
Bachelor’s thesis

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Kongsberg

Acknowledgements

Thank you to Hydroplant Technologies AS for giving us the project and to the staff and fellow
students at the University of South-Eastern Norway for their help and guidance.

We would also like to thank Hivemind for supplying us with the LaTeX template as a starting
point [1].

2

Abstract

This project focuses on moving a lettuce from one location to another and detecting the type of
lettuce. This is a research project for Hydroplant Technologies, who wants to develop their own
in-house solution and a starting point that they can develop further. For this project, we chose
to develop an articulated robotic arm that can detect where a lettuce is in a 3 dimensional room.
It shall identify the lettuce, detect its type, and then pick it up and move it to a designated
area.

3

Contents

Acknowledgements . 2

Abstract . 3

1 Introduction . 33

1.1 Hydroplant Technologies AS . 33

1.2 Project description . 35

1.3 Budget and expenses . 36

1.4 Group members . 36

2 Stakeholders . 38

3 Company Visit: O. Espedal Handelsgartneri AS 39

4 Project Methodology . 44

4.1 Leadership model . 44

4.2 Structure . 44

4.3 Project model . 45

4.4 Work shops . 47

4.5 Office and remote work days . 47

4.6 Software used . 47

4.7 Other work . 49

4

CONTENTS

5 Requirements . 50

5.1 Introduction . 50

5.2 User stories . 50

5.3 Requirements in detail . 50

6 Risk Management . 54

6.1 Risk identification and assessment . 54

6.2 Risk management strategies . 55

6.3 Risk analysis . 55

7 System Architecture . 57

7.1 Literature review . 57

7.2 Project Constraints and Architectural Drivers 58

7.3 System Objectives . 60

7.4 System Overview . 63

7.5 Layered Software Architecture . 66

7.6 Communication model . 68

7.7 Critical technologies . 73

7.8 Earlier work . 73

8 Physical concept . 73

8.1 Comparison of robot types . 73

8.2 Choice of robot type . 76

8.3 Robot arm diagram . 77

8.4 Definition of working area . 80

8.5 Definition robot arm . 82

5

CONTENTS

9 Mechanical . 89

9.1 The base . 89

9.2 The Joints / arm . 93

9.3 Gripper . 102

9.4 Design Process for The Gripper . 104

9.5 Structural integrity . 106

10 Electronics . 112

10.1 Sensors . 112

10.2 Electric motors . 112

10.3 Choosing a Motor . 113

10.4 Stepper motor drivers . 114

10.5 Component selection . 115

10.6 MOSFET . 116

10.7 Operational Amplifier circuit . 117

10.8 PCB Design . 118

10.9 Microcontroller & Computer . 123

10.10 Electrical Signals & Communication . 123

11 Software . 125

11.1 Leafy Automation Central . 125

11.2 HMI . 126

11.3 Database . 131

11.4 Leafy Automation Core . 135

11.5 Design and Implementation of Arduino Firmware 137

6

CONTENTS

11.6 Camera . 149

11.7 Artificial Intelligence (AI) and Computer Vision (CV) 152

11.8 Code quality and maintainability . 157

12 Design Review . 159

13 Prototype . 161

13.1 3D printing . 161

13.2 The base prototype . 164

13.3 The joints/arm . 167

13.4 Gripper development and Testing . 170

13.5 Specifications robot arm prototype . 187

14 Conclusion . 188

15 Reflection . 189

15.1 Future work . 190

References . 195

Bibliography . 202

Appendices 203

A Requirements earlier work 204

1 Requirements . 204

B General 211

1 Group Philosophy (initial outlines) . 211

1.1 Introduction . 211

1.2 Flat structure . 212

7

CONTENTS

1.3 Iterative process . 212

2 Project Model earlier work . 213

3 Project Methodology . 218

4 Architecture . 219

5 Design and Website . 228

5.1 Design . 228

5.2 Website . 231

5.3 Website source code . 233

6 Scrum Presentation . 245

7 ClickUp sprints and backlog . 256

7.1 Sprints . 256

7.2 Backlog . 259

C mechanical 266

1 belts and pulleys . 266

2 Robot Gripper Concepts . 268

2.1 Soft Touch in Agricultural Robotics . 270

3 3D-Printing for gripper development . 272

D Mechanical design 274

1 Forces acting on base . 274

2 base HPT interface . 276

3 full scale model . 278

4 Further work on base . 279

8

CONTENTS

5 Further work on arms/joints . 283

5.1 FEA on parts . 283

E Electronics 286

1 Schematic . 286

2 PCB layers . 290

3 PCB BOM . 296

F Code Documentation 299

1 Leafy Automation Central . 299

2 Leafy Automation Core . 360

G Software 445

1 Artificial Intelligence Machine Learning tasks in detail 445

1.1 Image Classification Task . 445

1.2 Object Detection Task . 446

1.3 Depth Estimation Task . 455

2 Artificial Intelligence side notes . 457

2.1 Performance considerations . 457

2.2 A simple performance improvement to model processing 457

3 AI / ML research phase . 459

3.1 AI models of interest . 460

3.2 Initial object tracking research . 460

3.3 Image classification models testing . 460

3.4 AI models - specifics . 461

9

CONTENTS

4 In-depth AI training results (5 epochs) . 461

5 In-depth AI training results (100 epochs) . 467

6 Benchmarking . 475

7 HTTP / ESP32-Cam benchmarking . 476

7.1 Benchmarking . 476

7.2 Further optimizations . 477

7.3 HTTP load testing . 478

8 Demo of working HTTP communication between Core and Central 479

9 Leafy Automation Core code restructuring . 480

10 HMI HTTP Camera Feed . 481

10.1 Frontend . 481

10.2 CameraController.js . 481

10.3 Backend . 482

10.4 api.py . 482

11 HMI dashboard v1 . 482

12 Database side notes . 483

13 In-progress database work . 485

13.1 Logs table (logs) . 485

13.2 Image analysis table (image_analysis) 486

13.3 Bounding boxes table (bounding_boxes) 487

14 API JSON schema . 488

14.1 API status codes . 488

14.2 API routes . 488

10

CONTENTS

15 Specialized Computer Vision with OpenCV and PlantCV 490

15.1 Understanding OpenCV and PlantCV 490

15.2 Color segmentation . 490

15.3 Mask Generation . 491

15.4 Handling overlapping lettuce . 494

15.5 Chessboard pattern for camera calibration 495

15.6 Generating a chessboard pattern . 495

15.7 Using the chessboard pattern in practice 497

15.8 Creating a 3D representation of the scene 498

16 Earlier system architecture work . 500

16.1 High-level architectural relational overview 500

16.2 Main System relational overview . 501

16.3 Communications protocols / pipeline . 501

16.4 AI stack . 502

17 Considering development boards . 503

17.1 Development boards supplied by Hydroplant 503

18 Explaining scrypt . 504

H Calculations 505

1 Configuration Space Excel sheet . 505

2 Moment calculations . 507

3 Varied payload . 510

I Project expenses 511

11

CONTENTS

1 Project expenses . 511

J Robot Concepts 513

12

List of Figures

1 Hydroplant Technologies - From seed to plant 33

2 Hydroplant Technologies overview . 34

3 Leafy greens in Hydroplant Technology system 34

4 Leafy Automation Systems position in the Hydroplant Technologies ecosystem . 35

5 O. Espedal Handelsgartneri AS visit . 39

6 Lettuce study . 40

7 Lettuce with roots . 41

8 Lettuce ready for pick-up, with disposal bins . 41

9 Lettuce heaven . 42

10 Pelleted seeds . 42

11 Crispi-smile . 43

12 Team departments by discipline . 44

13 Illustrating our kanban board. 45

14 Example of a kanban task/ product backlog item 46

15 List of software used in the project (common software). 48

16 List of software used in the project (computer engineering). 48

17 List of software used in the project (mechanical engineering). 49

13

LIST OF FIGURES

18 List of software used in the project (electrical engineering). 49

19 User Stories . 50

20 Requirements for US-01 . 51

21 Requirements for US-02 . 52

22 Requirements for US-03 . 52

23 Requirements for US-04 . 52

24 Requirements for US-05 . 53

25 Requirements for US-06 . 53

26 Risk management process . 54

27 Risk Table . 56

28 Key Project Constraints and Architectural Drivers 59

29 Functional Workflow Diagram . 61

30 Positioning of the robotic arm. 61

31 Working area zone partitioning . 61

32 System Architecture Hardware Overview . 64

33 Layered software architecture for Leafy Automation 66

34 Communication between nodes via ROS2 topics. 71

35 The Leafy Automation software nodes communicating via defined topics. 72

36 Diagram illustrating how the MQTT bridge fascilitates communication between
ROS2 control nodes and the Core Communication Manager 72

37 Decision matrix table . 75

38 Articulated robot arm with rotational base . 76

39 Robot Arm Diagram . 78

14

LIST OF FIGURES

40 Configuration space and task space graphics . 81

41 Top view working area quantification . 82

42 Robotic arm with labels . 83

43 Revolute joint . 84

44 Joint restraint angles . 85

45 Visualization joint restraint angles . 85

46 Scatter plot of configuration space . 86

47 Equation for planar forward kinematic [2, p. 2] 86

48 Diagram for forward kinematic equation . 87

49 Different forces acting on base . 90

50 Initial design ideas V1, V2 and V3 . 91

51 MDF CAD model V4 (CAD motors from [3]) 92

52 MDF model of base for testing limit switch position 93

53 Joint V0.2 . 94

54 Aluminium profile . 94

55 Joint V0.3 . 95

56 Joint V0.4 . 96

57 Joint V0.1B J1 and J3 . 97

58 Joint V0.1B J2 . 98

59 Tensioner for belt . 99

60 Gripper limit switches . 101

61 Gripper V1 . 104

62 Gripper V2 . 104

15

LIST OF FIGURES

63 Final Design . 105

64 Calculations: force on gear teeth . 106

65 Decomposing forces . 107

66 FBD of robot arm with moment equations . 108

67 Payload effect on moment in joints . 109

68 Center of gravity for each link . 110

69 Equation for center of gravity [4, p. 365] . 110

70 FBD of robot arm (V2 with belt drive) . 111

71 Motor selection from moment calculation . 111

72 Motor kit BOM . 113

73 Operational Amplifier SPICE test circuit . 117

74 OPAMP result with test signals at 40kHz . 118

75 3D view of the PCB . 119

76 BOM PCB . 120

77 PCB layer view with all layers visable . 121

78 PCB assembly . 123

79 HMI diagram . 127

80 HMI dashboard . 128

81 MVC - control flow . 129

82 HMI login page . 130

83 Database overview diagram . 132

84 Real-time OS future proofing . 136

85 Naming of joint motors, including driver and gear ratio information 137

16

LIST OF FIGURES

86 Diagram showing the main software components of Leafy Automation Core,
including the MQTT-based connection to Central. 140

87 Sequence diagram showing the Main Loop() on Core. 141

88 Sequence diagram showing the execution of an example MOVE command sent
from Central to Core . 145

89 Flow chart showing handleIncomingCommand() 146

90 Simple state diagram showing the state transition conditions and actions. 148

91 ESP32-CAM low light conditions . 150

92 Example of unaligned camera lens in relation to imaging plane (tangential dis-
tortion) . 152

93 Plant type pipeline . 154

94 Grip point pipeline . 155

95 AI tasks directory structure . 156

96 Python type hinting example . 157

97 Section view of base assembly (CAD bearings from [5] and CAD motor from [3]) 164

98 Exploded view of base assembly (CAD bearings from [5]) 165

99 3D printed parts for the base before assembly 166

100 The base prototype assembly . 166

101 direct drive Joint prototypes . 167

102 Robot arm V0.1B . 168

103 Gripper fingers . 171

104 Gripper body . 171

105 Gearing components . 172

106 Support and stepper motor . 173

17

LIST OF FIGURES

107 Gripper assembly . 173

108 Gripper prototype 1 . 174

109 Fin-Ray gripper . 176

110 Fin-Ray fingers . 177

111 Mounting plate . 177

112 Support brackets . 178

113 Fin-Ray gripper body . 179

114 Gearing components . 179

115 Fin-Ray gripper, exploded view . 180

116 Final Fin-Ray assembly . 180

117 Fin-Ray gripping test . 181

118 Displacement measurements from practical test 182

119 Fin-Ray finger displacement FEM . 183

120 Stress Analysis gear components . 184

121 Close up, maximum stress . 184

122 Safety Factor . 185

123 Finished Physical Model . 186

124 Prototype specification . 187

A.1 Taken from page 134 in Alberto Sols’ book will adapt. 205

A.2 Draft Requirement Matrix . 206

A.3 Draft Acceptance criteria matrix . 207

A.4 Draft Verification and Validation matrix . 207

18

LIST OF FIGURES

A.5 User stories . 208

A.6 User story - autonomous harvesting . 208

A.7 User story - plant recognition . 209

A.8 User story - optimal handling . 209

A.9 User story - safety and efficiency . 210

B.1 Interfacing elektro og data . 219

B.2 Signalinterfacing elektro og data . 220

B.3 Communication and signal details from the early diagram above 222

B.4 Early architectural design . 224

B.5 Early architectural design . 224

B.6 Early attempts at mapping processes . 225

B.7 Enter Caption . 226

B.8 Thoughts for future work. 227

B.9 Our project color palette . 228

B.10 Project logo . 229

B.11 Name tag: Beatrix Rimestad . 230

B.12 Name tag: Daniels Blomnieks . 230

B.13 Name tag: Elin Gravningen . 230

B.14 Name tag: Jim Christian Haukvik . 230

B.15 Name tag: Vetle Myhre Nilsen . 230

B.16 Name tag: Sunniva Myrvang Eineteig . 230

B.17 Recruitment ad . 231

19

LIST OF FIGURES

B.18 Website, iteration 1 . 232

B.19 Sprint1 . 256

C.1 pulley joint 3 motor side . 267

C.2 Jaw gripper . 268

C.3 Finger gripper . 269

C.4 Soft gripper . 269

C.5 Fin-Ray concept . 270

D.1 Forces acting on base and bearings . 275

D.2 Interface for base flange . 276

D.3 Interface future possibilities . 277

D.4 Full scale model . 278

D.5 Load applied in FEA . 280

D.6 stress plot for shaft . 281

D.7 The left side is hard to machine, right side with sleeve as an alternativ 282

