.2 Property Documentationo 136
3.57.2.1 FirstOccurrence o e e e 136

3.57.2.2 HighestValue 136

3.57.2.3 HighestValueDate 137

3.57.2.4 LastOCCUITENCE v it e e e e 137

3.57.25 LowestValue L 137

3.57.2.6 LowestValueDate 137

35727 Name 137

3.57.28 0CCUITENCES .+« v v v i v e e e e e e e e e e 137
3.57.29Value e e 138

3.58 QueueEntryAddedEvent Class Reference 138
3.58.1 Detailed Description L 138
3.58.2 Property Documentation 138
35821 Action . . . L 138

3.58.221D . . L e 139

3.58.23 TaskDetails 139

3.59 QueueEntryAddedMessage Class Reference 139
3.59.1 Detailed Description e 140

3.60 QueueEntryMovedEvent Class Reference 140
3.60.1 Detailed Description 140
3.60.2 Property Documentation Lo 140
3.60.2.1 Action L 141

3.60.2.21D . . . L e 141
3.60.231Index e e 141

Generated by Doxygen

xii

3.61 QueueEntryMovedMessage Class Reference oL 141
3.61.1 Detailed Description 142

3.62 QueueEntryRemovedEvent Class Reference oL 142
3.62.1 Detailed Description e 143
3.62.2 Property Documentation Lo 143
3.62.2.1 Action e 143

3.62.221D . . . L e 143

3.63 QueueEntryRemovedMessage Class Reference 143
3.63.1 Detailed Description L 144

3.64 QueueEntryUpdatedEvent Class Referenceo 144
3.64.1 Detailed Description L 145
3.64.2 Property Documentation L 145
3.64.2.1 Action 145

3.64.221D . . L e e e e 145

3.64.23 TaskDetails 145

3.65 QueueEntryUpdatedMessage Class Reference 146
3.65.1 Detailed Description 146

3.66 QueueServerJobStatistics Class Reference 147
3.66.1 Detailed Description 147
3.66.2 Property Documentation Lo 147
3.66.2.1 Customer e 148
3.66.22DueDate 148

3.66.2.31d . .. L e 148

3.66.2.4 JobPriority 148
3.66.25Name e e 148

3.66.2.6 OriginalCutFileLoc e 148

3.66.2.7 ProductionRuns 149

3.66.2.8 StatisticsCreated 149

3.66.2.9 StatisticsEnded L 149

3.66.2.10 TotalCopiesProduced 149

3.66.2.11 TotalCopiesRejected 149

3.66.2.12 TotalProductionTime 149

3.67 QueueServerLayerStatistics Class Reference o 150
3.67.1 Detailed Description L 151
3.67.2 Property Documentation 151
3.67.2.1 Acceleration L 151

3.67.22 ArcCount e 151

3.67.2.3 CircleAdjust L. 151

3.67.2.4 DepthACross 151
3.67.25DepthAlong e 152

3.67.2.6 LayerName 152

3.67.2.7 LayerType o 152

Generated by Doxygen

3.67.2.8 LineCount 152
3.67.2.9 NumberOfMultiPasses 152
3.67.2.10 NumberOfRegmarks 152
3.67.2.11 SpeedX 153
3.67.2.12SpeedY e e 153
3.67.2.13 SpindleRpm L 153
3.67.2.14 ToolDownDistance 153
3.67.2.15 ToolDownMoves e 153
3.67.216Toollag e 153
3.67.217 ToolName L 154
3.67.218 ToolType« . 154
3.67.2.19 ToolUpDistance 154
3.67.2.20 ToolUpMoves e 154
3.68 QueueServerProductionRunStatistics Class Reference 154
3.68.1 Detailed Description e e 156
3.68.2 Property Documentationo 156
3.68.2.1 CheckOutDistance 156
3.68.2.2 CompensationType e 156
3.68.2.3 CopiesOrdered e 156
3.68.2.4 CopiesProduced 157
3.68.2.5 CopiesRejected 157
3.68.2.6 CopiesSkipped 157
3.68.2.7 CopyTimes o 157
3.68.2.8 CornerToScanFrom L 157
3.68.2.9 CuttingProfileName 157
3.68.2.10 EdgeScanMode 158
3.68.2.11 ExtraToolLiftUsed 158
3.68.2.12 JobSheetHeight 158
3.68.2.13 JobSizeWidth 158
3.68.2.14 Layers L 158
3.68.2.15 MappingPresetName 158
3.68.2.16 MaterialFamilyName 159
3.68.2.17 MaterialMeasurementType Lo 159
3.68.2.18 MaterialName 159
3.68.2.19 MaterialThickness 159
3.68.2.20 Operator e e e 159
3.68.2.21 ProductionPresetName 159
3.68.2.22 ProductionType 160
8368223 QUality 160
3.68.2.24 RegistrationMode L 160
3.68.225 RunEnded 160
3.68.226 RunStarted 160

Generated by Doxygen

Xiv

3.68.2.27 SimultaneousCuttingAndUnloading 160

3.68.2.28 StepAndRepeatCountX L 161

3.68.2.29 StepAndRepeatCountY 161

3.68.2.30 ToolingPresetName 161

3.69 ResetViewModelMessage Class Reference 161
3.69.1 Detailed Description 162

3.70 Runningdob Class Reference e 162
3.70.1 Detailed Description L 163

3.71 ScoreToColorConverter Class Reference 163
3.71.1 Detailed Description e 164
3.71.2 Member Function Documentationo 164
B.71.2100Nnvert() o e 164
3.71.22ConvertBack()o 165

3.71.3 Property Documentation 165
3.71.3.1 HighColor e 165
3.71.3.2LowColor e 165
3.71.33MidColor e e 166

3.72 SettingsPopup Class Reference 166
3.72.1 Detailed Description 167
3.72.2 Constructor & Destructor Documentation 167
3.72.2.1 SettingsPopup() 167

3.73 SettingsViewModel Class Reference e 167
3.73.1 Detailed Description e 168
3.73.2 Constructor & Destructor Documentation L. 168
3.73.2.1 SettingsViewModel() 168

3.73.3 Member Function Documentation L 169
3.73.3.1 DeleteAliCredentials() o o 169

3.73.4 Property Documentation 169
3.73.4.1Languages e e e 169

3.74 StatisticsMessage Class Reference e 170
3.74.1 Detailed Description e 170

3.75 StatisticsPage Class Reference e 171
3.75.1 Detailed Description 171
3.75.2 Constructor & Destructor Documentation 172
3.75.2.1 StatisticsPage() 172

3.75.3 Member Function Documentationo o 172
3.75.3.1 OnAppearing() - . - « - o e 172

3.76 StatusPage Class Reference e 172
3.76.1 Detailed Description 173
3.76.2 Constructor & Destructor Documentation 173
3.76.2.1 StatusPage()o 173

3.77 StatusTimeWheel Class Reference 174

Generated by Doxygen

XV

3.77.1 Detailed Description e e e 175
3.77.2 Constructor & Destructor Documentationo L. 175
3.77.2.1 StatusTimeWheel() 176

3.77.3 Member Data Documentation 176
3.77.3.1 BusyTimeColorProperty 176
3.77.3.2 BusyTimeProperty e 176
3.77.3.3 IdleTimeColorProperty e 176
3.77.3.4 IdleTimeProperty e 177
3.77.3.5 OffTimeColorProperty 177
3.77.3.6 OffTimeProperty 177
3.77.3.7 UnknownTimeColorProperty 177
3.77.3.8 UnknownTimeProperty 178

3.77.4 Property Documentation 178
3.77.41 BusyTime e e e e 178
3.77.42BusyTimeColor e 178
3.77.431dleTime e 178
3.77.4.4 1dleTimeColor 178
3.77.450ffTime e 179
3.77.4.6 OffTimeColor e 179
3.77.47 UnknownTime e e 179
3.77.4.8 UnknownTimeColor e 179

3.78 StatusTimeWheelDrawable Class Reference, 180
3.78.1 Detailed Description 180
3.78.2 Constructor & Destructor Documentation 180
3.78.2.1 StatusTimeWheelDrawable() 181

3.78.3 Member Function Documentation 181
3783 1Draw() 181

3.79 TableActiveViewModel Class Reference o L 181
3.79.1 Detailed Description e e e 183
3.79.2 Constructor & Destructor Documentation o 183
3.79.2.1 TableActiveViewModel() 184

3.79.3 Member Function Documentation 185
3.79.3.1 AddActiveJobASYNC() 185
3.79.3.2 DeleteSelectedActiveJobAsync() Lo 185
3.79.3.3 MovedobToIndex() 185
3.79.3.4 0OnLoadModelData() o e 186
3.79.3.5 0OnResetViewModel() e 186
3.79.3.6 Receive() [1/41 . . v o v v v i e e 186
3.79.3.7 Receive() [2/41 « o v v v i i 187
3.79.3.8 Receive() [3/4] « o v v v i e e e 187
3.79.3.9Receive() [4/41 « .« o v i e 188
3.79.3.10 SetColumnWidth() 188

Generated by Doxygen

Xvi

3.79.3.11 SortActivedob() 188
3.79.3.12 ToggleColumnVisibility() o 189

3.79.4 Property Documentation 189
3.79.4.1 AddActiveJobAsyncCommand L 189
3.79.4.2 DeleteSelectedActiveJobAsyncCommand 189
3.79.4.3 IsJobDetailsPanelVisible 189
3.79.4.4 SortActiveJobsCommand L 190

3.80 TableAuthentication Class Reference e 190
3.80.1 Detailed Description L 190
3.80.2 Property Documentation 190
3.80.2.1 AccessToKEeN L 190
3.80.2.21sValid 191
3.80.23 LastUpdated L 191

3.81 TableContext Class Reference 191
3.81.1 Detailed Description e 192
3.81.2 Constructor & Destructor Documentation 192
3.81.2.1 TableContext() o o o 192

3.81.3 Property Documentation 192
3.81.3.1 TableActiveViewModel 192
3.81.3.2 TableContextMessenger 192
3.81.3.3 TableHistoryViewModel 193
3.81.3.4 TableModel 193
3.81.3.5 TablePreviewViewModel L 193
3.81.3.6 TableStatisticsViewModel 193

3.82 TableContextBaseViewModel Class Reference 194
3.82.1 Detailed Description e e 195
3.82.2 Constructor & Destructor Documentationo 0. 195
3.82.2.1 TableContextBaseViewModel() 195

3.82.3 Member Function Documentation 195
3.82.3.1 OnLoadModelData()« v 196
3.82.3.2 OnResetViewModel() 196
3.82.3.3Receive() [1/2] .« o v v v e e e 196
3.82.3.4 Receive() [2/21 « . v v v v i 196

3.82.4 Member Data Documentation 197
3.82.4.1 metaMessenger 197
3.82.4.2 serviceProvider L 197
3.82.4.3 tableContextMessenger 197
3.82.4.4tableModel L 197

3.83 TableContextService Class Reference e 198
3.83.1 Detailed Description 199
3.83.2 Constructor & Destructor Documentation 199
3.83.2.1 TableContextService() o o 199

Generated by Doxygen

3.83.3 Member Function Documentation 200
3.83.3.1AddTable() e 200
3.83.3.2 ClearAllCredentials() o 200
3.83.3.3 HideDisconnectedTables() 200
3.83.3.4IndexOfTable() e 200
3.83.3.5MoveTable() e e 201
3.83.3.6 Receive() 201
3.83.3.7 RemoveTable() 201
3.83.3.8 SaveTablesToDisk() o 202
3.83.3.9 UpdateFilteredList() 202

3.83.4 Property Documentation 202
3.83.4.1 ActiveTable e 202
3.83.4.2 FilteredTables 202
3.83.43Tables e e 202

3.84 TableEntryFieldValidator Class Reference 203

3.84.1 Detailed Description L 203

3.84.2 Member Function Documentationo 203
3.84.2.1 ValidateClientld() 203
3.84.2.2 ValidateClientSecret() 204
3.84.23 Validatelp() 204
3.84.2.4 ValidateName() 204

3.85 TableFilterPopup Class Reference o 205

3.85.1 Detailed Description 206

3.85.2 Constructor & Destructor Documentation 206
3.85.2.1 TableFilterPopup()« .« . o 206

3.86 TableFilterViewModel Class Reference 206

3.86.1 Detailed Description 207

3.86.2 Constructor & Destructor Documentation oL 207
3.86.2.1 TableFilterViewModel() 207

3.86.3 Member Function Documentation Lo L 208
3.86.3.1 HideDisconnectedTablesChanged() 208

3.87 TableHistoryViewModel Class Reference 208

3.87.1 Detailed Description L 209

3.87.2 Constructor & Destructor Documentation 210
3.87.2.1 TableHistoryViewModel() 210

3.87.3 Member Function Documentation Lo 210
3.87.3.1 DeleteSelectedHistoryJobAsync() oo 210
3.87.3.20nLoadModelData() 210
3.87.3.3 OnResetViewModel() 211
3.87.3.4 Receive() [1/3] « v v v v i e e e e e e e 211
3.87.35Receive() [2/31 . .« o v i 211
3.87.3.6 Receive() [3/3]1 . . o« o o i e e e 212

Generated by Doxygen

Xviii

3.87.3.7 SetColumnWidth() 212
3.87.3.8 SortHistoryJob() 212
3.87.3.9 ToggleColumnVisibility() o o 213

3.87.4 Property Documentation L 213
3.87.4.1 DeleteSelectedHistoryJobAsyncCommand 213
3.87.4.2 IsJobDetailsPanelVisible 213
3.87.4.3 SortHistoryJobsCommand 214

3.88 TableModel Class Reference e 214
3.88.1 Detailed Description L 216
3.88.2 Constructor & Destructor Documentation 216
3.88.2.1 TableModel() o e 216

3.88.3 Member Function Documentation 216
3.88.3.1 AddActivedob() 216
3.88.3.2 DeleteActivedobTask() 217
3.88.3.3 DeleteHistorydobTask() 217
3.88.3.4 DeleteSavedCredentials() o o 218
3.88.3.5 FindProperty< T >()« o o 218
3.88.3.6 InitializeTable() 219
3.88.3.7 RequestActivedobs() 219
3.88.3.8 RequestHistoryJobs() 219
3.88.3.9 RequestdJobPreview() 219
3.88.3.10 RequestProductionStatisticsAndStatusTrends() 220
3.88.3.11 RequestTablelmage() o 221
3.88.3.12 RequestTableProperties() o 221
3.88.3.13 SetOrderedCopies() . . - « -« o v o i 221
3.88.3.14 TryDeserialize< T >() o o i i 222
3.88.3.15 UpdatedobTask() 222

3.88.4 Property Documentation Lo 223
3.88.4.1 Activedobs L 223
3.88.4.2Clientld 223
3.88.4.3 ClientSecret L 223
3.88.4.4 HistoryJobs 223
3.88.45Name 224
3.88.4.6 ProductionStatistics L 224
3.88.4.7 Properties e 224
3.88.4.8 PropertyTrendsStatus 224
3.88.4.9Tablelmage e 224

3.89 TablePreviewViewModel Class Reference 225
3.89.1 Detailed Description L 226
3.89.2 Constructor & Destructor Documentation 226
3.89.2.1 TablePreviewViewModel() 226

3.89.3 Member Function Documentation o 227

Generated by Doxygen

Xix

3.89.3.1 GetStatusimagePath() 227
3.89.3.20nLoadModelData() 227

3.89.3.3 OnResetViewModel() 227

3.89.3.4 Receive() [1/3] « v v v v e e e e e e e 227

3.89.3.5 Receive() [2/31 . . . o o e e 228

3.89.3.6 ReCeIVE() [3/3] .« v v v v e e e e e 228

3.89.4 Property Documentation 228
3.89.4.1 FormatedlpcVersion L 229
3.89.4.21sConnected 229

3.89.4.3 TableStatusColor e 229

3.89.4.4 TableStatuslmagePath 229

3.90 TableProperty Class Reference e 229
3.90.1 Detailed Description L 230
3.90.2 Property Documentation 230
3.90.2.1 DataType e e 230

3.90.2.21d . .. e 230

3.90.23 LastUpdated 230
3.90.24Name 230
3.90.25Value e 231

3.91 TablePropertyChangedMessage Class Reference 231
3.91.1 Detailed Description 232

3.92 TablePropertyEvent Class Reference 232
3.92.1 Detailed Description e 232
3.92.2 Property Documentationo 232
3.92.2.1 Action L e e 232
3.92.22TableDetails 233

3.93 TableScanService Class Reference e 233
3.93.1 Detailed Description 234
3.93.2 Constructor & Destructor Documentation 234
3.93.2.1 TableScanService() o o e 234

3.93.3 Member Function Documentationo 234
3933 ADOI() « - v o 234
B.9332BUSY() « v o o e e e e e 235

3.93.3.3 GetBroadcastAddress() e 235

3.93.3.4 GetNetworkAddress() 235
3.93.3.5Scaninterface() 236

3.94 TablesContentView Class Reference 236
3.94.1 Detailed Description 237
3.94.2 Constructor & Destructor Documentationo o 237
3.94.2.1 TablesContentView() e 237

3.95 TableSerializationStructure Class Reference 238
3.95.1 Detailed Description L 238

Generated by Doxygen

XX

3.96 TableStatisticsViewModel Class Reference, 238
3.96.1 Detailed Description e 239
3.96.2 Constructor & Destructor Documentationo oL 239

3.96.2.1 TableStatisticsViewModel() L 240
3.96.3 Member Function Documentation Lo 240
3.96.3.1 GenerateStatisticsCsv() e 240
3.96.3.2 GetDayStatistics() 240
3.96.3.3 GetMonthStatistics() L 240
3.96.3.4 GetUtilizationScore() e 241
3.96.3.5 GetWeekStatistics()« « . 241
3.96.3.6 OnResetViewModel() 241
3.96.3.7 Receive() [1/2] . . . v v v i i e e e 241
3.96.3.8 Receive() [2/21 . .« o v i v i e 242
3.96.3.9 RequestProductionStatistics() oo 242

3.97 TimelineContentView Class Reference 242
3.97.1 Detailed Description L 244
3.97.2 Constructor & Destructor Documentationo Lo 244

3.97.2.1 TimelineContentView() 244
3.97.3 Member Function Documentationo 244
3.97.3.1 OnBindingContextChanged() 244
3.97.32Receive() e 244
3.97.4 Property Documentation L e 244
3.97.4.1JdobTasks e 245
3.97.42Timestamps L 245

3.98 TimelinePage Class Reference e 245
3.98.1 Detailed Description e e 246
3.98.2 Constructor & Destructor Documentation 246

3.98.2.1 TimelinePage()« .« o o e 246
3.98.3 Member Function Documentation 246
3.98.3.1 0nAPPearing() - - - « « v v e e e e e 246
3.98.3.20nDisappearing() 247

3.99 TimelineViewModel Class Reference 247
3.99.1 Detailed Description L 248
3.99.2 Constructor & Destructor Documentation 248

3.99.2.1 TimelineViewModel() 248

3.99.3 Member Function Documentationo 248
3.99.3.1 OnPageAppearing() o v o i e 248

3.99.3.2 OnPageDisappearing() - - -« « v v e e e e e 249

3.99.4 Property Documentation 249
3.99.4.1 MetaMesSSENgEr i i i e e 249
3.99.42Tables e 249

3.100 TimeSpanToDHMSConverter Class Reference 249

Generated by Doxygen

xxi

3.100.1 Detailed Description e 250
3.100.2 Member Function Documentation Lo 250
3.100.2.1 Convert() o o 250

3.100.2.2 ConvertBack() 251

3.101 Timestamp Class Reference e 251
3.101.1 Detailed Description e e 251
3.102 ToolDistanceViewModel Class Reference, 252
3.102.1 Detailed Description e e 252
3.103 UpdateTimestampsMessage Class Reference, 253
3.103.1 Detailed Description e e 253
3.104 UserPreferences Class Reference 254
3.104.1 Detailed Description 254
3.104.2 Constructor & Destructor Documentation 254
3.104.2.1 UserPreferences() o o o i i i i 254

3.104.3 Member Function Documentation 254
3.104.3.1 ApplyCulture() o e 255
B404.3.20L080() . . e e e 255
3.104.3.3Save() 255

3.104.4 Property Documentation L 255
3.104.4.1 CultureName e 255

3.105 UtcTimeSpanToLocalConverter Class Reference 256
3.105.1 Detailed Description e e 256
3.105.2 Member Function Documentation 257
3.105.2.1 Convert() e 257

3.105.2.2 ConvertBack() e 257

3.106 UtcToLocalTimeConverter Class Reference 258
3.106.1 Detailed Description L e e 258
3.106.2 Member Function Documentationo 259
3.106.2.1 Convert() e 259

3.106.2.2 ConvertBack() e 259

Generated by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ADISErviCe e 19
Application

ADD . e 30
ContentPage

ActivePage e 11

HistoryPage e 65

MainPage 105

MetaStatisticsPage L 114

StatisticsPage e 171

StatusPage e 172

TimelinePage 245
ContentView

InfoPanelContentView e 80

NavBarContentView L 121

TablesContentView e 236

TimelineContentView 242
CopyTime e e 37
CurrentStatistics e e 38
Customer . . . L e e 39
GraphicsView

HistoryTimeline 67

ProgressWheel e 129

StatusTimeWheel e 174
HistoryEntryAddedEvent L e 61
HistoryEntryRemovedEvent L 63
IdentificationField 78
IDrawable

HistoryTimelineDrawable e 73

ProgressWheelDrawable 134

StatusTimeWheelDrawable L 180
ImageButton

HoverablelmageButton 74
IRecipient

MetaStatisticsViewModel 115

TableActiveViewModel 181

Generated by Doxygen

Hierarchical Index

TableActiveViewModel e e 181
TableActiveViewModel e e 181
TableActiveViewModel e e e 181
TableContextBaseViewModel e 194
TableActiveViewModel e e 181
TableHistoryViewModel 208
TablePreviewViewModel e e 225
TableStatisticsViewModel e 238
TableContextBaseViewModel e 194
TableContextService L e e e e 198
TableHistoryViewModel e 208
TableHistoryViewModel e 208
TableHistoryViewModel 208
TablePreviewViewModel e e 225
TablePreviewViewModel e 225
TablePreviewViewModel e 225
TableStatisticsViewModel e 238
TableStatisticsViewModel e 238
TimelineContentView e e e e e 242
IValueConverter
HalfValueConverter e e e e e e e 59
InvertBoolConverter e e e 81
JobListColumnSpanConverter L e 84
JobStatusToColorConverter e e e e e e 91
MillimetersToMetersConverter e e e 119
PercentageToProgressConverter 125
ScoreToColorConverter e e e e 163
TimeSpanToDHMSConverter e e 249
UtcTimeSpanToLocalConverter 256
UtcToLocalTimeConverter e e e e e e e 258
JoObQueue e 86
JobTask L e 93
JsonConverter
EnumMemberdsonConverter< T > e e e e e 57
ObservableObject
AddTableViewModel e e e e 15
ColumnDefinition L e e e e e 33
CustomStatisticsViewModel e 46
CustomerTotalProducedCopiesViewModel e 41
CustomerViewModel e e e 42
DiscoverTablesViewModel e e 50
EditTableViewModel e e e e 54
JobLayerStatisticsViewModel 83
JobRunStatisticsViewModel 87
JobStatisticsViewModel e 89
JobTaskViewModel e e 103
MainViewModel e e e 107
MaterialTotalProducedCopiesViewModel 112
MetaStatisticsViewModel e 115
SettingsViewModel e e 167
TableContextBaseViewModel e 194
TableFilterViewModel e e e 206
TableModel e e 214
TableScanService e e 233
TimelineViewModel e e 247
ToolDistanceViewModel e e e e 252
OverruleMaterialCutPresets e 124
Popup

Generated by Doxygen

1.1 Class Hierarchy 3

AddTablePopup L e 13
ColumnSelectorPopup L e e e 34
CustomStatisticsPopup L e e e 44
DiscoverTablesPopup o 48
EditTablePopup 52
SettingSPopup L e e e 166
TableFilterPopup e 205
ProductionTimes e e e e e 127
PropertyTrends o e e e e 135
QueueEntryAddedEvent L 138
QueueEntryMovedEvent L e 140
QueueEntryRemovedEvent L 142
QueueEntryUpdatedEvent L 144
QueueServerdobStatistics L. 147
QueueServerLayerStatistics L e 150
QueueServerProductionRunStatistics L 154
Shell
AppShell e e 32
TableAuthentication e e 190
TableContext e e e 191
TableEntryFieldValidator e 203
TableProperty 229
TablePropertyEvent L 232
TableSerializationStructure L 238
Timestamp L 251
UserPreferences e 254
ValueChangedMessage
ConnectionStatusChangedMessage e 36
CurrentStatisticsMessage e e e 38
HistoryEntryAddedMessage L 62
HistoryEntryRemovedMessage L 64
LoadModelDataMessage e e 104
MetaStatisticsMessage e 113
QueueEntryAddedMessage 139
QueueEntryMovedMessage e 141
QueueEntryRemovedMessage e e e 143
QueueEntryUpdatedMessage v v i i e e e e e e e e e e e 146
ResetViewModelMessage 161
Runningdob e 162
StatisticsMessage e e 170
TablePropertyChangedMessage 231
UpdateTimestampsMessage 253

Generated by Doxygen

Hierarchical Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ActivePage

Activepage is the page that shows the active jobs foratable
AddTablePopup

Popup foraddinganewtable
AddTableViewModel

ViewModel for the AddTablePopup
ApiService

Service for handling communication withthe HUB
App

This class is the entry point of the application
AppShell

Appshell is the main shell of the application it contains the navigation structure
ColumnDefinition

Represents a column definition foratable oo 0oL
ColumnSelectorPopup

Popup for selecting columnstodisplay Lo
ConnectionStatusChangedMessage

Message to send connection status changed to the viewmodels
CopyTime

Represents a data model for the time used foreachcopy
CurrentStatistics

Message sent to the statistics viewmodel to update the current statistics
CurrentStatisticsMessage

Sent the current statistics period from the metastatistics viewmodel to the statistics viewmodel
Customer e e
CustomerTotalProducedCopiesViewModel

A view model for the customer total produced copies
CustomerViewModel

ViewModel for the customer L
CustomStatisticsPopup

Popup for displaying custom statisticso o o oo
CustomStatisticsViewModel

ViewModel for the CustomStatisticsPopup o o
DiscoverTablesPopup

Popup for displaying the interfaces for the discover tables function

Generated by Doxygen

Class Index

DiscoverTablesViewModel

The viewmodel for the discover tablespopup L L. 50
EditTablePopup

Popup for editingatable 52
EditTableViewModel

The view model for the edittable popup 54
EnumMemberdsonConverter< T >

This class is a custom JSON converter for enums that use the EnumMember attribute 57
HalfValueConverter

Used inxamlto gethalfofavalue 59
HistoryEntryAddedEvent

Represents an event from the Kongsberg HUB where a job is added to the history queue . . . 61

HistoryEntryAddedMessage

Message to send history entry added event received from the Kongsberg HUB and propagate it

forward to the viewmodels 62
HistoryEntryRemovedEvent

Represents an event from the Kongsberg HUB where a job is removed from the history queue 63
HistoryEntryRemovedMessage

Message to send history entry removed event received from the Kongsberg HUB and propagate

it forward to the viewmodels 64
HistoryPage
HistoryPage is the page that shows the history of jobs foratable 65

HistoryTimeline
Custom control for displaying a timeline of job runs shown on statistics page and meta statistics

PAgE . . . e e e e e 67
HistoryTimelineDrawable

Custom drawable for the HistoryTimeline 73
HoverablelmageButton

A custom ImageButton that changes its appearance when hoveredover 74
IdentificationField

Represents a field containing identification information of barcode 78
InfoPanelContentView

This class is the content view for the infopanel 80
InvertBoolConverter

Usedin xamltoinvertabool 81
JobLayerStatisticsViewModel

ViewModel for displaying job layer statistics L. 83

JobListColumnSpanConverter
Used to expand the job list to cover the area used by the job details panel when the latter is not

ShOWN . . . L 84
JobQueue

The model for the list of jobs fromthetable 86
JobRunStatisticsViewModel

Aview model for job run statistics Lo 87
JobStatisticsViewModel

ViewModel for displaying job statistics 89
JobStatusToColorConverter

Gets a color associated with a given job status 91
JobTask

The model holding allthe jobdata 93
JobTaskViewModel

ViewModel forajobtask 103
LoadModelDataMessage

Message to load the viewmodels with data after the table model has been loaded 104
MainPage

MainPage is the main page of the application. It contains the main view model and the tables

content VIew . . . L . L L e e e e e e e 105

Generated by Doxygen

2.1 Class List 7

MainViewModel

Main view model for the application L 107
MaterialTotalProducedCopiesViewModel

ViewModel for the material total produced copies 112

MetaStatisticsMessage
Message sent from the statistics viewmodel to the metastatistics viewmodel when the statistics

areupdated L. e 113
MetaStatisticsPage

MetaStatisticsPage is the page that shows the statistics for allthetables 114
MetaStatisticsViewModel

ViewModel for the MetaStatisticspage 115
MillimetersToMetersConverter

Converts millimeterstometers 119
NavBarContentView

Navigation bar that should be put at the top of everypage 121
OverruleMaterialCutPresets

The model holding overrule material cutpreset 124
PercentageToProgressConverter

Converts a percentage into a value between 0-1. Can be used the other way aswell 125
ProductionTimes

Represents a data model for job productiontimes oL 127
ProgressWheel

A custom progress wheel control for displaying progress in a circular format in the status panel 129
ProgressWheelDrawable

Custom drawable for the ProgressWheel 134
PropertyTrends

Represents a data model for property trends sent from the Kongsberg HUB 135
QueueEntryAddedEvent

Represents an event from the Kongsberg HUB where a job is added to the queue 138

QueueEntryAddedMessage
Message to send queue entry added event received from the Kongsberg HUB and propagate it

forwardtothe viewmodels 139
QueueEntryMovedEvent
Represents an event from the Kongsberg HUB where a job is moved in the queue 140

QueueEntryMovedMessage
Message to send queue entry moved event received from the Kongsberg HUB and propagate it

forward to the viewmodels 141
QueueEntryRemovedEvent
Represents an event from the Kongsberg HUB where a job is removed from the queue 142

QueueEntryRemovedMessage
Message to send queue entry removed event received from the Kongsberg HUB and propagate

it forward to the viewmodels L 143
QueueEntryUpdatedEvent
Represents an event from the Kongsberg HUB where a job is updated in the queue 144

QueueEntryUpdatedMessage
Message to send queue entry updated event received from the Kongsberg HUB and propagate

it forward to the viewmodels L 146
QueueServerJobStatistics

A data model for the job statistic 147
QueueServerLayerStatistics

A data model for layer statistics in a productionrun oL oL 150
QueueServerProductionRunStatistics

A data model for run statistics in a productionjob Lo L Lo 154
ResetViewModelMessage

Message to reset all the viewmodels inside the table context 161
RunningJob

Message sending the current job to the viewmodelo 162

Generated by Doxygen

Class Index

ScoreToColorConverter

Converts ascore from0-100intoacolor 163
SettingsPopup

Popup for displaying the settings L 166
SettingsViewModel

ViewModel for the settingspage 167

StatisticsMessage
Message to send statistic received from the Kongsberg HUB and propagate it forward to the

viewmodels L e e e e e 170
StatisticsPage

StatisticsPage is a page that displays the statisticsofatable 171
StatusPage

StatusPage is the window that shows the status of thetables 172
StatusTimeWheel

A custom status time wheel control L L 174
StatusTimeWheelDrawable

Custom drawable for the StatusTimeWheel, 180
TableActiveViewModel

This class represents the view model for the activejobs 181
TableAuthentication

Represents a data model for table authentication0 L. 190
TableContext

Contains the table model, the view models that read from it and the messenger that tells the

viewmodels when to update their information o L L oL 191
TableContextBaseViewModel

Base class for all table context viewmodels oo 194
TableContextService

Service responsible for keeping track of thetables 198
TableEntryFieldValidator

This class is responsible for validating the fields of atableentry 203
TableFilterPopup

Popup for displaying the filter options for the table list 205
TableFilterViewModel

ViewModel for the table filterpopup 206
TableHistoryViewModel

This class represents the view model for the history jobs 208
TableModel

The TableModel class represents the model for a Kongsbergtable 214
TablePreviewViewModel

ViewModel for the table preview L L L 225
TableProperty

Table property is the package each of the properties gets delivered as from the Kongsberg HUB 229
TablePropertyChangedMessage
Message to send table property changed event received from the Kongsberg HUB and propagate

it forward to the viewmodels 231
TablePropertyEvent

Represents an event from the Kongsberg HUB where one or more properties are changed . . 232
TableScanService

Discovers cutting tables on the local network 233
TablesContentView

Content view for displayingtables 236

TableSerializationStructure
Used to make a temporary list of tables used only for saving and loading tables on disk. Excludes
information that should be stored securely (credentials) and information that can be retrieved

again upon re-establishing the connectiontothetable 238
TableStatisticsViewModel
The view model for the table statistics 238

Generated by Doxygen

2.1 Class List 9

TimelineContentView
Timeline for the active job list of a table. Shows job name, preview, duration and when they will

finish . . . e e e e 242
TimelinePage

Timelinepage shows the timelines for the job tasks of thetables 245
TimelineViewModel

Viewmodel for the timelinepage 247

TimeSpanToDHMSConverter
Converts a TimeSpan into a string that looks something like this: 3d6h34m3s. Changing the app

language might change the symbols inbetween the numbers 249
Timestamp

Timestamp class containing string representations of the date (only set if the current timestamp

represents a new day) and thetimeofdayo o . 251
ToolDistanceViewModel

ViewModel for displaying tool distance information 252
UpdateTimestampsMessage

Message sent to the timeline page to update the timestamps 253
UserPreferences

Service responsible for storing user preferences. TODO: remove this class and use the Prefer-

ences APl builtinto NETinstead 254
UtcTimeSpanToLocalConverter

Converts UTC TimeSpan to time of day in local time 256
UtcToLocalTimeConverter

Converts UTC time tolocaltime 258

Generated by Doxygen

10

Class Index

Generated by Doxygen

Chapter 3

Class Documentation

3.1 ActivePage Class Reference

Activepage is the page that shows the active jobs for a table.