D.8 shaft bending forces . 283

D.9 shaft torque forces design study . 284

D.10 shaft bending forces . 285

D.11 shaft torque forces design study . 285

G.1 Image Classification Diagram . 445

G.2 AI model input . 447

G.3 AI model output (bounding boxes and labels shown visually) 448

G.4 Object Detection Benchmark: facebook/detr-resnet-50 449

20

LIST OF FIGURES

G.5 Object Detection Benchmark: YOLO11 . 450

G.6 Example of bounding box . 451

G.7 AI object detection (in-training, batch 2) . 452

G.8 AI training results . 453

G.9 AI training results (100 epochs) . 453

G.10 Depth estimation . 455

G.11 Python AI processing: Before . 457

G.12 Python AI processing: After . 458

G.13 Object Detection Benchmark (before optimization) 458

G.14 Object Detection Benchmark (after optimization) 459

G.15 Initial Sam2 object tracking demo - tracking of a lettuce plant 460

G.16 Confusion matrix - normalized . 461

G.17 Confusion matrix . 462

G.18 F1 curve . 463

G.19 Labels correlogram . 464

G.20 Labels . 465

G.21 P curve . 466

G.22 PR curve . 466

G.23 R curve . 467

G.24 Results . 467

G.25 Confusion matrix - normalized . 468

G.26 Confusion matrix . 469

G.27 F1 curve . 470

21

LIST OF FIGURES

G.28 Labels correlogram . 471

G.29 Labels . 472

G.30 P curve . 473

G.31 PR curve . 473

G.32 R curve . 474

G.33 Results . 474

G.34 Python Benchmark Example . 475

G.35 Python benchmark plot naming format . 475

G.36 HTTP request latency measurements . 476

G.37 Image capture latency . 477

G.38 HTTP request latency measurements (trial #2) 478

G.39 Image capture latency (trial #2) . 478

G.40 HTTP initial testing . 479

G.41 Leafy Automation Core code restructuring - before 480

G.42 Leafy Automation Core code restructuring - after 480

G.43 HMI dashboard v1 . 482

G.44 Python DB connection . 483

G.45 SQlite database migration example . 484

G.46 DB Browser for SQLite example . 484

G.47 Database overview diagram . 485

G.48 Lettuce top-down image . 492

G.49 Lettuce top-down image mask . 493

G.50 Lettuce top-down image mask (fill holes and specs of noise) 494

22

LIST OF FIGURES

G.51 Lettuce top-down image mask (overlap) . 495

G.52 Lettuce top-down (watershed) . 495

G.53 Chessboard pattern . 497

G.54 Chessboard detection . 498

G.55 High-level architectural overview . 500

G.56 Main System architectural diagram . 501

G.57 Communications pipeline . 501

G.58 AI stack . 502

G.59 scrypt password hash used for system authentication 504

H.1 Excel sheet with configuration space calculation 505

H.2 Excel sheet with configuration space (portion) 506

H.3 Moment calculations screenshot V1 (picture and CAD of motors from [3]) 507

H.4 Moment calculations screenshot (portion) - (CAD motors from [3]) 508

H.5 Moment calculations screenshot V2 . 509

H.6 Moment calculations screenshot V2 (portion) . 509

H.7 Excel sheet with moment calculations for varied payload 510

I.1 Project expenses overview . 512

23

List of Tables

1 Group members . 37

2 Risk matrix . 55

3 High-level system objectives. 62

4 Critical technologies . 88

5 Leafy Automation Central - Areas of responsibility 126

6 Database: Users table structure . 133

7 Database: Users table example . 133

8 Database: Access levels table structure . 134

9 Database: Access levels table example . 134

10 Naming conventions including key technical detail. 138

11 Arduino library dependencies . 139

G.1 Database: Logs table structure . 486

G.2 Database: Logs table example . 486

G.3 Database: Image analysis table structure . 486

G.4 Database: Image analysis table example . 487

G.5 Database: Bounding boxes table structure . 487

G.6 Database: Bounding boxes table example . 487

24

LIST OF TABLES

G.7 Leafy Automation Central - API routes . 489

25

Acronyms

AI Artificial Intelligence. 7, 9–11, 29, 43, 62, 63, 65, 68, 69, 125, 126, 149, 152–154, 156, 159,
193, 445, 446, 451, 452, 455, 457, 459, 461, 467, 502

API Application Programming Interface. 10, 126, 475, 488

BOM Bill of Materials. 119

CAD Computer-Aided Design. 103, 172, 176, 270, 273

Central Raspberry Pi 5. 64, 65, 137, 140, 142, 143

Core Arduino R4 WiFi. 64, 65, 137–140, 142, 143

CSS Cascading Style Sheet. 128

CV Computer Vision. 7, 41, 43, 126, 149, 152–154, 156, 454, 490

DOF Degrees Of Freedom. 83

EMC Electromagnetic Compatibility. 122

EMI Electromagnetic Interference. 122

ESP32 Espressif32. 149

FBD Free Body Diagram. 16, 108, 109

FDM Fused Deposition Modeling. 103, 272

FEM Finite Element Method. 173, 191

FOS Factor of Safety. 281

FOV Field Of View. 151

FR4 Fire-Retardant 4. 118

GPU Graphical Processing Unit. 457

26

Acronyms

GUI Graphical User Interface. 126, 484

HMI Human Machine Interface. 6, 16, 29, 125–128, 130, 131, 193

HPT Hydroplant Technologies. 36, 38, 80, 89, 90

HSV Hue, Saturation, Value. 490

HTML Hyper Text Markup Language. 128

HTTP HyperText Transfer Protocol. 29, 125, 126, 488

HTTPS HyperText Transfer Protocol Secure. 66

IC Integrated Circuit. 122

IP Internet Protocol. 126

ISP Image Signal Processor. 64

JS JavaScript. 128

JSON JavaScript Object Notation. 10, 488

LAN Local Area Network. 29

MDF Medium-density Fiberboard. 83, 92, 165

ML Machine Learning. 9, 125, 152, 445, 459

MVC Model View Controller. 16, 128, 129

PCB Printed Circuit Board. 31, 65, 118, 119

PLA Polylactic Acid. 103, 161, 175, 191, 272

QoS Quality of Service. 69

REST Representational State Transfer. 488

RGB Red, Green, Blue. 490

ROS2 Robot Operating System 2. 64, 69, 125

RPM Revolutions per minute. 138

RTOS Real-Time Operating System. 136

SolidWorks SolidWorks®. 172, 173, 176, 179, 181, 191

27

Acronyms

STL STL. 173, 180

the University University of South-Eastern Norway. 36, 59, 189

TPU Thermoplastic Polyurethane. 102, 103, 161, 175, 176, 191, 272

WAF Web Application Framework. 29

WAN Wide Area Network. 29

WCGI Web Server Gateway Interface. 32

28

Glossary

BLDC A brushless DC motor is an electric motor that uses magnets and coils to translate
electrical energy to mechanical energy.. 113

CC BY 4.0 Open source license which stands for “Creative Commons Attribution 4.0”. It
allows you to share and adapt the material as long as attribution is provided. 451, 452

DDS The Object Management Groups Data Distribution Service is a standardised middleware
protocol for real-time, scalable publish/subscribe communication, featuring configurable
Quality of Service policies for reliability, latency, and resource management. 69

Docker An open-source platform for containerizing applications. Docker packages software
and its dependencies into lightweight, portable containers that can run consistently across
different environments, ensuring isolation and simplified deployment. 69, 72

Doxygen Software for generating code documentation. 125

ESP32 Simple and low-cost system on a chip manufactured by Espressif Systems. 149

ESP32-CAM The ESP32-CAM is a small embedded device containing the ESP32 SoC (Sys-
tem on a Chip) and an integrated camera sensor. 29, 135, 149–151, 476

Fine tuning Fine tuning is the process of taking existing AI models and improving their
accuracy within certain domains. This is achieved by using a dataset, which is a collection
of inputs and their expected outputs. 451

Finite Element Method blabla. 181

Flask Flask is a Web Application Framework (WAF) written in Python. We use it to to host
the HMI which is a web application hosted on either a Local Area Network (LAN) or
Wide Area Network (WAN), depending on the customers use case. It was also used for
some earlier iterations of the HTTP networking between ESP32-CAM and Central.. 32,
128

Google Colab Google Colab is an online service which allows you to run code on dedicated
and powerful hardware. It is especially useful for training AI models. 451

29

Glossary

HMI The user-facing part of a system that allows a human operator to monitor, control, or
interact with the system via a user interface. 63

Hugging Face An open source platform where the machine learning community collaborates
on AI models, datasets and applications. 446, 455

JQuery JavaScript library for interfacing with HTML elements in a webapp. 128

Kanban A visual workflow method for managing tasks and optimising flow. Work items, often
called tasks or in our case backlog-items, are represented on a board with columns (To Do,
In Progress, Needs Review, and Done). Teams pull new tasks only when they have capac-
ity, respecting Work-In-Progress. Kanban focuses on continuous delivery, transparency..
44–46

limit switch A limit switch is a sensor used to detect the physical limits of a motors movement.
It triggers once the maximum point of the motors movement range has been met. It then
provides a signal to stop further motion, thus preventing mechanical overrun or damage..
65, 68

Macbook Air M1 A laptop released by Apple in 2020. It has been used as a test rig for AI
model benchmarking in our project.. 457

micro-ROS micro-ROS is a lightweight version of ROS2 designed to run on microcontrollers
with limited resources. It enables small embedded devices to participate as nodes in a
ROS2 system by communicating over standard ROS2 protocols. . 65, 72

microstep A small fraction of a full step in a stepper motor (for example, dividing a 1.8ř full
step into 16 equal parts), used to achieve smoother motion and finer position control. 138

MQTT MQTT (Message Queuing Telemetry Transport) is a publishsubscribe messaging pro-
tocol designed for efficient communication between devices over networks with limited
bandwidth or high latency. It uses a central broker to route messages between publishers
and subscribers based on topic names.. 65, 66, 68, 69, 72, 140, 142, 143

node An isolated ROS 2 process responsible for a specific task. Nodes communicate with one
another via topics (asynchronous publish/subscribe), services (synchronous request/re-
sponse), and actions (preemptible, longrunning goals with feedback).. 69

OpenCV Open source computer vision library. 154, 496–498

PlantCV Open source computer vision library based on OpenCV for plant specific tasks. 154

30

Glossary

Product Backlog An ordered list of all tasks needed to progress a product towards comple-
tion. The list is prioritised and reviewed regularly to ensure that the most important
work is done first. The Development Team pulls items from the backlog into each sprint.
The backlog is dynamic and evolves as new requirements and tasks emerge and priorities
change.. 45, 46

Python Python is a programming language renowned for its easy of use, and is often used for
scientific purposes like Artificial Intelligence. 29, 32, 128

Roboflow A service which hosts a collection of fine-tuned open source AI models and datasets
online. 451

ROS2 Robot Operating System 2 - An open source framework for developing and deploying
robotic applications, providing libraries and tools for building modular systems with inter-
process communication, hardware abstraction, and various high-level functionalities.. 57,
59, 68, 69, 72, 137

Rotary Encoder A rotary encoder is a device that reports the position or motion of a shaft..
65

SCRUM An agile framework for managing work in small teams. Scrum breaks projects into
short, fixed-length cycles called sprints. Key roles include a Product Owner (who sets
priorities), a Scrum Master (who helps the team follow Scrum), and the Development
Team (who build the product). Scrum uses simple artifactslike the Product Backlog
(a prioritised list of work, often called tasks or backlog items)and regular eventssuch as
Sprint Planning, Daily Scrum, Sprint Review, and Sprint Retrospectiveto plan, track,
and improve the teams work continuously.. 45

topic In publish/subscribe messaging, a topic is a named channel where the publishers their
data too, and which subscribers receive them. This decouples the senders from the
receivers, allowing for data to be sent asynchronously without being directly connected..
65, 69

UART UART (Universal Asynchronous Receiver/Transmitter) is a hardware communication
protocol used for serial data exchange between two devices. It transmits data asyn-
chronously, meaning it does not require a shared clock signal, and is commonly used for
communication between microcontrollers, sensors, and other embedded components.. 65

utf-8 Widely used character encoding format for text strings. 131

via For PCBs a via is a connection between the layers of the PCB.. 118, 122

Visual Studio Code An open-source code editor used for writing and debugging code in
multiple languages. 48

31

Glossary

WebSocket A communications protocol built for the web. Initial handshake is done over
HTTP, followed by low-level TCP. 129

Werkzeug A simple WCGI library that contains utility functions which are useful for web
server applications. is built on top of this library. 130

Zephyr Real Time Operating System made by the Linux Foundation. 136

32

1. INTRODUCTION

1 Introduction

Our bachelor’s thesis is given by Hydroplant Technologies AS. Our task is to develop a versatile
robot system that autonomously harvests and processes several types of vegetables.
Food production around the world has to increase considerably to meet the growth of pop-
ulation. Climate change needs us to rethink sustainability around how we produce eatables.
Hydroplant’s goal is to find cost effective solutions in a environment-friendly way.

1.1 Hydroplant Technologies AS DAB | SME

Hydroplant Technologies started out as a student project provided by USN, and founded AS
in may 2024.
Their goal is to innovate and automate the vertical farming setup. The company is developing
autonomous harvest solutions, from seed to fully packed goods, see figure 1 for a simplified
view of the process and figure 2 for a more detailed overview of the process. The goal with this
technology is to create systems that are cost-effective while also ensuring that the systems are
highly optimized and effective.

Figure 1: Hydroplant Technologies - From seed to plant

33

1. INTRODUCTION

Figure 2: Hydroplant Technologies overview

Figure 3: Leafy greens in Hydroplant Technology system
This is a small test run at the USN Kongsberg campus.

34

1. INTRODUCTION

1.2 Project description SME | JCDH

Hydroplant Technologies AS wants our help to develop a versatile system for the automatic
harvesting and processing of salads. In their overall system, we will only focus on the harvesting
part. From seed to fully grown salads, they will enter our system where they will be:

1. Recognized by AI technology.
2. Handled with care and attention so that we do not harm the salad.
3. Picked up and transferred from their growing station.
4. Positioned in a specific and defined place to be ready for next step in Hydroplant’s system.

The existing autonomous solutions in today’s market are expensive, and Norwegian farmers do
not have the economy that is required to upgrade. There are also negative effects in manual
farming: it is high-cost and there are hygiene-related risks. Bacteria, viruses and parasites can
contaminate the products from poor hand hygiene by those who harvest vegetables.
Hydroplant Technologies wants to remove manual work from harvesting systems, to ensure
better hygiene and to increase the durability of vegetables. In addition, their goal is to enlarge
vegetable cultivation, and to make it more efficient. For an overview of Hydroplantťs system,
and where Leafy Automation will be operating see Figure 4.

Figure 4: Leafy Automation Systems position in the Hydroplant Technologies ecosystem

35

1. INTRODUCTION

1.3 Budget and expenses BMR | SME

Keeping the costs at a minimum is a key requirement for this bachelor project (see section 7).
The given budget is 30 000,- NOK, in addition the bachelor group has received some hardware
from HPT and has access to resources at the University. An overview of the project expenses
can be seen in appendix I.

1.4 Group members

The bachelor group is a multidisciplinary group consisting of 1 electronic, 2 software and 3
mechanical engineer students. They are all presented in tab.1. Working in several disciplines
can pose a challenge but is also a great learning possibility for the group members.