Inheritance diagram for ActivePage:

ContentPage

!

ActivePage

Collaboration diagram for ActivePage:

ContentPage

!

ActivePage

Generated by Doxygen

12 Class Documentation

Public Member Functions

 ActivePage (TableContextService tableContextService, InfoPanelContentView infoPanelContentView)

The constructor for the Activepage.

Protected Member Functions

+ override void OnAppearing ()

Called when the page is appearing. Sets the binding context for the page and the info panel. Also resets the selected
job in the active view model to null.

3.1.1 Detailed Description

Activepage is the page that shows the active jobs for a table.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.1.2 Constructor & Destructor Documentation

3.1.2.1 ActivePage()

ActivePage.ActivePage (
TableContextService tableContextService,

InfoPanelContentView infoPanelContentView) [inline]

The constructor for the Activepage.

Parameters

tableContextService Dependency injection for the table context service.

infoPanelContentView | Dependency injection for the info panel content view.

3.1.3 Member Function Documentation

3.1.3.1 OnAppearing()

override void ActivePage.OnAppearing () [inline], [protected]

Generated by Doxygen

3.2 AddTablePopup Class Reference 13

Called when the page is appearing. Sets the binding context for the page and the info panel. Also resets the
selected job in the active view model to null.

The documentation for this class was generated from the following file:

+ Views/TableContextViews/ActivePage.xaml.cs

3.2 AddTablePopup Class Reference

Popup for adding a new table.

Inheritance diagram for AddTablePopup:

Popup

AddTablePopup

Collaboration diagram for AddTablePopup:

Popup

AddTablePopup

Public Member Functions

» AddTablePopup (AddTableViewModel addTableViewModel)

Initializes a new instance of the AddTablePopup class.

Generated by Doxygen

14

Class Documentation

Properties

* Command CloseCommand [get]

Command to close the popup.

3.2.1 Detailed Description

Popup for adding a new table.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.2.2 Constructor & Destructor Documentation

3.2.2.1 AddTablePopup()

AddTablePopup.AddTablePopup (
AddTableViewModel addTableViewModel) [inline]

Initializes a new instance of the AddTablePopup class.

Parameters

addTableViewModel | The view model for the add table popup.

3.2.3 Property Documentation

3.2.3.1 CloseCommand

Command AddTablePopup.CloseCommand [get]
Command to close the popup.

The documentation for this class was generated from the following file:

» Views/Popups/AddTablePopup.xaml.cs

Generated by Doxygen

3.3 AddTableViewModel Class Reference

15

3.3 AddTableViewModel Class Reference

ViewModel for the AddTablePopup.

Inheritance diagram for AddTableViewModel:

ObservableObject

AddTableViewModel

Collaboration diagram for AddTableViewModel:

Public Member Functions

ObservableObject

AddTableViewModel

+ AddTableViewModel (IServiceProvider serviceProvider, TableEntryFieldValidator tableEntryFieldValidator,
TableContextService tableContextService)

Constructor for the AddTableViewModel.
* void SetPopup (AddTablePopup Popup)

Sets the popup for adding a table.

Properties

« string NameError

[get]

The error message for the table name field.
« string IpError [get]

The error message for the IP address field.

« string ClientldError

[get]

Generated by Doxygen

16 Class Documentation

The error message for the client ID field.
« string ClientSecretError [get]

The error message for the client secret field.
* bool IsFormValid [get]

Checks if the form is valid.

3.3.1 Detailed Description

ViewModel for the AddTablePopup.

AddTablePopup is a popup that allows the user to add a new table to the application. Showing when you press the
add button in the mainpage.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.3.2 Constructor & Destructor Documentation

3.3.2.1 AddTableViewModel()

AddTableViewModel .AddTableViewModel (
IServiceProvider serviceProvider,
TableEntryFieldValidator tableEntryFieldValidator,

TableContextService tableContextService) [inline]

Constructor for the AddTableViewModel.

Parameters

serviceProvider Service provider for dependency injection.
tableEntryFieldValidator | Validator for the table entry fields.
tableContextService Service for managing table contexts.

3.3.3 Member Function Documentation

3.3.3.1 SetPopup()

void AddTableViewModel.SetPopup (
AddTablePopup Popup) [inline]

Generated by Doxygen

3.3 AddTableViewModel Class Reference

17

Sets the popup for adding a table.

Generated by Doxygen

18 Class Documentation

Parameters

‘ Popup ‘ The popup

3.3.4 Property Documentation

3.3.4.1 ClientldError

string AddTableViewModel.ClientIdError [get]

The error message for the client ID field.

3.3.4.2 ClientSecretError

string AddTableViewModel.ClientSecretError [get]

The error message for the client secret field.

3.3.4.3 IpError

string AddTableViewModel.IpError [get]

The error message for the IP address field.

3.3.4.4 IsFormValid

bool AddTableViewModel.IsFormValid [get]

Checks if the form is valid.

3.3.4.5 NameError

string AddTableViewModel.NameError [get]
The error message for the table name field.

The documentation for this class was generated from the following file:

+ ViewModels/Popups/AddTableViewModel.cs

Generated by Doxygen

3.4 ApiService Class Reference 19

3.4 ApiService Class Reference

Service for handling communication with the HUB

Public Member Functions

+ ApiService (IMessenger messenger)
Constructor.
« string GetEvent ()
Returns the oldest unhandled event from the queue
« async void SetlpAddress (IPAddress? newlpAddress)
Sets a new IP address, ensures the event listener for the previous IP address is stopped. If IP is null, sets badlp«
Address to true in order to prevent connection attempts from being made.
+ async Task CredentialsUpdated (string? Clientld, string? ClientSecret)
Handles changes to API credentials. Stops event listener, calls EnsureValidAuthentication(string?, string?)
» async Task< bool > EnsureValidAuthentication (string? Clientld, string? ClientSecret)
Ensures the provided credentials are valid and generates a new access token if one does not already exist or an
existing token is expired.
* bool IsEventListenerRunning ()
Checks if the event listener is running
« async void StartEventListener ()
Starts the event listener unless it is already running, in which case nothing will happen.
+ async Task StopEventListener ()
Stops the even listener unless it is already stopped, in which case nothing will happen
+ async Task EventListener (CancellationToken token)

Listens to events until cancelled. Events are pushed to eventBuffer Will attempt to reconnect every 5 seconds when
connection problems arise.
« string? ExtractJsonFromPrefixedMessage (string message)
Gets the start of the JSON string. Used by the event listener
+ async Task< TableAuthentication?> RequestAccessToken (string Clientld, string ClientSecret)
Requests an access token using the provided credentials
» async Task< string?> GetHello ()
Attempts to get a response from the /hello endpoint. Used to verify that there is a cutting table on the provided IP
address
+ async Task< JobQueue?> GetActivedobs ()
Gets the active job queue from the table
+ async Task< JobQueue?> GetHistoryJobs ()
Gets the history job queue from the table
 async Task< JobTask?> GetHistoryJob (string jobld)
Gets a specific job from the history queue.
 async Task< ImageSource?> GetlmageOfJob (string jobld, string value)
Gets a preview image of a job
« async Task DeleteJobTask (string jobld)
Delete the specified job from the table
 async Task SetOrderedCopies (string jobld, int Amount)
Set ordered copies for the specified job
+ async Task< ImageSource?> GetlmageOfTable ()
Gets an image of the table
+ async Task< List< TableProperty >?> GetAllTableProperties ()

Gets all the system properties of the table

Generated by Doxygen

20

Class Documentation

» async Task< List< QueueServerdobStatistics?> > GetProductionStatistics (DateTime before, DateTime
after)
Gets production statistics within the given timespan
 async Task< List< PropertyTrends?> > GetPropertyTrends (DateTime before, DateTime after, string prop-
erty)
Gets property trends from the table
» async Task< TResponse?> PostAsync< TRequest, TResponse > (string url, TRequest requestBody)
Generic function to handle HTTP post requests that are expected to return an object serialized to JSON
» async Task PutAsync< TRequest > (string url, TRequest requestBody)
Generic function to handle HTTP put requests
» async Task PostActivedob (Stream requestBody)
Sends a job in zip format to the table
» async Task< TResponse?> GetAsync< TResponse > (string url)
Generic function to handle HTTP get requests that are expected to return an object serialized to JSON
+ async Task DeleteAsync (string url)

Generic function to handle HTTP delete requests

Public Attributes

* readonly JsonSerializerOptions jsonSerializerOptions

An object containing options used for deserializing data received from the HUB in JSON format

3.4.1 Detailed Description

Service for handling communication with the HUB

Author

Ole William Skistad Huslende
Tormod Smidesang

3.4.2 Constructor & Destructor Documentation

3.4.2.1 ApiService()

ApiService.ApiService (

IMessenger messenger) [inline]

Constructor.

Parameters

messenger | The table context messenger

Generated by Doxygen

3.4 ApiService Class Reference

3.4.3 Member Function Documentation

3.4.3.1 CredentialsUpdated()

async Task ApiService.CredentialsUpdated (
string? ClientId,

string? ClientSecret) [inline]

Handles changes to API credentials. Stops event listener, calls EnsureValidAuthentication(string?, string?)

Parameters

Clientld The new client ID
ClientSecret | The new client secret

Returns

Task representing an asynchronous operation

3.4.3.2 DeleteAsync()

async Task ApiService.DeleteAsync (

string url) [inline]
Generic function to handle HTTP delete requests

Parameters

‘ url ‘ The endpoint to send the request to

Returns

A task representing an asynchronous operation

Exceptions

HttoRequestException | Thrown if the server returns an error code (400) ‘

3.4.3.3 DeletedobTask()

async Task ApiService.DeleteJobTask (

string jobId) [inline]

Generated by Doxygen

22 Class Documentation

Delete the specified job from the table

Parameters

Jjob— | The Id of the job to delete
Id

Returns

Task representing an asynchronous operation

3.4.3.4 EnsureValidAuthentication()

async Task<bool> ApiService.EnsureValidAuthentication (
string? ClientId,

string? ClientSecret) [inline]

Ensures the provided credentials are valid and generates a new access token if one does not already exist or an
existing token is expired.
Parameters

Clientld The client ID
ClientSecret | The client secret

Returns

True if the provided credentials are valid, false otherwise

3.4.3.5 EventListener()

async Task ApiService.EventListener (

CancellationToken token) [inline]

Listens to events until cancelled. Events are pushed to eventBuffer Will attempt to reconnect every 5 seconds when
connection problems arise.

Parameters

\ token \ Used to cancel the event listener

Returns

Task representing an asynchronous operation

Generated by Doxygen

3.4 ApiService Class Reference

3.4.3.6 ExtractJsonFromPrefixedMessage()

string? ApiService.ExtractJsonFromPrefixedMessage (

string message) [inline]

Gets the start of the JSON string. Used by the event listener

Parameters

message | The json to extract

Returns

The extracted json, or null if something goes wrong

3.4.3.7 GetActivedobs()

async Task<JobQueue?> ApiService.GetActiveJobs () [inline]

Gets the active job queue from the table

Returns

A JobQueue object if successful, null otherwise

3.4.3.8 GetAllTableProperties()

async Task<List<TableProperty>?> ApiService.GetAllTableProperties () [inline]

Gets all the system properties of the table

Returns

A list of TableProperty objects if successful, default otherwise

3.4.3.9 GetAsync< TResponse >()

async Task<TResponse?> ApiService.GetAsync< TResponse > (

string url) [inline]

Generic function to handle HTTP get requests that are expected to return an object serialized to JSON

Generated by Doxygen

24 Class Documentation

Template Parameters

TResponse | The type of object expected to be returned by the endpoint specified

Parameters

‘ url ‘ The endpoint to send the get request to

Returns

If successful, returns the response to the request, deserialized to an object of the specified type. Otherwise,
returns default

3.4.3.10 GetEvent()

string ApiService.GetEvent () [inline]

Returns the oldest unhandled event from the queue

Returns

An event in JSON format, or an empty string if the queue is empty

3.4.3.11 GetHello()

async Task<string?> ApiService.GetHello () [inline]

Attempts to get a response from the /hello endpoint. Used to verify that there is a cutting table on the provided IP
address

Returns

The response from the endpoint, or null if no response could be retrieved

3.4.3.12 GetHistoryJob()

async Task<JobTask?> ApiService.GetHistoryJob (
string jobId) [inline]

Gets a specific job from the history queue.

Generated by Doxygen

3.4 ApiService Class Reference

Parameters

job«~— | The Id of the job to retrieve from the table
Id

Returns

A JobTask object if successful, null otherwise

3.4.3.13 GetHistoryJobs()

async Task<JobQueue?> ApiService.GetHistoryJobs () [inline]

Gets the history job queue from the table

Returns

A JobQueue object if successful, null otherwise

3.4.3.14 GetlmageOfJob()

async Task<ImageSource?> ApiService.GetImageOfJob (
string jobId,

string value) [inline]

Gets a preview image of a job

Parameters

jobld | The Id of the job to request a preview image of

value | The type of image to request

Returns

An ImageSource object if successful, default otherwise

3.4.3.15 GetlmageOfTable()

async Task<ImageSource?> ApiService.GetImageOfTable () [inline]

Gets an image of the table

Generated by Doxygen

26 Class Documentation

Returns

An ImageSource object depicting the table if successful, or null otherwise

3.4.3.16 GetProductionStatistics()

async Task<List<QueueServerJobStatistics?> > ApiService.GetProductionStatistics (
DateTime before,

DateTime after) [inline]

Gets production statistics within the given timespan

Parameters

before | Get statistics before this point in time

after Get statistics after this point in time

Returns

A list of QueueServerJobStatistics objects if successful, or an empty list otherwise

3.4.3.17 GetPropertyTrends()

async Task<List<PropertyTrends?> > ApiService.GetPropertyTrends (
DateTime before,
DateTime after,

string property) [inline]

Gets property trends from the table

Parameters

before Get trends before this point in time

after Get trends after this point in time

property | The property to get trends for

Returns

A list of PropertyTrends objects if successful, or an empty list otherwise

3.4.3.18 IsEventListenerRunning()

bool ApiService.IsEventListenerRunning () [inline]

Checks if the event listener is running

Generated by Doxygen

3.4 ApiService Class Reference

Returns

True if the event listener is running, false otherwise

3.4.3.19 PostActiveJob()

async Task ApiService.PostActiveJob (

Stream requestBody) [inline]

Sends a job in zip format to the table

Parameters

requestBody | The request body

Returns

A task representing an asynchronous operation

Exceptions

UnauthorizedAccessException | Thrown if attempting to post a job when credentials are invalid or missing

3.4.3.20 PostAsync< TRequest, TResponse >()

async Task<TResponse?> ApiService.PostAsync< TRequest, TResponse > (
string url,

TRequest requestBody) [inline]

Generic function to handle HTTP post requests that are expected to return an object serialized to JSON

Template Parameters

TRequest | The type of object for the request body

TResponse | The type of object expected to be returned by the endpoint specified

Parameters

url The endpoint to send the post request to
requestBody | The request body

Generated by Doxygen

28 Class Documentation

Returns

If successful, returns the response to the request, deserialized to an object of the specified type. Otherwise,
returns default

Exceptions

UnauthorizedAccessException | Thrown if attempting to connect to a protected endpoint when credentials are
invalid or missing

3.4.3.21 PutAsync< TRequest >()

async Task ApiService.PutAsync< TRequest > (
string url,

TRequest requestBody) [inline]

Generic function to handle HTTP put requests

Template Parameters

TRequest | The type of object for the request body

Parameters

url The endpoint to send the put request to

requestBody | The body of the request

Returns

A task object representing an asynchronous operation

Exceptions

HttoRequestException | Thrown if the HTTP response was anything but OK (200) ‘

3.4.3.22 RequestAccessToken()

async Task<TableAuthentication?> ApiService.RequestAccessToken (
string ClientId,

string ClientSecret) [inline]

Requests an access token using the provided credentials

Generated by Doxygen

3.4 ApiService Class Reference

29

Parameters

Clientld The client ID
ClientSecret | The client secret

Returns

A TableAuthentication object containing the access token, or null if something goes wrong

3.4.3.23 SetlpAddress()

async void ApiService.SetIpAddress (

IPAddress? newlIpAddress) [inline]

Sets a new IP address, ensures the event listener for the previous IP address is stopped. If IP is null, sets badlp«

Address to true in order to prevent connection attempts from being made.

Parameters

newlpAddress | The new IP address

3.4.3.24 SetOrderedCopies()

async Task ApiService.SetOrderedCopies (
string jobId,

int Amount) [inline]

Set ordered copies for the specified job

Parameters

jobld The Id of the job for which to specify ordered copies

Amount | New value for ordered copies

Returns

Task representing an asynchronous operation

3.4.3.25 StartEventListener()

async void ApiService.StartEventListener () [inline]

Starts the event listener unless it is already running, in which case nothing will happen.

Generated by Doxygen

30 Class Documentation

3.4.3.26 StopEventListener()

async Task ApiService.StopEventListener () [inline]
Stops the even listener unless it is already stopped, in which case nothing will happen

Returns

Task representing an asynchronous operation

3.4.4 Member Data Documentation

3.4.4.1 jsonSerializerOptions

readonly JsonSerializerOptions ApiService.jsonSerializerOptions

Initial value:
= new ()
{
PropertyNameCaseInsensitive = true,
Converters =

{
new EnumMemberJsonConverter<DataType> (),
new JsonStringEnumConverter ()

An object containing options used for deserializing data received from the HUB in JSON format

The documentation for this class was generated from the following file:

+ Services/ApiService.cs

3.5 App Class Reference

This class is the entry point of the application.

Inheritance diagram for App:

Application

App

Generated by Doxygen

3.5 App Class Reference

31

Collaboration diagram for App:

Application

A

App

Public Member Functions

» App (UserPreferences userPreferences)

This constructor initializes the application and loads user preferences.

Protected Member Functions

+ override Window CreateWindow (lIActivationState? activationState)

Creates the main window of the application.

3.5.1 Detailed Description

This class is the entry point of the application.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.5.2 Constructor & Destructor Documentation

3.5.2.1 App()

App.App (
UserPreferences userPreferences) [inline]

This constructor initializes the application and loads user preferences.

Generated by Doxygen

32

Class Documentation

Parameters

userPreferences \ ‘

3.5.3 Member Function Documentation

3.5.3.1 CreateWindow()

override Window App.CreateWindow (

TActivationState? activationState) [inline],
Creates the main window of the application.

The documentation for this class was generated from the following file:

» App.xaml.cs

3.6 AppShell Class Reference

[protected]

Appshell is the main shell of the application it contains the navigation structure.

Inheritance diagram for AppShell:

Shell

AppShell

Collaboration diagram for AppShell:

Shell

AppShell

Generated by Doxygen

3.7 ColumnDefinition Class Reference 33

3.6.1 Detailed Description
Appshell is the main shell of the application it contains the navigation structure.
Author

Ole William Skistad Huslende

Tormod Smidesang

The documentation for this class was generated from the following file:

+ AppShell.xaml.cs

3.7 ColumnDefinition Class Reference

Represents a column definition for a table.

Inheritance diagram for ColumnDefinition:

ObservableObject

ColumnDefinition

Collaboration diagram for ColumnDefinition:

ObservableObject

ColumnDefinition

Generated by Doxygen

34 Class Documentation

3.7.1 Detailed Description
Represents a column definition for a table.

Author

Elvin Andreas Pedersen

The documentation for this class was generated from the following file:

« Utilities/ColumnDefinition.cs

3.8 ColumnSelectorPopup Class Reference

Popup for selecting columns to display.

Inheritance diagram for ColumnSelectorPopup:

Popup

ColumnSelectorPopup

Collaboration diagram for ColumnSelectorPopup:

Popup

ColumnSelectorPopup

Generated by Doxygen

3.8 ColumnSelectorPopup Class Reference

35

Public Member Functions

» ColumnSelectorPopup (ObservableCollection< ColumnDefinition > columnDefinitions)

Initializes a new instance of the ColumnSelectorPopup class.

Properties

» ObservableCollection< ColumnDefinition > ColumnDefinitions [get]

The collection of column definitions to be displayed in the popup.
» Command ClosePopupCommand [get]

Command to close the popup.

3.8.1 Detailed Description

Popup for selecting columns to display.

Author

Elvin Andreas Pedersen

3.8.2 Constructor & Destructor Documentation

3.8.2.1 ColumnSelectorPopup()

ColumnSelectorPopup.ColumnSelectorPopup (

ObservableCollection< ColumnDefinition > columnDefinitions) [inline]

Initializes a new instance of the ColumnSelectorPopup class.

Parameters

columnDefinitions | Dependency injection of the column definitions to be displayed in the popup.

3.8.3 Property Documentation

3.8.3.1 ClosePopupCommand

Command ColumnSelectorPopup.ClosePopupCommand [get]

Command to close the popup.

Generated by Doxygen

36 Class Documentation

3.8.3.2 ColumnDefinitions

ObservableCollection<ColumnDefinition> ColumnSelectorPopup.ColumnDefinitions [get]
The collection of column definitions to be displayed in the popup.

The documentation for this class was generated from the following file:

 Views/Popups/ColumnSelectorPopup.xaml.cs

3.9 ConnectionStatusChangedMessage Class Reference

Message to send connection status changed to the viewmodels.

Inheritance diagram for ConnectionStatusChangedMessage:

ValueChangedMessage
< string >

ConnectionStatusChangedMessage

Collaboration diagram for ConnectionStatusChangedMessage:

ValueChangedMessage
< string >

ConnectionStatusChangedMessage

Public Member Functions

» ConnectionStatusChangedMessage (string value)

Generated by Doxygen

3.10 CopyTime Class Reference 37

3.9.1 Detailed Description

Message to send connection status changed to the viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author

Tormod Smidesang

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.10 CopyTime Class Reference

Represents a data model for the time used for each copy.

Properties

» DateTime? CopyStarted [get, set]

The time when the copy operation started.
» DateTime? CopyEnded [get, set]

The time when the copy operation ended.

3.10.1 Detailed Description
Represents a data model for the time used for each copy.

Author
Ole William Skistad Huslende

3.10.2 Property Documentation

3.10.2.1 CopyEnded

DateTime? CopyTime.CopyEnded [get], [set]

The time when the copy operation ended.

Generated by Doxygen

38 Class Documentation

3.10.2.2 CopyStarted

DateTime? CopyTime.CopyStarted [get], [set]
The time when the copy operation started.

The documentation for this class was generated from the following file:

» Models/ApiStatistics/CopyTime.cs

3.11 CurrentStatistics Class Reference

Message sent to the statistics viewmodel to update the current statistics.

Properties

» DateTime Before [get, set]
* DateTime After [get, set]

3.11.1 Detailed Description

Message sent to the statistics viewmodel to update the current statistics.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

» ViewModels/ViewModelMessages.cs

3.12 CurrentStatisticsMessage Class Reference

Sent the current statistics period from the metastatistics viewmodel to the statistics viewmodel.

Inheritance diagram for CurrentStatisticsMessage:

ValueChangedMessage
< CurrentStatistics >

CurrentStatisticsMessage

Generated by Doxygen

3.13 Customer Class Reference

39

Collaboration diagram for CurrentStatisticsMessage:

ValueChangedMessage
< CurrentStatistics >

CurrentStatisticsMessage

Public Member Functions

» CurrentStatisticsMessage (CurrentStatistics value)

3.12.1 Detailed Description

Sent the current statistics period from the metastatistics viewmodel to the statistics viewmodel.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

» ViewModels/ViewModelMessages.cs

3.13 Customer Class Reference

Properties

* string? Customerld [get, set]
Gets or sets the Id for the customer produced for.
» string? Name [get, set]
Gets or sets the full name of the customer produced for.
 string? Country [get, set]
Gets or sets the country where the customer produced for resides.
* string? City [get, set]
Gets or sets the city where the customer produced for lives.
« string? PostalCode [get, set]

Gets or sets the postal code for the customer produced for.
» string? Address [get, set]

Gets or sets the address of the customer produced for.

Generated by Doxygen

40

Class Documentation

3.13.1 Property Documentation

3.13.1.1 Address

string? Customer.Address [get], [set]

Gets or sets the address of the customer produced for.

3.13.1.2 City

string? Customer.City [get], [set]

Gets or sets the city where the customer produced for lives.

3.13.1.3 Country

string? Customer.Country [get], [set]

Gets or sets the country where the customer produced for resides.

3.13.1.4 Customerld

string? Customer.CustomerId [get], [set]

Gets or sets the Id for the customer produced for.

3.13.1.5 Name

string? Customer.Name [get], [set]

Gets or sets the full name of the customer produced for.

Generated by Doxygen

3.14 CustomerTotalProducedCopiesViewModel Class Reference

4

3.13.1.6 PostalCode

string? Customer.PostalCode [get], [set]
Gets or sets the postal code for the customer produced for.

The documentation for this class was generated from the following file:

* Models/ApiQueue/Customer.cs

3.14 CustomerTotalProducedCopiesViewModel Class Reference

A view model for the customer total produced copies.

Inheritance diagram for CustomerTotalProducedCopiesViewModel:

ObservableObject

CustomerTotalProducedCopies
ViewModel

Collaboration diagram for CustomerTotalProducedCopiesViewModel:

ObservableObject

CustomerTotalProducedCopies
ViewModel

Generated by Doxygen

42 Class Documentation

3.14.1 Detailed Description

A view model for the customer total produced copies.

Displays the customer and the total number of produced copies. Used in the statistics viewmodel.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/SubViewModels/CustomerTotalProducedCopiesViewModel.cs

3.15 CustomerViewModel Class Reference

ViewModel for the customer.

Inheritance diagram for CustomerViewModel:

ObservableObject

CustomerViewModel

Collaboration diagram for CustomerViewModel:

ObservableObject

CustomerViewModel

Generated by Doxygen

3.15 CustomerViewModel Class Reference

43

Public Member Functions

» CustomerViewModel (IMessenger messenger, Customer customer)

Constructor for the customer view model.
+ override bool Equals (object? obj)

Checks if two customer view models are equal. Used for comparing the customer view models in the list.

« override int GetHashCode ()

Calculates the hash code for the customer view model. Used for comparing the customer view models in the list.

3.15.1 Detailed Description

ViewModel for the customer.

Purpose of this class is to provide only the interesting properties of the Customer.

Author
Ole William Skistad Huslende

3.15.2 Constructor & Destructor Documentation

3.15.2.1 CustomerViewModel()

CustomerViewModel.CustomerViewModel (
IMessenger messenger,

Customer customer) [inline]

Constructor for the customer view model.

Parameters

messenger | Messenger used to send messages inside the table context.

customer The customer to create the view model from.

3.15.3 Member Function Documentation

3.15.3.1 Equals()

override bool CustomerViewModel.Equals (

object? obj) [inline]

Checks if two customer view models are equal. Used for comparing the customer view models in the list.

This method is used to compare the customer view models in the list. It compares the name, city, country and

address of the customer view model.

Generated by Doxygen

44 Class Documentation

Parameters

‘ obj ‘ Customer viewmodel

Returns

Returns true if customer view models are equal, else false

3.15.3.2 GetHashCode()

override int CustomerViewModel.GetHashCode () [inline]
Calculates the hash code for the customer view model. Used for comparing the customer view models in the list.

This method is used to calculate the hash code for the customer view model. It calculates the hash code based on
the name, city, country and address of the customer view model.

Returns

The hashcode

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/SubViewModels/CustomerViewModel.cs

3.16 CustomStatisticsPopup Class Reference

Popup for displaying custom statistics.

Inheritance diagram for CustomStatisticsPopup:

Popup

CustomStatisticsPopup

Generated by Doxygen

3.16 CustomStatisticsPopup Class Reference

45

Collaboration diagram for CustomStatisticsPopup:

ObservableObject

Popup CustomStatisticsViewModel

4

s f:ustomStatisticsViewModeI
7
7

CustomStatisticsPopup

Public Member Functions

» CustomStatisticsPopup (CustomStatisticsViewModel customStatisticsViewModel)
Initializes a new instance of the CustomStatisticsPopup class.

Public Attributes

» CustomStatisticsViewModel CustomStatisticsViewModel
The view model for the custom statistics popup.

Properties

» Command CloseCommand [get]
Command to close the popup.
3.16.1 Detailed Description

Popup for displaying custom statistics.
Author

Ole William Skistad Huslende
Elvin Andreas Pedersen

3.16.2 Constructor & Destructor Documentation

3.16.2.1 CustomStatisticsPopup()

CustomStatisticsPopup.CustomStatisticsPopup (

CustomStatisticsViewModel customStatisticsViewModel) [inline]

Initializes a new instance of the CustomStatisticsPopup class.

Generated by Doxygen

46 Class Documentation

Parameters

customStatistics ViewModel | Dependency injection of the view model for the custom statistics popup.

3.16.3 Member Data Documentation

3.16.3.1 CustomStatisticsViewModel

CustomStatisticsViewModel CustomStatisticsPopup.CustomStatisticsViewModel

The view model for the custom statistics popup.

3.16.4 Property Documentation

3.16.4.1 CloseCommand

Command CustomStatisticsPopup.CloseCommand [get]
Command to close the popup.

The documentation for this class was generated from the following file:

* Views/Popups/CustomStatisticsPopup.xaml.cs

3.17 CustomStatisticsViewModel Class Reference

ViewModel for the CustomStatisticsPopup.

Inheritance diagram for CustomStatisticsViewModel:

ObservableObject

CustomStatisticsViewModel

Generated by Doxygen

3.17 CustomStatisticsViewModel Class Reference 47

Collaboration diagram for CustomStatistics ViewModel:

ObservableObject

A

CustomStatisticsViewModel

Public Member Functions

» CustomStatisticsViewModel (TableContextService tableContextService, IMessenger metaMessenger)

Initializes a new instance of the CustomStatisticsViewModel class.
+ void SetCaller (object caller)

Sets the caller of the popup. This is used to determine which viewmodel to call the statistics request on.
+ void SetPopup (CustomStatisticsPopup Popup)

Sets the popup for custom statistics. This is used to close the popup when the user clicks the confirm or cancel
button.

3.17.1 Detailed Description

ViewModel for the CustomStatisticsPopup.

CustomStatisticsPopup is used to display a popup for selecting a time range for production statistics.

Author
Ole William Skistad Huslende

3.17.2 Constructor & Destructor Documentation

3.17.2.1 CustomStatisticsViewModel()

CustomStatisticsViewModel.CustomStatisticsViewModel (
TableContextService tableContextService,

IMessenger metaMessenger) [inline]

Initializes a new instance of the CustomStatisticsViewModel class.

Generated by Doxygen

48 Class Documentation

Parameters

tableContextService | The table context service used to get the active table.

metaMessenger The messenger used to send messages between the tableContext viewmodels and the
external viewmodels.

3.17.3 Member Function Documentation

3.17.3.1 SetCaller()

void CustomStatisticsViewModel.SetCaller (

object caller) [inline]

Sets the caller of the popup. This is used to determine which viewmodel to call the statistics request on.

Parameters

3.17.3.2 SetPopup()

void CustomStatisticsViewModel.SetPopup (
CustomStatisticsPopup Popup) [inline]

Sets the popup for custom statistics. This is used to close the popup when the user clicks the confirm or cancel
button.

Parameters

‘ Popup ‘ The CustomStatistics Popup

The documentation for this class was generated from the following file:

» ViewModels/Popups/CustomStatisticsViewModel.cs

3.18 DiscoverTablesPopup Class Reference

Popup for displaying the interfaces for the discover tables function

Generated by Doxygen

3.18 DiscoverTablesPopup Class Reference

49

Inheritance diagram for DiscoverTablesPopup:

Popup

A

DiscoverTablesPopup

Collaboration diagram for DiscoverTablesPopup:

Public Member Functions

« DiscoverTablesPopup (DiscoverTablesViewModel discoveredTableViewModel)

Popup

DiscoverTablesPopup

The view model for the discovered tables popup.

3.18.1 Detailed Description

Popup for displaying the interfaces for the discover tables function

Author

Tormod Smidesang

Elvin Andreas Pedersen

3.18.2 Constructor & Destructor Documentation

Generated by Doxygen

50 Class Documentation

3.18.2.1 DiscoverTablesPopup()

DiscoverTablesPopup.DiscoverTablesPopup (

DiscoverTablesViewModel discoveredTableViewModel) [inline]

The view model for the discovered tables popup.

Parameters

discoveredTableViewModel | Dependency injection of the view model for the discovered tables popup.

The documentation for this class was generated from the following file:

 Views/Popups/DiscoverTablesPopup.xaml.cs

3.19 DiscoverTablesViewModel Class Reference

The viewmodel for the discover tables popup

Inheritance diagram for DiscoverTablesViewModel:

ObservableObject

DiscoverTablesViewModel

Collaboration diagram for DiscoverTablesViewModel:

ObservableObject

DiscoverTablesViewModel

Generated by Doxygen

3.19 DiscoverTablesViewModel Class Reference 51

Public Member Functions

+ DiscoverTablesViewModel (TableScanService tableScanService, TableContextService tableContextService)

Constructor. Sets members and populates the list of network interfaces
« void DiscoverTables ()

Called when the user clicks the discover tables button. Initiates a scan on the selected network interface.
« void AbortScan ()

Called when the user clicks on the abort scan button. Cancels a scan in progress.

Properties

» ObservableCollection< NetworkInterface > Interfaces =[] [get]

List of network interfaces, excluding interfaces connected to networks that are not class C

3.19.1 Detailed Description

The viewmodel for the discover tables popup

Author

Tormod Smidesang

Elvin Andreas Pedersen

3.19.2 Constructor & Destructor Documentation

3.19.2.1 DiscoverTablesViewModel()

DiscoverTablesViewModel.DiscoverTablesViewModel (
TableScanService tableScanService,

TableContextService tableContextService) [inline]

Constructor. Sets members and populates the list of network interfaces

Parameters

tableScanService The table scan service
tableContextService | The table context service

3.19.3 Member Function Documentation

Generated by Doxygen

52 Class Documentation

3.19.3.1 AbortScan()

void DiscoverTablesViewModel.AbortScan () [inline]

Called when the user clicks on the abort scan button. Cancels a scan in progress.

3.19.3.2 DiscoverTables()

void DiscoverTablesViewModel .DiscoverTables () [inline]

Called when the user clicks the discover tables button. Initiates a scan on the selected network interface.

3.19.4 Property Documentation

3.19.4.1 Interfaces

ObservableCollection<NetworkInterface> DiscoverTablesViewModel.Interfaces = [] [get]
List of network interfaces, excluding interfaces connected to networks that are not class C

The documentation for this class was generated from the following file:

» ViewModels/Popups/DiscoverTablesViewModel.cs

3.20 EditTablePopup Class Reference

Popup for editing a table.

Inheritance diagram for EditTablePopup:

Popup

EditTablePopup

Generated by Doxygen

3.20 EditTablePopup Class Refere

nce

53

Collaboration diagram for EditTablePopup:

Public Member Functions

Popup

A

EditTablePopup

« EditTablePopup (EditTableViewModel editTableViewModel)

Initializes a new instance of the EditTablePopup class.

Properties

* Command CloseCommand

[get]

Command to close the popup.

3.20.1 Detailed Description

Popup for editing a table.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.20.2 Constructor & Destructor Documentation

3.20.2.1 EditTablePopup()

EditTablePopup.EditTablePopup

(

EditTableViewModel editTableViewModel) [inline]

Initializes a new instance of the EditTablePopup class.

Generated by Doxygen

54 Class Documentation

Parameters

editTableViewModel | Dependency injection of the view model for the edit table popup.

3.20.3 Property Documentation

3.20.3.1 CloseCommand

Command EditTablePopup.CloseCommand [get]
Command to close the popup.

The documentation for this class was generated from the following file:

+ Views/Popups/EditTablePopup.xaml.cs

3.21 EditTableViewModel Class Reference

The view model for the edit table popup.

Inheritance diagram for EditTableViewModel:

ObservableObject

EditTableViewModel

Collaboration diagram for EditTableViewModel:

ObservableObject

EditTableViewModel

Generated by Doxygen

3.21 EditTableViewModel Class Reference 55

Public Member Functions

+ EditTableViewModel (TableContextService tableContextService, TableEntryFieldValidator tableEntryField«
Validator)

Initializes a new instance of the EditTableViewModel class.
+ void SetPopup (EditTablePopup Popup)

Sets the popup for editing the table.

Properties

+ string NameError [get]

The error message for the table name field.
+ string IpError [get]

The error message for the IP address field.
« string ClientldError [get]

The error message for the client ID field.
« string ClientSecretError [get]

The error message for the client secret field.
* bool IsFormValid [get]

Checks if the form is valid.

3.21.1 Detailed Description

The view model for the edit table popup.
Handle the editing of the table information.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.21.2 Constructor & Destructor Documentation

3.21.2.1 EditTableViewModel()

EditTableViewModel.EditTableViewModel (
TableContextService tableContextService,
TableEntryFieldValidator tableEntryFieldValidator) [inline]

Initializes a new instance of the EditTableViewModel class.

Parameters

tableContextService The service for managing the table contexts.

tableEntryFieldValidator | The validator for the table entry fields.

Generated by Doxygen

56

Class Documentation

3.21.3 Member Function Documentation

3.21.3.1 SetPopup()

void EditTableViewModel.SetPopup (
EditTablePopup Popup) [inline]

Sets the popup for editing the table.

Parameters

3.21.4 Property Documentation

3.21.4.1 ClientldError

string EditTableViewModel.ClientIdError [get]

The error message for the client ID field.

3.21.4.2 ClientSecretError

string EditTableViewModel.ClientSecretError

The error message for the client secret field.

3.21.4.3 IpError

string EditTableViewModel.IpError [get]

The error message for the IP address field.

Generated by Doxygen

3.22 EnumMemberdsonConverter< T > Class Template Reference

57

3.21.4.4 IsFormValid

bool EditTableViewModel.IsFormValid [get]

Checks if the form is valid.

3.21.4.5 NameError

string EditTableViewModel.NameError [get]
The error message for the table name field.

The documentation for this class was generated from the following file:

» ViewModels/Popups/EditTableViewModel.cs

3.22 EnumMemberdsonConverter< T > Class Template Reference

This class is a custom JSON converter for enums that use the EnumMember attribute.

Inheritance diagram for EnumMemberJsonConverter< T >:

JsonConverter< T >

EnumMemberjsonConverter< T >

Collaboration diagram for EnumMemberdsonConverter< T >:

JsonConverter< T >

EnumMemberjsonConverter< T >

Generated by Doxygen

58 Class Documentation

Public Member Functions

« override T Read (ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)

Reads the JSON value and converts it to the enum type.
+ override void Write (Utf8JsonWriter writer, T value, JsonSerializerOptions options)

Writes the enum value as a JSON string using the EnumMember attribute value if it exists.

3.22.1 Detailed Description

This class is a custom JSON converter for enums that use the EnumMember attribute.

Template Parameters

‘ T ‘ The type of the enum. It must be a struct and an enum.

Author

Elvin Andreas Pedersen

Type Constraints

T : struct
T: Enum

3.22.2 Member Function Documentation

3.22.2.1 Read()

override T EnumMemberJsonConverter< T >.Read (
ref Utf8JsonReader reader,
Type typeToConvert,

JsonSerializerOptions options) [inline]

Reads the JSON value and converts it to the enum type.

Parameters
reader The JSON reader that reads the JSON value.
typeToConvert | The type to convert to. This is the enum type.
options The JSON serializer options.

Returns

The enum value that corresponds to the JSON value.

Generated by Doxygen

3.23 HalfValueConverter Class Reference

3.22.2.2 Write()

override void EnumMemberJsonConverter< T >.Write (
Utf8JsonWriter writer,
T value,

JsonSerializerOptions options) [inline]

Writes the enum value as a JSON string using the EnumMember attribute value if it exists.

Parameters

writer The JSON writer that writes the JSON value.
value The enum value to write.
options | The JSON serializer options.

The documentation for this class was generated from the following file:

« Utilities/EnumMemberJsonConverter.cs

3.23 HalfValueConverter Class Reference

Used in xaml to get half of a value.

Inheritance diagram for HalfValueConverter:

IValueConverter

HalfValueConverter

Collaboration diagram for HalfValueConverter:

IValueConverter

HalfValueConverter

Generated by Doxygen

60 Class Documentation

Public Member Functions

+ object? Convert (object? value, Type targetType, object? parameter, Culturelnfo culture)

Halves a value.
+ object? ConvertBack (object? value, Type targetType, object? parameter, Culturelnfo culture)

Not implemented.

3.23.1 Detailed Description

Used in xaml to get half of a value.

Author

Tormod Smidesang

3.23.2 Member Function Documentation

3.23.2.1 Convert()

object? HalfValueConverter.Convert (
object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]

Halves a value.

Parameters

value The value to halve
targetType | unused
parameter | unused

culture unused

Returns

Exceptions

NotlmplementedException‘ ‘

Generated by Doxygen

3.24 HistoryEntryAddedEvent Class Reference

61

3.23.2.2 ConvertBack()

object? HalfValueConverter.ConvertBack (
object? value,
Type targetType,
object? parameter,
CulturelInfo culture) [inline]

Not implemented.

The documentation for this class was generated from the following file:

« Utilities/Converters/HalfValueConverter.cs

3.24 HistoryEntryAddedEvent Class Reference

Represents an event from the Kongsberg HUB where a job is added to the history queue.

Properties

* stringID [get, set]
The Id of the job that was added to the history queue.
» EventAction Action [get, set]

The action that triggered the event EventAction.

3.24.1 Detailed Description

Represents an event from the Kongsberg HUB where a job is added to the history queue.

Author
Ole William Skistad Huslende

3.24.2 Property Documentation

3.24.2.1 Action

EventAction HistoryEntryAddedEvent.Action [get], [set]

The action that triggered the event EventAction.

Generated by Doxygen

62 Class Documentation

3.24.22 ID

string HistoryEntryAddedEvent.ID [get], [set]
The Id of the job that was added to the history queue.

The documentation for this class was generated from the following file:

* Models/ApiSSE/EventTypes.cs

3.25 HistoryEntryAddedMessage Class Reference

Message to send history entry added event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

Inheritance diagram for HistoryEntryAddedMessage:

ValueChangedMessage
< HistoryEntryAddedEvent >

HistoryEntryAddedMessage

Collaboration diagram for HistoryEntryAddedMessage:

ValueChangedMessage
< HistoryEntryAddedEvent >

HistoryEntryAddedMessage

Public Member Functions

+ HistoryEntryAddedMessage (HistoryEntryAddedEvent value)

Generated by Doxygen

3.26 HistoryEntryRemovedEvent Class Reference 63

3.25.1 Detailed Description

Message to send history entry added event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.26 HistoryEntryRemovedEvent Class Reference

Represents an event from the Kongsberg HUB where a job is removed from the history queue.

Properties

e stringID [get, set]
The Id of the job that was removed from the history queue.
» EventAction Action [get, set]

The action that triggered the event EventAction.

3.26.1 Detailed Description
Represents an event from the Kongsberg HUB where a job is removed from the history queue.

Author
Ole William Skistad Huslende

3.26.2 Property Documentation

3.26.2.1 Action

EventAction HistoryEntryRemovedEvent.Action [get], [set]

The action that triggered the event EventAction.

Generated by Doxygen

64 Class Documentation

3.26.2.2 ID

string HistoryEntryRemovedEvent.ID [get], [set]
The Id of the job that was removed from the history queue.

The documentation for this class was generated from the following file:

* Models/ApiSSE/EventTypes.cs

3.27 HistoryEntryRemovedMessage Class Reference

Message to send history entry removed event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

Inheritance diagram for HistoryEntryRemovedMessage:

ValueChangedMessage
< HistoryEntryRemovedEvent >

HistoryEntryRemovedMessage

Collaboration diagram for HistoryEntryRemovedMessage:

ValueChangedMessage
< HistoryEntryRemovedEvent >

HistoryEntryRemovedMessage

Public Member Functions

+ HistoryEntryRemovedMessage (HistoryEntryRemovedEvent value)

Generated by Doxygen

3.28 HistoryPage Class Reference 65

3.27.1 Detailed Description

Message to send history entry removed event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.28 HistoryPage Class Reference

HistoryPage is the page that shows the history of jobs for a table.

Inheritance diagram for HistoryPage:

ContentPage

HistoryPage

Collaboration diagram for HistoryPage:

ContentPage

HistoryPage

Generated by Doxygen

66 Class Documentation

Public Member Functions

« HistoryPage (TableContextService tableContextService, InfoPanelContentView infoPanelContentView)

The constructor for the HistoryPage.

Protected Member Functions

+ override void OnAppearing ()

Called when the page is appearing. Used to set the binding context for the page and the info panel. Also resets the
selected job in the history view model to null.

3.28.1 Detailed Description

HistoryPage is the page that shows the history of jobs for a table.

Author

Ole William Skistad Huslende
Tormod Smidesang

Elvin Andreas Pedersen

3.28.2 Constructor & Destructor Documentation

3.28.2.1 HistoryPage()

HistoryPage.HistoryPage (
TableContextService tableContextService,

InfoPanelContentView infoPanelContentView) [inline]

The constructor for the HistoryPage.

Parameters

tableContextService Dependency injection for the table context service.

infoPanelContentView | Dependency injection for the info panel content view.

3.28.3 Member Function Documentation

3.28.3.1 OnAppearing()

override void HistoryPage.OnAppearing () [inline], [protected]

Generated by Doxygen

3.29 HistoryTimeline Class Reference 67

Called when the page is appearing. Used to set the binding context for the page and the info panel. Also resets the
selected job in the history view model to null.

The documentation for this class was generated from the following file:

+ Views/TableContextViews/HistoryPage.xaml.cs

3.29 HistoryTimeline Class Reference

Custom control for displaying a timeline of job runs shown on statistics page and meta statistics page.

Inheritance diagram for HistoryTimeline:

GraphicsView

HistoryTimeline

Collaboration diagram for HistoryTimeline:

GraphicsView

HistoryTimeline

Public Member Functions

+ HistoryTimeline ()

Initializes a new instance of the HistoryTimeline class.

Generated by Doxygen

68

Class Documentation

Static Public Attributes

« static readonly BindableProperty StartProperty

Bindable property for the start date of the timeline.
« static readonly BindableProperty EndProperty

Bindable property for the end date of the timeline.
« static readonly BindableProperty ltemsProperty

Bindable property for the list of job statistics.
« static readonly BindableProperty SelectedJobltemProperty

Bindable property for the selected job item.
« static readonly BindableProperty TimelineColorProperty

Bindable property for the color of the timeline.
« static readonly BindableProperty VerticalLineColorProperty

Bindable property for the color of the vertical line.
« static readonly BindableProperty ltemColorProperty

Bindable property for the color of the items.
« static readonly BindableProperty SelectedColorProperty

Bindable property for the color of the selected item.

Properties

» DateTime Start [get, set]

Gets or sets the start date of the timeline.
* DateTime End [get, set]

Gets or sets the end date of the timeline.
* ObservableCollection< JobStatisticsViewModel > Iltems

Gets or sets the list of job statistics.
+ JobStatisticsViewModel? SelectedJobltem [get, set]

Gets or sets the selected job item.
» Color TimelineColor [get, set]

Gets or sets the color of the timeline.
» Color VerticalLineColor [get, set]

Gets or sets the color of the vertical line.
» Color ItemColor [get, set]

Gets or sets the color of the items.
» Color SelectedColor [get, set]

Gets or sets the color of the selected item.

3.29.1 Detailed Description

set]

Custom control for displaying a timeline of job runs shown on statistics page and meta statistics page.

Author
Ole William Skistad Huslende

3.29.2 Constructor & Destructor Documentation

Generated by Doxygen

3.29 HistoryTimeline Class Reference

69

3.29.2.1 HistoryTimeline()

HistoryTimeline.HistoryTimeline () [inline]

Initializes a new instance of the HistoryTimeline class.

3.29.3 Member Data Documentation

3.29.3.1 EndProperty

readonly BindableProperty HistoryTimeline.EndProperty

Initial value:
BindableProperty.Create (
nameof (End) ,
typeof (DateTime),
typeof (HistoryTimeline)
efault)

Bindable property for the end date of the timeline.

3.29.3.2 ItemColorProperty

[static]

readonly BindableProperty HistoryTimeline.ItemColorProperty [static]

Initial value:

BindableProperty.Create (
nameof (ItemColor),
typeof (Color),
typeof (HistoryTimeline),
Colors.Orange,
propertyChanged: OnPropertyChanged)

Bindable property for the color of the items.

3.29.3.3 IltemsProperty

readonly BindableProperty HistoryTimeline.ItemsProperty

Initial value:

BindableProperty.Create (
nameof (Items)

[static]

typeof (ObservableCollection<JobStatisticsViewModel>),

typeof (HistoryTimeline),
default,

propertyChanged: OnItemsPropertyChanged)

Bindable property for the list of job statistics.

Generated by Doxygen

70 Class Documentation

3.29.3.4 SelectedColorProperty

readonly BindableProperty HistoryTimeline.SelectedColorProperty [static]

Initial value:
BindableProperty.Create (
nameof (SelectedColor)
typeof (Color),
typeof (HistoryTimeline),
Colors.Gray,
propertyChanged: OnPropertyChanged)

Bindable property for the color of the selected item.

3.29.3.5 SelectedJobltemProperty

readonly BindableProperty HistoryTimeline.SelectedJobItemProperty [static]

Initial value:
BindableProperty.Create (
nameof (SelectedJobItem),
typeof (JobStatisticsViewModel)
typeof (HistoryTimeline)
1é ult,
propertyChanged: OnPropertyChanged)

Bindable property for the selected job item.

3.29.3.6 StartProperty

readonly BindableProperty HistoryTimeline.StartProperty [static]

Initial value:
BindableProperty.Create (
nameof (Start),
typeof (DateTime),
typeof (HistoryTimeline),
default)

Bindable property for the start date of the timeline.

3.29.3.7 TimelineColorProperty

readonly BindableProperty HistoryTimeline.TimelineColorProperty [static]

Initial value:
BindableProperty.Create (
nameof (TimelineColor),
typeof (Color),
typeof (HistoryTimeline),
Colors.Orange,
propertyChanged: OnPropertyChanged)

Bindable property for the color of the timeline.

Generated by Doxygen

3.29 HistoryTimeline Class Reference

71

3.29.3.8 VerticalLineColorProperty

readonly BindableProperty HistoryTimeline.VerticalLineColorProperty

Initial value:

BindableProperty.Create (
nameof (VerticallLineColor)
typeof (Color),
typeof (HistoryTimeline),
Colors.Orange,
propertyChanged: OnPropertyChanged)

Bindable property for the color of the vertical line.

3.29.4 Property Documentation

3.29.4.1 End

DateTime HistoryTimeline.End [get], [set]

Gets or sets the end date of the timeline.

3.29.4.2 ItemColor

Color HistoryTimeline.ItemColor [get], [set]

Gets or sets the color of the items.

3.29.4.3 ltems

ObservableCollection<JobStatisticsViewModel> HistoryTimeline.Items

Gets or sets the list of job statistics.

3.29.4.4 SelectedColor

Color HistoryTimeline.SelectedColor [get], [set]

Gets or sets the color of the selected item.

[static]

[get],

[set]

Generated by Doxygen

72

Class Documentation

3.29.4.5 SelectedJobltem

JobStatisticsViewModel? HistoryTimeline.SelectedJobItem

Gets or sets the selected job item.

3.29.4.6 Start

DateTime HistoryTimeline.Start [get], [set]

Gets or sets the start date of the timeline.

3.29.4.7 TimelineColor

Color HistoryTimeline.TimelineColor [get], [set]

Gets or sets the color of the timeline.

3.29.4.8 VerticalLineColor

Color HistoryTimeline.VerticalLineColor [get], [set]

Gets or sets the color of the vertical line.

The documentation for this class was generated from the following file:

+ Views/Components/HistoryTimeLine.cs

[get],

[set]

Generated by Doxygen

3.30 HistoryTimelineDrawable Class Reference

73

3.30 HistoryTimelineDrawable Class Reference

Custom drawable for the HistoryTimeline.

Inheritance diagram for HistoryTimelineDrawable:

IDrawable

HistoryTimelineDrawable

Collaboration diagram for HistoryTimeline

Drawable:

IDrawable

HistoryTimelineDrawable

Public Member Functions

+ HistoryTimelineDrawable (HistoryTi

meline timeline)

Initializes a new instance of the History TimelineDrawable class.
 void Draw (ICanvas canvas, RectF dirtyRect)

Draws the timeline on the canvas.

3.30.1 Detailed Description

Custom drawable for the HistoryTimeline.

3.30.2 Constructor & Destructo

r Documentation

Generated by Doxygen

74

Class Documentation

3.30.2.1 HistoryTimelineDrawable()

HistoryTimelineDrawable.HistoryTimelineDrawable (

HistoryTimeline timeline) [inline]

Initializes a new instance of the HistoryTimelineDrawable class.

Parameters

timeline | The history timeline instance.

3.30.3 Member Function Documentation

3.30.3.1 Draw()

void HistoryTimelineDrawable.Draw (
ICanvas canvas,

RectF dirtyRect) [inline]

Draws the timeline on the canvas.

Parameters

canvas The canvas to draw on.
dirtyRect | The rectangle that needs to be redrawn.

The documentation for this class was generated from the following file:

+ Views/Components/HistoryTimeLine.cs

3.31 HoverablelmageButton Class Reference

A custom ImageButton that changes its appearance when hovered over.

Generated by Doxygen

3.31 HoverablelmageButton Class Reference

75

Inheritance diagram for HoverablelmageButton:

ImageButton

A

HoverablelmageButton

Collaboration diagram for HoverablelmageButton:

ImageButton

HoverablelmageButton

Public Member Functions

» HoverablelmageButton ()

Initializes a new instance of the HoverablelmageButton class.

Static Public Attributes

« static readonly BindableProperty HoverOpacityProperty

Bindable property for the hover opacity of the button.
« static readonly BindableProperty HoverBorderColorProperty

Bindable property for the hover border color of the button.
« static readonly BindableProperty HoverBorderWidthProperty

Bindable property for the hover border width of the button.
« static readonly BindableProperty HoverCornerRadiusProperty

Bindable property for the hover corner radius of the button.

Generated by Doxygen

76

Class Documentation

Properties

» double HoverOpacity [get, set]

Gets or sets the hover opacity of the button.
» Color HoverBorderColor [get, set]

Gets or sets the hover border color of the button.
* int HoverBorderWidth [get, set]

Gets or sets the hover border width of the button.
« int HoverCornerRadius [get, set]

Gets or sets the hover corner radius of the button.

3.31.1 Detailed Description

A custom ImageButton that changes its appearance when hovered over.

Author

Elvin Andreas Pedersen

3.31.2 Constructor & Destructor Documentation

3.31.2.1 HoverablelmageButton()

HoverableImageButton.HoverableImageButton () [inline]

Initializes a new instance of the HoverablelmageButton class.

3.31.3 Member Data Documentation

3.31.3.1 HoverBorderColorProperty

readonly BindableProperty HoverablelImageButton.HoverBorderColorProperty

Initial value:

BindableProperty.Create (nameof (HoverBorderColor), typeof (Color),

Colors.LightGray)

Bindable property for the hover border color of the button.

[static]

typeof (HoverableImageButton),

Generated by Doxygen

3.31 HoverablelmageButton Class Reference

77

3.31.3.2 HoverBorderWidthProperty

readonly BindableProperty HoverableImageButton.HoverBorderWidthProperty [static]

Initial value:

BindableProperty.Create (nameof (HoverBorderWidth), typeof (int), typeof (HoverableImageButton), 1)

Bindable property for the hover border width of the button.

3.31.3.3 HoverCornerRadiusProperty

readonly BindableProperty HoverablelImageButton.HoverCornerRadiusProperty [static]
Initial value:
BindableProperty.Create (nameof (HoverCornerRadius), typeof (int), typeof (HoverableImageButton), 5)

Bindable property for the hover corner radius of the button.

3.31.3.4 HoverOpacityProperty
readonly BindableProperty HoverableImageButton.HoverOpacityProperty [static]

Initial value:

BindableProperty.Create (nameof (HoverOpacity), typeof (double), typeof (HoverableImageButton), 0.9)

Bindable property for the hover opacity of the button.

3.31.4 Property Documentation

3.31.4.1 HoverBorderColor

Color HoverableImageButton.HoverBorderColor [get], [set]

Gets or sets the hover border color of the button.

3.31.4.2 HoverBorderWidth

int HoverableImageButton.HoverBorderWidth [get], [set]

Gets or sets the hover border width of the button.

Generated by Doxygen

78

Class Documentation

3.31.4.3 HoverCornerRadius

int HoverableImageButton.HoverCornerRadius [get], [set]

Gets or sets the hover corner radius of the button.

3.31.4.4 HoverOpacity

double HoverableImageButton.HoverOpacity [get], [set]

Gets or sets the hover opacity of the button.

The documentation for this class was generated from the following file:

« Utilities/HoverBehaviour.cs

3.32 IdentificationField Class Reference

Represents a field containing identification information of barcode.

Properties

+ string? Value [get, set]

Gets or sets the value of the barcode.
« string? EncodingDetails [get, set]

Gets or sets type of barcode.
« List< double >? BoundingBox [get, set]

Gets or sets the position of the barcode.
+ List< double >? Matrix [get, set]

Gets or sets the orientation of the barcode.

3.32.1 Detailed Description

Represents a field containing identification information of barcode.

Author
Ole William Skistad Huslende

3.32.2 Property Documentation

Generated by Doxygen

3.32 IdentificationField Class Reference

3.32.2.1 BoundingBox

List<double>? IdentificationField.BoundingBox [get], [set]

Gets or sets the position of the barcode.

3.32.2.2 EncodingDetails

string? IdentificationField.EncodingDetails [get], [set]

Gets or sets type of barcode.

3.32.2.3 Matrix

List<double>? IdentificationField.Matrix [get], [set]

Gets or sets the orientation of the barcode.

3.32.2.4 Value

string? IdentificationField.Value [get], [set]
Gets or sets the value of the barcode.

The documentation for this class was generated from the following file:

+ Models/ApiQueue/ldentificationField.cs

Generated by Doxygen

80 Class Documentation

3.33 InfoPanelContentView Class Reference

This class is the content view for the info panel.

Inheritance diagram for InfoPanelContentView:

ContentView

InfoPanelContentView

Collaboration diagram for InfoPanelContentView:

ContentView

InfoPanelContentView

3.33.1 Detailed Description

This class is the content view for the info panel.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

« Views/TableContextViews/InfoPanelContentView.xaml.cs

Generated by Doxygen

3.34 InvertBoolConverter Class Reference 81

3.34 InvertBoolConverter Class Reference

Used in xaml to invert a bool.

Inheritance diagram for InvertBoolConverter:

IValueConverter

InvertBoolConverter

Collaboration diagram for InvertBoolConverter:

IValueConverter

InvertBoolConverter

Public Member Functions

+ object? Convert (object? value, Type targetType, object? parameter, Culturelnfo culture)
Inverts a boolean.
» object? ConvertBack (object? value, Type targetType, object? parameter, Culturelnfo culture)

Simply calls Convert(object?, Type, object?, Culturelnfo) because converting an inverted bool back is the same oper-
ation

3.34.1 Detailed Description

Used in xaml to invert a bool.

Author

Tormod Smidesang

Generated by Doxygen

82 Class Documentation

3.34.2 Member Function Documentation

3.34.2.1 Convert()

object? InvertBoolConverter.Convert (
object? wvalue,
Type targetType,
object? parameter,

CultureInfo culture) [inline]

Inverts a boolean.

Parameters

value The bool to invert
targetType | unused
parameter | unused

culture unused

Returns

The inverted bool

Exceptions

ArgumentException | Thrown if the provided value is not a bool

3.34.2.2 ConvertBack()

object? InvertBoolConverter.ConvertBack (
object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]

Simply calls Convert(object?, Type, object?, Culturelnfo) because converting an inverted bool back is the same
operation

The documentation for this class was generated from the following file:

« Utilities/Converters/InvertBoolConverter.cs

Generated by Doxygen

3.35 JobLayerStatisticsViewModel Class Reference 83

3.35 JoblLayerStatisticsViewModel Class Reference

ViewModel for displaying job layer statistics.

Inheritance diagram for JobLayerStatisticsViewModel:

ObservableObject

JobLayerStatisticsViewModel

Collaboration diagram for JobLayerStatisticsViewModel:

ObservableObject

JobLayerStatisticsViewModel

Public Member Functions

+ JobLayerStatisticsViewModel (IServiceProvider serviceProvider, IMessenger messenger, QueueServerlLayerStatistics
jobLayerStatistics)

Initializes a new instance of the JobLayerStatisticsViewModel class.
+ void UpdateJobLayerStatistics ()

Updates the job layer statistics properties with the values from the model.

3.35.1 Detailed Description

ViewModel for displaying job layer statistics.

This class is responsible for managing the job layer statistics data and providing properties to bind to the Ul. Only
the important properties are included from the model.

Author
Ole William Skistad Huslende

Generated by Doxygen

84

Class Documentation

3.35.2 Constructor & Destructor Documentation

3.35.2.1 JobLayerStatisticsViewModel()

JobLayerStatisticsViewModel.JobLayerStatisticsViewModel (
IServiceProvider serviceProvider,
IMessenger messenger,

QueueServerLayerStatistics jobLayerStatistics) [inline]

Initializes a new instance of the JobLayerStatisticsViewModel class.

Parameters

serviceProvider The service provider used to resolve dependencies.

messenger The messenger used for communication inside the table context.

jobLayerStatistics | The job layer statistics model that this ViewModel is based on.

3.35.3 Member Function Documentation

3.35.3.1 UpdateJobLayerStatistics()

void JobLayerStatisticsViewModel.UpdateJobLayerStatistics () [inline]
Updates the job layer statistics properties with the values from the model.

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/SubViewModels/JobLayerStatisticsViewModel.cs

3.36 JobListColumnSpanConverter Class Reference

Used to expand the job list to cover the area used by the job details panel when the latter is not shown.

Inheritance diagram for JobListColumnSpanConverter:

IValueConverter

JobListColumnSpanConverter

Generated by Doxygen

3.36 JobListColumnSpanConverter Class Reference

85

Collaboration diagram for JobListColumnSpanConverter:

IValueConverter

A

JobListColumnSpanConverter

Public Member Functions

 object? Convert (object? value, Type targetType, object? parameter, Culturelnfo culture)

Returns how many columns the job list should cover based on whether or not the job details panel is visible.
+ object? ConvertBack (object? value, Type targetType, object? parameter, Culturelnfo culture)

Not implemented.

3.36.1 Detailed Description

Used to expand the job list to cover the area used by the job details panel when the latter is not shown.

Author

Tormod Smidesang

3.36.2 Member Function Documentation

3.36.2.1 Convert()

object? JobListColumnSpanConverter.Convert (
object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]

Returns how many columns the job list should cover based on whether or not the job details panel is visible.

Parameters

value Whether or not the job details panel is visible

targetType | unused
parameter | unused

Gepen'étedtby Doxygemused

86

Class Documentation

Returns

How many columns the job list should cover, or null if parameter value is not a bool

3.36.2.2 ConvertBack()

object? JobListColumnSpanConverter.ConvertBack (
object? wvalue,
Type targetType,
object? parameter,
CulturelInfo culture) [inline]

Not implemented.

The documentation for this class was generated from the following file:

« Utilities/Converters/JobListColumnSpanConverter.cs

3.37 JobQueue Class Reference

The model for the list of jobs from the table.

Properties

« string? Id [get, set]
Gets or sets the Id for the job queue.
 List< JobTask >? JobTasks [get, set]

Gets or sets the list of jobs JobTask

3.37.1 Detailed Description

The model for the list of jobs from the table.

Author
Ole William Skistad Huslende

3.37.2 Property Documentation

Generated by Doxygen

3.38 JobRunStatisticsViewModel Class Reference

87

3.37.21 Id

string? JobQueue.Id [get], [set]

Gets or sets the Id for the job queue.

3.37.2.2 JobTasks

List<JobTask>? JobQueue.JobTasks [get], [set]
Gets or sets the list of jobs JobTask

The documentation for this class was generated from the following file:

+ Models/ApiQueue/JobQueue.cs

3.38 JobRunStatisticsViewModel Class Reference

A view model for job run statistics.