1.4.1 Authors

The author and proofreader for each section and subsection is identified by their initials to
the right of the heading (the initials can be seen in (tab. 1). The first initials belong to the
author/-s which is responsible for the main content. The other initials identify the proofreader
who has looked over the text to ensure a good flow and coherence as well as correcting spelling
mistakes. If there are more authors that have been working on a section together, their initials
will be on the left side of the line. Some sections will only have an author and no proofreader
due to time constraints.

36

1. INTRODUCTION

Name Sunniva Myrvang Eineteig

Initials SME

Discipline Mechanical engineer - Product development

Role(s) External contact & Instagram

Name Beatrix Møller Rimestad

Initials BMR

Discipline Mechanical engineer - Product development

Role(s) Internal contact, time wizard & Overall structural in-
tegrity

Name Daniels Aleksandrs Blomnieks

Initials DAB

Discipline Mechanical engineer - Product development

Role(s) Risk-analysis, interface between parts & LaTeX

Name Jim Christian Dale Haukvik

Initials JCDH

Discipline Computer engineer - Cyber physical systems

Role(s) Artificial Intelligence / Computer Vision, Camera, Hu-
man Machine Interface, Website & ClickUp

Name Elin Gravningen

Initials EG

Discipline Computer engineer - Cyber physical systems

Role(s) System Architecture, Robotics & Project Fascilitator

Name Vetle Myhre Nilsen

Initials VMN

Discipline Electrical engineer - Cybernetics

Role(s) Electronics & LaTeX

Table 1: Group members37

1. INTRODUCTION

2 Stakeholders BMR |

When developing a new product, it is crucial to identify the different stakeholders. Analysing
their interest and influence towards the product will help in how they should be handled and/or
included in the development process.

For this project the main stakeholder is Hydroplant Technologies AS, as the client they both
have high interest and high influence over the product and must be consulted regularly. Their
input will help in defining the requirements needed for the product. An iterative approach in
combination with close collaboration with the client can ensure that the product evolves in the
wanted direction. A design review halfway through the project period provided useful feedback
(see section 12).

Another stakeholder to regard is the possible customer of HPT. These are the ones who will
actually use our subsystem in their production line, and will have valuable information about
what aspects around the harvesting that are important to consider. A company visit gave the
project group valuable input (see section 1.4.1).

A high influence stakeholder group is the ones responsible for the national regulations and
laws that deal with machines, electricity and food safety. This project will focus mostly on
the initial development and not the final production, still the needs of these stakeholders will
be taken into consideration when making the requirements for the product. Especially in the
development of the gripper, that will have direct contact with the edibles, the regulations for
food safe materials is an crucial aspect (see section C). For future work it will be important to
consider what is required to attain different certifications necessary to put the product on the
market.

38

1. INTRODUCTION

3 Company Visit: O. Espedal Handelsgart-
neri AS SME | JCDH

As part of our collaboration with Hydroplant AS we conducted a field visit to Osmund Espedal
Handelsgartneri AS to gain practical insights into modern horticultural practices. The visit
provided essential contextual understanding that has significantly informed the design and
functionality of our robotic system.

Figure 5: O. Espedal Handelsgartneri AS visit

O. Espedal Handelsgartneri AS is a family-owned horticultural enterprise located in Lier, Nor-
way. The company has been in continuous operation since 1914 and family-owned since 1917.
Over the past two decades, the business has specialized exclusively in the cultivation of Crispi
lettuce and cucumbers, which are supplied primarily to Bama Gruppen AS.

Relevance to Our Project

Our robotic system is designed to autonomously harvest various types of leafy greens, one of
which is Crispi lettuce. Observing the full production cycle at O. Espedal, from seed to harvest,
was both instructive and valuable. The visit offered a detailed view into the operational logistics,
technical setup, and workflow efficiency of a modern horticultural facility.

Notably, O. Espedal employs both traditional soil-based agriculture and hydroponic cultiva-
tion techniques. While Hydroplant AS currently uses only hydroponics, the exposure to both
cultivation methods helped broaden our understanding and ensured that our robot design is
flexible enough to accommodate potential future shifts in production strategy.

39

1. INTRODUCTION

Figure 6: Lettuce study

Key Observations and Design Implications

During the visit, we closely studied the harvesting process, which remains fully manual at O.
Espedal. The growing beds automatically advance the plants to the end of a working table,
where human workers harvest each lettuce head by hand. Workers remove roots and damaged
leaves before placing the products into packaging crates.

This process revealed several critical insights:

• Plant Tilting During Movement: As the growing beds advanced, the lettuce heads
were observed to tilt due to a lack of structural support. This informed our decision to
incorporate a rotational capability into our robotic gripper, enabling it to adapt to tilted
or irregularly oriented lettuces during harvesting.

40

1. INTRODUCTION

Figure 7: Lettuce with roots

• Manual Removal of Damaged Leaves: Damaged or unmarketable leaves were man-
ually discarded into separate bins. Based on this, we decided to include a disposal zone
within the robot’s working area for damaged plants and waste material.

Figure 8: Lettuce ready for pick-up, with disposal bins

• Overlapping Foliage: In many cases, lettuce leaves overlapped, making it difficult
to distinguish between individual heads. To address this, we drafted a plan for the
implementation of a Computer Vision (CV) system to identify and separate individual
lettuce heads, as well as to distinguish between healthy and damaged foliage.

41

1. INTRODUCTION

Figure 9: Lettuce heaven

• Need for Interchangeable Grippers: Another important takeaway from the visit was
the necessity for the robotic gripper to be interchangeable. While the current focus is on
harvesting lettuce, future applications may involve other vegetables or entirely different
tasks, such as sowing seeds. Since seeds are much smaller and require a different handling
mechanism, the ability to swap out the end-effector will enable the robot to be used for
a wider range of agricultural operations.

Figure 10: Pelleted seeds

• Plant Fragility and Transportation: The farmer informed us that the plants are very
fragile and do not tolerate movement or handling well. Their grow bed transportation
system is slow and gentle, and works well primarily because the individual plants are
supported and held in place by the surrounding plants, which helps keep them stable

42

1. INTRODUCTION

until they reach the harvesting line. Even so, many are damaged to the point where they
need to be discarded. For this reason, the farmer advised that it would be much safer
to retain the plant transportation system as it is and instead position multiple robots
alongside it. This would cause significantly less stress and damage to the plants than, for
example, removing the grow beds from the growing area and transporting them to the
robot on a conveyor belt.

Conclusion

The visit to O. Espedal Handelsgartneri AS provided real-world context that has greatly in-
fluenced the development of our harvesting robot. The insights gained have translated into
specific design decisions, including a gripper with rotational flexibility, a designated disposal
area, an AI/Computer Vision-based sorting and detection system, and a modular, interchange-
able gripper interface that allows for adaptability to future agricultural tasks.

Figure 11: Crispi-smile

43

4. PROJECT METHODOLOGY

4 Project Methodology

In this chapter, we describe how our multidisciplinary team structured our work, the processes
and tools we used.

4.1 Leadership model EG |

We adopted a flat leadership model in which all six team members shared equal responsibility
for planning, decision-making, and deliverables. Overseeing tasks such as leading meetings,
taking minutes, supervising interfacing, and contributing to the risk analysis were considered
shared responsibilities among all the group members. The goal of this approach is to encourage
creativity, collaboration and shared ownership.

4.2 Structure EG |

Figure 12: Team departments by discipline

We created three departments to reflect each of the three disciplines of the group, where the
electronics department is supported by the other two disciplines. See Figure 12. Under this
flat leadership structure, the group as a whole were in charge of overseeing project development
and ensuring that deadlines are met. We used a Kanban board to keep track of workflow, but
internally, each department were encouraged to use their own preferred methods to ensure.
In practice this meant that design and development decisions, and tasks, were defined on the
group level, but how the the methods in which the tasks were completed was at the departments’
prerogative.

44

4. PROJECT METHODOLOGY

4.3 Project model EG |

Figure 13: Illustrating our kanban board.

The group’s aim from the start was to use agile project development principles. Though we
started with the intention of basing delopment on SCRUM methodology, this did not prove to be
a good fit. We therefore moved over to Kanban, yet kept some of the key features from SCRUM
that worked well and aided our work. We found that developing a product Product Backlog,
doing weekly sprint planning sessions, daily stand-ups, and sprint retrospectives worked well.

Our task items followed a set structure, as seen in Figure 14:

• A short and easy to understand title

• A short description.

• Acceptance criteria and verification/validation testing.

• An owner, once claimed during a sprint.

45

4. PROJECT METHODOLOGY

Figure 14: Example of a kanban task/ product backlog item

Our Kanban summaries can be found in Appendix B.7.

Other key features we used in our work flow:

• Stand-up meetings. Short, max 15 minute where we inform everyone about what we’re
planning to do that day, along with any hindrances we’re facing or support we need from
other members of the group.

• Sprint Planning Once a week we look at the product and pull items from it and place
it onto our sprint plan. The sprint plan consists of the work we’re planning to get done
the coming week. Product Backlog

• Supervisor meetings. We held regular meetings with our supervisors where we received
constructive feedback and discussed ideas based on our progress the past week.

• Sprint Retrospectives. These were held following sprint completions to evaluate our
process and optimise our workflow.

46

4. PROJECT METHODOLOGY

4.4 Work shops EG |

A number of workshops and educational excursions were held:

• SCRUM workshop before project commencement.5

• Workshop with Hydroplant Technologies 31/01/2025

• A visit to Espedal Gartneri where we learned about aggricultural farming from a farmer’s
perspective.1.4.1

4.5 Office and remote work days EG |

Before Easter Exams we held regular office days Wednesdays through Friday. The team main-
tained core working hours from 9.00-15.00, except for one member who attended office office
hours 9.00-12.00, with some flexibility. After this point and through to completion, we all
worked core hours 09.00-15.00 including a regular home office day on Tuesdays each week.
Tuesdays were considered "writing days".

Out project method resources can be found in the appendix in Section 3

Please refer to Appendix B.2 for earlier work written on project model.

4.6 Software used JCDH | SME

Below is a list of software used in the development of our project.

4.6.1 Shared software JCDH, EG |

The following table outlines the software used by all members of our team. These are important
pieces which facilitate communication and project management.

Artificial Intelligence
Some group members have used AI tools to support our workflow. This includes AI-assisted
text formatting to improve readability, without altering technical content. Copilot has been

47

4. PROJECT METHODOLOGY

used in Visual Studio Code for auto-completion and to explore different code strategies.

Software Description Version Href

ClickUp Project and task tracking system Latest https://clickup.com

Clocklify Time tracking software Latest https://clockify.me

Overleaf Software for editing LaTeX docu-
ments (used for the thesis itself)

Latest https://overleaf.com

Office 365 Microsoft software such as Word,
Excel, Powerpoint, OneDrive and
Teams

Latest https://office.com

Figure 15: List of software used in the project (common software).

4.6.2 Computer engineering JCDH | SME

Software Description Version Href

Python Programming language used for
development.

Latest https://www.python.org

Poetry Dependency management and
packaging tool for Python.

Latest https://python-poetry.org

Doxygen Tool for generating documenta-
tion from source code.

Latest https://www.doxygen.nl

VSCode Source code editor with exten-
sive support for development.

Latest https://code.visualstudio.com

draw.io Diagram creation software. Latest https://draw.io

Postman HTTP API testing software. Latest https://postman.com

Platform.IO The use of PlatformIO allows
us to prototype quickly and
change the development board
in the future without changing
software.

Latest https://platformio.org

Google Colab Jupyter notebook service used
for training AI models.

Latest https://colab.google

Figure 16: List of software used in the project (computer engineering).

48

https://clickup.org
https://clockify.me
https://overleaf.com
https://office.com
https://www.python.org
https://python-poetry.org
https://www.doxygen.nl
https://code.visualstudio.com
https://draw.io
https://postman.com
https://platformio.org
https://colab.google

4. PROJECT METHODOLOGY

4.6.3 Mechanical engineering JCDH | SME

Software Description Version Href

SolidWorks CAD modelling software for 2D
and 3D workflows. Also used for
analysis.

Latest https://solidworks.com

Figure 17: List of software used in the project (mechanical engineering).

4.6.4 Electrical engineering JCDH | SME

Software Description Version Href

Altium Designer PCB design software. Latest Altium Designer

LTspice Software for creating and sim-
ulation electronic circuits.

Latest Analog Devices LTSpice

Figure 18: List of software used in the project (electrical engineering).

4.7 Other work JCDH | SME

Please refer to Appendix B.1 for earlier project work, and Appendix B.5 for work on design
and website.

49

https://solidworks.com
https://www.altium.com/altium-designer
https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator.html

5. REQUIREMENTS

5 Requirements

5.1 Introduction JCDH | SME

Requirements are an important part of any project. They must be well defined, which means
that they are quantifiable using methods such as testing, validation and verification. As part
of the development of the requirements, stakeholders naturally provide input. It has been our
intention to follow the general recommendations defined in the ISO 29148 standard when devel-
oping these requirements [6]. Please refer to Appendix A for earlier work done on requirements.

5.2 User stories JCDH | SME

Before defining each requirement in detail, it is useful to create user stories to get an idea of
how a user will actually use the system. Figure 19 outlines the user stories we have defined,
which is divided into an “User story ID”, a “Short title” and the “User Story” itself.

Figure 19: User Stories

5.3 Requirements in detail JCDH | SME

Our requirements follow these defined guidelines:

• All requirements shall reside within a specific US (User Story) ID, which is related to
context of the user story.

• All principal requirements shall have a Use Case ID.

• All principal requirements will have a named Use Case.

50

5. REQUIREMENTS

• All requirements shall have a Requirement ID defined in the format REQ-xyz-abcd.

• All requirements shall have a Requirement description.

• All requirements are given a priority of either A, B or C in order of importance.

Figure 20, 21, 22, 23, 24 and 25 outlines all requirements.

Figure 20: Requirements for US-01

51

5. REQUIREMENTS

Figure 21: Requirements for US-02

Figure 22: Requirements for US-03

Figure 23: Requirements for US-04

52

5. REQUIREMENTS

Figure 24: Requirements for US-05

Figure 25: Requirements for US-06

53

6. RISK MANAGEMENT

6 Risk Management

We will identify, assess, prioritize current and potential risk, and implementation of mitigation
strategies. The book used for reference is systems engineering Theory and practice [7, P. 88-
100]
For a bachelors thesis it is not required to have a fully complete risk management, we need
to show that we have a good understanding of what it is and how to deal with it and not
overcomplicate it.
Risks can be poor decision making or oversight of the system. This can lead to a temporary
stop of development or even backtracking to fix and mitigate risks in the system.

6.1 Risk identification and assessment DAB | VMN

Figure 26: Risk management process

The figure has been modified to our needs from
book systems engineering theory and practice [7,
P. 92]

Identify - assess – implement mitigation strat-
egy. Identification of current and potential
risks that can disrupt the project and affect
the achievement of the goal set. Identifica-
tion must be an ongoing activity throughout
the project to ensure continuous progress with
minimal problems. All team members must
contribute and participate in the discussion of
identifying risks in their respective disciplines
and roles.