Inheritance diagram for JobRunStatisticsViewModel:

ObservableObject

JobRunStatisticsViewModel

Collaboration diagram for JobRunStatistics ViewModel:

ObservableObject

JobRunStatisticsViewModel

Generated by Doxygen

88 Class Documentation

Public Member Functions

» JobRunStatisticsViewModel (IServiceProvider serviceProvider, IMessenger messenger, QueueServerProductionRunStatistics
jobRunStatistics)

Initializes a new instance of the JobRunStatisticsViewModel class.
« void UpdateJobRunStatistics ()

Updates the job run statistics with the data from the jobRunStatistics object.

Properties

» ObservableCollection< JobLayerStatisticsViewModel > JobLayerStatistics = new() [get, set]

List of job layer statistics associated with the job run.

3.38.1 Detailed Description

A view model for job run statistics.
This class is used to represent the statistics of a job run. Only the important properties are included from the model.

Author
Ole William Skistad Huslende

3.38.2 Constructor & Destructor Documentation

3.38.2.1 JobRunStatisticsViewModel()

JobRunStatisticsViewModel.JobRunStatisticsViewModel (
IServiceProvider serviceProvider,
IMessenger messenger,

QueueServerProductionRunStatistics jobRunStatistics) [inline]

Initializes a new instance of the JobRunStatisticsViewModel class.

Parameters

serviceProvider | The service provider used to create instances of viewmodels.

messenger The messenger used for communication between view models inside the table context
TableContext.
JjobRunStatistics | The job run statistics data model QueueServerProductionRunStatistics.

3.38.3 Member Function Documentation

Generated by Doxygen

3.39 JobStatisticsViewModel Class Reference 89

3.38.3.1 UpdateJobRunStatistics()
void JobRunStatisticsViewModel.UpdateJobRunStatistics () [inline]

Updates the job run statistics with the data from the jobRunStatistics object.

3.38.4 Property Documentation

3.38.4.1 JoblLayerStatistics

ObservableCollection<JobLayerStatisticsViewModel> JobRunStatisticsViewModel.JobLayerStatistics
= new() [get], [set]

List of job layer statistics associated with the job run.

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/SubViewModels/JobRunStatisticsViewModel.cs

3.39 JobStatisticsViewModel Class Reference

ViewModel for displaying job statistics.

Inheritance diagram for JobStatisticsViewModel:

ObservableObject

JobStatisticsViewModel

Collaboration diagram for JobStatisticsViewModel:

ObservableObject

JobStatisticsViewModel

Generated by Doxygen

90 Class Documentation

Public Member Functions

+ JobStatisticsViewModel (IServiceProvider serviceProvider, IMessenger messenger, QueueServerJobStatistics
jobStatistics, string tableName)

Initializes a new instance of the JobStatisticsViewModel class.
+ void UpdateJobStatistics ()

Updates the job statistics with the data from the job statistics instance.

Properties

» ObservableCollection< JobRunStatisticsViewModel > JobRuns =[] [get, set]

A collection of the job runs associated with the job statistics JobRunStatisticsViewModel.

3.39.1 Detailed Description

ViewModel for displaying job statistics.
This class is responsible for managing and displaying job statistics data.

Author
Ole William Skistad Huslende

3.39.2 Constructor & Destructor Documentation

3.39.2.1 JobStatisticsViewModel()

JobStatisticsViewModel.JobStatisticsViewModel (
IServiceProvider serviceProvider,
IMessenger messenger,
QueueServerJobStatistics jobStatistics,

string tableName) [inline]

Initializes a new instance of the JobStatisticsViewModel class.

Parameters
serviceProvider | The service provider instance used for dependency injection IServiceProvider.
messenger The messenger instance used for communication between view models inside the table
context TableContext.
jobStatistics The job statistics instance that holds the data QueueServerJobStatistics.
tableName The table the job statistics belongs to.

Generated by Doxygen

3.40 JobStatusToColorConverter Class Reference

91

3.39.3 Member Function Documentation

3.39.3.1 UpdateJobStatistics()

void JobStatisticsViewModel.UpdateJobStatistics () [inline]

Updates the job statistics with the data from the job statistics instance.

3.39.4 Property Documentation

3.39.4.1 JobRuns

ObservableCollection<JobRunStatisticsViewModel> JobStatisticsViewModel.JobRuns

[set]

A collection of the job runs associated with the job statistics JobRunStatisticsViewModel.

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/SubViewModels/JobStatisticsViewModel.cs

3.40 JobStatusToColorConverter Class Reference

Gets a color associated with a given job status.

Inheritance diagram for JobStatusToColorConverter:

IValueConverter

JobStatusToColorConverter

(]

[get],

Generated by Doxygen

92

Class Documentation

Collaboration diagram for JobStatusToColorConverter:

IValueConverter

A

JobStatusToColorConverter

Public Member Functions

« object? Convert (object? value, Type targetType, object? parameter, Culturelnfo culture)

Converts a job status to a color.
+ object? ConvertBack (object? value, Type targetType, object? parameter, Culturelnfo culture)

Not implemented.

3.40.1 Detailed Description

Gets a color associated with a given job status.

Author

Tormod Smidesang

Elvin Andreas Pedersen

3.40.2 Member Function Documentation

3.40.2.1 Convert()

object? JobStatusToColorConverter.Convert (

object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]

Converts a job status to a color.

Parameters
value The JobStatus to get the color for
targetType | unused
parameter | unused Generated by Doxygen
culture unused

3.41 JobTask Class Reference

93

Returns

An object of type Color representing the job status

Exceptions

ArgumentException | Thrown if the parameter "value" is not of type JobStatus

3.40.2.2 ConvertBack()

object? JobStatusToColorConverter.ConvertBack (
object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]
Not implemented.

The documentation for this class was generated from the following file:

« Utilities/Converters/JobStatusToColorConverter.cs

3.41 JobTask Class Reference

The model holding all the job data.

Properties

» string? Name [get, set]
Gets or sets the name of the job.
* ProductionTimes? ProductionTimes [get, set]
Gets or sets the production times for the job ProductionTimes.
» Customer? Customer [get, set]
Gets or sets the customer produced for Customer.
» ImageSource? JobPreview [get, set]
Gets or sets the image of the job.
+ OverruleMaterialCutPresets? OverruleMaterialCutPresets [get, set]

Gets or sets the overrule material cut presets for the job OverruleMaterialCutPresets.

« List< IdentificationField >? IdentificationFields [get, set]
Gets or sets the identification fields for the job IdentificationField

e string? Id [get, set]
Gets or sets Id of the job.

» DateTime? CreationDate [get, set]

Gets or sets the creation date of the job.
+ DateTime? ModificationDate [get, set]

Gets or sets the modification date of the job.

Generated by Doxygen

94

Class Documentation

DateTime? StartDate [get, set]
Gets or sets the start date of the job.
DateTime? FinishDate [get, set]
Gets or sets the finish date of the job.
DateTime? DueDate [get, set]
Gets or sets the due date of the job.
string? TaskOperator [get, set]
Gets or sets the operator of the job.
JobStatus? Status [get, set]
Gets or sets the current status of the job JobStatus.
JobType? Type [get, set]
Gets or sets the type of the job JobType.
string? Statusinfo [get, set]
Gets or sets additional status information for the job.
bool? OpenniPC [get, set]

Gets or sets a value indicating whether or not the job is open in IPC.

int? AmountProduced [get, set]
Gets or sets the amount produced for the job.
int? AmountRejected [get, set]
Gets or sets the amount rejected for the job.
string? Jobld [get, set]
Gets or sets the job Id.
string? JobPartld [get, set]
Gets or sets the job part Id.
string? Externalld [get, set]
Gets or sets the external Id used for integration.
string? DescriptiveName [get, set]
Gets or sets the descriptive name of the job.
int? JobPriority [get, set]
Gets or sets the job priority.
string? MaterialName [get, set]
Gets or sets the name of the material used.
string? MaterialBoardName [get, set]
Gets or sets the board name of the material.
int? Amount [get, set]
Gets or sets the total amount of copies to be produced.
double? MediaX [get, set]
Gets or sets the width of the media.
double? Media¥Y [get, set]
Gets or sets the height of the media.
double? MediaThickness [get, set]
Gets or sets the thickness of the media.
string? MappingPresetName [get, set]
Gets or sets the name of the mapping preset.
string? CuttingProfileName [get, set]
Gets or sets the name of the cutting profile.
string? ToolingPresetName [get, set]
Gets or sets the name of the tooling preset.
string? OptimizationPresetName [get, set]
Gets or sets the name of the optimization preset.
string? ProductionPresetName [get, set]

Generated by Doxygen

3.41 JobTask Class Reference

95

Gets or sets the name of the production preset.
« string? OriginalCutFileUnc [get, set]

Gets or sets the universal naming convention path to the original cut file.
« string? CutUnc [get, set]

Gets or sets the universal naming convention path to the cut file.
« string? CutPreviewUnc [get, set]

Gets or sets the universal naming convention path to the cut preview file.
« string? PrintPreviewUnc [get, set]

Gets or sets the universal naming convention path to the print preview file.

 string? JdfUnc [get, set]

Gets or sets the universal naming convention path to the JDF file.
 int? SortOrder [get, set]

Gets or sets the sort order of the job in the queue.
* ProductionType? ProductionType [get, set]

Gets or sets the type of production ProductionType.

3.41.1 Detailed Description

The model holding all the job data.

Author
Ole William Skistad Huslende

3.41.2 Property Documentation

3.41.2.1 Amount

int? JobTask.Amount [get], [set]

Gets or sets the total amount of copies to be produced.

3.41.2.2 AmountProduced

int? JobTask.AmountProduced [get], [set]

Gets or sets the amount produced for the job.

Generated by Doxygen

96 Class Documentation

3.41.2.3 AmountRejected

int? JobTask.AmountRejected [get], [set]

Gets or sets the amount rejected for the job.

3.41.2.4 CreationDate

DateTime? JobTask.CreationDate [get], [set]

Gets or sets the creation date of the job.

3.41.2.5 Customer

Customer? JobTask.Customer [get], [set]

Gets or sets the customer produced for Customer.

3.41.2.6 CutPreviewUnc

string? JobTask.CutPreviewUnc [get], [set]

Gets or sets the universal naming convention path to the cut preview file.

3.41.2.7 CuttingProfileName

string? JobTask.CuttingProfileName [get], [set]

Gets or sets the name of the cutting profile.

3.41.2.8 CutUnc

string? JobTask.CutUnc [get], [set]

Gets or sets the universal naming convention path to the cut file.

Generated by Doxygen

3.41 JobTask Class Reference

97

3.41.2.9 DescriptiveName

string? JobTask.DescriptiveName [get], [set]

Gets or sets the descriptive name of the job.

3.41.2.10 DueDate

DateTime? JobTask.DueDate [get], [set]

Gets or sets the due date of the job.

3.41.2.11 Externalld

string? JobTask.Externalld [get], [set]

Gets or sets the external Id used for integration.

3.41.2.12 FinishDate

DateTime? JobTask.FinishDate [get], [set]

Gets or sets the finish date of the job.

341213 d

string? JobTask.Id [get], [set]

Gets or sets Id of the job.

3.41.2.14 IdentificationFields

List<IdentificationField>? JobTask.IdentificationFields [get],

Gets or sets the identification fields for the job IdentificationField

[set]

Generated by Doxygen

98

Class Documentation

3.41.2.15 JdfUnc

string? JobTask.JdfUnc [get], [set]

Gets or sets the universal naming convention path to the JDF file.

3.41.2.16 Jobld

string? JobTask.JobId [get], [set]

Gets or sets the job Id.

3.41.2.17 JobPartid

string? JobTask.JobPartId [get], [set]

Gets or sets the job part Id.

3.41.2.18 JobPreview

ImageSource? JobTask.JobPreview [get], [set]

Gets or sets the image of the job.

3.41.2.19 JobPriority

int? JobTask.JobPriority [get], [set]

Gets or sets the job priority.

3.41.2.20 MappingPresetName

string? JobTask.MappingPresetName [get], [set]

Gets or sets the name of the mapping preset.

Generated by Doxygen

3.41 JobTask Class Reference

3.41.2.21 MaterialBoardName

string? JobTask.MaterialBoardName [get], [set]

Gets or sets the board name of the material.

3.41.2.22 MaterialName

string? JobTask.MaterialName [get], [set]

Gets or sets the name of the material used.

3.41.2.23 MediaThickness

double? JobTask.MediaThickness [get], [set]

Gets or sets the thickness of the media.

3.41.2.24 MediaX

double? JobTask.MediaX [get], [set]

Gets or sets the width of the media.

3.41.2.25 MediaY

double? JobTask.MediaY [get], [set]

Gets or sets the height of the media.

3.41.2.26 ModificationDate

DateTime? JobTask.ModificationDate [get], [set]

Gets or sets the modification date of the job.

Generated by Doxygen

100 Class Documentation

3.41.2.27 Name

string? JobTask.Name [get], [set]

Gets or sets the name of the job.

3.41.2.28 OpenlniPC

bool? JobTask.OpenIniPC [get], [set]

Gets or sets a value indicating whether or not the job is open in IPC.

3.41.2.29 OptimizationPresetName

string? JobTask.OptimizationPresetName [get], [set]

Gets or sets the name of the optimization preset.

3.41.2.30 OriginalCutFileUnc

string? JobTask.OriginalCutFileUnc [get], [set]

Gets or sets the universal naming convention path to the original cut file.

3.41.2.31 OverruleMaterialCutPresets

OverruleMaterialCutPresets? JobTask.OverruleMaterialCutPresets [get], [set]

Gets or sets the overrule material cut presets for the job OverruleMaterialCutPresets.

3.41.2.32 PrintPreviewUnc

string? JobTask.PrintPreviewUnc [get], [set]

Gets or sets the universal naming convention path to the print preview file.

Generated by Doxygen

3.41 JobTask Class Reference

101

3.41.2.33 ProductionPresetName

string? JobTask.ProductionPresetName [get], [set]

Gets or sets the name of the production preset.

3.41.2.34 ProductionTimes

ProductionTimes? JobTask.ProductionTimes [get],

Gets or sets the production times for the job ProductionTimes.

3.41.2.35 ProductionType

ProductionType? JobTask.ProductionType [get],

Gets or sets the type of production ProductionType.

3.41.2.36 SortOrder

int? JobTask.SortOrder [get], [set]

Gets or sets the sort order of the job in the queue.

3.41.2.37 StartDate

DateTime? JobTask.StartDate [get], [set]

Gets or sets the start date of the job.

3.41.2.38 Status

JobStatus? JobTask.Status [get], [set]

Gets or sets the current status of the job JobStatus.

[set]

[set]

Generated by Doxygen

102

Class Documentation

3.41.2.39 Statusinfo

string? JobTask.StatusInfo [get], [set]

Gets or sets additional status information for the job.

3.41.2.40 TaskOperator

string? JobTask.TaskOperator [get], [set]

Gets or sets the operator of the job.

3.41.2.41 ToolingPresetName

string? JobTask.ToolingPresetName [get], [set]

Gets or sets the name of the tooling preset.

3.41.2.42 Type

JobType? JobTask.Type [get], [set]

Gets or sets the type of the job JobType.

The documentation for this class was generated from the following file:

+ Models/ApiQueue/JobTask.cs

Generated by Doxygen

3.42 JobTaskViewModel Class Reference

103

3.42 JobTaskViewModel Class Reference

ViewModel for a job task.

Inheritance diagram for JobTaskViewModel:

ObservableObject

JobTaskViewModel

Collaboration diagram for JobTaskViewModel:

ObservableObject

JobTaskViewModel

Public Member Functions

» JobTaskViewModel (IMessenger messenger, JobTask jobTask)

Constructor for the JobTaskViewModel class.

« void UpdateJobTask ()

Updates the job task view model with the latest data from the job task model.

3.42.1 Detailed Description

ViewModel for a job task.

This class is used to represent a job task in the Ul.

Author
Ole William Skistad Huslende

Generated by Doxygen

104 Class Documentation

3.42.2 Constructor & Destructor Documentation

3.42.2.1 JobTaskViewModel()

JobTaskViewModel.JobTaskViewModel (
IMessenger messenger,

JobTask jobTask) [inline]

Constructor for the JobTaskViewModel class.

Parameters

messenger | The messenger used to send messages between view models inside the table context.

JjobTask The job task model that this view model represents.

3.42.3 Member Function Documentation

3.42.3.1 UpdateJobTask()

void JobTaskViewModel.UpdateJdobTask () [inline]
Updates the job task view model with the latest data from the job task model.

The documentation for this class was generated from the following file:

* ViewModels/TableContextViewModels/SubViewModels/JobTaskViewModel.cs

3.43 LoadModelDataMessage Class Reference

Message to load the viewmodels with data after the table model has been loaded.

Inheritance diagram for LoadModelDataMessage:

ValueChangedMessage
< string >

LoadModelDataMessage

Generated by Doxygen

3.44 MainPage Class Reference 105

Collaboration diagram for LoadModelDataMessage:

ValueChangedMessage
< string >

LoadModelDataMessage

Public Member Functions

» LoadModelDataMessage (string value)

3.43.1 Detailed Description

Message to load the viewmodels with data after the table model has been loaded.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.44 MainPage Class Reference

MainPage is the main page of the application. It contains the main view model and the tables content view.

Inheritance diagram for MainPage:

ContentPage

MainPage

Generated by Doxygen

106

Class Documentation

Collaboration diagram for MainPage:

ContentPage

A

MainPage

Public Member Functions

» MainPage (MainViewModel mainViewModel, TablesContentView tablesContentView)

Initializes a new instance of the MainPage class.

Protected Member Functions

+ override void OnAppearing ()

Called when the page is appearing. This method is used to reload the tables content view when the page appears.

3.44.1 Detailed Description

MainPage is the main page of the application. It contains the main view model and the tables content view.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.44.2 Constructor & Destructor Documentation

3.44.21 MainPage()

MainPage.MainPage (
MainViewModel mainViewModel,

TablesContentView tablesContentView) [inline]

Initializes a new instance of the MainPage class.

Generated by Doxygen

3.45 MainViewModel Class Reference 107

Parameters

mainViewModel Dependency injection of the main view model.

tablesContentView | Dependency injection of the tables content view.

3.44.3 Member Function Documentation

3.44.3.1 OnAppearing()

override void MainPage.OnAppearing () [inline], [protected]
Called when the page is appearing. This method is used to reload the tables content view when the page appears.

The documentation for this class was generated from the following file:

» Views/MainPage.xaml.cs

3.45 MainViewModel Class Reference

Main view model for the application.

Inheritance diagram for MainViewModel:

ObservableObject

MainViewModel

Collaboration diagram for MainViewModel:

ObservableObject

MainViewModel

Generated by Doxygen

108 Class Documentation

Public Member Functions

» MainViewModel (IServiceProvider serviceProvider, TableContextService tableContextService)

The MainViewModel constructor.
« void TableDragStarting (object sender, DragStartingEventArgs e)

Handles the drag starting event for a table.
+ void TableDrop (object sender, DropEventArgs e)

Handles the drag ending event for a table.
+ async Task GoToTable (TableContext table)

Navigates to the specified table context.
+ void ReconnectTable (TableContext table)

Reconnects to the specified table context.
« void EditTable (TableContext table)

Edits the specified table context. By opening a popup.EditTablePopup"/>
« async void DeleteTable (TableContext tableContext)

Deletes the specified table context. By opening a confirmation dialog.

Properties

» |IReadOnlyList< TableContext > Tables [get]

The list of tables managed by the application.
* |AsyncRelayCommand GoToTableCommand [get]

Command to navigate to a table context.
» ICommand ReconnectTableCommand [get]

Command to reconnect to a table.
» ICommand EditTableCommand [get]

Command to edit a table context.
* ICommand DeleteTableCommand [get]

Command to delete a table context.

3.45.1 Detailed Description

Main view model for the application.

This class is responsible for managing the main view of the application. Showing all the tables and their status.
Responsible for handling user interactions with the table context object TableContext.

Author

Ole William Skistad Huslende
Tormod Smidesang
Elvin Andreas Pedersen

3.45.2 Constructor & Destructor Documentation

3.45.2.1 MainViewModel()

MainViewModel .MainViewModel (
IServiceProvider serviceProvider,

TableContextService tableContextService) [inline]
The MainViewModel constructor.

Sets up the commands and initializes the table context service.

Generated by Doxygen

3.45 MainViewModel Class Reference 109

Parameters

serviceProvider The service provider used to resolve dependencies.

tableContextService | The service used to manage table contexts.

3.45.3 Member Function Documentation

3.45.3.1 DeleteTable()

async void MainViewModel.DeleteTable (
TableContext tableContext) [inline]

Deletes the specified table context. By opening a confirmation dialog.

Parameters

tableContext | The specified table context

Author

Tormod Smidesang

3.45.3.2 EditTable()

void MainViewModel.EditTable (
TableContext table) [inline]

Edits the specified table context. By opening a popup.EditTablePopup"/>

Parameters

‘ table ‘ The specified table context

3.45.3.3 GoToTable()

async Task MainViewModel.GoToTable (
TableContext table) [inline]

Navigates to the specified table context.

Generated by Doxygen

110 Class Documentation

Parameters

‘ table ‘ The specified table context

Returns

A task that represents the asynchronous operation.

Author
Ole William Skistad Huslende

3.45.3.4 ReconnectTable()

void MainViewModel.ReconnectTable (
TableContext table) [inline]

Reconnects to the specified table context.

Parameters

‘ table ‘ The specified table context

Author

Tormod Smidesange

3.45.3.5 TableDragStarting()

void MainViewModel.TableDragStarting (
object sender,

DragStartingEventArgs e) [inline]

Handles the drag starting event for a table.

Parameters

sender | The element that is being dragged.

e The event arguments containing the drag starting information

Author

Elvin Andreas Pedersen

Generated by Doxygen

3.45 MainViewModel Class Reference

3.45.3.6 TableDrop()

void MainViewModel.TableDrop (
object sender,

DropEventArgs e) [inline]

Handles the drag ending event for a table.

Parameters

sender | The element that is being dragged.

e The event arguments containing the drag ending information.

Author

Elvin Andreas Pedersen

3.45.4 Property Documentation

3.45.4.1 DeleteTableCommand

ICommand MainViewModel.DeleteTableCommand [get]

Command to delete a table context.

3.45.4.2 EditTableCommand

ICommand MainViewModel.EditTableCommand [get]

Command to edit a table context.

3.45.4.3 GoToTableCommand

IAsyncRelayCommand MainViewModel.GoToTableCommand [get]

Command to navigate to a table context.

Generated by Doxygen

112 Class Documentation

3.45.4.4 ReconnectTableCommand

ICommand MainViewModel.ReconnectTableCommand [get]

Command to reconnect to a table.

3.45.4.5 Tables

IReadOnlyList<TableContext> MainViewModel.Tables [get]
The list of tables managed by the application.

The documentation for this class was generated from the following file:

* ViewModels/MainViewModel.cs

3.46 MaterialTotalProducedCopiesViewModel Class Reference

ViewModel for the material total produced copies.

Inheritance diagram for MaterialTotalProducedCopiesViewModel:

ObservableObject

MaterialTotalProducedCopies
ViewModel

Collaboration diagram for MaterialTotalProducedCopiesViewModel:

ObservableObject

MaterialTotalProducedCopies
ViewModel

Generated by Doxygen

3.47 MetaStatisticsMessage Class Reference 113

3.46.1 Detailed Description

ViewModel for the material total produced copies.

This class is used to represent the total produced copies of a material.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/SubViewModels/Material TotalProducedCopiesViewModel.cs

3.47 MetaStatisticsMessage Class Reference

Message sent from the statistics viewmodel to the metastatistics viewmodel when the statistics are updated.

Inheritance diagram for MetaStatisticsMessage:

ValueChangedMessage
< TableStatisticsViewModel >

MetaStatisticsMessage

Collaboration diagram for MetaStatisticsMessage:

ValueChangedMessage
< TableStatisticsViewModel >

MetaStatisticsMessage

Generated by Doxygen

114 Class Documentation

Public Member Functions

+ MetaStatisticsMessage (TableStatisticsViewModel value)

3.47.1 Detailed Description

Message sent from the statistics viewmodel to the metastatistics viewmodel when the statistics are updated.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

» ViewModels/ViewModelMessages.cs

3.48 MetaStatisticsPage Class Reference

MetaStatisticsPage is the page that shows the statistics for all the tables.

Inheritance diagram for MetaStatisticsPage:

ContentPage

MetaStatisticsPage

Collaboration diagram for MetaStatisticsPage:

ContentPage

MetaStatisticsPage

Generated by Doxygen

3.49 MetaStatisticsViewModel Class Reference

115

Public Member Functions

» MetaStatisticsPage (MetaStatisticsViewModel metaStatisticsViewModel)

Initializes a new instance of the MetaStatisticsPage class.

3.48.1 Detailed Description

MetaStatisticsPage is the page that shows the statistics for all the tables.

Author
Ole William Skistad Huslende

Elvin Andreas Pedersen

3.48.2 Constructor & Destructor Documentation

3.48.2.1 MetaStatisticsPage()

MetaStatisticsPage.MetaStatisticsPage (

MetaStatisticsViewModel metaStatisticsViewModel) [inline]

Initializes a new instance of the MetaStatisticsPage class.

Parameters

metaStatisticsViewModel | Dependency injection of the view model for the page.

The documentation for this class was generated from the following file:

» Views/MetaStatisticsPage.xaml.cs

3.49 MetaStatisticsViewModel Class Reference

ViewModel for the MetaStatistics page.

Generated by Doxygen

116 Class Documentation

Inheritance diagram for MetaStatisticsViewModel:

IRecipient< MetaStatistics

ObservableObject Message >

MetaStatisticsViewModel

Collaboration diagram for MetaStatisticsViewModel:

IRecipient< MetaStatistics

ObservableObject Message >

MetaStatisticsViewModel

Public Member Functions

» MetaStatisticsViewModel (IServiceProvider serviceProvider, TableContextService tableContextService,
IMessenger metaMessenger)
Constructor for the MetaStatistics ViewModel.
« void Receive (MetaStatisticsMessage message)
Handles the reception of a MetaStatisticsMessage.
+ ObservableCollection< JobStatisticsViewModel > MergeAndGetTop20 (ObservableCollection< JobStatisticsViewModel
> listA, ObservableCollection< JobStatisticsViewModel > listB)
Merges two collections of job statistics and returns the last 20 based on the start date.
void GetDayStatistics ()
Requests the production statistics for the last 24 hours for all tables.
+ void GetWeekStatistics ()
Requests the production statistics for the last 7 days for all tables.
+ void GetMonthStatistics ()
Requests the production statistics for the last 31 days for all tables.
+ void RequestProductionStatistics (DateTime before, DateTime after)

Requests the production statistics for all tables based on the given time range.

Generated by Doxygen

3.49 MetaStatisticsViewModel Class Reference

117

3.49.1 Detailed Description

ViewModel for the MetaStatistics page.
Holds the statistics for all the tables connected to the application.

Author
Ole William Skistad Huslende

3.49.2 Constructor & Destructor Documentation

3.49.2.1 MetaStatisticsViewModel()

MetaStatisticsViewModel.MetaStatisticsViewModel (
IServiceProvider serviceProvider,
TableContextService tableContextService,

IMessenger metaMessenger) [inline]

Constructor for the MetaStatisticsViewModel.

Defines the columns for the job statistics, material statistics, and customer statistics tables.

model to receive messages from the messenger.

Parameters

serviceProvider The service provider for dependency injection.

tableContextService | The table context service for managing table contexts.

metaMessenger The messenger for sending and receiving messages.

3.49.3 Member Function Documentation

3.49.3.1 GetDayStatistics()

void MetaStatisticsViewModel.GetDayStatistics () [inline]

Requests the production statistics for the last 24 hours for all tables.

3.49.3.2 GetMonthStatistics()

void MetaStatisticsViewModel.GetMonthStatistics () [inline]

Requests the production statistics for the last 31 days for all tables.

Registers the view

Generated by Doxygen

118 Class Documentation

3.49.3.3 GetWeekStatistics()

void MetaStatisticsViewModel.GetWeekStatistics () [inline]

Requests the production statistics for the last 7 days for all tables.

3.49.3.4 MergeAndGetTop20()

ObservableCollection<JobStatisticsViewModel> MetaStatisticsViewModel.MergeAndGetTop20 (
ObservableCollection< JobStatisticsViewModel > 1istA,
ObservableCollection< JobStatisticsViewModel > 1istB) [inline]

Merges two collections of job statistics and returns the last 20 based on the start date.

Parameters

listA | The first list of job statistics.

listB | The second list of job statistics.

Returns

Returns a new collection of job statistics containing the last 20 based on the start date.

3.49.3.5 Receive()

void MetaStatisticsViewModel.Receive (

MetaStatisticsMessage message) [inline]
Handles the reception of a MetaStatisticsMessage.

Calculates the statistics for the received message and updates the view model properties.

Parameters

message | The message containing the statistics view model for each of the tables.

3.49.3.6 RequestProductionStatistics()

void MetaStatisticsViewModel.RequestProductionStatistics (
DateTime before,

DateTime after) [inline]

Requests the production statistics for all tables based on the given time range.

Generated by Doxygen

3.50 MillimetersToMetersConverter Class Reference

119

Parameters

before | The statistics requested before this time.
after The statistics requested after this time.

The documentation for this class was generated from the following file:

« ViewModels/MetaStatisticsViewModel.cs

3.50 MillimetersToMetersConverter Class Reference

Converts millimeters to meters.

Inheritance diagram for MillimetersToMetersConverter:

IValueConverter

MillimetersToMetersConverter

Collaboration diagram for MillimetersToMetersConverter:

IValueConverter

MillimetersToMetersConverter

Public Member Functions

+ object Convert (object value, Type targetType, object parameter, Culturelnfo culture)

Converts an integer representing a distance in millimeters into an equivalent distance expressed in meters.
+ object ConvertBack (object value, Type targetType, object parameter, Culturelnfo culture)

Not implemented.

Generated by Doxygen

120

Class Documentation

3.50.1 Detailed Description

Converts millimeters to meters.

Author

Elvin Andreas Pedersen

3.50.2 Member Function Documentation

3.50.2.1 Convert()

object MillimetersToMetersConverter.Convert

object value,
Type targetType,
object parameter,

CulturelInfo culture)

[inline]

Converts an integer representing a distance in millimeters into an equivalent distance expressed in meters.

Parameters
value The value to be converted
targetType | unused
parameter | unused
culture unused
Returns

The same value, but in meters, as a string

3.50.2.2 ConvertBack()

object MillimetersToMetersConverter.ConvertBack

object value,
Type targetType,
object parameter,

CultureInfo culture

Not implemented.

The documentation for this class was generated from the following file:

« Utilities/Converters/MilliMeterToMeterConverter.cs

[inline]

(

Generated by Doxygen

3.51 NavBarContentView Class Reference

121

3.51 NavBarContentView Class Reference

Navigation bar that should be put at the top of every page

Inheritance diagram for NavBarContentView:

ContentView

NavBarContentView

Collaboration diagram for NavBarContentView:

Public Member Functions

» NavBarContentView ()

Constructor

ContentView

NavBarContentView

 async Task GoToPage (string? pageName)

Navigates to the provided page

Static Public Attributes

+ static readonly BindableProperty IsTablePageProperty

Bindable bool property set in xaml to determine if the page should show the tabs relevant for all tables (when false)
or the tabs relevant for the single selected (when true)

« static readonly BindableProperty PageTitleProperty

Bindable string property set in xaml. Should contain the name of the page the navbar is displayed on

« static readonly BindableProperty PageSubTitleProperty

Bindable string property set in xaml. Usage is context dependent, usually shows the name of the relevant table

Generated by Doxygen

122 Class Documentation

Properties

* bool IsTablePage [get, set]
See IsTablePageProperty

+ string PageTitle [get, set]
See PageTitleProperty

« string PageSubTitle [get, set]

See PageSubTitleProperty
+ |AsyncRelayCommand TabClicked [get]

Bindable command called when the user clicks a tab. Must pass the name of the target page as a parameter

3.51.1 Detailed Description

Navigation bar that should be put at the top of every page

This was made as a replacement when we tried to move the home button on the active/history pages so it was in
the same place on the tabbar on all pages, but that caused issues with navigation. Making a replacement enabled
us to have page name and (when relevant) table name on the top bar

Author

Tormod Smidesang

3.51.2 Constructor & Destructor Documentation

3.51.2.1 NavBarContentView()

NavBarContentView.NavBarContentView () [inline]

Constructor

3.51.3 Member Function Documentation

3.51.3.1 GoToPage()

async Task NavBarContentView.GoToPage (

string? pageName) [inline]
Navigates to the provided page

Parameters

pageName | Name of the page to navigate to

Generated by Doxygen

3.51 NavBarContentView Class Reference 123

Returns

A task representing an asynchronous operation

Exceptions

ArgumentException | Thrown if no page name is provided

3.51.4 Member Data Documentation

3.51.4.1 IsTablePageProperty

readonly BindableProperty NavBarContentView.IsTablePageProperty [static]

Initial value:

BindableProperty.Create
(nameof (IsTablePage),
typeof (bool),
typeof (NavBarContentView),
defaultValue: false)

Bindable bool property set in xaml to determine if the page should show the tabs relevant for all tables (when false)
or the tabs relevant for the single selected (when true)

3.51.4.2 PageSubTitleProperty

readonly BindableProperty NavBarContentView.PageSubTitleProperty [static]

Initial value:

BindableProperty.Create
(nameof (PageSubTitle),
typeof (string),
typeof (NavBarContentView),
defaultValue: string.Empty)

Bindable string property set in xaml. Usage is context dependent, usually shows the name of the relevant table

3.51.4.3 PageTitleProperty

readonly BindableProperty NavBarContentView.PageTitleProperty [static]

Initial value:
BindableProperty.Create
(nameof (PageTitle),
typeof (string),
typeof (NavBarContentView),
defaultValue: string.Empty)

Bindable string property set in xaml. Should contain the name of the page the navbar is displayed on

Generated by Doxygen

124

Class Documentation

3.51.5 Property Documentation

3.51.5.1 IsTablePage

bool NavBarContentView.IsTablePage [get], [set]

See IsTablePageProperty

3.51.5.2 PageSubTitle

string NavBarContentView.PageSubTitle [get], [set]

See PageSubTitleProperty

3.51.5.3 PagetTitle

string NavBarContentView.PageTitle [get], [set]

See PageTitleProperty

3.51.5.4 TabClicked

IAsyncRelayCommand NavBarContentView.TabClicked [get]

Bindable command called when the user clicks a tab. Must pass the name of the target page as a parameter

The documentation for this class was generated from the following file:

» Views/NavBarContentView.xaml.cs

3.52 OverruleMaterialCutPresets Class Reference

The model holding overrule material cut preset.

Properties

* bool FocusOnTableTop [get, set]

Force camera to focus on table top, not material
* bool UnconditionalExtraToolLift [get, set]

Force tool to max z height when leaving material.

Generated by Doxygen

3.53 PercentageToProgressConverter Class Reference

125

3.52.1 Detailed Description
The model holding overrule material cut preset.

Author
Ole William Skistad Huslende

3.52.2 Property Documentation

3.52.2.1 FocusOnTableTop

bool OverruleMaterialCutPresets.FocusOnTableTop [get], [set]

Force camera to focus on table top, not material

3.52.2.2 UnconditionalExtraToolLift

bool OverruleMaterialCutPresets.UnconditionalExtraToolLift [get], [set]
Force tool to max z height when leaving material.

The documentation for this class was generated from the following file:

+ Models/ApiQueue/OverruleMaterialCutPresets.cs

3.53 PercentageToProgressConverter Class Reference

Converts a percentage into a value between 0-1. Can be used the other way as well.

Inheritance diagram for PercentageToProgressConverter:

IValueConverter

PercentageToProgressConverter

Generated by Doxygen

126 Class Documentation

Collaboration diagram for PercentageToProgressConverter:

IValueConverter

A

PercentageToProgressConverter

Public Member Functions

« object Convert (object value, Type targetType, object parameter, Culturelnfo culture)

Converts a value between 0-100 into a value between 0-1
+ object ConvertBack (object value, Type targetType, object parameter, Culturelnfo culture)

Converts a value between 0-1 into a value between 0-100

3.53.1 Detailed Description

Converts a percentage into a value between 0-1. Can be used the other way as well.

Author

Elvin Andreas Pedersen

3.53.2 Member Function Documentation

3.53.2.1 Convert()

object PercentageToProgressConverter.Convert (
object value,
Type targetType,
object parameter,

CulturelInfo culture) [inline]

Converts a value between 0-100 into a value between 0-1

Parameters

value a value between 0-100
targetType | unused
parameter | unused

culture unused

Generated by Doxygen

3.54 ProductionTimes Class Reference 127

Returns

a value between 0-1

3.53.2.2 ConvertBack()

object PercentageToProgressConverter.ConvertBack (
object value,
Type targetType,
object parameter,

CulturelInfo culture) [inline]

Converts a value between 0-1 into a value between 0-100

Parameters

value a value between 0-1
targetType | unused

parameter | unused
culture unused

Returns

a value between 0-100

The documentation for this class was generated from the following file:

« Utilities/Converters/PercentageToProgressConverter.cs

3.54 ProductionTimes Class Reference

Represents a data model for job production times.

Properties

» TimeSpan? TotalProductionTime [get, set]

Gets or sets total time spent producing.
» TimeSpan? EstimatedTimelLastCopy [get, set]

Gets or sets estimated time for the current/latest copy.
» TimeSpan? EstimatedTimeAllCopies [get, set]

Gets or sets estimated time for all copies ordered.
+ TimeSpan? RemainingTimeLastCopy [get, set]

Gets or sets remaning time for the current/latest copy.
+ TimeSpan? RemainingTimeAllCopies [get, set]

Gets or set remaning time for all remaining ordered copies.
» TimeSpan? ManualHandlingBeforeFirstCopy [get, set]

Gets or set time allocated for manual preperation before each copy.
» TimeSpan? ManualHandlingAfterLastCopy [get, set]

Gets or set time allocated for manual preperation after each copy.

Generated by Doxygen

128 Class Documentation

3.54.1 Detailed Description

Represents a data model for job production times.

Author
Ole William Skistad Huslende

3.54.2 Property Documentation

3.54.2.1 EstimatedTimeAllCopies

TimeSpan? ProductionTimes.EstimatedTimeAllCopies [get], [set]

Gets or sets estimated time for all copies ordered.

3.54.2.2 EstimatedTimeLastCopy

TimeSpan? ProductionTimes.EstimatedTimeLastCopy [get], [set]

Gets or sets estimated time for the current/latest copy.

3.54.2.3 ManualHandlingAfterLastCopy

TimeSpan? ProductionTimes.ManualHandlingAfterLastCopy [get], [set]

Gets or set time allocated for manual preperation after each copy.

3.54.2.4 ManualHandlingBeforeFirstCopy

TimeSpan? ProductionTimes.ManualHandlingBeforeFirstCopy [get], [set]

Gets or set time allocated for manual preperation before each copy.

Generated by Doxygen

3.55 ProgressWheel Class Reference 129

3.54.2.5 RemainingTimeAllCopies

TimeSpan? ProductionTimes.RemainingTimeAllCopies [get], [set]

Gets or set remaning time for all remaining ordered copies.

3.54.2.6 RemainingTimeLastCopy

TimeSpan? ProductionTimes.RemainingTimeLastCopy [get], [set]

Gets or sets remaning time for the current/latest copy.

3.54.2.7 TotalProductionTime

TimeSpan? ProductionTimes.TotalProductionTime [get], [set]
Gets or sets total time spent producing.

The documentation for this class was generated from the following file:

» Models/ApiQueue/ProductionTimes.cs

3.55 ProgressWheel Class Reference

A custom progress wheel control for displaying progress in a circular format in the status panel.

Inheritance diagram for ProgressWheel:

GraphicsView

ProgressWheel

Generated by Doxygen

130 Class Documentation

Collaboration diagram for ProgressWheel:

GraphicsView

A

ProgressWheel

Public Member Functions

* ProgressWheel ()

Constructor for the ProgressWheel class.

Static Public Attributes

« static readonly BindableProperty OuterProgressProperty

Bindable property for the outer progress value.
» static readonly BindableProperty InnerProgressProperty

Bindable property for the inner progress value.
« static readonly BindableProperty OuterCircleSizeProperty

Bindable property for the outer circle size.
« static readonly BindableProperty InnerCircleSizeProperty

Bindable property for the inner circle size.
« static readonly BindableProperty CircleFillColorProperty

Bindable property for the circle fill color.
« static readonly BindableProperty CircleBackgroundColorProperty

Bindable property for the circle background color.

Properties

« float OuterProgress [get, set]

The outer progress value, between 0 and 1.
« float InnerProgress [get, set]

The inner progress value, between 0 and 1.
« float OuterCircleSize [get, set]

The size of the outer circle, between 0 and 1.
« float InnerCircleSize [get, set]

The size of the inner circle, between 0 and 1.
» Color CircleFillColor [get, set]

The color of the circle fill.
» Color CircleBackgroundColor [get, set]

The color of the circle background.

Generated by Doxygen

3.55 ProgressWheel Class Reference 131

3.55.1 Detailed Description
A custom progress wheel control for displaying progress in a circular format in the status panel.

Author
Ole William Skistad Huslende

3.55.2 Constructor & Destructor Documentation

3.55.2.1 ProgressWheel()

ProgressWheel.ProgressWheel () [inline]

Constructor for the ProgressWheel class.

3.55.3 Member Data Documentation

3.55.3.1 CircleBackgroundColorProperty

readonly BindableProperty ProgressWheel.CircleBackgroundColorProperty [static]

Initial value:
BindableProperty.Create (
nameof (CircleBackgroundColor),
typeof (Color),
typeof (ProgressWheel),
Colors.Gray,
propertyChanged: OnProgressPropertyChanged)

Bindable property for the circle background color.

3.55.3.2 CircleFillColorProperty

readonly BindableProperty ProgressWheel.CircleFillColorProperty [static]

Initial value:

BindableProperty.Create (
nameof (CircleFillColor),
typeof (Color),
typeof (ProgressWheel)
Colors.Orange,
propertyChanged: OnProgressPropertyChanged)

Bindable property for the circle fill color.

Generated by Doxygen

132

Class Documentation

3.55.3.3 InnerCircleSizeProperty

readonly BindableProperty ProgressWheel.InnerCircleSizeProperty [static]

Initial value:
BindableProperty.Create (
nameof (InnerCircleSize),
typeof (float),
typeof (ProgressWheel),
0f,
propertyChanged: OnProgressPropertyChanged)

Bindable property for the inner circle size.

3.55.3.4 InnerProgressProperty

readonly BindableProperty ProgressWheel.InnerProgressProperty [static]

Initial value:
BindableProperty.Create (
nameof (InnerProgress),
typeof (float),
typeof (ProgressWheel)
0f,
propertyChanged: OnProgressPropertyChanged)

Bindable property for the inner progress value.

3.55.3.5 OuterCircleSizeProperty

readonly BindableProperty ProgressWheel.OuterCircleSizeProperty [static]

Initial value:
BindableProperty.Create (
nameof (OuterCircleSize)
typeof (float),
typeof (ProgressWheel)
0f,
propertyChanged: OnProgressPropertyChanged)

Bindable property for the outer circle size.

3.55.3.6 OuterProgressProperty

readonly BindableProperty ProgressWheel.OuterProgressProperty [static]

Initial value:

BindableProperty.Create (
nameof (OuterProgress),
typeof (float),
typeof (ProgressWheel)
0f,
propertyChanged: OnProgressPropertyChanged)

Bindable property for the outer progress value.

Generated by Doxygen

3.55 ProgressWheel Class Reference

133

3.55.4 Property Documentation

3.55.4.1 CircleBackgroundColor

Color ProgressWheel.CircleBackgroundColor [get],

The color of the circle background.

3.55.4.2 CircleFillColor

Color ProgressWheel.CircleFillColor [get], [set]

The color of the circle fill.

3.55.4.3 InnerCircleSize

float ProgressWheel.InnerCircleSize [get], [set]

The size of the inner circle, between 0 and 1.

3.55.4.4 InnerProgress

float ProgressWheel.InnerProgress [get], [set]

The inner progress value, between 0 and 1.

3.55.4.5 OuterCircleSize

float ProgressWheel.OuterCircleSize [get], [set]

The size of the outer circle, between 0 and 1.

[set]

Generated by Doxygen

134 Class Documentation

3.55.4.6 OuterProgress

float ProgressWheel.OuterProgress [get], [set]
The outer progress value, between 0 and 1.

The documentation for this class was generated from the following file:

» Views/Components/ProgressWheel.cs

3.56 ProgressWheelDrawable Class Reference

Custom drawable for the ProgressWheel.

Inheritance diagram for ProgressWheelDrawable:

IDrawable

ProgressWheelDrawable

Collaboration diagram for ProgressWheelDrawable:

IDrawable

ProgressWheelDrawable

Public Member Functions

» ProgressWheelDrawable (ProgressWheel wheel)

Constructor for the ProgressWheelDrawable.
+ void Draw (ICanvas canvas, RectF dirtyRect)

Draws the progress wheel on the canvas.

Generated by Doxygen

3.57 PropertyTrends Class Reference 135

3.56.1 Detailed Description

Custom drawable for the ProgressWheel.

3.56.2 Constructor & Destructor Documentation

3.56.2.1 ProgressWheelDrawable()

ProgressWheelDrawable.ProgressWheelDrawable (

ProgressWheel wheel) [inline]

Constructor for the ProgressWheelDrawable.

Parameters

‘ wheel ‘ The ProgressWheel instance that this drawable is associated with.

3.56.3 Member Function Documentation

3.56.3.1 Draw()

void ProgressWheelDrawable.Draw (
ICanvas canvas,

RectF dirtyRect) [inline]

Draws the progress wheel on the canvas.

Parameters

canvas The canvas to draw on.
dirtyRect | The rectangle that defines the area to draw in.

The documentation for this class was generated from the following file:

+ Views/Components/ProgressWheel.cs

3.57 PropertyTrends Class Reference

Represents a data model for property trends sent from the Kongsberg HUB.

Generated by Doxygen

136 Class Documentation

Properties

» DateTime FirstOccurrence [get, set]

When the propery first occurred.
» DateTime LastOccurrence [get, set]

When the property last occurred.
* int Occurrences [get, set]

The number of times the property has occurred.
+ string LowestValue [get, set]

The lowest value of the property.
» DateTime LowestValueDate [get, set]

When the lowest value occurred.
« string HighestValue [get, set]

The highest value of the property.
» DateTime HighestValueDate [get, set]

When the highest value occurred.
« string Name [get, set]

The name of the property.
» string Value [get, set]

The value of the property.

3.57.1 Detailed Description
Represents a data model for property trends sent from the Kongsberg HUB.

Author
Ole William Skistad Huslende

3.57.2 Property Documentation

3.57.2.1 FirstOccurrence

DateTime PropertyTrends.FirstOccurrence [get], [set]

When the propery first occurred.

3.57.2.2 HighestValue

string PropertyTrends.HighestValue [get], [set]

The highest value of the property.

Generated by Doxygen

3.57 PropertyTrends Class Reference 137

3.57.2.3 HighestValueDate

DateTime PropertyTrends.HighestValueDate [get], [set]

When the highest value occurred.

3.57.2.4 LastOccurrence

DateTime PropertyTrends.LastOccurrence [get], [set]

When the property last occurred.

3.57.2.5 LowestValue

string PropertyTrends.LowestValue [get], [set]

The lowest value of the property.

3.57.2.6 LowestValueDate

DateTime PropertyTrends.LowestValueDate [get], [set]

When the lowest value occurred.

3.57.2.7 Name

string PropertyTrends.Name [get], [set]

The name of the property.

3.57.2.8 Occurrences

int PropertyTrends.Occurrences [get], [set]

The number of times the property has occurred.

Generated by Doxygen

138 Class Documentation
3.57.2.9 Value
string PropertyTrends.Value [get], [set]

The value of the property.

The documentation for this class was generated from the following file:

» Models/ApiTrends/Property Trends.cs

3.58 QueueEntryAddedEvent Class Reference

Represents an event from the Kongsberg HUB where a job is added to the queue.

Properties

« JobTask TaskDetails [get, set]
The job that was added to the queue.
* stringID [get, set]
The Id of the event.
» EventAction Action [get, set]

The action that triggered the event EventAction.

3.58.1 Detailed Description

Represents an event from the Kongsberg HUB where a job is added to the queue.

Author
Ole William Skistad Huslende

3.58.2 Property Documentation

3.58.2.1 Action

EventAction QueueEntryAddedEvent.Action [get], [set]

The action that triggered the event EventAction.

Generated by Doxygen

3.59 QueueEntryAddedMessage Class Reference 139

3.58.2.2 ID

string QueueEntryAddedEvent.ID [get], [set]

The Id of the event.

3.58.2.3 TaskDetails

JobTask QueueEntryAddedEvent.TaskDetails [get], [set]
The job that was added to the queue.

The documentation for this class was generated from the following file:

» Models/ApiSSE/EventTypes.cs

3.59 QueueEntryAddedMessage Class Reference

Message to send queue entry added event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

Inheritance diagram for QueueEntryAddedMessage:

ValueChangedMessage
< QueueEntryAddedEvent >

QueueEntryAddedMessage

Collaboration diagram for QueueEntryAddedMessage:

ValueChangedMessage
< QueueEntryAddedEvent >

QueueEntryAddedMessage

Generated by Doxygen

140 Class Documentation

Public Member Functions

* QueueEntryAddedMessage (QueueEntryAddedEvent value)

3.59.1 Detailed Description

Message to send queue entry added event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.60 AQueueEntryMovedEvent Class Reference

Represents an event from the Kongsberg HUB where a job is moved in the queue.

Properties

* intIndex [get, set]

The job that was moved in the queue.
* stringID [get, set]

The Id of the event.
» EventAction Action [get, set]

The action that triggered the event EventAction.

3.60.1 Detailed Description
Represents an event from the Kongsberg HUB where a job is moved in the queue.

Author
Ole William Skistad Huslende

3.60.2 Property Documentation

Generated by Doxygen

3.61 QueueEntryMovedMessage Class Reference 141

3.60.2.1 Action

EventAction QueueEntryMovedEvent.Action [get], [set]

The action that triggered the event EventAction.

3.60.2.2 ID

string QueueEntryMovedEvent.ID [get], [set]

The Id of the event.

3.60.2.3 Index

int QueueEntryMovedEvent.Index [get], [set]
The job that was moved in the queue.

The documentation for this class was generated from the following file:

* Models/ApiSSE/EventTypes.cs

3.61 QueueEntryMovedMessage Class Reference

Message to send queue entry moved event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

Inheritance diagram for QueueEntryMovedMessage:

ValueChangedMessage
< QueueEntryMovedEvent >

QueueEntryMovedMessage

Generated by Doxygen

142 Class Documentation

Collaboration diagram for QueueEntryMovedMessage:

ValueChangedMessage
< QueueEntryMovedEvent >

QueueEntryMovedMessage

Public Member Functions

* QueueEntryMovedMessage (QueueEntryMovedEvent value)

3.61.1 Detailed Description

Message to send queue entry moved event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.62 QueueEntryRemovedEvent Class Reference

Represents an event from the Kongsberg HUB where a job is removed from the queue.

Properties

+ stringID [get, set]
The Id of the job that was removed from the queue.
» EventAction Action [get, set]

The action that triggered the event EventAction.

Generated by Doxygen

3.63 QueueEntryRemovedMessage Class Reference

143

3.62.1 Detailed Description

Represents an event from the Kongsberg HUB where a job is removed from the queue.

Author
Ole William Skistad Huslende

3.62.2 Property Documentation

3.62.2.1 Action

EventAction QueueEntryRemovedEvent.Action [get],

The action that triggered the event EventAction.

3.62.2.2 ID

string QueueEntryRemovedEvent.ID [get], [set]

The Id of the job that was removed from the queue.

[set]

The documentation for this class was generated from the following file:

* Models/ApiSSE/EventTypes.cs

3.63 QueueEntryRemovedMessage Class Reference

Message to send queue entry removed event received from the Kongsberg HUB and propagate it forward to the

viewmodels.

Inheritance diagram for QueueEntryRemovedMessage:

ValueChangedMessage
< QueueEntryRemovedEvent >

QueueEntryRemovedMessage

Generated by Doxygen

144 Class Documentation

Collaboration diagram for QueueEntryRemovedMessage:

ValueChangedMessage
< QueueEntryRemovedEvent >

QueueEntryRemovedMessage

Public Member Functions

* QueueEntryRemovedMessage (QueueEntryRemovedEvent value)

3.63.1 Detailed Description

Message to send queue entry removed event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.64 QueueEntryUpdatedEvent Class Reference

Represents an event from the Kongsberg HUB where a job is updated in the queue.

Properties

» JobTask TaskDetails [get, set]
The job properties that have changed.
* stringID [get, set]
The Id of the event.
« EventAction Action [get, set]

The action that triggered the event EventAction.

Generated by Doxygen

3.64 QueueEntryUpdatedEvent Class Reference

145

3.64.1 Detailed Description

Represents an event from the Kongsberg HUB where a job is updated in the queue.

Author
Ole William Skistad Huslende

3.64.2 Property Documentation

3.64.2.1 Action

EventAction QueueEntryUpdatedEvent.Action [get], [set]

The action that triggered the event EventAction.

3.64.22 ID

string QueueEntryUpdatedEvent.ID [get], [set]

The Id of the event.

3.64.2.3 TaskDetails

JobTask QueueEntryUpdatedEvent.TaskDetails [get], [set]
The job properties that have changed.

The documentation for this class was generated from the following file:

* Models/ApiSSE/EventTypes.cs

Generated by Doxygen

146 Class Documentation

3.65 QueueEntryUpdatedMessage Class Reference

Message to send queue entry updated event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

Inheritance diagram for QueueEntryUpdatedMessage:

ValueChangedMessage
< QueueEntryUpdatedEvent >

QueueEntryUpdatedMessage

Collaboration diagram for QueueEntryUpdatedMessage:

ValueChangedMessage
< QueueEntryUpdatedEvent >

QueueEntryUpdatedMessage

Public Member Functions
* QueueEntryUpdatedMessage (QueueEntryUpdatedEvent value)

3.65.1 Detailed Description

Message to send queue entry updated event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

Generated by Doxygen

3.66 QueueServerJobStatistics Class Reference 147

3.66 QueueServerJobStatistics Class Reference

A data model for the job statistic.

Properties

e string? Id [get, set]
The Id for the job.
» string? Name [get, set]
The name of the job.
+ TimeSpan? TotalProductionTime [get, set]

The total production time for the job.
» DateTime? StatisticsCreated [get, set]

When the statistics were created.
» DateTime? StatisticsEnded [get, set]

When the statistics ended.
« int? TotalCopiesProduced [get, set]

Total copies produced for the job.
« int? TotalCopiesRejected [get, set]

Total copies skipped for the job.
+ string? Jobld [get, set]
+ string? JobRefinternal [get, set]
+ string? Externalld [get, set]
» string? Externalld2 [get, set]
* int? JobPriority [get, set]

The priority of the job.
* DateTime? DueDate [get, set]

The time job is expected to be finished
« Customer? Customer [get, set]

The customer associated with the job ApiQueue.Customer.
« string? OriginalCutFileLoc [get, set]

File location of the original cut file.
« List< QueueServerProductionRunStatistics?>? ProductionRuns [get, set]

List of production runs associated with the job QueueServerProductionRunStatistics.

3.66.1 Detailed Description

A data model for the job statistic.

Author
Ole William Skistad Huslende

3.66.2 Property Documentation

Generated by Doxygen

148

Class Documentation

3.66.2.1 Customer

Customer? QueueServerJobStatistics.Customer [get], [set]

The customer associated with the job ApiQueue.Customer.

3.66.2.2 DueDate

DateTime? QueueServerJobStatistics.DueDate [get], [set]

The time job is expected to be finished

3.66.2.3 Id

string? QueueServerJobStatistics.Id [get], [set]

The Id for the job.

3.66.2.4 JobPriority

int? QueueServerJobStatistics.JobPriority [get], [set]

The priority of the job.

3.66.2.5 Name

string? QueueServerJobStatistics.Name [get], [set]

The name of the job.

3.66.2.6 OriginalCutFileLoc

string? QueueServerJobStatistics.OriginalCutFileLoc [get],

File location of the original cut file.

[set]

Generated by Doxygen

3.66 QueueServerJobStatistics Class Reference

149

3.66.2.7 ProductionRuns

List<QueueServerProductionRunStatistics?>? QueueServerJobStatistics.ProductionRuns
[set]

List of production runs associated with the job QueueServerProductionRunStatistics.

3.66.2.8 StatisticsCreated

DateTime? QueueServerJobStatistics.StatisticsCreated [get], [set]

When the statistics were created.

3.66.2.9 StatisticsEnded

DateTime? QueueServerJobStatistics.StatisticsEnded [get], [set]

When the statistics ended.

3.66.2.10 TotalCopiesProduced

int? QueueServerJobStatistics.TotalCopiesProduced [get], [set]

Total copies produced for the job.

3.66.2.11 TotalCopiesRejected

int? QueueServerJobStatistics.TotalCopiesRejected [get], [set]

Total copies skipped for the job.

3.66.2.12 TotalProductionTime

TimeSpan? QueueServerJobStatistics.TotalProductionTime [get], [set]
The total production time for the job.

The documentation for this class was generated from the following file:

» Models/ApiStatistics/QueueServerJobStatistics.cs

[get],

Generated by Doxygen

150 Class Documentation

3.67 QueueServerLayerStatistics Class Reference

A data model for layer statistics in a production run.

Properties

« int? ToolUpDistance [get, set]

The total distance moved by the tool in up position.
* int? ToolUpMoves [get, set]

The total moves made by the tool in up position.
 int? ToolDownDistance [get, set]

The total distance moved by the tool in down position.
 int? ToolDownMoves [get, set]

The total moves made by the tool in down position.
* int? LineCount [get, set]

The total lines produced by the tool.
« int? ArcCount [get, set]
The total arcs produced by the tool.
 string LayerName [get, set]
User defined name of the layer.
» PublicLayerTypes? LayerType [get, set]

The type of the layer PublicLayerTypes.
« string ToolName [get, set]

User defined name of the tool.
* PublicToolTypes? ToolType [get, set]

The type of the tool PublicToolTypes.
 int? Acceleration [get, set]
Acceleration set for layer
+ int? SpeedX [get, set]
The X speed set for the layer.
* int? SpeedY [get, set]
The Y speed set for the layer.
 int? DepthAlong [get, set]
Depth along flute direction
+ int? DepthAcross [get, set]

Depth across flute direction
* int? NumberOfMultiPasses [get, set]

Number of multi passes set for the layer.
+ int? NumberOfRegmarks [get, set]
Number of regmarks in layer
+ int? SpindleRpm [get, set]
RPM spindle was ordered to run at.
+ int? ToolLag [get, set]
The tool lag set for the layer.
+ int? CircleAdjust [get, set]

The tool lag set for the layer.

Generated by Doxygen

3.67 QueueServerLayerStatistics Class Reference 151

3.67.1 Detailed Description

A data model for layer statistics in a production run.

Layer statistics are used to provide detailed information about the production run QueueServerProductionRunStatistics.

Author
Ole William Skistad Huslende

3.67.2 Property Documentation

3.67.2.1 Acceleration

int? QueueServerLayerStatistics.Acceleration [get], [set]

Acceleration set for layer

3.67.2.2 ArcCount

int? QueueServerlLayerStatistics.ArcCount [get], [set]

The total arcs produced by the tool.

3.67.2.3 CircleAdjust

int? QueueServerLayerStatistics.CircleAdjust [get], [set]

The tool lag set for the layer.

3.67.2.4 DepthAcross

int? QueueServerLayerStatistics.DepthAcross [get], [set]

Depth across flute direction

Generated by Doxygen

152

Class Documentation

3.67.2.5 DepthAlong

int? QueueServerLayerStatistics.DepthAlong [get], [set]

Depth along flute direction

3.67.2.6 LayerName

string QueueServerLayerStatistics.LayerName [get], [set]

User defined name of the layer.

3.67.2.7 LayerType

PublicLayerTypes? QueueServerLayerStatistics.LayerType [get],

The type of the layer PublicLayerTypes.

3.67.2.8 LineCount

int? QueueServerLayerStatistics.LineCount [get], [set]

The total lines produced by the tool.

3.67.2.9 NumberOfMultiPasses

[set]

int? QueueServerlayerStatistics.NumberOfMultiPasses [get], [set]

Number of multi passes set for the layer.

3.67.2.10 NumberOfRegmarks

int? QueueServerLayerStatistics.NumberOfRegmarks [get], [set]

Number of regmarks in layer

Generated by Doxygen

3.67 QueueServerLayerStatistics Class Reference

153

3.67.2.11 SpeedX

int? QueueServerLayerStatistics.SpeedX [get], [set]

The X speed set for the layer.

3.67.2.12 SpeedY

int? QueueServerLayerStatistics.SpeedY [get], [set]

The Y speed set for the layer.

3.67.2.13 SpindleRpm

int? QueueServerlLayerStatistics.SpindleRpm [get], [set]

RPM spindle was ordered to run at.

3.67.2.14 ToolDownDistance

int? QueueServerLayerStatistics.ToolDownDistance [get], [set]

The total distance moved by the tool in down position.

3.67.2.15 ToolDownMoves

int? QueueServerlLayerStatistics.ToolDownMoves [get], [set]

The total moves made by the tool in down position.

3.67.2.16 ToollLag

int? QueueServerLayerStatistics.ToolLag [get], [set]

The tool lag set for the layer.

Generated by Doxygen

154 Class Documentation

3.67.2.17 ToolName

string QueueServerLayerStatistics.ToolName [get], [set]

User defined name of the tool.

3.67.2.18 ToolType

PublicToolTypes? QueueServerLayerStatistics.ToolType [get], [set]

The type of the tool PublicToolTypes.

3.67.2.19 ToolUpDistance

int? QueueServerlayerStatistics.ToolUpDistance [get], [set]

The total distance moved by the tool in up position.

3.67.2.20 ToolUpMoves

int? QueueServerLayerStatistics.ToolUpMoves [get], [set]
The total moves made by the tool in up position.

The documentation for this class was generated from the following file:

» Models/ApiStatistics/QueueServerLayerStatistics.cs

3.68 QueueServerProductionRunStatistics Class Reference

A data model for run statistics in a production job.

Generated by Doxygen

3.68 QueueServerProductionRunStatistics Class Reference

155

Properties

» DateTime RunStarted [get, set]
When the production run started.
» DateTime RunEnded [get, set]
When the production run ended.
« int? CopiesOrdered [get, set]
The order number of the copies.
+ int? CopiesProduced [get, set]
The number of copies produced.
+ int? CopiesRejected [get, set]
The number of copies rejected.
« int? CopiesSkipped [get, set]
The number of copies skipped.
+ string Operator [get, set]
Name of signed in Windows user during production run.
« string MappingPresetName [get, set]
Name of the mapping preset used during production run.
« string CuttingProfileName [get, set]
Name of the cutting profile used during production run.
+ string ToolingPresetName [get, set]
Name of the tooling preset used during production run.
« string ProductionPresetName [get, set]
Name of the production preset used during production run.
* PublicMeasurementTypes? MaterialMeasurementType [get, set]

The type of material mesurement used during production run PublicMeasurementTypes.

» PublicCompensationTypes? CompensationType [get, set]
The type of compensation used during production run PublicCompensationTypes.
» PublicRegistrationModes? RegistrationMode [get, set]
The type of registration used during production run PublicRegistrationModes.
* ProductionType? ProductionType [get, set]
The type of production used during production run ProductionType.
* Quality? Quality [get, set]
The type of quality used during production run Quality.
+ string MaterialName [get, set]
Name of the material used during production run.
 string MaterialFamilyName [get, set]
Name of the material family used during production run.
* int? MaterialThickness [get, set]
The thickness of the material used during production run.
* bool? ExtraToolLiftUsed [get, set]
Is machine instructed to use the extra tool lift during production run.
* int? JobSizeWidth [get, set]
Size of material used during production run.
« string? JobSheetHeight [get, set]
Size of material used during production run.
+ int? StepAndRepeatCountX [get, set]
Number of step and repeat jobs in x
+ int? StepAndRepeatCountY [get, set]
Number of step and repeat jobs in y
« int? CheckOutDistance [get, set]

Generated by Doxygen

156 Class Documentation

Distance from corner to check for edge
* bool? SimultaneousCuttingAndUnloading [get, set]

Indicates if stacker is running in simultaneous mode.
» PublicTableCorners? CornerToScanFrom [get, set]

What corner to scan from PublicTableCorners.
» PublicEdgeScanAlongModes? EdgeScanMode [get, set]

The type of edge scan used during production run PublicEdgeScanAlongModes.
* List< CopyTime > CopyTimes [get, set]

Time information for each copy produced during production run.
« List< QueueServerLayerStatistics > Layers [get, set]

List of layers produced during production run.

3.68.1 Detailed Description

A data model for run statistics in a production job.

Run statistics are used to provide detailed information about the production job QueueServerJobStatistics.

Author
Ole William Skistad Huslende

3.68.2 Property Documentation

3.68.2.1 CheckOutDistance

int? QueueServerProductionRunStatistics.CheckOutDistance [get], [set]

Distance from corner to check for edge

3.68.2.2 CompensationType

PublicCompensationTypes? QueueServerProductionRunStatistics.CompensationType [get], [set]

The type of compensation used during production run PublicCompensationTypes.