After that is done, we assess each risk and
rank them in the figure 27. In the table,
we group them into the categories Technical,
Group, Financial, and Human error. With
the category’s set we give them a unique id
to them like RT1–risk technical 1. This sim-
plifies the process of looking through the risk
table.
The identified and categorized risks we assign
a number of what is the effect/consequence
and likelihood of occurrence by looking at risk
matrix table:2. The risk matrix is 5x5 to have
good accuracy.
We have set up an excel sheet that automat-
ically calculates risk factors based on the in-

54

6. RISK MANAGEMENT

putted values. if needed, we can write a description in the risk table if required.

6.2 Risk management strategies DAB | VMN

Finding the best action to reduce or eliminate the likelihood or consequence of the risk. There
are several ways to deal with risks, such as acceptance, contingency, reduction, transference,
and prevention, discussed in the book.
Our risk table includes a mitigation strategy tab; there we write a short action as of how to
deal with the risk and to avoid overcomplicating, and also at the same time show that it has
been under consideration.

6.3 Risk analysis DAB |

1 low low Low/Med Low/Med Low/Med
2 low Low/Med Low/Med Medium Medium
3 Low/Med Low/Med Medium Medium Medium/high
4 Low/Med Medium Medium Medium/high High
5 Low/Med Medium Medium/high High High

likelihood

1 2 3 4 5

Effect/ consequence

Table 2: Risk matrix

55

6.
R

ISK
M

A
N

A
G

E
M

E
N

T

Figure 27: Risk Table

56

7. SYSTEM ARCHITECTURE

7 System Architecture

This chapter gives an overview of the system architecture that supports the Leafy Automation
robotic harvesting system. It will begin by presenting the academic literature which has greatly
inspired and influenced the Leafy Automation architectural design. The design drivers and
constraints will then be presented, followed by the architectural objectives that have steered
design choices in the right direction. From this foundation, we will present how the hardware
and software components of Leafy Automation are structured and interact together to enable
sensing, planning and execution of motor control. The systems layered architecture approach
combined with the communication methods by Robotic Operating System 2 (ROS2) will be
presented in detail, along with an overview of the software components themselves.

7.1 Literature review EG |

Our aim is to base our System Architecture decisions on established research and best practices.
For each source reviewed, we provide a summary of main points, gaps relevant to this thesis,
and an evaluation of how this source can support our upcoming architecture.

Software Architecture in Practice, Clements, and Kazman (2021)[8]

This textbook by Bass, Clements, and Kazman presents foundational principles and tactics
for designing software architectures. Early in the book, the authors discuss quality attributes
associated with software architecture, why they are highly important, how to identify the most
relevant attributes, and how to design for them. Most relevant to this thesis are the quality
attributes of modifiability, scalability, and testability. The book presents several tactics that
promote each attribute, providing an honest balance between benefits and trade-offs. A key
tactic presented in this book is the layered software architecture pattern. The authors define
layers as vertical groupings of related modules with strictly controlled interfaces, arguing that
changes confined to one layer do not affect the others. Benefits include easier extension by
inserting modules at the correct layer, focused testing scoped per layer, and clearer separation
of concerns to ease understanding and enable isolated development.

While this book has proven to be a valuable resource, it offers relatively few domain-specific
examples relating to embedded robotic applications. The authors focus primarily on large-scale
businesses.

We evaluate that this work provides good framework from which to identify the most important
quality attributes for the Leafy Automation architecture. It also provides a strong theoretical
foundation for our layered ROS 2 architecture and justifies the strict layer boundaries and

57

7. SYSTEM ARCHITECTURE

interfaces between them.

Robot Operating System 2 (ROS2)Based Frameworks for Increasing Robot Auton-
omy: A Survey by Bonci et al. (2023).

Bonci and co-authors survey the state of the art in using ROS2 as a middleware to facilitate
perception, planning, and control modules, particularly in fixed-base robots. The paper reviews
existing ROS 2 features and tools, and proposes a high-level modular architecture for a pick-
and-place proof-of-concept. The main points we draw from this source:

Middleware The authors propose ROS2 as the glue that brings together sensors, algorithms,
and robot controllers. They contrast it with other frameworks (such as YARP, OROCOS,
MOOS) and highlight ROS2s extensive ecosystem of libraries, including MoveIt2 for planning
and the ROS-OpenCV bridge for vision.

Layered, task-based architecture They decompose autonomy into seven core tasks: Per-
ception, Recognition, Behavior Planning, Trajectory Planning, Trajectory Re-planning, Motion
Control, and Manipulation. These are grouped into three layers (Perception + Recognition,
Planning, Control) to enforce clear interfaces and facilitate modularity.

Planning and control Implementation Their proof-of-concept uses MoveIt2 to generate
and adapt pick-and-place trajectories, and two ROS 2 nodes (Cobot Driver and End-Effector
Driver) to send commands to a commercial cobot and its gripper.

However, while ROS2s micro-ROS project is mentioned, the paper acknowledges that many
embedded platforms still lack robust ROS2 clients, leaving a gap for lightweight protocols or
custom bridges.

This source offers a practical, robotics-centered blueprint for structuring a ROS2based au-
tonomy stack, proving valuable for teams aiming to assemble perception-to-control pipelines
quickly. Their task-layer mapping directly tells us how to group our own nodes and define
clear topic or service interfaces between them. The overview of MoveIt2 integration and case-
study citations also serve as guides for our proof-of-concept work. However, to address our
embedded-hardware constraints call for further research, particularly on protocol bridging.

7.2 Project Constraints and Architectural Drivers EG | BMR

Developing a system architecture should begin with a prioritised list of quality attribute re-
quirements. These form the basis for design decisions and guide trade-offs throughout the
development process. [8, p. 7–20] This section presents an expanded list of priorities, covering

58

7. SYSTEM ARCHITECTURE

both key project constraints and the most relevant architectural quality drivers. It reflects the
strict limitations on time and resources, as well as the central architectural quality goals of
modifiability and scalability.

Figure 28: Key Project Constraints and Architectural Drivers

Time constraints

The bachelors thesis in engineering at the University of South-Eastern Norway (the University)
spans one semester and includes a number of mandatory events and deliverables. The final
submission deadline is fixed and non-negotiable, meaning the project must be completed within
this timeframe.

Budget and Resources Requirement REQ-001-0003 (see section 5) states that development
must keep expenditure to a minimum by primarily using resources provided by Hydroplant
Technologies and the University. This constraint has led to choices such as utilising supplied
hardware, opting for open-source software (such as ROS2, which is further explained in section
7), and avoiding third-party or proprietary solutions where possible.

Modifiability

The Leafy Automation harvesting system is an early-stage, proof-of-concept research project
that extends beyond the scope and timeline of this bachelors thesis.Therefore, a key objective is
to develop a software architecture that is both modifiable [8, p. 117–130] and flexible, enabling
further development and adaptation after the initial prototype phase.

To support this goal, modifiability was identified as an essential quality attribute from the
start. A modular architecture provides clear separation of concerns and well-defined interfaces
between components, allowing team members to design, implement, and test their contributions
independently.[9] This is also an advantage for a team working in parallel and under a tight
deadline.

59

7. SYSTEM ARCHITECTURE

Modularity also plays a critical role in the long-term modifiability and scalability of the system.
Well-encapsulated modules are easier to understand, replace, or upgrade without requiring
significant changes to the rest of the system.[9] This is especially relevant in a research and
development setting where future changes, improvements or extensions, such as new sensors,
gripper designs, or additional subsystems like plant pot or root removal, may be added to the
system. With a modular foundation, such additions can be integrated with minimal disruption
to the system at large.

Scalability

Scalability is an important goal for the Leafy Automation harvesting system. Although this
project delivers a proof-of-concept, the system is intended to grow over time, both in complexity
and scale.

A scalable design allows the same architecture to support higher output rates, additional func-
tionality such as root cutting or plant health checks, or the ability to operate multiple robotic
arms along the same production line. To make this possible, the software needs to be designed
around reusable components with clearly defined interfaces, so that software components can
be extended or duplicated without major structural changes or significant rewrites.

In line with REQ-006-001 (see section 5), the system is built from modular and abstracted
components that can be tested, updated, or replaced independently. This fits well with ag-
ile development principles and recommendations from modular software architecture research,
highlighting that well-separated, low-dependency components are essential for scalable and
maintainable systems.[9]

7.3 System Objectives EG | BMR

The Leafy Automation system is a project that aims to fully automate the harvesting of leafy
green vegetables in an industrial, agricultural environment. At this early proof-of-concept stage,
the robot is required to carry out a defined sequence of basic tasks: detecting and classifying a
plant, picking it up, transporting it, and finally placing it in a designated placement zone. This
functional sequence forms the backbone of the harvesting process and is illustrated in Figure 29.
The sequence is executed by a robotic arm, which is the main focus of this bachelors thesis.
The arm is positioned in the center of the working area, as shown in Figure 30, with further
detail provided in the zone layout shown in Figure 31. For a more thorough explanation of the

60

7. SYSTEM ARCHITECTURE

Figure 29: Functional Workflow Diagram

working area layout, see Section 8.4 Definition of Working Area.

Figure 30: Positioning of the robotic arm.

Figure 31: Working area zone partitioning

The workflow shown in Figure 29 has been derived from the project requirements defined in

61

7. SYSTEM ARCHITECTURE

section (see section 5). These requirements specify the functions that the robot must perform.
Based on this workflow, a set of high-level system objectives has been identified. These ob-
jectives describe the main capabilities that the system must perform and serve as a basis for
guiding key design decisions. Table 3 provides an overview of the architecture objectives and
their corresponding requirement references.

ID System Objective Corresponding Requirement

SO-01 Capture and analyse plants

REQ-002-001
REQ-002-002
REQ-002-003
REQ-002-004
REQ-002-005
REQ-002-006
REQ-002-007
REQ-002-008
REQ-001-008
REQ-001-009

SO-02 Motion planning
REQ-001-0008
REQ-001-0009

SO-03 Task planning
REQ-003-0001
REQ-003-0002

SO-04 Motor control REQ-001-0009

SO-05 Human interface REQ-001-0004

Table 3: High-level system objectives.

System Objective SO-01: Capture and Analyse Plants The workflow begins when the
camera captures the image of one or more plants in the Pickup-zone. The image must then be
processed using AI-based image analysis to identify the type of plant and to estimate the best
gripping coordinates for the pickup operation.

62

7. SYSTEM ARCHITECTURE

System Objective SO-02: Motion planning Motion planning is an essential component
responsible for generating safe movement paths for the robotic arm based on input from the
AI-based recognition system. It should calculate trajectories that guide the end-effector, for
example, from its current position to the plant pickup coordinates, coordinating all five joints
to ensure smooth and precise motion.

System Objective SO-03: Task planning The system should support a coordinated se-
quence of harvesting operations, including plant detection, pickup, placement, and state han-
dling. This functionality must be organized and structured to allow for adaptations or new
tasks to be added over time.

System Objective SO-04: Motor control The system shall translate planned motion paths
into joint and gripper movements, enabling the robotic arm to carry out its tasks correctly and
in the correct sequence.

System Objective SO-05: Human Machine Interface The Human-Machine Interface
(HMI) should allow users to start and stop operations, monitor system status, and view error
messages. This is valuable in testing, debugging, demonstrations, and production.

7.4 System Overview EG | BMR

A layered architectural approach has been chosen, which separates the system into functional
blocks: perception, recognition, planning, high-level, and low-level motor control. The software
modules of each layer communicate through well-defined interfaces, allowing components to be
developed and tested independently. Further details of the software layers are provided in later
subsections.

Below is a summary of the main system components.

63

7. SYSTEM ARCHITECTURE

Figure 32: System Architecture Hardware Overview

7.4.1 RaspberryPi 5 (Central) for high level computations EG | BMR

The development team was provided with one Raspberry Pi 5 and two Arduino Uno R4 WiFi
boards for use in the Leafy Automation project. The Raspberry Pi 5, referred to as Central
throughout the project, was selected to serve as the central processing unit. It is responsible
for receiving camera input, performing AI-related computations, executing motion and task
planning, and handling high-level motor control.

These tasks are computationally intensive and require a platform capable of multitasking and
multithreading. The Raspberry Pi 5 is equipped with a quad-core Arm Cortex-A76 CPU cluster
[10], making it significantly more powerful than the Arduinos. It also offers better memory,
native support for multitasking and the ability to run ROS2 [11]. ROS2 and its place in the
Leafy Automation system is explained in Section: Robot Operating System 2 7.

In addition to general-purpose processing, the Raspberry Pi 5 includes a dedicated Image Signal
Processor (ISP) and a hardware video scaler, which provide strong support for camera input and
image processing. This further supports selecting the Raspberry Pi 5 (Central) for perception
tasks and AI-based recognition models.

7.4.2 Arduino Uno R4 Wifi for low level motor control EG | BMR

The Arduino Uno R4 WiFi, referred to as Core is responsible for low-level motor control and
direct communication with the stepper motor drivers powering the robotic arm, and the servo
motor driving the gripper. It was selected due to its real-time capabilities [12] and suitability
for handling precise motor signals, as well as being one of the boards provided to the group by
Hydroplant Technologies.

64

7. SYSTEM ARCHITECTURE

During early development, we considered using Micro-ROS, however the Arduino Uno R4 lacks
stable support for this integration. Although community-driven support was released late
2024, implementing into the system architecture was considered too high a risk given the short
development timeframe. Instead, communication between Central and Core is implemented
using MQTT, with the broker hosted on the Raspberry Pi. This setup enables communication
between the high-level planning software and low-level motor control, while maintaining modu-
larity and allowing development to continue within the project’s hardware and time constraints.

Although less integrated than a full micro-ROS solution, the Arduino is a sound choice for
low-level motor control and supports the systems layered architecture.

7.4.3 Motor drivers EG | BMR

As is explored in Section Stepper Motor Drivers 10, motor control is initially handled using
DM332T and DM320T stepper drivers. These drivers came with the motor kit and are con-
trolled using simple pulse and direction signals. The only motor feedback the Arduino receives
is from limit switches, which detect end stop conditions to avoid over-traveling. A transition
to a more sophisticated TMC5160 driver is underway, providing additional features such as
Rotary Encoder feedback for motor position status, and UART-based communication. This
upgrade will take place once the custom PCB and supporting hardware are completed inter-
nally, and delivered from the external fabricator. For full details about the stepper motor driver
development and setup, see section ??.

7.4.4 Camera and AI JCDH | SME

The camera gives us the vision of our system. This provides us with knowledge of where the
robotic arm is placed in relation to the plant. A picture may be worth a thousand words, but
we need more concrete data points. This is where AI models come in, as they give us a way
to synthesize the picture into concrete data points which will be useful to the robotics. More
information about the camera can be found in Section 11.6 and information about how AI is
used in this project, is provided in Section 11.7.