3.68.2.3 CopiesOrdered

int? QueueServerProductionRunStatistics.CopiesOrdered [get], [set]

The order number of the copies.

Generated by Doxygen

3.68 QueueServerProductionRunStatistics Class Reference 157

3.68.2.4 CopiesProduced

int? QueueServerProductionRunStatistics.CopiesProduced [get], [set]

The number of copies produced.

3.68.2.5 CopiesRejected

int? QueueServerProductionRunStatistics.CopiesRejected [get], [set]

The number of copies rejected.

3.68.2.6 CopiesSkipped

int? QueueServerProductionRunStatistics.CopiesSkipped [get], [set]

The number of copies skipped.

3.68.2.7 CopyTimes

List<CopyTime> QueueServerProductionRunStatistics.CopyTimes [get], [set]

Time information for each copy produced during production run.

3.68.2.8 CornerToScanFrom

PublicTableCorners? QueueServerProductionRunStatistics.CornerToScanFrom [get], [set]

What corner to scan from PublicTableCorners.

3.68.2.9 CuttingProfileName

string QueueServerProductionRunStatistics.CuttingProfileName [get], [set]

Name of the cutting profile used during production run.

Generated by Doxygen

158 Class Documentation

3.68.2.10 EdgeScanMode

PublicEdgeScanAlongModes? QueueServerProductionRunStatistics.EdgeScanMode [get], [set]

The type of edge scan used during production run PublicEdgeScanAlongModes.

3.68.2.11 ExtraToolLiftUsed

bool? QueueServerProductionRunStatistics.ExtraToolLiftUsed [get], [set]

Is machine instructed to use the extra tool lift during production run.

3.68.2.12 JobSheetHeight

string? QueueServerProductionRunStatistics.JobSheetHeight [get], [set]

Size of material used during production run.

3.68.2.13 JobSizeWidth

int? QueueServerProductionRunStatistics.JobSizeWidth [get], [set]

Size of material used during production run.

3.68.2.14 Layers

List<QueueServerLayerStatistics> QueueServerProductionRunStatistics.Layers [get], [set]

List of layers produced during production run.

3.68.2.15 MappingPresetName

string QueueServerProductionRunStatistics.MappingPresetName [get], [set]

Name of the mapping preset used during production run.

Generated by Doxygen

3.68 QueueServerProductionRunStatistics Class Reference

159

3.68.2.16 MaterialFamilyName

string QueueServerProductionRunStatistics.MaterialFamilyName [get], [set]

Name of the material family used during production run.

3.68.2.17 MaterialMeasurementType

PublicMeasurementTypes? QueueServerProductionRunStatistics.MaterialMeasurementType
[set]

The type of material mesurement used during production run PublicMeasurementTypes.

3.68.2.18 MaterialName

string QueueServerProductionRunStatistics.MaterialName [get], [set]

Name of the material used during production run.

3.68.2.19 MaterialThickness

int? QueueServerProductionRunStatistics.MaterialThickness [get], [set]

The thickness of the material used during production run.

3.68.2.20 Operator

string QueueServerProductionRunStatistics.Operator [get], [set]

Name of signed in Windows user during production run.

3.68.2.21 ProductionPresetName

string QueueServerProductionRunStatistics.ProductionPresetName [get], [set]

Name of the production preset used during production run.

[get],

Generated by Doxygen

160 Class Documentation

3.68.2.22 ProductionType

ProductionType? QueueServerProductionRunStatistics.ProductionType [get], [set]

The type of production used during production run ProductionType.

3.68.2.23 Quality

Quality? QueueServerProductionRunStatistics.Quality [get], [set]

The type of quality used during production run Quality.

3.68.2.24 RegistrationMode

PublicRegistrationModes? QueueServerProductionRunStatistics.RegistrationMode [get], [set]

The type of registration used during production run PublicRegistrationModes.

3.68.2.25 RunEnded

DateTime QueueServerProductionRunStatistics.RunEnded [get], [set]

When the production run ended.

3.68.2.26 RunStarted

DateTime QueueServerProductionRunStatistics.RunStarted [get], [set]

When the production run started.

3.68.2.27 SimultaneousCuttingAndUnloading

bool? QueueServerProductionRunStatistics.SimultaneousCuttingAndUnloading [get], [set]

Indicates if stacker is running in simultaneous mode.

Generated by Doxygen

3.69 ResetViewModelMessage Class Reference 161

3.68.2.28 StepAndRepeatCountX

int? QueueServerProductionRunStatistics.StepAndRepeatCountX [get], [set]

Number of step and repeat jobs in x

3.68.2.29 StepAndRepeatCountY

int? QueueServerProductionRunStatistics.StepAndRepeatCountY [get], [set]

Number of step and repeat jobs in'y

3.68.2.30 ToolingPresetName

string QueueServerProductionRunStatistics.ToolingPresetName [get], [set]
Name of the tooling preset used during production run.

The documentation for this class was generated from the following file:

+ Models/ApiStatistics/QueueServerProductionRunStatistics.cs

3.69 ResetViewModelMessage Class Reference

Message to reset all the viewmodels inside the table context.

Inheritance diagram for ResetViewModelMessage:

ValueChangedMessage
< string >

ResetViewModelMessage

Generated by Doxygen

162 Class Documentation

Collaboration diagram for ResetViewModelMessage:

ValueChangedMessage
< string >

ResetViewModelMessage

Public Member Functions

+ ResetViewModelMessage (string value)

3.69.1 Detailed Description

Message to reset all the viewmodels inside the table context.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.70 RunningJob Class Reference

Message sending the current job to the viewmodel

Inheritance diagram for RunningJob:

ValueChangedMessage
< JobTaskViewModel >

Runningjob

Generated by Doxygen

3.71 ScoreToColorConverter Class Reference 163

Collaboration diagram for RunningJob:

ValueChangedMessage
< JobTaskViewModel >

Runningjob

Public Member Functions

* RunningJob (JobTaskViewModel value)

3.70.1 Detailed Description

Message sending the current job to the viewmodel

Mainly sent from the activejob viewmodel to the other table context viewmodels using the statuspanel.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

» ViewModels/ViewModelMessages.cs

3.71 ScoreToColorConverter Class Reference

Converts a score from 0-100 into a color.

Inheritance diagram for ScoreToColorConverter:

IValueConverter

ScoreToColorConverter

Generated by Doxygen

164 Class Documentation

Collaboration diagram for ScoreToColorConverter:

IValueConverter

ScoreToColorConverter

Public Member Functions

« object Convert (object value, Type targetType, object parameter, Culturelnfo culture)

Converts a score from 0-100 into a color.
+ object ConvertBack (object value, Type targetType, object parameter, Culturelnfo culture)

Not implemented.

Properties

» Color LowColor = Colors.Red [get, set]

The color for a low score.
+ Color MidColor = Colors.Orange [get, set]

The color for a medium score.
 Color HighColor = Colors.Green [get, set]

The color for a low score.

3.71.1 Detailed Description

Converts a score from 0-100 into a color.

Author

Elvin Andreas Pedersen

3.71.2 Member Function Documentation

3.71.2.1 Convert()

object ScoreToColorConverter.Convert (
object value,
Type targetType,
object parameter,

CulturelInfo culture) [inline]

Converts a score from 0-100 into a color.

Generated by Doxygen

3.71 ScoreToColorConverter Class Reference

165

Parameters
value The score to convert
targetType | unused
parameter | unused
culture unused
Returns

A color to indicate how good the score is

3.71.2.2 ConvertBack()

object ScoreToColorConverter.ConvertBack

object value,
Type targetType,

object parameter,

CultureInfo culture

Not implemented.

3.71.3 Property Documentation

3.71.3.1 HighColor

Color ScoreToColorConverter.HighColor

The color for a low score.

3.71.3.2 LowColor

Color ScoreToColorConverter.LowColor

The color for a low score.

Colors.Green

[get],

[get], [set]

[set]

Generated by Doxygen

166 Class Documentation

3.71.3.3 MidColor

Color ScoreToColorConverter.MidColor = Colors.Orange [get], [set]
The color for a medium score.

The documentation for this class was generated from the following file:

« Utilities/Converters/ScoreToColorConverter.cs

3.72 SettingsPopup Class Reference

Popup for displaying the settings.

Inheritance diagram for SettingsPopup:

Popup

SettingsPopup

Collaboration diagram for SettingsPopup:

Popup

SettingsPopup

Public Member Functions

« SettingsPopup (SettingsViewModel settingsViewModel)

Initializes a new instance of the SettingsPopup class.

Generated by Doxygen

3.73 SettingsViewModel Class Reference 167

3.72.1 Detailed Description

Popup for displaying the settings.

Author

Tormod Smidesang

Elvin Andreas Pedersen

3.72.2 Constructor & Destructor Documentation

3.72.2.1 SettingsPopup()

SettingsPopup.SettingsPopup (
SettingsViewModel settingsViewModel) [inline]

Initializes a new instance of the SettingsPopup class.

Parameters

settingsViewModel | Dependency injection of the view model for the settings popup.

The documentation for this class was generated from the following file:

» Views/Popups/SettingsPopup.xaml.cs

3.73 SettingsViewModel Class Reference

ViewModel for the settings page.

Inheritance diagram for SettingsViewModel:

ObservableObject

SettingsViewModel

Generated by Doxygen

168 Class Documentation

Collaboration diagram for SettingsViewModel:

ObservableObject

SettingsViewModel

Public Member Functions

» SettingsViewModel (UserPreferences userPreferences, TableContextService tableContextService)

Constructor for the SettingsViewModel.
+ async Task DeleteAllCredentials ()

Command to delete all credentials. Cannot be undone.

Properties

+ ObservableCollection< Culturelnfo > Languages =[] [get]

The list of available languages.

3.73.1 Detailed Description

ViewModel for the settings page.

This class is responsible for managing the settings of the application. Application has to be restarted for the changes
to take effect.

Author

Tormod Smidesang

3.73.2 Constructor & Destructor Documentation

3.73.2.1 SettingsViewModel()

SettingsViewModel.SettingsViewModel (
UserPreferences userPreferences,

TableContextService tableContextService) [inline]

Constructor for the SettingsViewModel.

Generated by Doxygen

3.73 SettingsViewModel Class Reference 169

Parameters

userPreferences The user preferences service.

tableContextService | The table context service.

3.73.3 Member Function Documentation

3.73.3.1 DeleteAllCredentials()

async Task SettingsViewModel.DeleteAllCredentials () [inline]

Command to delete all credentials. Cannot be undone.

Returns

Async function

3.73.4 Property Documentation

3.73.4.1 Languages

ObservableCollection<CultureInfo> SettingsViewModel.Languages = [] [get]
The list of available languages.

The documentation for this class was generated from the following file:

» ViewModels/Popups/SettingsViewModel.cs

Generated by Doxygen

170 Class Documentation

3.74 StatisticsMessage Class Reference

Message to send statistic received from the Kongsberg HUB and propagate it forward to the viewmodels.

Inheritance diagram for StatisticsMessage:

ValueChangedMessage
< string >

StatisticsMessage

Collaboration diagram for StatisticsMessage:

ValueChangedMessage
< string >

StatisticsMessage

Public Member Functions

+ StatisticsMessage (string value)

3.74.1 Detailed Description

Message to send statistic received from the Kongsberg HUB and propagate it forward to the viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

Generated by Doxygen

3.75 StatisticsPage Class Reference 171

3.75 StatisticsPage Class Reference

StatisticsPage is a page that displays the statistics of a table.

Inheritance diagram for StatisticsPage:

ContentPage

StatisticsPage

Collaboration diagram for StatisticsPage:

ContentPage

StatisticsPage

Public Member Functions

« StatisticsPage (TableContextService tableContextService)
Initializes a new instance of the StatisticsPage class.

Protected Member Functions

+ override void OnAppearing ()

Called when the page is appearing. Sets the binding context to the active table's statistics view model.

3.75.1 Detailed Description

StatisticsPage is a page that displays the statistics of a table.

Author

Ole William Skistad Huslende
Elvin Andreas Pedersen

Generated by Doxygen

172 Class Documentation

3.75.2 Constructor & Destructor Documentation

3.75.2.1 StatisticsPage()

StatisticsPage.StatisticsPage (

TableContextService tableContextService) [inline]

Initializes a new instance of the StatisticsPage class.

Parameters

tableContextService | Dependency injection for the table context service.

3.75.3 Member Function Documentation

3.75.3.1 OnAppearing()

override void StatisticsPage.OnAppearing () [inline], [protected]
Called when the page is appearing. Sets the binding context to the active table's statistics view model.

The documentation for this class was generated from the following file:

» Views/TableContextViews/StatisticsPage.xaml.cs

3.76 StatusPage Class Reference

StatusPage is the window that shows the status of the tables.

Inheritance diagram for StatusPage:

ContentPage

StatusPage

Generated by Doxygen

3.76 StatusPage Class Reference

173

Collaboration diagram for StatusPage:

ContentPage

A

StatusPage

Public Member Functions

« StatusPage (MainViewModel mainViewModel, TablesContentView tablesContentView)

Initializes a new instance of the StatusPage class.

3.76.1 Detailed Description

StatusPage is the window that shows the status of the tables.

Author
Ole William Skistad Huslende

Elvin Andreas Pedersen

3.76.2 Constructor & Destructor Documentation

3.76.2.1 StatusPage()

StatusPage.StatusPage (
MainViewModel mainViewModel,

TablesContentView tablesContentView) [inline]

Initializes a new instance of the StatusPage class.

Parameters

mainViewModel Dependency injection of the main view model.

tablesContentView | Dependency injection of the tables content view.

The documentation for this class was generated from the following file:

Generated by Doxygen

174 Class Documentation

» Views/StatusPage.xaml.cs

3.77 StatusTimeWheel Class Reference

A custom status time wheel control.

Inheritance diagram for StatusTimeWheel:

GraphicsView

StatusTimeWheel

Collaboration diagram for StatusTimeWheel:

GraphicsView

StatusTimeWheel

Public Member Functions

+ StatusTimeWheel ()

Constructor for the StatusTimeWheel class.

Static Public Attributes

« static readonly BindableProperty BusyTimeProperty

Bindable property for the busy time value.
« static readonly BindableProperty BusyTimeColorProperty

Bindable property for the busy time color.

Generated by Doxygen

3.77 StatusTimeWheel Class Reference

175

« static readonly BindableProperty IdleTimeProperty

Bindable property for the idle time value.
« static readonly BindableProperty IdleTimeColorProperty

Bindable property for the idle time color.
« static readonly BindableProperty OffTimeProperty

Bindable property for the off time value.
« static readonly BindableProperty OffTimeColorProperty

Bindable property for the off time color.
« static readonly BindableProperty UnknownTimeProperty

Bindable property for the unknown time value.
« static readonly BindableProperty UnknownTimeColorProperty

Bindable property for the unknown time color.

Properties

« float BusyTime [get, set]

Gets or sets the busy time value.
» Color BusyTimeColor [get, set]

Gets or sets the busy time color.
« float IdleTime [get, set]

Gets or sets the idle time value.
» Color IdleTimeColor [get, set]

Gets or sets the idle time color.
« float OffTime [get, set]

Gets or sets the off time value.
» Color OffTimeColor [get, set]

Gets or sets the off time color.
« float UnknownTime [get, set]

Gets or sets the unknown time value.
» Color UnknownTimeColor [get, set]

Gets or sets the unknown time color.

3.77.1 Detailed Description

A custom status time wheel control.

Used to display the status of a table in a circular format on the statistics page and the meta statistics page.

Author
Ole William Skistad Huslende

Elvin Andreas Pedersen

3.77.2 Constructor & Destructor Documentation

Generated by Doxygen

176 Class Documentation

3.77.2.1 StatusTimeWheel()

StatusTimeWheel.StatusTimeWheel () [inline]

Constructor for the StatusTimeWheel class.

3.77.3 Member Data Documentation

3.77.3.1 BusyTimeColorProperty

readonly BindableProperty StatusTimeWheel.BusyTimeColorProperty [static]

Initial value:

BindableProperty.Create (nameof (BusyTimeColor), typeof (Color), typeof (StatusTimeWheel), Colors.Green,
propertyChanged: OnChanged)

Bindable property for the busy time color.

3.77.3.2 BusyTimeProperty

readonly BindableProperty StatusTimeWheel.BusyTimeProperty [static]

Initial value:

BindableProperty.Create (nameof (BusyTime), typeof (float), typeof (StatusTimeWheel), O0f,
propertyChanged: OnChanged)

Bindable property for the busy time value.

3.77.3.3 IdleTimeColorProperty

readonly BindableProperty StatusTimeWheel.IdleTimeColorProperty [static]

Initial value:

BindableProperty.Create (nameof (IdleTimeColor), typeof (Color), typeof (StatusTimeWheel),
Colors.Yellow, propertyChanged: OnChanged)

Bindable property for the idle time color.

Generated by Doxygen

3.77 StatusTimeWheel Class Reference 177

3.77.3.4 IdleTimeProperty

readonly BindableProperty StatusTimeWheel.IdleTimeProperty [static]

Initial value:

BindableProperty.Create (nameof (IdleTime), typeof (float), typeof (StatusTimeWheel), O0Of,
propertyChanged: OnChanged)

Bindable property for the idle time value.

3.77.3.5 OffTimeColorProperty

readonly BindableProperty StatusTimeWheel.OffTimeColorProperty [static]

Initial value:

BindableProperty.Create (nameof (OffTimeColor), typeof (Color), typeof (StatusTimeWheel), Colors.Gray,
propertyChanged: OnChanged)

Bindable property for the off time color.

3.77.3.6 OffTimeProperty

readonly BindableProperty StatusTimeWheel.OffTimeProperty [static]

Initial value:

BindableProperty.Create (nameof (OffTime), typeof (float), typeof (StatusTimeWheel), Of,
propertyChanged: OnChanged)

Bindable property for the off time value.

3.77.3.7 UnknownTimeColorProperty

readonly BindableProperty StatusTimeWheel.UnknownTimeColorProperty [static]

Initial value:

BindableProperty.Create (nameof (UnknownTimeColor), typeof (Color), typeof (StatusTimeWheel),
Colors.Black, propertyChanged: OnChanged)

Bindable property for the unknown time color.

Generated by Doxygen

178 Class Documentation

3.77.3.8 UnknownTimeProperty
readonly BindableProperty StatusTimeWheel.UnknownTimeProperty [static]

Initial value:

BindableProperty.Create (nameof (UnknownTime), typeof (float), typeof (StatusTimeWheel), O0f,
propertyChanged: OnChanged)

Bindable property for the unknown time value.

3.77.4 Property Documentation

3.77.4.1 BusyTime

float StatusTimeWheel.BusyTime [get], [set]

Gets or sets the busy time value.

3.77.4.2 BusyTimeColor

Color StatusTimeWheel.BusyTimeColor [get], [set]

Gets or sets the busy time color.

3.77.4.3 IdleTime

float StatusTimeWheel.IdleTime [get], [set]

Gets or sets the idle time value.

3.77.4.4 IdleTimeColor

Color StatusTimeWheel.IdleTimeColor [get], [set]

Gets or sets the idle time color.

Generated by Doxygen

3.77 StatusTimeWheel Class Reference 179

3.77.4.5 OffTime

float StatusTimeWheel.OffTime [get], [set]

Gets or sets the off time value.

3.77.4.6 OffTimeColor

Color StatusTimeWheel.OffTimeColor [get], [set]

Gets or sets the off time color.

3.77.4.7 UnknownTime

float StatusTimeWheel.UnknownTime [get], [set]

Gets or sets the unknown time value.

3.77.4.8 UnknownTimeColor

Color StatusTimeWheel.UnknownTimeColor [get], [set]
Gets or sets the unknown time color.

The documentation for this class was generated from the following file:

+ Views/Components/StatusTimeWheel.cs

Generated by Doxygen

180 Class Documentation

3.78 StatusTimeWheelDrawable Class Reference

Custom drawable for the StatusTimeWheel.

Inheritance diagram for StatusTimeWheelDrawable:

IDrawable

StatusTimeWheelDrawable

Collaboration diagram for StatusTimeWheelDrawable:

IDrawable

StatusTimeWheelDrawable

Public Member Functions

» StatusTimeWheelDrawable (StatusTimeWheel wheel)

Constructor for the StatusTimeWheelDrawable class.
 void Draw (ICanvas canvas, RectF dirtyRect)

Draws the status time wheel on the canvas.

3.78.1 Detailed Description

Custom drawable for the StatusTimeWheel.

3.78.2 Constructor & Destructor Documentation

Generated by Doxygen

3.79 TableActiveViewModel Class Reference 181

3.78.2.1 StatusTimeWheelDrawable()

StatusTimeWheelDrawable.StatusTimeWheelDrawable (

StatusTimeWheel wheel) [inline]

Constructor for the StatusTimeWheelDrawable class.

Parameters

\ wheel \ The StatusTimeWheel instance that this drawable is associated with.

3.78.3 Member Function Documentation

3.78.3.1 Draw()

void StatusTimeWheelDrawable.Draw (
ICanvas canvas,

RectF dirtyRect) [inline]

Draws the status time wheel on the canvas.

Parameters

canvas The canvas to draw on.
dirtyRect | The rectangle that defines the area to draw in.

The documentation for this class was generated from the following file:

+ Views/Components/StatusTimeWheel.cs

3.79 TableActiveViewModel Class Reference

This class represents the view model for the active jobs.

Generated by Doxygen

182 Class Documentation

Inheritance diagram for TableActiveViewModel:

ObservableObject

IRecipient< ResetViewModel -
Message > 4—' TableContextBaseViewModel |

IRecipient< QueueEntryAdded

Message >

IRecipient< QueueEntryUpdated TableActiveViewModel

Message > /

|IRecipient< QueueEntryMoved
Message >

IRecipient< LoadModelData
Message >

IRecipient< QueueEntryRemoved
Message >

Collaboration diagram for TableActiveViewModel:

ObservableObject

TableModel I ja_b\gM»odeJ

IRecipient< ResetViewModel
Message >

TableContextBaseViewModel

IRecipient< QueueEntryAdded
Message >

IRecipient< LoadModelData
Message >
IRecipient< QueueEntryUpdated
Message >

TableActiveViewModel

IRecipient< QueueEntryMoved
essage >

IRecipient< QueueEntryRemoved
Message >

Public Member Functions

+ TableActiveViewModel (IServiceProvider serviceProvider, IMessenger tableContextMessenger, IMessenger
metaMessenger, TableModel tableModel)

The constructor for the TableActiveViewModel class.
+ void SortActiveJob (string sortBy)

Sorts the active jobs in the table by the specified column.
+ void ToggleColumnVisibility (string columnName)

Toggles the visibility of a column in the active jobs table.
+ void SetColumnWidth (string columnName, double width)

Sets the width of a column in the active jobs table.
« void Receive (QueueEntryAddedMessage message)

Receives a message when a new job is added to the queue.
+ void Receive (QueueEntryUpdatedMessage message)

Receives a message when a job is updated in the queue.
« void Receive (QueueEntryMovedMessage message)

Receives a message when a job is moved in the queue.

Generated by Doxygen

3.79 TableActiveViewModel Class Reference 183

+ void Receive (QueueEntryRemovedMessage message)

Receives a message when a job is removed from the queue.
+ void MoveJobTolndex (QueueEntryMovedEvent message)

Moves a job to a new index in the active jobs collection.
» async Task DeleteSelectedActiveJobAsync ()

Deletes the selected active job from the table.
+ async Task AddActiveJobAsync ()

Adds a new active job to the table by selecting a ZIP file.

Protected Member Functions

+ override void OnResetViewModel ()

Resets the view model when the table model is reset TableContextBaseViewModel.
+ override void OnLoadModelData ()

Loads the model data when the table model is loaded TableContextBase ViewModel.

Properties

* bool IsJobDetailsPanelVisible [get]

Indicates if the job details panel is visible. If a job is selected, the panel is visible.
+ ICommand SortActiveJobsCommand [get]

A command to sort the collumn in the active jobs table.
+ |AsyncRelayCommand DeleteSelectedActiveJobAsyncCommand [get]

Command to delete the selected active job from the table.
» |AsyncRelayCommand AddActiveJobAsyncCommand [get]

Command to add a new active job to the table.

Additional Inherited Members

3.79.1 Detailed Description

This class represents the view model for the active jobs.

It contains properties and methods to manage the active jobs in the table. Shows the active jobs in the table and
the properties of the jobs.

Author
Ole William Skistad Huslende

Tormod Smidesang

Elvin Andreas Pedersen

3.79.2 Constructor & Destructor Documentation

Generated by Doxygen

184 Class Documentation

3.79.2.1 TableActiveViewModel()

TableActiveViewModel.TableActiveViewModel (
IServiceProvider serviceProvider,
IMessenger tableContextMessenger,
IMessenger metaMessenger,

TableModel tableModel) [inline]
The constructor for the TableActiveViewModel class.

Initializes the active jobs collection and registers for messages from the table context TableContext.

Generated by Doxygen

3.79 TableActiveViewModel Class Reference 185

Parameters
serviceProvider The service provider to resolve dependencies.
tableContextMessenger | The messenger to send and receive messages inside the table context TableContext.
metaMessenger The messenger to send and receive messages outside the table context/>.
tableModel The model for the table TableModel.

3.79.3 Member Function Documentation

3.79.3.1 AddActivedJobAsync()

async Task TableActiveViewModel.AddActiveJobAsync () [inline]

Adds a new active job to the table by selecting a ZIP file.

Opens afile picker to select a ZIP file. If the file is valid, it adds the job to the table model TableModel.AddActiveJob(Stream).
Returns

An async operation

Author
Ole William Skistad Huslende

3.79.3.2 DeleteSelectedActiveJobAsync()

async Task TableActiveViewModel.DeleteSelectedActiveJobAsync () [inline]

Deletes the selected active job from the table.
Returns

An async operation

Author
Ole William Skistad Huslende

3.79.3.3 MovedJobTolndex()

void TableActiveViewModel .MovedobToIndex (

QueueEntryMovedEvent message) [inline]

Moves a job to a new index in the active jobs collection.

Generated by Doxygen

186 Class Documentation

Parameters

message | The message containing the index to move the job to.

Author
Ole William Skistad Huslende

3.79.3.4 OnlLoadModelData()

override void TableActiveViewModel.OnLoadModelData () [inline], [protected], [virtual]

Loads the model data when the table model is loaded TableContextBaseViewModel.

Author
Ole William Skistad Huslende

Reimplemented from TableContextBaseViewModel.

3.79.3.5 OnResetViewModel()

override void TableActiveViewModel.OnResetViewModel () [inline], [protected], [virtual]

Resets the view model when the table model is reset TableContextBaseViewModel.

Author
Ole William Skistad Huslende

Reimplemented from TableContextBaseViewModel.

3.79.3.6 Receive() [1/4]

void TableActiveViewModel.Receive (

QueueEntryAddedMessage message) [inline]
Receives a message when a new job is added to the queue.

Events are received in the model and propugated to the view model.

Generated by Doxygen

3.79 TableActiveViewModel Class Reference

187

Parameters

message | The message containing the details of the new job.

Author
Ole William Skistad Huslende

3.79.3.7 Receive() [2/4]

void TableActiveViewModel.Receive (

QueueEntryMovedMessage message) [inline]

Receives a message when a job is moved in the queue.

Events are received in the model and propugated to the view model.

Parameters

message

Author
Ole William Skistad Huslende

3.79.3.8 Receive() [3/4]

void TableActiveViewModel.Receive (

QueueEntryRemovedMessage message) [inline]

Receives a message when a job is removed from the queue.

Events are received in the model and propugated to the view model.

Parameters

message

Author
Ole William Skistad Huslende

Generated by Doxygen

188 Class Documentation

3.79.3.9 Receive() [4/4]

void TableActiveViewModel.Receive (

QueueEntryUpdatedMessage message) [inline]
Receives a message when a job is updated in the queue.

Events are received in the model and propugated to the view model.

Parameters

message | The message containing the details of the updated job.

Author
Ole William Skistad Huslende

3.79.3.10 SetColumnWidth()

void TableActiveViewModel.SetColumnWidth (
string columnName,

double width) [inline]

Sets the width of a column in the active jobs table.

Parameters

columnName | The name of the column to set the width for. The name must match the DisplayName of the
column definition.
width The width to set for the column. The width is in pixels.

Author

Elvin Andreas Pedersen

3.79.3.11 SortActivedob()

void TableActiveViewModel.SortActivedob (

string sortBy) [inline]
Sorts the active jobs in the table by the specified column.

Parameters

‘ sortBy ‘ The column to sort by. The column name must match the DisplayName of the column definition.

Generated by Doxygen

3.79 TableActiveViewModel Class Reference 189

Author
Ole William Skistad Huslende

3.79.3.12 ToggleColumnVisibility()

void TableActiveViewModel.ToggleColumnVisibility (

string columnName) [inline]

Toggles the visibility of a column in the active jobs table.

Parameters

columnName | The name of the column to toggle visibility for. The name must match the DisplayName of the
column definition.

Author

Elvin Andreas Pedersen

3.79.4 Property Documentation

3.79.4.1 AddActiveJobAsyncCommand

IAsyncRelayCommand TableActiveViewModel.AddActiveJobAsyncCommand [get]

Command to add a new active job to the table.

3.79.4.2 DeleteSelectedActiveJobAsyncCommand

IAsyncRelayCommand TableActiveViewModel.DeleteSelectedActiveJobAsyncCommand [get]

Command to delete the selected active job from the table.

3.79.4.3 IsJobDetailsPanelVisible

bool TableActiveViewModel.IsJobDetailsPanelVisible [get]

Indicates if the job details panel is visible. If a job is selected, the panel is visible.

Generated by Doxygen

190

Class Documentation

3.79.4.4 SortActiveJobsCommand

ICommand TableActiveViewModel.SortActiveJobsCommand [get]
A command to sort the collumn in the active jobs table.

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/TableActiveViewModel.cs

3.80 TableAuthentication Class Reference

Represents a data model for table authentication.

Properties

« string? AccessToken [get, set]

Gets or sets the authentication token.
» DateTime LastUpdated = DateTime.Now [get]

Gets or sets last time authentication token was set.
* bool IsValid =true [get, set]

Gets or sets if the current authentication token is valid.

3.80.1 Detailed Description

Represents a data model for table authentication.

The class contains properties for managing authentication token for the Kongsberg HUB.

Author
Ole William Skistad Huslende

Tormod Smidesang

3.80.2 Property Documentation

3.80.2.1 AccessToken

string? TableAuthentication.AccessToken [get], [set]

Gets or sets the authentication token.

Generated by Doxygen

3.81 TableContext Class Reference 191

3.80.2.2 IsValid

bool TableAuthentication.IsValid = true [get], [set]

Gets or sets if the current authentication token is valid.

3.80.2.3 LastUpdated

DateTime TableAuthentication.LastUpdated = DateTime.Now [get]
Gets or sets last time authentication token was set.

The documentation for this class was generated from the following file:

+ Models/ApiQueue/TableAuthentication.cs

3.81 TableContext Class Reference

Contains the table model, the view models that read from it and the messenger that tells the viewmodels when to
update their information

Public Member Functions

+ TableContext (IServiceProvider serviceProvider)

Constructor. Instantiates the messenger, model and the viewmodels

Properties

» IMessenger TableContextMessenger [get]

Messenger used by the tablemodel to signal the viewmodels to update their information
TableModel TableModel [get]

Contains the actual table data
» TablePreviewViewModel TablePreviewViewModel [get]

Viewmodel for the elements of the list of tables on the main page
« TableActiveViewModel TableActiveViewModel [get]

Viewmodel for the active jobs page
» TableHistoryViewModel TableHistoryViewModel [get]

Viewmodel for the history jobs page
» TableStatisticsViewModel TableStatisticsViewModel [get]

Viewmodel for the table statistics page

Generated by Doxygen

192 Class Documentation

3.81.1 Detailed Description

Contains the table model, the view models that read from it and the messenger that tells the viewmodels when to
update their information

Author
Ole William Skistad Huslende

3.81.2 Constructor & Destructor Documentation

3.81.2.1 TableContext()

TableContext.TableContext (

IServiceProvider serviceProvider) [inline]

Constructor. Instantiates the messenger, model and the viewmodels

Parameters

serviceProvider | Reference to the MAUI service provider

3.81.3 Property Documentation

3.81.3.1 TableActiveViewModel

TableActiveViewModel TableContext.TableActiveViewModel [get]

Viewmodel for the active jobs page

3.81.3.2 TableContextMessenger

IMessenger TableContext.TableContextMessenger [get]

Messenger used by the tablemodel to signal the viewmodels to update their information

Generated by Doxygen

3.81 TableContext Class Reference 193

3.81.3.3 TableHistoryViewModel

TableHistoryViewModel TableContext.TableHistoryViewModel [get]

Viewmodel for the history jobs page

3.81.3.4 TableModel

TableModel TableContext.TableModel [get]

Contains the actual table data

3.81.3.5 TablePreviewViewModel

TablePreviewViewModel TableContext.TablePreviewViewModel [get]

Viewmodel for the elements of the list of tables on the main page

3.81.3.6 TableStatisticsViewModel

TableStatisticsViewModel TableContext.TableStatisticsViewModel [get]
Viewmodel for the table statistics page

The documentation for this class was generated from the following file:

» TableContext.cs

Generated by Doxygen

194 Class Documentation

3.82 TableContextBaseViewModel Class Reference

Base class for all table context view models.

Inheritance diagram for TableContextBaseViewModel:

| TableActiveViewModel |

ObservableObject

TableHistoryViewModel |

IRecipient< ResetViewModel
Message >

TableContextBaseViewModel

TablePreviewViewModel |

IRecipient< LoadModelData
Message > | TableStatisticsViewModel |

Collaboration diagram for TableContextBaseViewModel:

ObservableObject -

TableModel - tableModel
k;:] TableContextBaseViewModel

IRecipient< ResetViewModel
Message >

IRecipient< LoadModelData
Message >

Public Member Functions

« virtual void Receive (ResetViewModelMessage message)

Resets the view model when a ResetViewModelMessage is received.
« virtual void Receive (LoadModelDataMessage message)

Loads the model data when a LoadModelDataMessage is received.

Protected Member Functions

 TableContextBaseViewModel (IServiceProvider serviceProvider, IMessenger tableContextMessenger, IMes-
senger metaMessenger, TableModel tableModel)

The constructor for the table context base view model.
« virtual void OnResetViewModel ()

A vertual method to be overridden by derived classes to reset the view model.
« virtual void OnLoadModelData ()

A virtual method to be overridden by derived classes to load the model data.

Generated by Doxygen

3.82 TableContextBaseViewModel Class Reference

195

Protected Attributes

* readonly IServiceProvider serviceProvider

The service provider used to resolve dependencies.
» readonly IMessenger tableContextMessenger

The messenger used to send and receive messages inside the table context TableContext.
+ readonly IMessenger metaMessenger

The messenger used to send and receive messages outside the table context TableContext.
« readonly TableModel tableModel

The model for the table.

3.82.1 Detailed Description

Base class for all table context view models.

This class implements the IRecipient<T> interface to receive messages from the IMessenger.

Author
Ole William Skistad Huslende

Tormod Smidesang

3.82.2 Constructor & Destructor Documentation

3.82.2.1 TableContextBaseViewModel()

TableContextBaseViewModel.TableContextBaseViewModel (
IServiceProvider serviceProvider,
IMessenger tableContextMessenger,
IMessenger metaMessenger,
TableModel tableModel) [inline], [protected]

The constructor for the table context base view model.

Parameters
serviceProvider The service provider used to resolve dependencies.
tableContextMessenger | The messenger used to send and receive messages inside the table context
TableContext.
metaMessenger The messenger used to send and receive messages outside the table context
TableContext.
tableModel The model for the table.

3.82.3 Member Function Documentation

Generated by Doxygen

196 Class Documentation

3.82.3.1 OnLoadModelData()

virtual void TableContextBaseViewModel.OnLoadModelData () [inline], [protected], [virtual]

A virtual method to be overridden by derived classes to load the model data.

Author
Ole William Skistad Huslende

Reimplemented in TablePreviewViewModel, TableHistoryViewModel, and TableActiveViewModel.

3.82.3.2 OnResetViewModel()

virtual void TableContextBaseViewModel.OnResetViewModel () [inline], [protected], [virtual]

A vertual method to be overridden by derived classes to reset the view model.

Author
Ole William Skistad Huslende

Reimplemented in TableStatisticsViewModel, TablePreviewViewModel, TableHistoryViewModel, and TableActiveViewModel.

3.82.3.3 Receive() [1/2]

virtual void TableContextBaseViewModel.Receive (

LoadModelDataMessage message) [inline], [virtuall]

Loads the model data when a LoadModelDataMessage is received.

Parameters

message | A message telling the view model to load the model data.

Author
Ole William Skistad Huslende

3.82.3.4 Receive() [2/2]

virtual void TableContextBaseViewModel.Receive (

ResetViewModelMessage message) [inline], [virtual]

Resets the view model when a ResetViewModelMessage is received.

Generated by Doxygen

3.82 TableContextBaseViewModel Class Reference

197

Parameters

message | A message telling the view model to reset itself.

Author
Ole William Skistad Huslende

3.82.4 Member Data Documentation

3.82.4.1 metaMessenger

readonly IMessenger TableContextBaseViewModel.metaMessenger [protected]

The messenger used to send and receive messages outside the table context TableContext.

3.82.4.2 serviceProvider

readonly IServiceProvider TableContextBaseViewModel.serviceProvider [protected]

The service provider used to resolve dependencies.

3.82.4.3 tableContextMessenger

readonly IMessenger TableContextBaseViewModel.tableContextMessenger [protected]

The messenger used to send and receive messages inside the table context TableContext.

3.82.4.4 tableModel

readonly TableModel TableContextBaseViewModel.tableModel [protected]
The model for the table.

The documentation for this class was generated from the following file:

« ViewModels/TableContextViewModels/TableContextBaseViewModel.cs

Generated by Doxygen

198 Class Documentation

3.83 TableContextService Class Reference

Service responsible for keeping track of the tables

Inheritance diagram for TableContextService:

IRecipient< ConnectionStatus
ChangedMessage >

TableContextService

Collaboration diagram for TableContextService:

IRecipient< ConnectionStatus
ChangedMessage >

TableContextService

Public Member Functions

» TableContextService (IServiceProvider serviceProvider, IMessenger metaMessenger)
Constructor.
« void HideDisconnectedTables (bool hide)
Sets the disconnected tables filter to the specified value and updates the filtered list to reflect the change
+ void AddTable (TableContext newTable)
Adds a table to the list. This function calls the function that saves the list of tables to disk
» void RemoveTable (TableContext tableToRemove)
Removes a table from the list. This function calls the function that saves the list of tables to disk.
« int IndexOfTable (TableContext table)
Returns the index of the specified table in the list
+ void MoveTable (int oldIndex, int newlndex)

Generated by Doxygen

3.83 TableContextService Class Reference 199

Moves the table on the first index to the second index
+ void UpdateFilteredList ()
Updates the filtered list based on filters set by the user
« void Receive (ConnectionStatusChangedMessage message)
Automatically called when a viewmodel sends the ConnectionStatusChanged message over the metamessenger
void ClearAllCredentials ()
Deletes all credentials from memory and disk for every table. Cannot be undone
+ async void SaveTablesToDisk ()

Saves the current list of tables to disk

Properties

» TableContext? ActiveTable [get, set]

The table currently selected by the user (set when user clicks a table on the main page). Used by the active, history
and table statistics pages

» IReadOnlyList< TableContext > Tables [get]

A read-only public reference to tables
» IReadOnlyList< TableContext > FilteredTables [get]

A read-only public reference to filteredTables

3.83.1 Detailed Description

Service responsible for keeping track of the tables

Author

Tormod Smidesang
Ole William Skistad Huslende

3.83.2 Constructor & Destructor Documentation

3.83.2.1 TableContextService()

TableContextService.TableContextService (
IServiceProvider serviceProvider,

IMessenger metaMessenger) [inline]

Constructor.

Parameters

serviceProvider | A reference to the MAUI service provider

metaMessenger | A reference to the metamessenger

Generated by Doxygen

200 Class Documentation

3.83.3 Member Function Documentation

3.83.3.1 AddTable()

void TableContextService.AddTable (

TableContext newTable) [inline]

Adds a table to the list. This function calls the function that saves the list of tables to disk

Parameters

newTable | The new table to add to the list

3.83.3.2 ClearAllCredentials()

void TableContextService.ClearAllCredentials () [inline]

Deletes all credentials from memory and disk for every table. Cannot be undone

3.83.3.3 HideDisconnectedTables()

void TableContextService.HideDisconnectedTables (
bool hide) [inline]

Sets the disconnected tables filter to the specified value and updates the filtered list to reflect the change

Parameters

hide | Will filter out disconnected tables if true, brings them back if false. Calling the function with the same
value in this field twice will only update the list

3.83.3.4 IndexOfTable()

int TableContextService.IndexOfTable (
TableContext table) [inline]

Returns the index of the specified table in the list

Generated by Doxygen

3.83 TableContextService Class Reference

201

Parameters

‘ table ‘ The table to get the index of

Returns

The index of the specified table in the list

3.83.3.5 MoveTable()

void TableContextService.MoveTable (
int oldIndex,

int newIndex) [inline]

Moves the table on the first index to the second index

Parameters

oldindex The index of the table to move
newlndex | The new index to move the table to

3.83.3.6 Receive()

void TableContextService.Receive (

ConnectionStatusChangedMessage message)

Automatically called when a viewmodel sends the ConnectionStatusChanged message over the metamessenger

Parameters

message | Unused, required by IRecipient

3.83.3.7 RemoveTable()

void TableContextService.RemoveTable (

TableContext tableToRemove) [inline]

Removes a table from the list. This function calls the function that saves the list of tables to disk.

Parameters

tableToRemove | A reference to the table to be removed

Generated by Doxygen

202 Class Documentation

3.83.3.8 SaveTablesToDisk()

async void TableContextService.SaveTablesToDisk () [inline]

Saves the current list of tables to disk

3.83.3.9 UpdateFilteredList()

void TableContextService.UpdateFilteredList () [inline]

Updates the filtered list based on filters set by the user

3.83.4 Property Documentation

3.83.4.1 ActiveTable

TableContext? TableContextService.ActiveTable [get], [set]

The table currently selected by the user (set when user clicks a table on the main page). Used by the active, history
and table statistics pages

3.83.4.2 FilteredTables

IReadOnlyList<TableContext> TableContextService.FilteredTables [get]

A read-only public reference to filteredTables

3.83.4.3 Tables

IReadOnlyList<TableContext> TableContextService.Tables [get]
A read-only public reference to tables

The documentation for this class was generated from the following file:

» Services/TableContextService.cs

Generated by Doxygen

3.84 TableEntryFieldValidator Class Reference

203

3.84 TableEntryFieldValidator Class Reference

This class is responsible for validating the fields of a table entry.

Public Member Functions

« string ValidateName (string? TableName)

Validates the name of the table entry.
« string Validatelp (string? IpAddress)

Validates the IP address of the table entry.
+ string ValidateClientld (string? Clientld)

Validates the client ID of the table entry.
« string ValidateClientSecret (string? ClientSecret)

Validates the client secret of the table entry.

3.84.1 Detailed Description
This class is responsible for validating the fields of a table entry.

Author
Ole William Skistad Huslende

3.84.2 Member Function Documentation

3.84.2.1 ValidateClientld()

string TableEntryFieldValidator.ValidateClientId (
string? ClientId) [inline]

Validates the client ID of the table entry.

The client ID must not be null or empty and must be a valid GUID.

Parameters

Client— | The client id to validate
Id

Returns

Returns error message or empty string if no error

Generated by Doxygen

204 Class Documentation

3.84.2.2 ValidateClientSecret()

string TableEntryFieldValidator.ValidateClientSecret (

string? ClientSecret) [inline]
Validates the client secret of the table entry.

The client secret must not be null or empty, must not contain spaces, and must be at least 32 characters long.

Parameters

ClientSecret | The client secret to validate

Returns

Returns error message or empty string if no error

3.84.2.3 Validatelp()

string TableEntryFieldValidator.ValidateIp (
string? IpAddress) [inline]

Validates the IP address of the table entry.

The IP address must not be null or empty and must be a valid IP address.

Parameters

IpAddress | The IP address to validate.

Returns

Returns error message or empty string if no error

3.84.2.4 ValidateName()

string TableEntryFieldValidator.ValidateName (

string? TableName) [inline]
Validates the name of the table entry.

The name must not be null or empty.

Parameters

TableName | The name to validate.

Generated by Doxygen

3.85 TableFilterPopup Class Reference

205

Returns

Returns error message or empty string if no error

The documentation for this class was generated from the following file:

« Utilities/TableEntryFieldValidator.cs

3.85 TableFilterPopup Class Reference

Popup for displaying the filter options for the table list.

Inheritance diagram for TableFilterPopup:

Collaboration diagram for TableFilterPopup:

Public Member Functions

« TableFilterPopup (TableFilterViewModel tableFilterViewModel)

Popup

TableFilterPopup

Popup

TableFilterPopup

Initializes a new instance of the TableFilterPopup class.

Generated by Doxygen

206 Class Documentation

3.85.1 Detailed Description

Popup for displaying the filter options for the table list.

Author

Tormod Smidesang

Elvin Andreas Pedersen

3.85.2 Constructor & Destructor Documentation

3.85.2.1 TableFilterPopup()

TableFilterPopup.TableFilterPopup (
TableFilterViewModel tableFilterViewModel) [inline]

Initializes a new instance of the TableFilterPopup class.

Parameters

tableFilterViewModel | Dependency injection of the view model for the table filter popup.

The documentation for this class was generated from the following file:

» Views/Popups/TableFilterPopup.xaml.cs

3.86 TableFilterViewModel Class Reference

ViewModel for the table filter popup.

Inheritance diagram for TableFilterViewModel:

ObservableObject

TableFilterViewModel

Generated by Doxygen

3.86 TableFilterViewModel Class Reference 207

Collaboration diagram for TableFilterViewModel:

ObservableObject

A

TableFilterViewModel

Public Member Functions

+ TableFilterViewModel (TableContextService tableContextService)

Initializes a new instance of the TableFilterViewModel class.
+ void HideDisconnectedTablesChanged (bool hide)

Sets the hide disconnected tables property and updates the table context service.

3.86.1 Detailed Description

ViewModel for the table filter popup.

Shows a popup with a checkbox to hide disconnected tables. Opens when the user clicks the filter icon in the
mainpage.

Author

Tormod Smidesang

3.86.2 Constructor & Destructor Documentation

3.86.2.1 TableFilterViewModel()

TableFilterViewModel.TableFilterViewModel (

TableContextService tableContextService) [inline]

Initializes a new instance of the TableFilterViewModel class.

Parameters

tableContextService | The table context service.

Generated by Doxygen

208 Class Documentation

3.86.3 Member Function Documentation

3.86.3.1 HideDisconnectedTablesChanged()

void TableFilterViewModel.HideDisconnectedTablesChanged (
bool hide) [inline]

Sets the hide disconnected tables property and updates the table context service.

Parameters

\ hide \ Whether to hide disconnected tables.

The documentation for this class was generated from the following file:

+ ViewModels/Popups/TableFilterViewModel.cs

3.87 TableHistoryViewModel Class Reference

This class represents the view model for the history jobs.

Inheritance diagram for TableHistoryViewModel:

ObservableObject

|IRecipient< ResetViewModel

Message > TableContextBaseViewModel |

IRecipient< HistoryEntry

IRecipient< LoadModelData AddedMessage >

Message > ~—

J TableHistoryViewModel

IRecipient< HistoryEntry <4
RemovedMessage >

IRecipient< Runningjob >

Collaboration diagram for TableHistoryViewModel:

ObservableObject

TableModel — _ _ _tableModel

TableContextBaseViewModel

IRecipient< HistoryEntry
AddedMessage >

IRecipient< ResetViewModel
Message >

IRecipient< LoadModelData y =
Message > TableHistoryViewModel

IRecipient< HistoryEntry

RemovedMessage >

IRecipient< Runningjob >

Generated by Doxygen

3.87 TableHistoryViewModel Class Reference

209

Public Member Functions

« TableHistoryViewModel (IServiceProvider serviceProvider, IMessenger tableContextMessenger, IMessenger

metaMessenger, TableModel tableModel)

The constructor for the TableHistoryViewModel class.
« void SortHistoryJob (string sortBy)

Sorts the history jobs in the table by the specified column.
+ void ToggleColumnVisibility (string columnName)

Toggles the visibility of a column in the history jobs table.
+ void SetColumnWidth (string columnName, double width)

Sets the width of a column in the history jobs table.
+ void Receive (HistoryEntryAddedMessage message)

Recives a message when a history entry is added to the table.
« void Receive (RunningJob message)

Recives a message when the running job is changed.
+ void Receive (HistoryEntryRemovedMessage message)

Recives a message when a history entry is removed from the table.
» async Task DeleteSelectedHistoryJobAsync ()

Deletes the selected history job from the table.

Protected Member Functions

+ override void OnResetViewModel ()

Resets the view model when the table model is reset TableContextBaseViewModel.
« override void OnLoadModelData ()

Loads the model data when the table model is loaded TableContextBase ViewModel.

Properties

» ICommand SortHistoryJobsCommand [get]

Command to sort the collection of history jobs.
* bool IsJobDetailsPanelVisible [get]

Indicates if the job details panel is visible.
» |IAsyncRelayCommand DeleteSelectedHistoryJobAsyncCommand [get]

Command to delete the selected history job.

Additional Inherited Members

3.87.1 Detailed Description

This class represents the view model for the history jobs.

It contains properties and methods to manage the history jobs in the table. Shows the history jobs in the table and

the properties of the jobs.

Author

Ole William Skistad Huslende
Tormod Smidesang
Elvin Andreas Pedersen

Generated by Doxygen

210 Class Documentation

3.87.2 Constructor & Destructor Documentation

3.87.2.1 TableHistoryViewModel()

TableHistoryViewModel.TableHistoryViewModel (
IServiceProvider serviceProvider,
IMessenger tableContextMessenger,
IMessenger metaMessenger,
TableModel tableModel) [inline]

The constructor for the TableHistoryViewModel class.

Initializes the history jobs collection and registers for messages from the table context TableContext.

Parameters
serviceProvider The service provider to resolve dependencies.
tableContextMessenger | The messenger to send and receive messages inside the table context TableContext.
metaMessenger The messenger to send and receive messages outside the table context/>.
tableModel The model for the table TableModel.

3.87.3 Member Function Documentation

3.87.3.1 DeleteSelectedHistoryJobAsync()

async Task TableHistoryViewModel.DeleteSelectedHistoryJobAsync () [inline]
Deletes the selected history job from the table.

<returns An async operation

Author
Ole William Skistad Huslende

3.87.3.2 OnLoadModelData()

override void TableHistoryViewModel.OnLoadModelData () [inline], [protected], [virtual]

Loads the model data when the table model is loaded TableContextBaseViewModel.

Author
Ole William Skistad Huslende

Reimplemented from TableContextBaseViewModel.

Generated by Doxygen

3.87 TableHistoryViewModel Class Reference

211

3.87.3.3 OnResetViewModel()

override void TableHistoryViewModel.OnResetViewModel () [inline], [protected],

Resets the view model when the table model is reset TableContextBaseViewModel.

Author
Ole William Skistad Huslende

Reimplemented from TableContextBaseViewModel.

3.87.3.4 Receive() [1/3]

void TableHistoryViewModel.Receive (

HistoryEntryAddedMessage message) [inline]
Recives a message when a history entry is added to the table.

Events are received in the model and propugated to the view model.

Parameters

message | The message contains the job task that was added to the history

Author
Ole William Skistad Huslende

3.87.3.5 Receive() [2/3]

void TableHistoryViewModel.Receive (

HistoryEntryRemovedMessage message) [inline]
Recives a message when a history entry is removed from the table.

Events are received in the model and propugated to the view model.

Parameters

message | The message contains the job task that was removed from the history

Author
Ole William Skistad Huslende

[virtual]

Generated by Doxygen

212

Class Documentation

3.87.3.6 Receive() [3/3]

void TableHistoryViewModel.Receive (

RunningJob message) [inline]

Recives a message when the running job is changed.

Parameters

message | The running job

Author
Ole William Skistad Huslende

3.87.3.7 SetColumnWidth()

void TableHistoryViewModel.SetColumnWidth (
string columnName,
double width) [inline]

Sets the width of a column in the history jobs table.

Parameters

column definition.

columnName | The name of the column to set the width for. The name must match the DisplayName of the

width The width to set for the column. The width is in pixels.

Author

Elvin Andreas Pedersen

3.87.3.8 SortHistoryJob()

void TableHistoryViewModel.SortHistoryJob (

string sortBy) [inline]

Sorts the history jobs in the table by the specified column.

Generated by Doxygen

3.87 TableHistoryViewModel Class Reference 213

Parameters

‘ sortBy ‘ The column to sort by. The column name must match the DisplayName of the column definition.

Author
Ole William Skistad Huslende

3.87.3.9 ToggleColumnVisibility()

void TableHistoryViewModel.ToggleColumnVisibility (

string columnName) [inline]

Toggles the visibility of a column in the history jobs table.

Parameters

columnName | The name of the column to toggle visibility for. The name must match the DisplayName of the
column definition.

Author

Elvin Andreas Pedersen

3.87.4 Property Documentation

3.87.4.1 DeleteSelectedHistoryJobAsyncCommand

IAsyncRelayCommand TableHistoryViewModel.DeleteSelectedHistoryJobAsyncCommand [get]

Command to delete the selected history job.

3.87.4.2 IsJobDetailsPanelVisible

bool TableHistoryViewModel.IsJobDetailsPanelVisible [get]

Indicates if the job details panel is visible.

Generated by Doxygen

214

Class Documentation

3.87.4.3 SortHistoryJobsCommand

ICommand TableHistoryViewModel.SortHistoryJobsCommand [get]
Command to sort the collection of history jobs.

The documentation for this class was generated from the following file:

» ViewModels/TableContextViewModels/TableHistoryViewModel.cs

3.88 TableModel Class Reference

The TableModel class represents the model for a Kongsberg table.

Inheritance diagram for TableModel:

ObservableObject

TableModel

Collaboration diagram for TableModel:

ObservableObject

TableModel

Generated by Doxygen

3.88 TableModel Class Reference

215

Public Member Functions

TableModel (IServiceProvider serviceProvider, IMessenger messenger)

Constructor for the TableModel class.
async void InitializeTable ()

Initializes the table model.
void DeleteSavedCredentials ()

Deletes the saved credentials from disk using secure storage.
async Task< bool > RequestActiveJobs ()

Requests the active jobs from the HUB using ApiService.
async Task< bool > RequestHistoryJobs ()

Requests the history jobs from the HUB using ApiService.
async Task RequestJobPreview ()

Requests the job preview images for all active and history jobs from the HUB using ApiService.
async Task< bool > RequestTableProperties ()

Requests the table properties from the HUB using ApiService.
async Task< bool > RequestTablelmage ()

Requests the image of the table from the HUB using ApiService.
async Task< bool > DeleteActiveJobTask (string Jobld)

Deletes the active job from the HUB using ApiService.
async Task< bool > DeleteHistoryJobTask (string Jobld)

Deletes the history job from the HUB using ApiService.
async Task< bool > SetOrderedCopies (string Jobld, int copies)

Sets the ordered copies for the job on the HUB using ApiService.
async Task AddActiveJob (Stream stream)

Adds a new active job to the HUB using ApiService.

async Task< bool > RequestProductionStatisticsAndStatusTrends (DateTime before, DateTime after)

Requests the production statistics and status trends from the HUB using ApiService.
T? TryDeserialize< T > (string json, Action< string >? onError=null)

Tries to deserialize a JSON string into an object of type T.
void UpdateJobTask (JobTask updatedJobTask, JobTask incomingData)

Updates the job task with the new data.
T? FindProperty< T > (Name name)

Finds a property by name and converts it to the specified type.

Properties

required string Name [get, set]
The user defined name of the table.

required? IPAddress?? Ip [get, set]

string? Clientld = string.Empty [get, set]
Client Id for the table.

string? ClientSecret = string.Empty [get, set]
Client secret for the table.

JobQueue? ActiveJobs = new() [get, set]
A list of active jobs on the table JobQueue.

JobQueue? HistoryJobs = new() [get, set]
A list of history jobs on the table JobQueue.

List< TableProperty >? Properties =[] [get, set]
A list of properties for the table TableProperty.

Generated by Doxygen

216

Class Documentation

» ImageSource? Tablelmage =null [get, set]

The image of the table.
« List< QueueServerJobStatistics?> ProductionStatistics =[] [get, set]

A list of production statistics for the table QueueServerJobStatistics.
* List< PropertyTrends?> PropertyTrendsStatus =[] [get, set]

A list of property trends for the table Property Trends.

3.88.1 Detailed Description

The TableModel class represents the model for a Kongsberg table.

This is the main model for the application where all the data for a specific table is stored.

Author

Ole William Skistad Huslende

Tormod Smidesang

3.88.2 Constructor & Destructor Documentation

3.88.2.1 TableModel()

TableModel.TableModel (

IServiceProvider serviceProvider,

IMessenger messenger) [inline]

Constructor for the TableModel class.

Sets the table context messenger to send messages to the table specific viewmodels. Dependency injection is used
to create the ApiService instance. Starts the event handler for the table.

Parameters
serviceProvider | The service provider to use dependency injection to get instances
messenger The messenger to send messages to the viewmodels.

3.88.3 Member Function Documentation

3.88.3.1 AddActiveJob()

async Task TableModel.AddActiveJdob (

Stream stream) [inline]

Adds a new active job to the HUB using ApiService.

Generated by Doxygen

3.88 TableModel Class Reference 217

Parameters

‘ stream ‘ The input zip file in stream format

Returns

Task representing an asynchronous operation

Author
Ole William Skistad Huslende

3.88.3.2 DeleteActiveJobTask()

async Task<bool> TableModel.DeleteActiveJobTask (
string JobId) [inline]

Deletes the active job from the HUB using ApiService.

Parameters

Job« | The Id of the job
Id

Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.3 DeleteHistoryJobTask()

async Task<bool> TableModel.DeleteHistoryJobTask (
string JobId) [inline]

Deletes the history job from the HUB using ApiService.

Parameters

Job«— | The Id of the job
Id

Generated by Doxygen

218

Class Documentation

Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.4 DeleteSavedCredentials()

void TableModel.DeleteSavedCredentials () [inline]

Deletes the saved credentials from disk using secure storage.

Author

Tormod Smidesang

3.88.3.5 FindProperty< T >()

T? TableModel.FindProperty< T > (

Name name) [inline]

Finds a property by name and converts it to the specified type.

Template Parameters

‘ T ‘ Object to cast into

Parameters

‘ name ‘ Name of the property

Returns

The object

Author
Ole William Skistad Huslende

Generated by Doxygen

3.88 TableModel Class Reference 219

3.88.3.6 InitializeTable()

async void TableModel.InitializeTable () [inline]
Initializes the table model.

Sends a message to the messenger to indicate that the table is initializing. Loads the credentials from disk. Sends
message to the ViewModel to reset the view. Updates the credentials in the ApiService. Loads data from the HUB
Saves the credentials to disk and starts the event listener or stops it if authentication fails.

3.88.3.7 RequestActivedJobs()

async Task<bool> TableModel.RequestActiveJobs () [inline]

Requests the active jobs from the HUB using ApiService.
Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.8 RequestHistoryJobs()

async Task<bool> TableModel.RequestHistoryJobs () [inline]

Requests the history jobs from the HUB using ApiService.
Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.9 RequestJobPreview()

async Task TableModel.RequestJobPreview () [inline]
Requests the job preview images for all active and history jobs from the HUB using ApiService.
Returns

Async function

Author
Ole William Skistad Huslende

Generated by Doxygen

220 Class Documentation

3.88.3.10 RequestProductionStatisticsAndStatusTrends()

async Task<bool> TableModel.RequestProductionStatisticsAndStatusTrends (
DateTime before,

DateTime after) [inline]

Requests the production statistics and status trends from the HUB using ApiService.

Generated by Doxygen

3.88 TableModel Class Reference

221

Parameters

before | Before atime
after After a time

Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.11 RequestTablelmage()

async Task<bool> TableModel.RequestTableImage () [inline]
Requests the image of the table from the HUB using ApiService.
Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.12 RequestTableProperties()

async Task<bool> TableModel.RequestTableProperties () [inline]

Requests the table properties from the HUB using ApiService.

Returns

True if request is successful else false

Author
Ole William Skistad Huslende

3.88.3.13 SetOrderedCopies()

async Task<bool> TableModel.SetOrderedCopies (
string JobId,

int copies) [inline]

Sets the ordered copies for the job on the HUB using ApiService.

Generated by Doxygen

222 Class Documentation

Parameters

Jobld | The Id of the job
copies | The amount of copies

Returns

True if request is successful else false

Author

Tormod Smidesang

3.88.3.14 TryDeserialize< T >()

T? TableModel.TryDeserialize< T > (
string json,

Action< string >? onError = null) [inline]

Tries to deserialize a JSON string into an object of type T.

Template Parameters

‘ T ‘ Object to deserialize into

Parameters

json JSON string

onError | What to do if error

Returns

Returns the object

Author
Ole William Skistad Huslende

3.88.3.15 UpdateJobTask()

void TableModel.UpdateJobTask (
JobTask updatedJobTask,

JobTask incomingData) [inline]
Updates the job task with the new data.

Disclaimer: This function was mostly created with assistance from generative Al as the initial function had a bug we
were not able to fix ourselves

Generated by Doxygen

3.88 TableModel Class Reference

223

Parameters

updatedJobTask | The job that needs to be updated
incomingData The deserialized data

Author

Tormod Smidesang

3.88.4 Property Documentation

3.88.4.1 Activedobs

JobQueue? TableModel.ActiveJobs = new () [get],

A list of active jobs on the table JobQueue.

3.88.4.2 Clientld

string? TableModel.ClientId = string.Empty [get],

Client Id for the table.

3.88.4.3 ClientSecret

string? TableModel.ClientSecret = string.Empty

Client secret for the table.

3.88.4.4 HistoryJobs

JobQueue? TableModel.HistoryJobs = new() [get],

A list of history jobs on the table JobQueue.

[set]

[get],

[set]

[set]

Generated by Doxygen

224 Class Documentation

3.88.4.5 Name

required string TableModel.Name [get], [set]

The user defined name of the table.

3.88.4.6 ProductionStatistics

List<QueueServerJobStatistics?> TableModel.ProductionStatistics = [] [get], [set]

A list of production statistics for the table QueueServerJobStatistics.

3.88.4.7 Properties

List<TableProperty>? TableModel.Properties = [] [get], [set]

A list of properties for the table TableProperty.

3.88.4.8 PropertyTrendsStatus

List<PropertyTrends?> TableModel.PropertyTrendsStatus = [] [get], [set]

A list of property trends for the table PropertyTrends.

3.88.4.9 Tablelmage

ImageSource? TableModel.TableImage = null [get], [set]
The image of the table.

The documentation for this class was generated from the following file:

* Models/TableModel.cs

Generated by Doxygen

3.89 TablePreviewViewModel Class Reference 225

3.89 TablePreviewViewModel Class Reference

ViewModel for the table preview.

Inheritance diagram for TablePreviewViewModel:

ObservableObject

IRecipient< ResetViewModel

Message > TableContextBaseViewModel I

IRecipient< LoadModelData IRecipient< Runningjob >

Message >

:l TablePreviewViewModel

IRecipient< TableProperty <4
ChangedMessage >

IRecipient< ConnectionStatus
ChangedMessage >

Collaboration diagram for TablePreviewViewModel:

ObservableObject

TableModel ~ _ _ _tableModel

IRecipient< ResetViewModel
Message >

TableContextBaseViewModel

IRecipient< Runningjob >

TablePreviewViewModel

IRecipient< LoadModelData
essage > IRecipient< TableProperty
ChangedMessage >

IRecipient< ConnectionStatus
ChangedMessage >

Public Member Functions

+ TablePreviewViewModel (IServiceProvider serviceProvider, IMessenger tableContextMessenger, IMessen-
ger metaMessenger, TableModel tableModel)

The constructor for the TablePreviewViewModel.
« void Receive (TablePropertyChangedMessage message)

Receives a message when the table properties are changed.
+ void Receive (ConnectionStatusChangedMessage message)

Receives a message when the connection status is changed.
+ void Receive (RunningJob message)

Receives a message when the running job is changed.
« string GetStatusimagePath ()

Gets the image path of the table status based on the current status.

Protected Member Functions

+ override void OnResetViewModel ()

Resets the view model to its initial state TableContextBaseViewModel.
« override void OnLoadModelData ()

Loads the model data from the table model.

Generated by Doxygen

226 Class Documentation

Properties

* bool IsConnected [get]

Indicates if the table is connected.
+ string FormatedlpcVersion [get]

The IPC version of the table formatted to only show the version number.
» Color TableStatusColor [get]

The color of the table status.
« string TableStatuslmagePath [get]

The image path of the table status.

Additional Inherited Members

3.89.1 Detailed Description

ViewModel for the table preview.

It contains properties for the table name, IP address, client ID, client secret, connection status. Used to display the
table status and image.