7.4.5 Communication EG | BMR

The Leafy Automation system combines a layered architecture with publish/subscribe mes-
saging to achieve modular, distributed control. Within the ROS2 domain, discussed more
extensively in Section Robot Operating System 2 7, the layered software components, often
referred to as nodes, exchange data via Topics. This communication approach maintains loose
coupling between components while supporting scalability and fault isolation. [8, p. 117–130]

Between Central and the Core, we use MQTT, which is a lightweight publish/subscribe protocol

65

7. SYSTEM ARCHITECTURE

with the broker running on the Raspberry Pi. In early development we used HTTPS for
communication testing, but since switched to MQTT to reduce coupling and maintain faster,
more direct communication. More on this can be read in Section MQTT set-up between Central
and Core 7.

7.5 Layered Software Architecture EG | BMR

The software for the Leafy Automation system is structured based on the layered architectural
pattern, which is described in Software Architecture in Practice (Bass, Clements, Kazman,
2012)[8, p. 128–129] as an advised tactic for achieving modifiability:

Figure 33: Layered software architecture for Leafy Automation

66

7. SYSTEM ARCHITECTURE

In a layered architecture, the software is divided into a hierarchy of vertical layers. Each layer
brings together modules that share common concerns. [13] An example of this might be two
control modules, one focused on operating the robotic arm and one for the gripper. As seen in
Figure 33 these two modules are grouped together in the Control Layer.

Communication between the layers is strictly controlled. An architectural layer may only
use the services provided by the layer immediately below it and may equally so only provide
services to the layer directly above it through a well-defined public interface. This grouping
and separation of concerns has several key benefits to the robotic application:

Modifiability is improved as logic within one layer can be modified without affecting layers
above, as long as the interfaces remain the same. This separation also supports multiple
developers to work on different layers concurrently, without facing integration issues.

Extendability A layered architecture makes it easy to extend functionality by introducing
new modules at the appropriate layer, without affecting the existing layers.

Easier to understand Well-defined interfaces between the layers simplify understanding and
debugging. A developer can focus on the single layer without having to understand the whole
system.

Easier to test Limiting complexity supports testability [8, p. 190–191]. A layered approach
reduces complexity by encapsulating concerns. This makes it much easier to define test cases
as they can be scoped down to a single layer, thus reducing the number of test scenarios.

7.5.1 Layered module-based design EG | BMR

The software components of the Leafy Automation system are organised into five layers, each
with a clearly defined functional responsibility: Perception, Recognition, Planning, Control,
and Hardware Abstraction. Each layer relies on the services provided by the layer directly
below it and exposes a well-defined interface to the layer above. The hierarchy maintains strict
boundaries where for example high-level decision logic never interferes with low-level motor
control, and hardware-specific code remains hidden from the vision and planning layers.

The Leafy Automation architecture is greatly inspired by and adapted from the work done by
Bonci, Gaudeni, Giannini and Longhi for their article Robot Operating System 2 (ROS2)-Based
Frameworks for Increasing Robot Autonomy: A Survey [14].

As seen in Figure 33, the Leafy Automation software is organised into five. Each layer is
responsible for a distinct aspect of the pick-and-place pipeline:

Perception Layer The purpose of this layer is to receive and, when applicable, preprocess

67

7. SYSTEM ARCHITECTURE

sensory data. For the scope of this thesis, this layer only contains a single camera node that
captures images of the plants in the pickup zone and sends them downstream for processing.

Recognition Layer The purpose of this layer is to process the information received from the
Perception layer and turn it into actionable data. This layer contains two AI-modules. One
module is to estimate plant type, and the other module estimates the most optimal object
gripping coordinates for the pickup sequence. This information is sent down to the Planning
Layer. The plant-type estimation node is not used further in this project due to time constraints.
It was meant to adjust handling parameters according to plant type to optimise plant handling.

Planning Layer The Planning layer is responsible for the pick-and-place workflow by turning
pose estimates into a sequenced series of actions. It includes two tightly coupled software
modules: the Task Planner, which decides the next operation (e.g. move to pre-grip, close
gripper, transport, open gripper, return home), manages calibration and error-recovery logic,
and publishes each step as a task goal. The Motion Planner, which is one recipient of these
task goals, calculates joint trajectories within the robot’s physical constraints.

Control Layer The Control layer sits between Planning and the Hardware Abstraction layer.
Its purpose is to translate abstract trajectories and grip actions into motor instructions. It for-
mats and dispatches MOVE and GRIP commands to the firmware, monitors acknowledgments
(e.g., message receipts and motioncomplete signals). As the Control Layer is responsible for
sending firmware instructions and enforcing timing and safety checks, the Planning Layer can
remain focused on strategy. This layer contains two software modules; one for arm control and
one for gripper control.

Hardware Abstraction Layer The Hardware Abstraction Layer handles low-level motor
control. Unlike the other layers that all reside on the ROS2 -based Raspberry Pi Central, this
layer is located in its entirety on the Arduino. This layer is responsible for translating control
messages received from the Control Layer into exact pulse and direction signals for the stepper
motors and PWM signal for the servo motor in the gripper. It monitors sensor signals from the
connected Limit switches and maintains communication with the Control Layer by sending a
heartbeat and status updates. By isolating these tasks, the upper layers in the structure can
remain hardware agnostic. This facilitates future upgrades for example to a different motor
driver with minimal changes, which is an important aim for this project.

7.6 Communication model EG | BMR

Effective messaging is vital for any autonomous robot system. In Leafy Automation, we use
the ROS2 publish/subscribe system for internal communication and a MQTT bridge to link
the ROS2 Control Layer to the Arduino firmware, handling low-level motor control. Figure

68

7. SYSTEM ARCHITECTURE

On the Raspberry Pi, ROS2 nodes share AI results, motion plans and task instructions over
well-defined topics. This decouples data producers from consumers and lets each layer evolve
independently. When it comes to real-time motor control, the Control nodes send MOVE and
GRIP commands over MQTT to the Arduino client. The MQTT broker is hosted in a Docker
container on the Pi to keep the setup portable and isolated.

This section first outlines the current ROS2 topic -based implementation. It then details the
MQTT bridge configuration between the Control layer and Arduino firmware. Finally, it of-
fers recommendations for future development such as services and actions implementation and
Quality of Service (QoS) tuning.

7.6.1 Robot Operating System 2 EG | BMR

Robot Operating System 2 (ROS2) Jazzy Jalisco (the most recent long term supported version,
at time of writing) is an open-source software platform specifically designed for developing
robotic applications. [15] It is distributed under the Apache 2.0 License [16], which grants
users a significant freedom to modify, apply and redistribute the software, without obligations
to contribute back. [17]. ROS2 provides an extensive suite of tools and libraries, encompassing
drivers, commonly used algorithms (such as perception, simultaneous localisation, mapping)
and various development utilities. [17]. There is also a strong development community sup-
porting ROS2, with a plethora of open-source packages available on the ROS Index and active
discussion forums with active contributors from both industry and academia.

At its core, ROS 2 is built around software nodes which are independent, encapsulated processes.
And with the ROS2 nodes being language-agnostic, they let developers choose the most suitable
programming language for each task at hand.

ROS2s communication is based on DDS, Data Distribution Service protocol from the Object
Management Group. DDS provides peer-to-peer publish/subscribe middleware with config-
urable Quality of Service policies, which is valuable for robotic applications that are often
resource constrained. [15] The three communication methods are:

Topcis provide an asynchronous, many to many messaging channel using standard or custom
made message types (for example, sensor_msgs/Image [18]). Any node can publish data, and
any number of nodes can subscribe. In Leafy Automation, the camera_node in the Perception
layer publishes raw images on the topic /leafy_automation/images. Downstream perception
nodes subscribe to this topic, perform image analysis, and then publish their outputs to topics
consumed by the Planning layer. ROS2’s many message types can be explored extensively at
the ROS Index [19]. [20]

Services offer a synchronous request/response pattern where a client node sends a request and
blocks until it receives a reply. This works well for oneoff operations, such as motor calibration.

69

7. SYSTEM ARCHITECTURE

In Leafy Automation, the Task Planner calls the /leafy_automation/calibrate_motors ser-
vice using std_srvs/SetBool[21] to calibrate all joints before a new pickandplace cycle. By
using a ROS 2 service, no other actions proceed until the calibration has completed. [22][20]

Actions Actions extend services to support longrunning tasks with progress feedback and can-
cellation. For example, the motion_planner_node sends a trajectory goal via the control_msgs/FollowJointTrajectory[23]
action to the arm_control_node. The action server returns periodic updates (e.g., percentage
complete) and allows the goal to be canceled in case of an emergency stop. This pattern is
ideal for pick-and-place operations that require real-time monitoring and safe abort capability.
[24][20]

7.6.2 ROS2 communication proposal for proof-of-concept devel-
opment EG | BMR

Figure 34 shows the proof-of-concept proposal designed for this thesis. This overview is further
elaborated in Table 35, where more detail is added. This design is based exclusively on the
use of topics. This more simplistic design gives us fast access to testing and prototyping. A
more robust communication model, better suited for an operational environment, that also is
presented in the Future Works chapter 15.1.

70

7. SYSTEM ARCHITECTURE

Figure 34: Communication between nodes via ROS2 topics.

71

7. SYSTEM ARCHITECTURE

Figure 35: The Leafy Automation software nodes communicating via defined topics.

Remember to elaborate on the custom messages!

7.6.3 MQTT set-up between Central and Core EG | BMR

The Arduino Uno R4 WiFi lacks micro-ROS support and therefore cannot run as a native
ROS2 node. Given our architectural constraints and drivers (see Section: Project constraints
and architectural drivers 7), this architecture avoids adding extra hardware and instead bridges
the Raspberry Pi and Arduino via MQTT over Wi-Fi, as seen in Figure 36.

Figure 36: Diagram illustrating how the MQTT bridge fascilitates communication between
ROS2 control nodes and the Core Communication Manager

The MQTT broker runs in a Docker container on the Raspberry Pi, which encapsulates all
of its dependencies, configuration, and runtime environment. This isolation ensures that the
broker can be updated, replaced, or rolled back without affecting the rest of the ROS2 system,
simplifies deployment on fresh Raspberry Pi images, and keeps the overall easier to set up and
reproduce.

72

8. PHYSICAL CONCEPT

The specific messages being sent over MQTT are listed along the "Arduino via MQTT" row in
Table 35.

7.7 Critical technologies JCDH | SME

Based on what has been defined in requirements and the risk analysis, critical technologies
defines the list of technologies which are required for optimal system functionality. This sub-
section outlines the critical technologies, along with brief descriptions of each technology. You
may read more about the details of these systems in following sections. When it comes to
defining these technologies it is helpful to visualize the requirements and risks to our system,
and then to build from there.

Table 4 shows a high-level overview of our systems critical technologies.

7.8 Earlier work JCDH | SME

Please refer to Appendix 4 & G.16 for initial work on architecture.

8 Physical concept

This section contains information about some of the initial work done to establish a set of
frames/boundaries around the physical concept of this bachelor project. This includes choice
and definition of robot type, outline of working area and reach of the robot.

8.1 Comparison of robot types SME | JCDH

To determine the most suitable pick-and-place robot type for our system, we did a compre-
hensive analysis of five different robotic arm types. Each type was evaluated based on key
performance criteria that align with our specific project requirements. By comparing these
options, we aimed to identify the most efficient and effective robotic arm for our application.
See appendix J for table of robot types evaluated.

To facilitate this evaluation, we used a Decision Matrix, which is a structured analytical tool
designed to compare multiple alternatives based on predefined criteria. This matrix provides

73

8. PHYSICAL CONCEPT

a clear framework for assessing the advantages and disadvantages of each robot type while
prioritizing the factors most critical to our projects success.

The Decision Matrix method enables a systematic ranking of the selected robotic concepts by
assigning weighted scores to essential evaluation criteria. By calculating the total score for
each robot type, we can directly compare their suitability and select the one that best meets
our performance requirements. The evaluation criteria were weighted on a scale from 1 to 5,
where 1 represents the lowest level of importance and 5 the highest. Since some factors are
more critical than others (particularly those that affect flexibility, scalability, and cost), this
weighting system helps reflect their relative significance. Similarly, each type of robotic arm
was assigned a general performance score within the same 1 to 5 scale to facilitate a direct
comparison.

The Decision Matrix is structured into columns that represent the evaluation criteria, weight,
the different robot types, and the total score assigned to each type. This structured approach
allows an overview of the selection process to identify the most suitable robot type for our
project. For a detailed breakdown of the evaluation and results, refer to the Decision Matrix
table.

74

8. PHYSICAL CONCEPT

8.1.1 Decision Matrix

Figure 37: Decision matrix table

75

8. PHYSICAL CONCEPT

8.2 Choice of robot type SME | BMR

In modern automation, various types of robots can be employed for pick-and-place operations,
each with distinct advantages depending on the task requirements. The choice of robot type
is influenced by several factors, including the nature of the load, environmental constraints,
precision and the overall system flexibility. For this project, we have chosen to design and
implement an articulated robotic arm, which closely resembles the movement and functionality
of a human arm.

Figure 38: Articulated robot arm with rotational base

Agriculture remains as one of the industries where manual labor is dominantly used, particularly
in tasks as harvesting plants. Despite technological advancements, the automation of plant
harvesting is still in its early stages. Our objective is to develop a robotic solution that can
efficiently handle plants with precision while offering adaptability for different scenarios.

An articulated robotic arm is characterized by multiple joints and a rotational base - see figure
38, which provides the necessary flexibility to achieve these goals. Several key factors influenced
our decision to select this type of robot:

• Flexibility in the orientation of the end effector/gripper. A critical requirement
for our project is the ability to manipulate plants from various angles and positions. Unlike
other robotic configurations, such as Cartesian or SCARA robots, an articulated robot
arm allows for greater range of motion, enabling precise handling of plants regardless of
their orientation. Additionally, as the position and the orientation of the plants may vary
within the working environment, having a highly maneuverable robotic system ensures
consistent performance.

• Compact volume and reduced footprint for increased adaptability. The rela-
tively small volume of an articulated robotic arm provides greater flexibility regarding its
replacement within the working environment. Agricultural settings, particularly indoor
farming or greenhouse operations, often contain spatial constraints or physical obstacles

76

8. PHYSICAL CONCEPT

that limit the placement of automation systems. A compact design ensures that the
robot can be integrated seamlessly into various working environments without significant
modifications to the infrastructure.

• Interchangeable end effectors for diverse applications. While the primary focus of
this project is on harvesting leafy green salads, the system should be adaptable to handle
different types of plants. By designing an interchangeable gripper mechanism, the robotic
arm can be easily modified to perform various agricultural tasks, such as re-potting tomato
plants, sowing seeds, or handling different crop species. This modularity enhances the
robot‘s versatility and extends its applicability across the multiple agricultural processes.

• Ability to grip and lift plants from multiple angles. In practical agricultural
applications, plants may not always grow in a perfectly upright position. Leafy green
salads, in particular, can become tilted or positioned irregularly due to natural growth
patterns or environmental factors. Therefore, our robotic gripper must have the capability
to approach and lift plants from different angles, mimicking the complexity of a human
hand. This ensures efficient handling of plants in real-world scenarios where variations in
plant positioning are common.