Author
Ole William Skistad Huslende

Tormod Smidesang

3.89.2 Constructor & Destructor Documentation

3.89.2.1 TablePreviewViewModel()

TablePreviewViewModel.TablePreviewViewModel (
IServiceProvider serviceProvider,
IMessenger tableContextMessenger,
IMessenger metaMessenger,
TableModel tableModel) [inline]

The constructor for the TablePreviewViewModel.

Registers the messenger to receive messages from the table context.

Parameters
serviceProvider The service provider used to resolve dependencies.
tableContextMessenger | The messenger used to send messages between view models inside the table context.
metaMessenger The messenger used to send messages between view models outside the table context.
tableModel The table model used to get the table properties.

Generated by Doxygen

3.89 TablePreviewViewModel Class Reference 227

3.89.3 Member Function Documentation

3.89.3.1 GetStatusimagePath()

string TablePreviewViewModel.GetStatusImagePath () [inline]

Gets the image path of the table status based on the current status.

Returns

Return the image path of the current status

Author
Ole William Skistad Huslende

3.89.3.2 OnLoadModelData()

override void TablePreviewViewModel.OnLoadModelData () [inline], [protected], [virtuall]
Loads the model data from the table model.
Author

Ole William Skistad Huslende

Reimplemented from TableContextBaseViewModel.

3.89.3.3 OnResetViewModel()

override void TablePreviewViewModel.OnResetViewModel () [inline], [protected], [virtual]

Resets the view model to its initial state TableContextBaseViewModel.

Author
Ole William Skistad Huslende

Reimplemented from TableContextBaseViewModel.

3.89.3.4 Receive() [1/3]

void TablePreviewViewModel.Receive (

ConnectionStatusChangedMessage message) [inline]

Receives a message when the connection status is changed.

Generated by Doxygen

228 Class Documentation

Parameters

message | String containing the new connection status.

Author

Tormod Smidesang

3.89.3.5 Receive() [2/3]

void TablePreviewViewModel.Receive (

RunningJob message) [inline]

Receives a message when the running job is changed.

Parameters

message | The message containing the new running job.

Author
Ole William Skistad Huslende

3.89.3.6 Receive() [3/3]

void TablePreviewViewModel.Receive (

TablePropertyChangedMessage message) [inline]
Receives a message when the table properties are changed.

Events are received in the model and propugated to the view model.

Parameters

message | The message containing the event data.

Author
Ole William Skistad Huslende

3.89.4 Property Documentation

Generated by Doxygen

3.90 TableProperty Class Reference

229

3.89.4.1 FormatedlpcVersion

string TablePreviewViewModel.FormatedIpcVersion [get]

The IPC version of the table formatted to only show the version number.

3.89.4.2 IsConnected

bool TablePreviewViewModel.IsConnected [get]

Indicates if the table is connected.

3.89.4.3 TableStatusColor

Color TablePreviewViewModel.TableStatusColor [get]

The color of the table status.

3.89.4.4 TableStatusimagePath

string TablePreviewViewModel.TableStatusImagePath [get]
The image path of the table status.

The documentation for this class was generated from the following file:

« ViewModels/TableContextViewModels/TablePreviewViewModel.cs

3.90 TableProperty Class Reference

Table property is the package each of the properties gets delivered as from the Kongsberg HUB.

Properties

» DataType? DataType [get, set]

Gets or sets the data type of the property Enums.DataType
» DateTime? LastUpdated [get, set]

Gets or sets when the property is last updated.
*intld [get, set]

Gets or sets Id of the property
* Name? Name [get, set]

Gets or sets the name of the property Enums.Name
« string? Value [get, set]

Gets or sets the value of the property

Generated by Doxygen

230 Class Documentation

3.90.1 Detailed Description

Table property is the package each of the properties gets delivered as from the Kongsberg HUB.

Model used for deserialization of the table properties.

Author
Ole William Skistad Huslende

3.90.2 Property Documentation

3.90.2.1 DataType

DataType? TableProperty.DataType [get], [set]

Gets or sets the data type of the property Enums.DataType

3.90.2.2 Id

int TableProperty.Id [get], I[set]

Gets or sets Id of the property

3.90.2.3 LastUpdated

DateTime? TableProperty.LastUpdated [get], [set]

Gets or sets when the property is last updated.

3.90.2.4 Name

Name? TableProperty.Name [get], [set]

Gets or sets the name of the property Enums.Name

Generated by Doxygen

3.91 TablePropertyChangedMessage Class Reference 231

3.90.2.5 Value

string? TableProperty.Value [get], [set]
Gets or sets the value of the property

The documentation for this class was generated from the following file:

» Models/ApiProperties/TableProperty.cs

3.91 TablePropertyChangedMessage Class Reference

Message to send table property changed event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

Inheritance diagram for TablePropertyChangedMessage:

ValueChangedMessage
< TablePropertyEvent >

TablePropertyChangedMessage

Collaboration diagram for TablePropertyChangedMessage:

ValueChangedMessage
< TablePropertyEvent >

TablePropertyChangedMessage

Public Member Functions

+ TablePropertyChangedMessage (TablePropertyEvent value)

Generated by Doxygen

232 Class Documentation

3.91.1 Detailed Description

Message to send table property changed event received from the Kongsberg HUB and propagate it forward to the
viewmodels.

This class is used to send messages between the model and the viewmodel with the help of IMessenger.

Author
Ole William Skistad Huslende

The documentation for this class was generated from the following file:

* Models/ModelMessages.cs

3.92 TablePropertyEvent Class Reference

Represents an event from the Kongsberg HUB where one or more properties are changed.

Properties

* List< TableProperty > TableDetails [get, set]

A list of properties that have changed.
» EventAction Action [get, set]

The action that triggered the event EventAction.

3.92.1 Detailed Description
Represents an event from the Kongsberg HUB where one or more properties are changed.

Author
Ole William Skistad Huslende

3.92.2 Property Documentation

3.92.2.1 Action

EventAction TablePropertyEvent.Action [get], [set]

The action that triggered the event EventAction.

Generated by Doxygen

3.93 TableScanService Class Reference 233

3.92.2.2 TableDetails

List<TableProperty> TablePropertyEvent.TableDetails [get], [set]
A list of properties that have changed.

The documentation for this class was generated from the following file:

» Models/ApiSSE/EventTypes.cs

3.93 TableScanService Class Reference

Discovers cutting tables on the local network

Inheritance diagram for TableScanService:

ObservableObject

TableScanService

Collaboration diagram for TableScanService:

ObservableObject

TableScanService

Generated by Doxygen

Class Documentation

Public Member Functions

TableScanService (IServiceProvider serviceProvider)

Constructor.
bool Busy ()

Check if a scan is already in progress.
async Task Abort ()

Try to stop a scan if it's running.
async Task< ConcurrentQueue< TableContext >?> Scanlnterface (NetworklInterface networklnterface)

Scans the provided network interface for cutting tables.
uint GetNetworkAddress (IPAddress HostAddress, IPAddress SubnetMask)

Gets the network address of the network the host is on as an unsigned integer.
uint GetBroadcastAddress (IPAddress HostAddress, IPAddress SubnetMask)

Gets the broadcast address of the network the host is on as an unsigned integer.

3.93.1 Detailed Description

Discovers cutting tables on the local network

Author

Tormod Smidesang

3.93.2 Constructor & Destructor Documentation

3.93.2.1 TableScanService()

TableScanService.TableScanService (

IServiceProvider serviceProvider) [inline]

Constructor.

Parameters

serviceProvider | Reference to the MAUI service provider

3.93.3 Member Function Documentation

3.93.3.1 Abort()

async Task TableScanService.Abort () [inline]

Try to stop a scan if it's running.

Generated by Doxygen

3.93 TableScanService Class Reference

235

Returns

A Task object representing an asynchronous operation

3.93.3.2 Busy()

bool TableScanService.Busy () [inline]

Check if a scan is already in progress.

Returns

true if a scan is in progress, false otherwise

3.93.3.3 GetBroadcastAddress()

uint TableScanService.GetBroadcastAddress (
IPAddress HostAddress,
IPAddress SubnetMask) [inline]

Gets the broadcast address of the network the host is on as an unsigned integer.

Parameters

HostAddress | The host IP address
SubnetMask | The subnet mask of the network used by the host

Returns

The broadcast address of the host IP address as an unsigned integer

3.93.3.4 GetNetworkAddress()

uint TableScanService.GetNetworkAddress (
IPAddress HostAddress,
IPAddress SubnetMask) [inline]

Gets the network address of the network the host is on as an unsigned integer.

Parameters

HostAddress | The host IP address
SubnetMask | The subnet mask of the network used by the host

Generated by Doxygen

236 Class Documentation

Returns

The network address of the host IP adddress as an unsigned integer

3.93.3.5 Scanlinterface()

async Task<ConcurrentQueue<TableContext>?> TableScanService.ScanInterface (

NetworkInterface networkInterface) [inline]

Scans the provided network interface for cutting tables.

Parameters

networkinterface | The network interface to scan for cutting tables

Returns

A task containing a nullable ConcurrentQueue, which contains the discovered tables in a TableContext object

The documentation for this class was generated from the following file:

» Services/TableScanService.cs

3.94 TablesContentView Class Reference

Content view for displaying tables.

Inheritance diagram for TablesContentView:

ContentView

TablesContentView

Generated by Doxygen

3.94 TablesContentView Class Reference

237

Collaboration diagram for TablesContentView:

ContentView

A

TablesContentView

Public Member Functions

+ TablesContentView (MainViewModel mainViewModel)

Initializes a new instance of the TablesContentView class.

3.94.1 Detailed Description

Content view for displaying tables.

Author
Ole William Skistad Huslende

Elvin Andreas Pedersen

3.94.2 Constructor & Destructor Documentation

3.94.2.1 TablesContentView()

TablesContentView.TablesContentView (

MainViewModel mainViewModel) [inline]

Initializes a new instance of the TablesContentView class.

Parameters

mainViewModel | Dependency injection of the main view model.

The documentation for this class was generated from the following file:

» Views/TablesContentView.xaml.cs

Generated by Doxygen

238 Class Documentation

3.95 TableSerializationStructure Class Reference

Used to make a temporary list of tables used only for saving and loading tables on disk. Excludes information
that should be stored securely (credentials) and information that can be retrieved again upon re-establishing the
connection to the table

Properties

+ string Name = string.Empty [get, set]
+ string Ip = string.Empty [get, set]

3.95.1 Detailed Description

Used to make a temporary list of tables used only for saving and loading tables on disk. Excludes information
that should be stored securely (credentials) and information that can be retrieved again upon re-establishing the
connection to the table

The documentation for this class was generated from the following file:

» Services/TableContextService.cs

3.96 TableStatisticsViewModel Class Reference

The view model for the table statistics.

Inheritance diagram for TableStatisticsViewModel:

ObservableObject

IRecipient< ResetViewModel 4—' TableContextBaseViewModel |

Message > \

IRecipient< StatisticsMessage > 4—' TableStatisticsViewModel

IRecipient< LoadModelData
Message >

IRecipient< CurrentStatistics
Message >

Collaboration diagram for TableStatisticsViewModel:

ObservableObject

TableModel ~ _ _ _tableModel

IRecipient< ResetViewModel
Message >

TableContextBaseViewModel

IRecipient< Statistic:

IRecipient< LoadModelData
Message > IRecipient< CurrentStatistics
Message >

Generated by Doxygen

3.96 TableStatisticsViewModel Class Reference 239

Public Member Functions

+ TableStatisticsViewModel (IServiceProvider serviceProvider, IMessenger tableContextMessenger, IMessen-
ger metaMessenger, TableModel tableModel)

The constructor for the table statistics view model.
+ void Receive (StatisticsMessage message)

Receives a message containing statistics data and processes it.
+ void Receive (CurrentStatisticsMessage message)

Receives a message from the meta context containing the time span for the statistics.
+ void GetDayStatistics ()

Gets the statistics for the table for the last day.
+ void GetWeekStatistics ()

Gets the statistics for the table for the last week.
+ void GetMonthStatistics ()

Gets the statistics for the table for the last month.
+ async void RequestProductionStatistics (DateTime before, DateTime after)

Requests the production statistics for the table.
« string GenerateStatisticsCsv ()

Generates a CSV file with the statistics for the table.

Static Public Member Functions

« static double GetUtilizationScore (TimeSpan totalBusyTime, TimeSpan totalTime)

Calculates the utilization score for the table.

Protected Member Functions

+ override void OnResetViewModel ()

Resets the view model to its initial state.

Additional Inherited Members

3.96.1 Detailed Description

The view model for the table statistics.

Gathers and processes statistics data from the Kongsberg table. The data collected includes production time,
utilization score, and job statistics.

Author
Ole William Skistad Huslende

3.96.2 Constructor & Destructor Documentation

Generated by Doxygen

240 Class Documentation

3.96.2.1 TableStatisticsViewModel()

TableStatisticsViewModel.TableStatisticsViewModel (
IServiceProvider serviceProvider,
IMessenger tableContextMessenger,
IMessenger metaMessenger,

TableModel tableModel) [inline]
The constructor for the table statistics view model.
This constructor initializes the view model with the service provider, messengers, and table model. Sets up the

column definitions for the job, material, and customer statistics. Registers the view model to receive messages from
the table context and meta context.

Parameters
serviceProvider The service provider used to resolve dependencies.
tableContextMessenger | The messenger used to send messages between view models inside the table context.
metaMessenger The messenger used to send messages between view models outside the table context.
tableModel The table model used to get the table properties.

3.96.3 Member Function Documentation

3.96.3.1 GenerateStatisticsCsv()

string TableStatisticsViewModel.GenerateStatisticsCsv () [inline]

Generates a CSV file with the statistics for the table.

Returns

Returns a string with the CSV file content.

3.96.3.2 GetDayStatistics()

void TableStatisticsViewModel.GetDayStatistics () [inline]

Gets the statistics for the table for the last day.

3.96.3.3 GetMonthStatistics()

void TableStatisticsViewModel.GetMonthStatistics () [inline]

Gets the statistics for the table for the last month.

Generated by Doxygen

3.96 TableStatisticsViewModel Class Reference 241

3.96.3.4 GetUtilizationScore()

static double TableStatisticsViewModel.GetUtilizationScore (
TimeSpan totalBusyTime,

TimeSpan totalTime) [inline], [static]

Calculates the utilization score for the table.

Parameters

totalBusyTime | The total time the table was busy during the period requested.

totalTime The total time for the period requested.

Returns

Returns the utilization score for the table as a percentage.

3.96.3.5 GetWeekStatistics()

void TableStatisticsViewModel.GetWeekStatistics () [inline]

Gets the statistics for the table for the last week.

3.96.3.6 OnResetViewModel()

override void TableStatisticsViewModel.OnResetViewModel () [inline], [protected], [virtual]
Resets the view model to its initial state.

Reimplemented from TableContextBaseViewModel.

3.96.3.7 Receive() [1/2]

void TableStatisticsViewModel.Receive (

CurrentStatisticsMessage message) [inline]

Receives a message from the meta context containing the time span for the statistics.

Parameters

message | The message containing the time span for the statistics.

Generated by Doxygen

242 Class Documentation

3.96.3.8 Receive() [2/2]

void TableStatisticsViewModel.Receive (

StatisticsMessage message) [inline]
Receives a message containing statistics data and processes it.

Gets messages from the table model containing statistics data. Resets the viewmodel to its initial state and pro-
cesses the statistics data. If the request comes from the meta context, it sends a message to the meta context with
the statistics data.

Parameters

message

3.96.3.9 RequestProductionStatistics()

async void TableStatisticsViewModel.RequestProductionStatistics (
DateTime before,

DateTime after) [inline]

Requests the production statistics for the table.

Parameters

before | The statistics requested before this time.

after The statistics requested after this time.

The documentation for this class was generated from the following file:

« ViewModels/TableContextViewModels/TableStatisticsViewModel.cs

3.97 TimelineContentView Class Reference

Timeline for the active job list of a table. Shows job name, preview, duration and when they will finish

Generated by Doxygen

3.97 TimelineContentView Class Reference 243

Inheritance diagram for TimelineContentView:

IRecipient< UpdateTimestamps

ContentView Message >

TimelineContentView

Collaboration diagram for TimelineContentView:

IRecipient< UpdateTimestamps

ContentView Message >

TimelineContentView

Public Member Functions

» TimelineContentView ()

Constructor. Initializes the view, sets the binding context of the timestamp list.
» void Receive (UpdateTimestampsMessage message)

Called when metamessenger sends an Update TimestampsMessage

Protected Member Functions

« override void OnBindingContextChanged ()

Called when the binding context changes. Used to set bindingcontext to the viewmodel since contentviews cannot
have parameters in their constructors

Properties

» ObservableCollection< Timestamp > Timestamps =[] [get]

List of timestamps of when each job ends
» ObservableCollection< JobTaskViewModel >? JobTasks = null [get, set]

List of JobTaskViewModel, for getting job times

Generated by Doxygen

244 Class Documentation

3.97.1 Detailed Description

Timeline for the active job list of a table. Shows job name, preview, duration and when they will finish

Author

Tormod Smidesang

3.97.2 Constructor & Destructor Documentation

3.97.2.1 TimelineContentView()

TimelineContentView.TimelineContentView () [inline]

Constructor. Initializes the view, sets the binding context of the timestamp list.

3.97.3 Member Function Documentation

3.97.3.1 OnBindingContextChanged()

override void TimelineContentView.OnBindingContextChanged () [inline], [protected]

Called when the binding context changes. Used to set bindingcontext to the viewmodel since contentviews cannot
have parameters in their constructors

3.97.3.2 Receive()

void TimelineContentView.Receive (

UpdateTimestampsMessage message) [inline]

Called when metamessenger sends an UpdateTimestampsMessage

Parameters

message | The message, required by the messenger system. Unused

3.97.4 Property Documentation

Generated by Doxygen

3.98 TimelinePage Class Reference

245

3.97.4.1 JobTasks

ObservableCollection<JobTaskViewModel>? TimelineContentView.JobTasks = null

List of JobTaskViewModel, for getting job times

3.97.4.2 Timestamps

ObservableCollection<Timestamp> TimelineContentView.Timestamps = [] [get]
List of timestamps of when each job ends

The documentation for this class was generated from the following file:

« Views/TimelineContentView.xaml.cs

3.98 TimelinePage Class Reference

Timelinepage shows the timelines for the job tasks of the tables.

Inheritance diagram for TimelinePage:

ContentPage

TimelinePage

Collaboration diagram for TimelinePage:

ContentPage

TimelinePage

[get],

[set]

Generated by Doxygen

246 Class Documentation

Public Member Functions

» TimelinePage (TimelineViewModel timelineViewModel)

Initializes a new instance of the TimelinePage class.

Protected Member Functions

+ override void OnAppearing ()

Called when the page is appearing. This method is used to start the timestamp updater.
+ override void OnDisappearing ()

Called when the page is disappearing. This method is used to stop the timestamp updater.

3.98.1 Detailed Description
Timelinepage shows the timelines for the job tasks of the tables.

Author

Tormod Smidesang

3.98.2 Constructor & Destructor Documentation

3.98.2.1 TimelinePage()

TimelinePage.TimelinePage (

TimelineViewModel timelineViewModel) [inline]

Initializes a new instance of the TimelinePage class.

Parameters

timelineViewModel | Dependency injection of the view model for the timeline page.

3.98.3 Member Function Documentation

3.98.3.1 OnAppearing()

override void TimelinePage.OnAppearing () [inline], [protected]

Called when the page is appearing. This method is used to start the timestamp updater.

Generated by Doxygen

3.99 TimelineViewModel Class Reference

247

3.98.3.2 OnDisappearing()

override void TimelinePage.OnDisappearing () [inline], [protected]
Called when the page is disappearing. This method is used to stop the timestamp updater.

The documentation for this class was generated from the following file:

» Views/TimelinePage.xaml.cs

3.99 TimelineViewModel Class Reference

Viewmodel for the timeline page

Inheritance diagram for TimelineViewModel:

ObservableObject

TimelineViewModel

Collaboration diagram for TimelineViewModel:

ObservableObject

TimelineViewModel

Public Member Functions

» TimelineViewModel (TableContextService tableContextService, IMessenger metaMessenger)

Constructor
« void OnPageAppearing ()

Called by the code-behind of the page when the page is opened. Stops the timestamp updater
+ void OnPageDisappearing ()

Called by the code-behind of the page when the page is closed. Stops the timestamp updater

Generated by Doxygen

248 Class Documentation

Properties

» IReadOnlyList< TableContext > Tables [get]

List of tables from the tablecontextservice
» IMessenger MetaMessenger [get]

The metamessenger, used to send messages to update the timestamps

3.99.1 Detailed Description

Viewmodel for the timeline page

Author

Tormod Smidesang

3.99.2 Constructor & Destructor Documentation

3.99.2.1 TimelineViewModel()

TimelineViewModel.TimelineViewModel (
TableContextService tableContextService,

IMessenger metaMessenger) [inline]

Constructor

Parameters

tableContextService | The tablecontextservice, used to get a list of tables

metaMessenger The metamessenger

3.99.3 Member Function Documentation

3.99.3.1 OnPageAppearing()

void TimelineViewModel.OnPageAppearing () [inline]

Called by the code-behind of the page when the page is opened. Stops the timestamp updater

Generated by Doxygen

3.100 TimeSpanToDHMSConverter Class Reference 249

3.99.3.2 OnPageDisappearing()
void TimelineViewModel.OnPageDisappearing () [inline]

Called by the code-behind of the page when the page is closed. Stops the timestamp updater

3.99.4 Property Documentation

3.99.4.1 MetaMessenger

IMessenger TimelineViewModel.MetaMessenger [get]

The metamessenger, used to send messages to update the timestamps

3.99.4.2 Tables

IReadOnlyList<TableContext> TimelineViewModel.Tables [get]
List of tables from the tablecontextservice

The documentation for this class was generated from the following file:

* ViewModels/TimelineViewModel.cs

3.100 TimeSpanToDHMSConverter Class Reference
Converts a TimeSpan into a string that looks something like this: 3d6h34m3s. Changing the app language might
change the symbols inbetween the numbers.

Inheritance diagram for TimeSpanToDHMSConverter:

IValueConverter

TimeSpanToDHMSConverter

Generated by Doxygen

250

Class Documentation

Collaboration diagram for TimeSpanToDHMSConverter:

IValueConverter

A

TimeSpanToDHMSConverter

Public Member Functions

 object? Convert (object? value, Type targetType, object? parameter, Culturelnfo culture)

Converts a TimeSpan into a string that looks something like this: 3d6h34m3s.

+ object? ConvertBack (object? value, Type targetType, object? parameter, Culturelnfo culture)

Not implemented

3.100.1 Detailed Description

Converts a TimeSpan into a string that looks something like this: 3d6h34m3s. Changing the app language might
change the symbols inbetween the numbers.

Author

Tormod Smidesang

3.100.2 Member Function Documentation

3.100.2.1 Convert()

object? TimeSpanToDHMSConverter.Convert (

Converts a TimeSpan into a string that looks something like this: 3d6h34m3s.

object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]

Parameters
value A TimeSpan object to convert
targetType | unused
parameter unused Generated by Doxygen
culture unused

3.101 Timestamp Class Reference 251

Returns

A string representing the same timespan

3.100.2.2 ConvertBack()

object? TimeSpanToDHMSConverter.ConvertBack (
object? wvalue,
Type targetType,
object? parameter,
CulturelInfo culture) [inline]

Not implemented

The documentation for this class was generated from the following file:

« Utilities/Converters/TimeSpanToDHMSConverter.cs

3.101 Timestamp Class Reference

Timestamp class containing string representations of the date (only set if the current timestamp represents a new
day) and the time of day.

Properties

« string NewDate = string.Empty [get, set]
+ string TimeOfDay = string.Empty [get, set]

3.101.1 Detailed Description

Timestamp class containing string representations of the date (only set if the current timestamp represents a new
day) and the time of day.

The documentation for this class was generated from the following file:

« Views/TimelineContentView.xaml.cs

Generated by Doxygen

252 Class Documentation

3.102 ToolDistanceViewModel Class Reference

ViewModel for displaying tool distance information.

Inheritance diagram for ToolDistanceViewModel:

ObservableObject

ToolDistanceViewModel

Collaboration diagram for ToolDistanceViewModel:

ObservableObject

ToolDistanceViewModel

3.102.1 Detailed Description
ViewModel for displaying tool distance information.
Author
Ole William Skistad Huslende
The documentation for this class was generated from the following file:

« ViewModels/TableContextViewModels/SubViewModels/ToolDistanceViewModel.cs

Generated by Doxygen

3.103 UpdateTimestampsMessage Class Reference

253

3.103 UpdateTimestampsMessage Class Reference

Message sent to the timeline page to update the timestamps.

Inheritance diagram for UpdateTimestampsMessage:

ValueChangedMessage
< string >

UpdateTimestampsMessage

Collaboration diagram for UpdateTimestampsMessage:

ValueChangedMessage
< string >

UpdateTimestampsMessage

Public Member Functions

+ UpdateTimestampsMessage (string value)

3.103.1 Detailed Description

Message sent to the timeline page to update the timestamps.

Author

Tormod Smidesang

The documentation for this class was generated from the following file:

» ViewModels/ViewModelMessages.cs

Generated by Doxygen

254 Class Documentation

3.104 UserPreferences Class Reference

Service responsible for storing user preferences. TODO: remove this class and use the Preferences API built into
.NET instead

Public Member Functions

» UserPreferences ()

Constructor. Sets CultureName to the current culture.
+ void Save ()

Saves the user preferences to disk.
« void ApplyCulture ()

Applies the culture set by the user. Must be called before a page is initialized or changes will not be reflected.

Static Public Member Functions

« static UserPreferences Load ()

Loads the preferences from disk.

Properties

« string CultureName [get, set]

The culture name specified by the user. Example value: "en-US".

3.104.1 Detailed Description

Service responsible for storing user preferences. TODO: remove this class and use the Preferences API built into
.NET instead

Author

Tormod Smidesang

3.104.2 Constructor & Destructor Documentation

3.104.2.1 UserPreferences()

UserPreferences.UserPreferences () [inline]

Constructor. Sets CultureName to the current culture.

3.104.3 Member Function Documentation

Generated by Doxygen

3.104 UserPreferences Class Reference 255

3.104.3.1 ApplyCulture()

void UserPreferences.ApplyCulture () [inline]

Applies the culture set by the user. Must be called before a page is initialized or changes will not be reflected.

3.104.3.2 Load()

static UserPreferences UserPreferences.Load () [inline], [static]

Loads the preferences from disk.

Returns

A UserPreferences object containing the user preferences stored on disk

Exceptions

FileNotFoundException | Thrown if filePath does not exist

3.104.3.3 Save()
void UserPreferences.Save () [inline]

Saves the user preferences to disk.

3.104.4 Property Documentation

3.104.4.1 CultureName

string UserPreferences.CultureName [get], [set]
The culture name specified by the user. Example value: "en-US".

The documentation for this class was generated from the following file:

« Services/UserPreferences.cs

Generated by Doxygen

256 Class Documentation

3.105 UtcTimeSpanTolLocalConverter Class Reference

Converts UTC TimeSpan to time of day in local time.

Inheritance diagram for UtcTimeSpanToLocalConverter:

IValueConverter

UtcTimeSpanToLocalConverter

Collaboration diagram for UtcTimeSpanToLocalConverter:

IValueConverter

UtcTimeSpanToLocalConverter

Public Member Functions

 object? Convert (object? value, Type targetType, object? parameter, Culturelnfo culture)
Converts UTC TimeSpan to time of day in local time.

+ object? ConvertBack (object? value, Type targetType, object? parameter, Culturelnfo culture)
Converts local time TimeSpan to time of day in local time.

3.105.1 Detailed Description
Converts UTC TimeSpan to time of day in local time.

Author
Ole William Skistad Huslende

Generated by Doxygen

3.105 UtcTimeSpanToLocalConverter Class Reference

257

3.105.2 Member Function Documentation

3.105.2.1 Convert()

object? UtcTimeSpanToLocalConverter.Convert (
object? wvalue,
Type targetType,
object? parameter,

CultureInfo culture) [inline]

Converts UTC TimeSpan to time of day in local time.

Parameters

value UTC TimeSpan

targetType | unused
parameter | unused

culture unused

Returns

A string representation of the time of day in the TimeSpan in local time

3.105.2.2 ConvertBack()

object? UtcTimeSpanToLocalConverter.ConvertBack (
object? wvalue,
Type targetType,
object? parameter,

CulturelInfo culture) [inline]

Converts local time TimeSpan to time of day in local time.

Parameters

value Local time TimeSpan

targetType | unused
parameter | unused

culture unused

Returns

UTC TimeSpan representation of the given local time TimeSpan

The documentation for this class was generated from the following file:

« Utilities/Converters/UtcTimeSpanToLocalConverter.cs

Generated by Doxygen

258

Class Documentation

3.106 UtcToLocalTimeConverter Class Reference

Converts UTC time to local time.

Inheritance diagram for UtcToLocalTimeConverter:

IValueConverter

UtcToLocalTimeConverter

Collaboration diagram for UtcToLocalTimeConverter:

Public Member Functions

» object Convert (object value, Type targetType, object parameter, Culturelnfo culture)

Converts UTC time to local time.

IValueConverter

UtcToLocalTimeConverter

+ object ConvertBack (object value, Type targetType, object parameter, Culturelnfo culture)

Not implemented

3.106.1 Detailed Description

Converts UTC time to local time.

Author

Elvin Andreas Pedersen

Generated by Doxygen

3.106 UtcToLocalTimeConverter Class Reference

259

3.106.2 Member Function Documentation

3.106.2.1 Convert()

object UtcToLocalTimeConverter.Convert (

object value,
Type targetType,
object parameter,

CultureInfo culture) [inline]

Converts UTC time to local time.

Parameters
value A DateTime object in UTC time
targetType | unused
parameter | unused
culture unused
Returns

A string representation of the same time in local time

3.106.2.2 ConvertBack()

object UtcToLocalTimeConverter.ConvertBack (

object value,
Type targetType,
object parameter,

CulturelInfo culture) [inline]

Not implemented

The documentation for this class was generated from the following file:

« Utilities/Converters/TimeZoneConverter.cs

Generated by Doxygen

260 Class Documentation

Generated by Doxygen

Kongsberg Table Tracker L TIMESHEET

L Timesheet

437

L TIMESHEET

Kongsberg Table Tracker

109USOUWL], :6E 9INIIg

86T cll Geee LEC R4 SL¥kl |48 Ll Serel |S7é0L ¥l ST /¢l |§/£001 |STEs Slé §/68 2Ll 87 Ll an tad Jpjo] 1sul|

g'1ss 8¢ 9 or Sy ¥E 1 0g &€ §/C 8¢ 4 ¥ ¥ S¥e 34 g'ge e Soe snuBopy

6/5 8¢ L6 GE? S'vy SC/€ 81 582 So'le J44 §'5¢ SC¥e §/'8¢ §¢0¢ 5S¢ §/0¢ 9C 6 50¢ Uing

0Le 8z 98 5Z9 Sy §'GE S’z [43 [43 §/T SE gEe ¥C S5 £C K44 14 4 L€ pouuo]

S LE9 8z S'Eb 59 514 8€ S'lE 5§92 [43 §/T gee 45 ¥C S'ET 61 SET K4 14 L€ LRlIM 210
D01 | 8LS4N | ZL=AN | 913N | SL=AN | #LSAN | €190 | ZL=AN | LLS4N | OLSAN | 634N | 884N | 94N | 993N | §9%N0 | #3N | €94N | 93N L &N

438

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Code Segments
	Glossary
	Introduction
	Overview
	Group Members
	Initials In Section Headers

	Domain
	Cutting Table
	i-cut Production Console
	Kongsberg HUB

	Problem
	Kongsberg Precision Cutting Systems
	Existing Software and Limitations
	Problem Statement

	Theory
	Framework
	Programming Languages
	Graphical User Interface
	Model-View-ViewModel
	JSON
	Networking
	Testing Code

	Project Management
	Organizational Structure
	Supervisor Communication
	Project Risk Analysis
	Website

	Development Process
	Methodology
	Software Tools
	Coding Practices

	Requirements
	System Requirements
	Test Implementation

	Software Architecture
	High-Level System Specification
	Architecture
	Model
	View
	ViewModel
	Services
	Data Flow
	Architecture Diagram

	Implementation
	Development Environment
	Traceability
	Model
	View
	ViewModel
	Services
	Data Flow
	Test Results

	Results
	Product Risk Analysis
	Challenges
	Project
	Technical

	Conclusion
	Future Work
	Cross platform
	Server certificates
	Scan service efficiency
	Better handling of table editing
	Preferences
	Installer

	References
	User Stories
	Use case
	System requirements
	Task System Requirements
	GUI Mockups
	Detailed View Description
	Unit Testing Report
	Regression Test
	TDD Model To ViewModel Messaging
	Context
	Options Considered
	Decision
	Impact
	Related Documents

	Application User Manual
	Code Documentation
	Timesheet