• Integration with a mobile platform or rack system to expand the working
range. To further enchance the flexibility of our robotic system, we aim to design it so
it can be mounted on a mobile unit or a rack. This allows for an extended operational
range, making the robot suitable for larger-scale agricultural operations. By incorporating
mobility into the system, the robot can be deployed dynamically within different areas of
a farm og greenhouse, increasing its overall efficiency and productivity.

By selecting an articulated robotic arm for this project, we ensure that the system is not
only capable of precise plant handling but also adaptable to varying environmental conditions
and future agricultural automation applications. The combination of flexibility, compact de-
sign, modularity, and mobility makes this robotic configuration an ideal choice for advancing
automation in agriculture.

8.3 Robot arm diagram SME | JCDH

77

8. PHYSICAL CONCEPT

Figure 39: Robot Arm Diagram

This is an overview of the implementations for our robot arm system. The robotic arm devel-
oped for this project is structurally divided into three primary subsystems: the base, the joints
and links (arms), and the end effector (gripper). Each of these plays a distinct role in ensuring
that the robot can operate efficiently and precisely within the defined work area.

Base

The base forms the foundation of the robotic arm and is responsible for anchoring the system
to the ground or mounting surface. As illustrated in Figure 42, the base is positioned centrally
to provide a stable platform for the arms operation.

78

8. PHYSICAL CONCEPT

A critical function of the base is to allow for rotation, enabling the robotic arm to access the full
work area as discussed in Section 8.4. This rotational capability is achieved by incorporating a
motor within the base that facilitates smooth and controlled movement around the vertical axis.

In addition to rotational mobility, stability is of great importance. A stable base ensures the
accuracy and repeatability of the robotic movements, which is especially crucial during precise
tasks such as harvesting delicate plants. The physical placement of the base is determined
by the layout and constraints of the target work area, and must be carefully planned during
installation.

Joints and Links

The robotic arm consists of multiple joints, connected by links, which collectively determine the
arm’s overall reach and degrees of freedom. For a detailed overview of the joints and linkages,
refer to Figure 42.

Each joint is equipped with a dedicated motor, which provides actuation for rotation or angular
displacement. These motors are responsible for driving the movement of the links, allowing the
arm to perform complex and positional adjustments during operation.

Between the joints, rigid links are used to maintain the structural integrity of the arm and
to define its length and range of motion. The configuration and dimensioning of these links
directly influence the robot’s accessibility to the objects it interacts with.

Cable management

An often overlooked but essential aspect of joint design is cable management. Proper routing
and securing of electrical cables is necessary to prevent damage during dynamic movements,
reduce mechanical wear, and enhance operational safety. The design should ensure that cables
do not interfere with the robots workspace or limit its motion.

End Effector (Gripper)

The end effector, commonly referred to as the gripper, is attached to the distal end of the
robotic arm. It is the primary interface between the robot and its environment, and is respon-
sible for handling the plants during pick-and-place tasks.

79

8. PHYSICAL CONCEPT

To accommodate various agricultural applications, the end effector must be modular and inter-
changeable. For instance, while the current gripper is designed to handle Crispi lettuce, future
use cases may include tasks such as seed sowing, which require a more delicate and precise
gripping tool. Therefore, designing the gripper as a swappable module enables flexibility and
scalability for additional agricultural tasks or new crop types.

Moreover, the gripper must offer a high degree of compliance and flexibility, allowing it to adjust
to variations in plant size, orientation, and shape. Plants may not always be uniformly aligned,
and the gripper should be able to grasp them from multiple angles without compromising grip
stability.

A soft-touch interface is also essential to avoid bruising or damaging the produce. This can be
achieved through the use of soft materialssuch as siliconeon the gripping surfaces, which help
to cushion contact with delicate plant tissue.

In terms of load requirements, the end effector must be capable of handling a maximum pay-
load of 1 kg, which is a design constraint established based on the heaviest anticipated plant
or product. This must be factored into both the mechanical and motor selection processes to
ensure reliable operation.

A dedicated motor is integrated into the end effector to control the gripping mechanism, pro-
viding the force necessary to securely hold or release objects as needed.

8.4 Definition of working area BMR | EG

To identify the optimal robotic concept, we first defined the robots working area and surround-
ing environment. The placement and range of the robot have not been part of the requirements
given by the contractor beforehand, so it has been important to specify and quantify these
together with Hydroplant Technologies (see Section 1 for details on integrating the robot into
the HPT system).

The working area, also referred to as the task space, is where the designated task of the robot
shall take place. For this project it has been defined as a horizontal plane where the leafy green
in its planter appears and is ready to be picked up (they might arrive via conveyor belt, but

80

8. PHYSICAL CONCEPT

the method of transportation lies outside the scope of this thesis). The robots type and design
will define its configuration space, which is all the coordinates which the end effector can reach.
The configuration space should fully encompass the task space, see fig. 40.

Figure 40: Configuration space and task space graphics

8.4.1 Working area quantification BMR | EG

• The horizontal working area will be a circle of 1200 mm diameter at table height, except
for a 200 x 200 mm square in the center where the robot is mounted.

• The reach of the robot arm will be half a globe of radius 600 mm, with some limitations
directly above and around the the robot’s mounting point.

• The robot arm will be mounted on the same plane and height as the table which receives
the plant trays.

A visualization of the quantified working area can be seen in fig. 41, including an example
division of task-specific zones.

81

8. PHYSICAL CONCEPT

Figure 41: Top view working area quantification

8.5 Definition robot arm BMR | EG

Working on the robotic arm development as a group has made it important to use consistent
names and definitions for the distinct parts of the robot. This common vocabulary made it
easier for us to adopt design changes across disciplines and prevent interface conflicts. Each
link, joint and motor has it’s own name and abbreviation, see fig. 42.

82

8. PHYSICAL CONCEPT

Figure 42: Robotic arm with labels

Alongside the digital model, we built a full-scale MDF model (see appendix D). This physical
prototype has been valuable for presentations and for discussing design ideas and challenges
within the team.

8.5.1 Degrees of Freedom BMR | EG

The robotic arm consists of rigid bodies (links) connected by joints. Attached to ground at the
base and ending in an end effector, this is also called a serial kinematic chain. The Degrees of
Freedom (DOF) of a robotic arm refers to the different possibilities of movement of the arm as
a whole, and is dependent on the amount and type of links and joints. DOF is an important
aspect when planning to build a robotic arm, since it directly effects its suitability for the given
task and the designated workspace.

Higher DOF offers more flexibility and precision, while lower DOF brings more constraints
on the robotic arm. Despite this, during development we should strive for the minimum DOF
needed to meet the task specifications. Adding more DOF’s requires additional actuators, which
in turn increases the complexity (both the physical build and the computational path-planning.
It also makes the robot arm heavier and more expensive to produce.

83

8. PHYSICAL CONCEPT

Degrees of Freedom for the Leafy Automation robotic arm

For the robotic arm we have chosen to have 5 joints to ensure good flexibility also for future
applications. The joints are of the type revolute joints where one link can rotate relative to
another around the same axis (this type of joint has one DOF, see fig. 43), and so the robotic
arm will have 5 degrees of freedom. The end effector will have it’s own DOF depending on type.

Figure 43: Revolute joint

8.5.2 Joint angle restraints BMR | EG

After determining how many DOF’s the robot arm shall have and how they will be arranged
to create the desired configuration space, some restrictions can be added to the rotation of the
separate joints. Since all joints are revolute, the maximum angle they can move is 360 degrees.
Only the base joint needs up to a full revolution to cover the desired work space, the other
joints will all have limited rotation. The range will be defined in the code and will have a direct
effect on the solution space for the inverse kinematic calculations. The angle limits will also
affect the design of the joints and the wire lengths required. The joint restraint angles can be
seen in table 44 and fig. 45.

84

8. PHYSICAL CONCEPT

Figure 44: Joint restraint angles

Figure 45: Visualization joint restraint angles

8.5.3 Configuration space BMR | EG

The configuration space, meaning every point within the end effectors reach, is generated by
using link lengths and joint-angle restraints. This is best done using a robot simulation tool
(like MATLAB) for ease of calculation, but to get an initial understanding we have made a
2D scatter plot in Excel. Figure 46 shows a side-view of the configuration space alongside
working-area boundaries and sample lettuce placements for reference.

85

8. PHYSICAL CONCEPT

Figure 46: Scatter plot of configuration space

The scatter plot was made using a straightforward equation for planar forward kinematics that
use trigonometry (see fig. 47). When using this equation it is important to put in the values
for the restrained joint angles measured counterclockwise as seen in fig. 48. To get the right
values for the y- coordinates of our robot arm, we added the height from the bottom of the
robot base to the first axis to the equation to shift all the points up.

Figure 47: Equation for planar forward kinematic [2, p. 2]

86

8. PHYSICAL CONCEPT

Figure 48: Diagram for forward kinematic equation

This type of plot can help with figuring out where the dead zones are and where the robot
must be restrained to avoid colliding with, for example, the base or the table. The plot only
shows the outer reach of the 3. link, since the end effector will be exchangeable and so have its
own unique length. The excel sheet is made dynamic and could be used to test how different
link lengths or restriction angles will effect the reach of the robotic arm, for example for future
applications (see appendix H).

87

8. PHYSICAL CONCEPT

Table 4: Critical technologies

Technology Purpose Key Challenges Considerations

AI recognition Identifies and classifies
the plant

Wrong
classification,
accuracy

High-quality
training data,
real-world testing

Robotic handling Picks up and moves
plant

Mechanical
failure, precision

Durable
components,
precise handling

Root cutting
mechanism

Cuts the roots of the
plants

Mechanical
failure, precision

Durable
components,
precise handling

Water proofing and
environmental
protection

Protects electronic
components from
water and humidity in
the hydroponic
environment

Ensuring full
water resistance,
preventing
corrosion

Use water proof
enclosures,
IP-rated
components

Human Machine
Interface (HMI)

Provides a user
friendly interface for
monitoring and
controlling the system

Designing a user
friendly UI,
ensuring
responsiveness,
accessibility

Web dashboard,
mobile app,
status indicators

Power management Manages the power
delivery to robotics,
sensors and micro
controllers

Correct voltages
and amperage to
all components

General electrical
safety, safety in
case of water
spills

Failure detection and
recovery

Detects failures and
ensures system
continuity

Sensor reliability,
software
robustness

Redundant
sensors,
error-handling
algorithms

Leafy Automation
Core (embedded
devices)

Responsible for
handling processing
and sensor IO

Processing speed Safety in case of
water spills

Leafy Automation
Central

Central hub which
does AI processing
and a web server

Security and
complexity

Simple and easy
to connect to the
embedded system

Communication
protocols

Facilitates the
communication
between the embedded
systems, the Leafy
Automation Central
and the HMI

Choosing the
right protocol
based on current
knowledge

Transmission
speed

Motors Movement, facilitates
robotics

Budget Torque, speed

88

9. MECHANICAL

9 Mechanical

This chapter outlines the mechanical development process of the robotic gripper, detailing the
design, prototyping, and evaluation of its key components, namely the base, joints, and gripper.
Together, these parts form the structural and functional core of the robotic arm. As seen in
figure 39

The design evolution of each mechanical subsystem is presented, from initial CAD modelling
and material selection to 3D-printing, assembly, and testing. Particular emphasis is placed on
the iterative nature of the design process, including the rationale for structural modifications
and the technical considerations that informed each decision.

The chapter also compares prototypes, highlighting improvements in mechanical robustness,
manufacturability, and functional performance based on empirical testing and user feedback.

9.1 The base BMR |

The base is a revolute joint with a vertical axis, and the motor shaft is the connection point
between the stationary part attached to the table, and the rotating part attached to the rest
of the arm (see fig. 49). The base is subjected to both axial load from the combined weight
of the arm with payload and moment load from off center mass (to read more about this see
appendix D). For rotation of the base we selected a Nema 17 motor with a 10:1 gear ratio for
direct drive. For the base interface to the HPT system, see appendix D.

89

9. MECHANICAL

Figure 49: Different forces acting on base

9.1.1 Material choice BMR |

Important for the base material is that it is rigid, long lasting and strong. Weight restriction is
not critical, as is the case for the rest of the robotic arm. Low carbon steels (AISI 1020-1050)
are a good choice for shafts ([25, p 375]. The base consist mainly of an installation flange,
bearings, a housing and a shaft, so a low carbon steel will be the preferred material. This
material will also combine well with the motor shaft and bearing, since these are also made of
steel. The robotic arm will possibly operate in an environment with high humidity, so an AISI
1035 stainless steel would be a good choice to avoid corrosion.

Since the material for most of the robotic arm is aluminium, it is important to take account of
possibilities for galvanic corrosion in the interfaces between the materials.

9.1.2 Design process for the base BMR |

Since this project uses an agile workflow, the design has undergone many changes along the
way (see fig. 50). The changes are brought on by feedback from our client (HPT), or the other
team members, mostly due to interfacing challenges and possibilities.

90

9. MECHANICAL

Figure 50: Initial design ideas V1, V2 and V3

Base V1

In the first design, the base was built as a simple container for the motor with a rotational top.
An advantage with this design was that the motor wires were kept away from rotation, and the
flat top surface gave a very adaptable interface to the arm.

Base V2

The second design idea came from realization that even though the motor wires for the base
would be kept away from rotation, the rest of the wiring from the arm would not. All these
wires needed connection to the same control units, so it seemed a good idea to gather them at
a single point on the base. The motor was flipped upside down so the shaft was going down to
the stationary plate and the motor rotating itself and the arm on top. This way all the wiring
coming from the arm itself could combine with the wires from the base motor.

Base V3

Building on this idea, the base plate could extend to hold a box with all the control units and
all connections for the wiring could be assembled on top of the rotating base. This way there
would only be one cable, the main power supply, that needed to follow the rotation of the arm.
This design would not only keep the wires organized and free from rotational drag, but would
also make the whole robot more easily portable.

The control unit box would contain the motor drivers, the arduino and the Rasberry Pi. To
help with heat dissipation a small fan could be implemented together with a perforated wall.

Base V4

To avoid conflict between the required working area and the elongated base plate under rota-
tion, it was decided to attach the control unit box to parts of the base link (L0) with brackets
and to design it to build in height to keep the base footprint as small as possible (see fig. 51).
The configuration plot (section 8.1.1) could be used here as an insight to were the dead zones

91

9. MECHANICAL

of the end effector were, so the control unit box could be placed intersecting that area.

Limit switches are used to stop unwanted rotation outside the limits of the operating area
and is also used as a positioning reference (see section 10). Two limit switches were positioned
beneath the rotating base plate, and a removable block was implemented to the stationary base
part as a trigger, see fig. 51. The limit switches would take away some of the possible 360
degree rotation, and we decided to make a model of the base in MDF to test how the limit
switches would work and how much internal distance was necessary, see fig. 52. The trigger
block could be removed for the initial testing, to not damage the limit switches.

Figure 51: MDF CAD model V4 (CAD motors from [3])

92

9. MECHANICAL

Figure 52: MDF model of base for testing limit switch position

For the finished design for the prototype see section 13, and for thoughts about future work on
the base see section 15.1.

9.2 The Joints / arm DAB | VMN

In this section we talk about joint designs, design decisions and designing process. Need to
choose material for the parts. Material choices are based on weight reduction, ease of assembly
and cnc machinability including the price. The joints and links should handle the moment and
bending forces of its own weight including whit a set gripper weight that can be up to 1kg and
a payload of 850-1000g

9.2.1 Material Choice DAB | VMN

Joints
Aluminium 6061-T6 was chosen due to being most common and popular alloy grade to use and
the website JLCCNC [26]uses specifically 6061-T6 alloy. The alloy is available in SolidWorks
material library so we don’t have to find and input it manually to the library
Link/arm
The links are made from aluminium profile V-slot type V2020 which is extruded from 6063-T5.
2020 stands for the profile dimension 20mmx20mm. It was chose due to being supplied by our
employer, witch means we don’t have to use our budget on this. But the extruded profiles are
really affordable to buy per meter.
the employer orders from website zeptobit[27], there we can find what type of aluminium its

93

9. MECHANICAL

extruded from. It is also in the standard solidworks material library

9.2.2 Direct drive joints DAB | VMN

Consideration of direct drive was to simplify and ease the assembly process. With a direct drive
you need to consider bending forces acting on the gearbox shaft, which will impact the lifetime
of the gearbox and bearings, since the weight of the assembly will be resting on the shaft.
Because of this we need to add a second bearing to counter act/minimize the moment forces
acting on the gear box bearing. The second bearing will be integrated in the joint and is gonna
be removable to ease servicing of the robot arm.
A positive thing with direct drive is that it can rotate full 360°.
V0.2

(a) normal view (b) Exploded view

Figure 53: Joint V0.2

The joint interface between aluminium profile and the joint are four extruded pegs that are
able to slide inside the aluminium profile

Figure 54: Aluminium profile

The aluminium profile can be seen in figure 54.
Why didn’t we also create a small extrusion around the profile for more stability. It was a

94

9. MECHANICAL

aesthetic choice to have the design flush fit against the link.
since we want a flush fit the aluminium profile dictates the dimension of the raw part material
at the interface point to be 20mm x 20mm of profile or 20mm x 40mm of two profiles.
Look at the surface where the motor mount interface in figure 53 (b), it is located at the part
with the bearing mount. Motor used in this joint is a NEMA 17 it uses 4 x M4 screws for
mounting.
The thickness of the motor mount location on the part is reduced to allow for the shaft to
protrude enough for the opposite part to interface with the shaft key.
The Bearing mount surface is machined directly in the joint, this causes the part to be higher
than 20mm in thickness. the bearing surface is machined to be a interference fit, so that it
can be pressed on, and a ring with evenly spaced five m4 holes is pressed on the outside of the
bearing. this ring is for ease of assembly and so that the whole arm dosnet need to be dissembled
just to press out a bearing. the bearing used i a ID 20mm, OD 27mm, and thickness is 4mm
I speculate that problems with this iteration is that the pressed on ring may slide because of
bending moments without no backing. Also the thickness of the part needs to thin enough to
withstand the forces while maintaining good shaft protrusion to opposite part.

V0.3
This iteration is with adjustment and modifications to try resolve issues and address possible
issues.

(a) normal view (b) Exploded view

Figure 55: Joint V0.3

Differences from last iteration is where the bearing presses on. A removable bearing adapter
part was made see figure 55 (b) so that the part is 20mm when machine and can be easily
removed with the bearing. The bearing adapter is screwed trough the back side of the motor
mount. bolts used for bearing adapter are 4 x m4 screws. So you screw together the arm first
and then mount the motor. There are indents in the bearing side piece so that you can screw
in the motor screws.
A useful unintentional design is that when you want to separate the bearing and bearing adapter

95

9. MECHANICAL

you can screw in longer screws to push the bearing off.
Interface between aluminium profile and joint added extra height in middle 6mm wide to be
flush with the alu profile se figure 55. Also added screw holes two M4 crews to tighten against
alu profile to prevent moment and slip. while also removed to legs to alu profile interface so
that the parts are more easily machinable, since now there is good space for the end mill to get
in-between and machine properly. the piece just need to be flipped to machine the other side.
since the tight small gaps in-between the legs are almost impossible to machine or requires fine
machining which costs allot. this design is limited only to 180°angle. this can be easily adjusted
by just moving the bearing interface face forward to increase movement angle.

V0.4
this is the last iteration created of direct drive joint before moving on to belt driven joint design.

(a) normal view (b) Exploded view

Figure 56: Joint V0.4

This iteration have small changes. moved away from two aluminium profiles used to one instead
for weight reduction, also moved the bearing forward for greater angle of rotation mentioned
in the last iteration to be done, and a circular extrusion to keep the motor surface covered for
a nice aesthetic look.
figure 56 shown is for joint 2 to joint 3. but joint 3 will be the same just adjust the design for
use of one aluminium profile and a nema 14 motor instead of nema 17.
joint 1 v0.4 has not been create before moving to belt design.

9.2.3 Belt drive joints DAB | SME

The experience and knowledge we gained from designing the direct drive, we brought with us
in the process of designing the belt version.
The choice to use belt drive mechanisms, was to offset the weight more towards the centre of

96

9. MECHANICAL

the robot so there would be less strain on the motor, which will improve lifting capabilities.
With the addition of pulleys we can adjust the gear ratio, by increasing or decreasing it. This
helps if limitation on torque would occur on some of the motors. The site used to find pulleys
and belts that would be suitable for our robot arm, you can find here [28], which was introduced
to us by our employer.

The pulleys we found for our shaft sizes.

J1

• 162230K14

– 30Teeth, 14mm
bore

• 162230K20

– 30T, 20mm

• Gear ratio of 1:1

J2

• 162216K08

– 16T, 8mm

• 162222K12

– 22T, 12mm

• Gear ratio of 1.375:1

J3

• 162214K05

– 14T, 5mm

• 162228K08

– 28T, 8mm

• Gear ratio of 2:1

These pulleys use a belt type T5 with a width of 10mm. The pulleys are made from Aluminium
similar to EN AW2017A stated on their website. You can see more detailed explanation for
belts and pulleys in Appendix C.

(a) normal view (b) Normal view

Figure 57: Joint V0.1B J1 and J3

We can start with the part that interact with the base (a) in figure 57. These two plates sup-
ports the NEMA 23 motor that has a offset from the centre at the same plane as the arm so

97

9. MECHANICAL

that some of the weight of the motor acts as a counter balance for the arm, and is mounted so
that the main body of the motor is in the middle to minimize bending forces on the mounting
plates. The plates have also dowels underneath to have correct alignment with the base.

The joint uses 2 bearings for a 20mm shaft size, the bearings are pressed in to each plate for
good stability.

The transmission of rotational and moment forces to the robotic arm was inspired by the
method used to fasten connecting rods to a crankshaft. One piece is the main part going to
the rest of the arm with a mounted NEMA 17 for joint 2, and the end cap that is bolted on.
Both surfaces, and shaft are equipped with Ø4mm holes to use a shaft-pin instead of the usual
shaft key. It is easier to assemble this way, since you can disassemble the whole arm without
disassembling joint 1.

Joint 3 (b) in figure 57 is almost identical to J2, but one difference is that it goes from single
profile to single profile, 2 bearing to support a 8mm shaft and stabilize moment loads. We also
have a small motor for rotation of the gripper. One small problem that occurred is that the
motor is quite long when attached to the gearbox. So because of that, the bracket around it
goes up to the motor and clamps around it for a good snug fit. One adjustment to help with
this, could be adding two brackets for good stability from moment forces.

(a) normal view (b) Exploded view

Figure 58: Joint V0.1B J2

J2 in figure 58 is connected to the motor for joint 3, and the bearing that is used is a thin
section bearing to support a shaft of 12mm. The part where a NEMA 14 motor is mounted
needs to be long enough from the shaft to motor shaft so that we have adequate range of motion
before motor touches the frame.

98

9. MECHANICAL

9.2.4 Belt tensioner design DAB | SME

We tried making a simple belt tensioner that fits in the aluminium profile and is fastened in
place by a M4 screw. It is made so that you do not have to disassemble the arm to put in the
aluminium profile, just put in place and twist it so that the legs move under the aluminium
profile (See figure 59).

An M4 screw is threaded into the component, which causes the legs to expand since the hole
is smaller. This makes it a better and more snug fit, and once the screw reaches the bottom of
the hole, it also pushes it up and presses it more against the aluminium profile.

Also the design has a 1mm thin 14mm spanner that holds it in place, so that it is easier to
insert the screw.

Figure 59: Tensioner for belt

The tensioner for joint one is more tricky to design, since we need to create a small rail where
it can slide in and be set in place by a screw.

Bearings used for the tensioners are the same used in joint 3 since we had quite a few of those
bearings.

99

9. MECHANICAL

Generally these tensioners were designed to be 3D-printed and not to be made in any other
specific material.

If we would like to have better tensioner we would go for a off the shelf tensioner pulley, and
only manufacture the interface between aluminium profile and tensioner pulley.

9.2.5 Limit switch placement DAB | SME

There must be 2 limit switches per joint and for gripper rotation to define end stops. Read
more about limit switch in later section 10. And for correct working angles required, refer to
section 8.1.1 figure 44.

For joints 2 and 3

We were thinking that the easiest placement would be on the Aluminium profile since we can
easily change its position along the profile and also add a joint to adjust the angle of the switch
for fine tuning. It gives us plenty of flexibility for testing.

Joint 1

Need to make holes in the side plates in joint 1 so that we can create limit switch brackets to
get the correct angle we desire.

For the Gripper

Made small extension from the motor mount bracket. It extends almost to the edge of the gear
box and the switches are stacked to reduce used space and ease of installation using only 2 x
M2 screws to hold the switches in place.

100

9. MECHANICAL

Figure 60: Gripper limit switches

9.2.6 Single(mono) design vs multi part design DAB | SME

We have created a multi part design, in this section we will discuss and compare it to a single
piece design.

Modularity

With multi part design each piece can be modified, upgraded, or replaced without redesigning
the whole product. It gives greater flexibility for future adjustments, and customizations re-
quested by the employer.

But with a mono piece you need to make a whole new part which leads to more expensive
development, repair, and future development.

Cost

Multi parts can be more easily produced using standard manufacturing processes to potentially
reduce overall costs. However, it requires more precision in assembly to maintain quality and
performance. With a mono piece it is the cost of machining the whole thing that can get ex-
pensive fast if the parts are large, and if it is not possible to use standard production techniques.

101

9. MECHANICAL

Maintenance and repair

Multi parts allow for easier repair since a malfunctioning part can be replaced independently,
while with a mono piece you have to dissemble everything which introduces a longer down
time and increased repair costs. Individual component failure can be harder to detect and fix
compared to an assembly.

Design challenges

One challenge with multi parts is that we need to ensure a proper fit between parts and have
good structural integrity in junction points, like joints, aluminium profile to end parts, and
more.

While mono parts eliminate a lot of connection points reducing misalignment and give better
structural integrity through out the part, it demands high control over manufacturing tolerances
since there is no opportunity to correct errors during assembly stage.

9.3 Gripper SME | JCDH

In the process of selecting an appropriate gripper for our robot arm, we did a comprehensive
review of existing robotic gripper technologies. This included conventional designs such as jaw
and finger grippers, as well as more advanced soft robotic solutions like pneumatic soft grippers
and Fin-Ray grippers. Each concept was evaluated on the basis of its adaptability, mechanical
complexity, and suitability to handle fragile produce such as lettuce.

Of particular importance was the integration of soft-touch technology, which is essential in
agricultural applications to avoid bruising or damaging delicate plants during harvesting. Ma-
terials such as silicone and Thermoplastic Polyurethane (TPU) were identified as favorable due
to their flexibility, cushioning properties, and compliance with food-contact safety standards.
Techniques like silicone molding offer customizable and biocompatible gripper surfaces that
enhance both precision and gentleness during operation.

The Fin-Ray gripper emerged as a strong candidate due to its simplicity, compliance, and
natural ability to conform around irregular shapes without the need for complex sensors. This,
combined with the ability to 3D-print the design using food safe materials, makes it a cost
effective and scalable solution for controlled environments like hydroponic facilities.

102

9. MECHANICAL

A more in-depth technical overview of each gripper type, along with discussions on material
selection and soft-touch design principles, is included in Appendix C.C.

Materials and Techniques

The gripper components in this project were manufactured using Fused Deposition Modeling
(FDM), which is one of the most accessible and widely used 3D-printing methods. This technol-
ogy melts thermoplastic filaments and extrudes them layer by layer to form the final geometry.
To read more about 3D-printing, go to Section 13.

Two primary materials were used for the gripper:

• Polylactic Acid (PLA): Chosen for its ease of printing, rigidity, and availability. PLA
was used for all structural components where stiffness and dimensional accuracy were
required.

• TPU: Selected for the Fin-Ray fingers in Prototype 2 and final design, TPU offers the
flexibility and elasticity necessary for soft-touch gripping. It allows the fingers to deform
around the object being handled, reducing the need for sensors while enhancing adapt-
ability. We used TPU 75A, which is very soft and flexible. We also tested TPU 95A,
that is much harder and more rigid. For the purpose of the Fin-Ray gripper it was most
suitable with the 75A since we wanted a more stretchier TPU that had higher elongation.

Moreover, modularity was prioritized to facilitate reprinting and replacement of individual com-
ponents without the need to manufacture the entire assembly again. This modular approach
was especially valuable for testing and educational environments with limited budgets and ac-
cess to industrial manufacturing tools.

Benefits and Limitations

The primary advantage of using 3D-printing in this context was the ability to rapidly iterate
on the design at minimal cost. Changes could be made in Computer-Aided Design (CAD) and
quickly verified with a physical prototype. However, 3D-printing is not ideal for all application
components that experience high mechanical loads or require long term durability, and may
eventually need to be replaced with machined metal versions. These considerations are explored
in more detail in chapter 15.1.

103

9. MECHANICAL

9.4 Design Process for The Gripper SME | JCDH

Gripper V1

Figure 61: Gripper V1

The first prototype focused on developing a
jaw-style gripper, primarily intended for ini-
tial testing, data collection, and integration
with electronic components. This version was
not designed to serve as the final gripper de-
sign for the robotic arm but rather as a pre-
liminary functional model to support early-
stage development.

The design was intentionally kept simple
to ensure the ease of manufacturing, cost-
effectiveness, and rapid iteration. An impor-
tant consideration from this design was modu-
larity since the gripper needed to be easily re-
placeable to allow for quick upgrades in later
prototypes. At this stage, we also evaluated
whether to implement soft-touch technology
or to postpone this feature until a later ver-
sion more aligned with the final design goals. For prototype process and development of V1,
read more in Section 13.

Gripper V2

Figure 62: Gripper V2

The second prototype shifted focus toward
developing a more advanced gripper capable
of imitating the flexibility and functionality
of a human hand. This iteration introduced
finger-based gripping mechanisms inspired by
the Fin-Ray principle, which is a form of soft-
touch technology that allows for passive adap-
tive grasping.

This design enhancement significantly im-
proved the grippers ability to conform to ob-
jects with complex geometries and fragile sur-
faces. Such adaptability is crucial when han-

104

9. MECHANICAL

dling delicate produce, such as leafy greens, in
agricultural automation settings. By apply-
ing an iterative design approach, the V2 prototype demonstrated a promising balance between
flexibility, precision, and gentleness which are key attributes for robotic harvesting applications.
For prototype process and development of V2, read more in Section 13.

Final Gripper Design

The final gripper design is almost identical to the V2 prototype, with only minor modifications.
The most notable change was the addition of two brackets mounted on the sides of the gripper
body. These brackets were introduced to enable the integration of limit switches on the end
effector, ensuring reliable contact during rotational movements of the gripper. This addition
supports position feedback and enhances overall control of the system.

Following the successful testing of the V2 prototype, the design proved to be functional and
well suited for proof-of-concept validation. Given that all components were 3D-printed, and no
parts were machined, the Fin-Ray inspired gripper was selected as the final concept. Its soft
touch, adaptive nature, combined with the practicality of additive manufacturing, made it the
most viable solution for the intended agricultural use case.

Figure 63: Final Design

9.4.1 Calculations SME | JCDH

Gear calculations

105

9. MECHANICAL

Sources for maximum torque and force/ torque formula you can find here. [29].

Figure 64: Calculations: force on gear teeth

9.5 Structural integrity BMR | EG

Once the robot type is selected, we must identify all the forces acting on its structure. These
force calculations provide the foundation for the design process, guiding motor selection and
placement.

Initially, we focus on static equilibrium moment calculations at each joint. These initial calcu-
lations are valuable as they help us to develop an intuition into force magnitudes. For example,
we can determine the minimum holding torque required for each actuator in its corresponding
joint. These results can then be compared against motor specifications and gearing ratios.
Because this arm is not intended for high-speed applications, we disregard inertial and acceler-
ation effects in this thesis.

9.5.1 Static moment calculations BMR | EG

Since the robot operates under conditions with normal gravitational acceleration, the forces

106

9. MECHANICAL

from both the load and the arm itself will always point vertically downward. The robotic arm
is situated indoors and is therefore not subjected to horizontal forces from, for example wind.

Moment calculation and the effect of robotic arm configuration

A moment is defined as a force acting at a distance (M = F * d), the moment acts around a
point and the distance is the perpendicular distance from the force vector to this point. The
aim of the calculations is to find the minimum values needed to counteract the moment in each
joint and achieve a static equilibrium. For this reason, it is imperative to calculate from the arm
configuration that gives the highest moment values. Figure 65 shows how the positioning of a
link at different angles will affect the moment created by vertical loads. The conclusion will also
be valid for when the link is pointing downwards. The calculations show that the moment will
always be at it’s maximum when the robotic arm is fully outstretched horizontally. Therefore,
this configuration is the one used in the static calculations as a "worst case scenario".

Figure 65: Decomposing forces

Static moment calculation V1

The moment in each joint is created by the different loads, in this case the weight from the
payload, the weight of each joint and the weight of each link, see fig: 66. These calculations are
best done iteratively, since the weights of the joints and links are not preset. For this an excel
sheet was created with input parameters for the different masses and link lengths (see appendix
H). Fixed constants like the gravitational constant g is used to convert the masses to forces
(in newtons), and the moment equations are defined. The gravitational center of each link is
in this setup 1/2 of the link length and where the equivalent force is situated. The equivalent

107

9. MECHANICAL

force is a force that acts at a single point and replaces the forces that are distributed along an
object.

Figure 66: FBD of robot arm with moment equations

As seen by the moment equations and Free Body Diagram (FBD) in fig. 66, the moments at
each joint is only affected by the forces acting to the right (towards the end effector). Beginning
with finding the moment at joint 3, choosing a suitable motor and plotting in its corresponding
weight and then working the way inwards to joint 1 gives all the values needed for the moment
calculation.

To illustrate how the payload weight affects these moments, we plotted each joints moment
against payload mass in Fig. 67. The relationship is linear, and it is evident that joint 1 sees
the largest increase in moment as payload weight grows.

108

9. MECHANICAL

Figure 67: Payload effect on moment in joints

Static moment calculation V2
After some changes in the design where the motors were moved closer to the base and away
from the joints (direct drive to belt drive, see section 9), the need for more specific calculations
appeared. As the motors contribute with a substantial part of the total weight, the center of
gravity was no longer in the middle of the links, and needed to be found to adjust the distance
between the equivalent force and the joint, see fig. 68. The center of gravity was found using the
equation seen in fig. 69. New moment values could be calculated using the updated distances
and a FBD seen in fig. 70. The excel sheet can be seen in appendix H.

109

9. MECHANICAL

Figure 68: Center of gravity for each link

Figure 69: Equation for center of gravity [4, p. 365]

110

9. MECHANICAL

Figure 70: FBD of robot arm (V2 with belt drive)

Conclusion moment calculations

The calculated moments were compared to the maximum holding torque specifications on the
motors selected (see section 10). Figure 71 shows which motors were chosen for joint 1-3 and
their respective safety factors.

Figure 71: Motor selection from moment calculation

111

10. ELECTRONICS

10 Electronics

Electronics is a crucial aspect of a robotic arm. It is needed to control it and get feedback to
the control unit. To achieve this, motors, drivers, and sensors are needed.

10.1 Sensors VMN | DAB

Sensors are used to measure a change in the environment, as a example one of the most common
sensor is a temperature sensor that measure the ambient temperature and then reports it to a
microcontroller which then displays the temperature on a display.

Incremental Rotary Encoder
An incremental rotary encoder is used to know the speed and direction of rotation. It has
two phases, called A and B, and an optional phase Z. A and B are used to calculate the
speed and direction, and Z is used to know the centre position of the encoder. To know
the exact location a reference position is required, and the easiest solution is to add limit
switches.

Absolute Rotary Encoder
The absolute encoder is very similar to an incremental rotary encoder, but it has more
phases so it can determine the exact position instead of only speed and direction. For a
robotic arm, this can be used to determine the exact angle between the links on power up.
There are two commonly used absolute encoders, magnetic or optical. Optical absolute
encoders are the easiest to interpret since they often use Gray code, so for every pulse,
the binary code only changes by one bit.

Limit switch
A limit switch is a switch that gives a signal when it has reached the limit of the operating
area. This is often used with open-loop stepper motors to signal when it has reached an
reference position. It can be useful in a robotic arm to stop the movement of an axis
when it has reached the limit of the defined working angle it should operate in.

Camera
A Camera (image sensor) is a collection of light sensors (pixels) that measure the light
level of specific colors. The gathered values are then combined into an image using signal
processing.

10.2 Electric motors VMN | DAB

An electric motor is an actuator that converts electrical energy to mechanical energy. A motor

112

10. ELECTRONICS

is required to move the robotic arm to interface the mechanical parts with the electronics and
software.

Stepper motor
A stepper motor is a BLDC motor that uses steps and moves incrementally and is usually
an open-loop motor. Most stepper motors have a step angle at 1.8°, so the shaft will rotate
in increments of 1.8°. An open-loop stepper motor does not have logic, so it requires a
stepper motor driver, which can have varying functionality. Stepper motor drivers can
detect missing steps, detect if it is stalling, and change the running or idle current in
software.

Closed-loop stepper motor
A closed-loop stepper motor is a stepper motor with an added encoder to have a feedback
system. This makes it work similar to a servomotor.

Servomotor
A servomotor is a form of closed-loop motor that has a feedback loop that includes a
position encoder. This is useful in robotics because you want to know the position and
correct errors if they occur. Servomotors can consist of an absolute encoder, a BLDC
motor, a reduction drive, and a motor driver.

10.3 Choosing a Motor VMN |

All of the motors listed in the previous section can be used for a robotic arm, but it depends on
the requirements. One of the most common motors used for robotics is servomotors. Since the
project focuses on costs, servomotors have been ruled out because they cost a lot more than a
stepper motor and are more readily available.

Figure 72: Motor kit BOM

113

10. ELECTRONICS

For the project, the kit from stepperonline in Fig. 72 has been chosen. This kit consists of
six stepper motors, whereas five are being used. These motors come in a few different sizes
with different gear ratios. All the motors are fitted with incremental rotary encoders. This kit
contains stepper motor drivers for each motor with different current ratings. It also includes a
216W (24V, 9A) power supply.

The gripper uses a DSS-M15S servomotor that can rotate a total of 270° and has an analog
feedback to know the current position. This servomotor has a holding torque of up to 12kg · cm

depending on the supply voltage. It can pull up to 1.76A at 7V.

10.4 Stepper motor drivers VMN | DAB

DM320T/DM332T are the stepper motor drivers that are provided with purchased kit,
which have settings for microstep resolution and current. They are controlled using two signals
called pulse and direction. The direction signal chooses the direction it should move and the
pulse signal determines how many steps it should move. It does not have an input for the
included encoder, so missed steps have to be compensated in software by having the encoder
directly connected to the microcontroller. These stepper motor drivers have limited function-
ality and are not really suited for a robotic arm. It can not detect whether it is stalling or it is
missing steps itself. This can be solved by changing to another stepper motor driver.

Trinamic TMC5160 has a lot of features that are useful for robotics. It has features like
CoolStep, StealthChop, and StallGuard. StallGuard is a feature to detect when the motor is
stalling, and it has to be configured for a specific load, it measures the current going through
the coil to determine if the motor is stalling. CoolStep is a feature that can be used if the
StallGuard has been tuned and adjusts the current flowing through the coil depending on the
load applied to the motor. This feature is useful to reduce power consumption and the heat
generated by the motor and driver. StealthChop is a proprietary chopper mode created by
Trinamic, this feature has a reduced noise level compared to a regular chopper mode. Chopper
mode is just a way to regulate the current going through a coil by turning an H bridge on and
off repeatedly and varying the time it is turned on.

The interfaces available to use with the TMC5160 are Step / Dir, UART, SPI, or RS485.
Step/Dir gives almost no control in standalone mode, and the features have to be enabled at
hardware level instead of in software, so it is not an interface that is applicable to this usage.
SPI can be used to configure the stepper motor driver when using the STEP/DIR interface,
but it can also be used to control the driver. UART can be used to configure and control
the stepper motor driver. UART also allows for the control of multiple drivers with one wire.
RS485 is almost the same as UART except that it uses two wires to have a differential signal.

114

10. ELECTRONICS

For this project, the RS485 protocol has been chosen, since it requires less wires than SPI, but
it has a slower data rate which is not a concern for this application. UART could have been
chosen over RS485, as it is the exact same signal and requires one less wire than RS485. UART
only requires two wires, the signal wire and a ground wire. RS485 requires three wires, which
are the two differential signal wires and a ground wire.

10.5 Component selection VMN |

NTD3055L104T4G has been chosen as the MOSFET used in the external H bridge that
is required for the TMC5160 to operate. The NTD3055L104T4G was chosen because it meets
the requirements specified in the TMC5160 datasheet. This MOSFET can conduct 10A 100°C
continuously and 12A 25°C. This MOSFET also has a low miller charge of 4nC which is used
to select the gate resistor and choose the drive strength in software. With the specified miller
charge, the TMC5160 datasheet recommends that the drive strength be set to 0 and the gate
resistor be ≤ 15W. The switching characteristics of this MOSFET are slower than the AO4882
used for the TMC5160-BOB board and the BSC072N08NS5 used for the TMC5160-EVAL
board. This can be compensated for in software by tuning changing two parameters, called the
parameters for break-before-make time parameters.

EBQA-04-C-C is a terminal block connector that was chosen to connect the stepper motors
to the driver. This is because it is a standard connector with a 5.08mm pitch. This connector
is rated for up to 15A which gives a 1.5 safery factor with a load of 10A, which is the most the
TMC5160 can handle. This is the minimum safety factor for this stepper motor driver. The
stepper motor with the highest current rating is the NEMA23 motor at 2.8A, this gives a 5.35
safety factor.

TBP02R1-381-06B is a terminal block with a pitch of 3.81mm and is used for connecting
the encoder. It is a vertical 6 position connector that mates with a TBP02P1-381-06BE, it was
chosen since it supports the wire gauge of the rotary encoders.

TLV9101IDBVR is a general purpose operational amplifier. It has a bandwidth of 1.1MHz,
this is needed since the maximum output frequency of the rotary encoder is 400kHz, so it is
well within the bandwidth of the operational amplifier. The TLV9101IDBVR works on a 16V
single supply, or with dual supply +/- 8V. It is used with a 5V single supply. This operational
amplifier was compared with other operational amplifiers from Texas Instruments and Analog
Devices in SPICE, and had the best results. It had no overshoot and had a fast enough response
to work on the absolute maximum frequency the incremental rotary encoders can output. The

115

10. ELECTRONICS

MAX40079 was one of the other alternatives that were tested in SPICE, but it had problems
with overshoot if the supply voltage was 5.5V before it would go to the correct value.

Sense resistors are used to measure the current passing through the motor coils. Since the
current rating for each motor is different, multiple resistor values are needed. For the resistor
values and power ratings required for this project, the 2512 imperial footprint has been chosen.
The resistor values that are used are 75mΩ, 120mΩ, 150mΩ, and 220mΩ which are taken from
the table under "Selecting Sense Resistors" in the TMC5160 datasheet .

Voltage regulator was considered to supply the encoder and the operational amplifiers,
but is not required since the TMC5160’s internal 5V voltage regulator can supply 30mA. The
operational amplifiers and the incremental rotary encoders requires a total of 20.25mA, so it
should be sufficient. Adding a 5V voltage regulator could be something to consider in a future
revision.

10.6 MOSFET VMN |

Metal-oxide-semiconductor field-effect transistor (MOSFET) is used to amplify or switch sig-
nals. The TMC5160 controls the motor using MOSFETs instead of doing it directly, this is to
allow for higher current and voltage.

The TMC5160 uses a chopper mode to regulate the current flow through the stepper motor.
This is done by switching the MOSFETs on and off fast, and with different duty cycles to
regulate the current going throught the coils.

116

10. ELECTRONICS

10.7 Operational Amplifier circuit VMN |

10.7.1 Simulation of OPAMP VMN |

V
1

5
.2

PULSE(0 5 0 50n 50n {1/80000} {2/80000})
V2

PULSE(0 5 {1/80000} 50n 50n {1/80000} {2/80000})
V3

R1

10k
R2

10k

R3

10k

R4
10k

C1

110p

IN+
IN-

VCC
VEE
OUT

U1

TLV9102

A
+

A
-

A+

A-
Output

.tran 0.2m

Figure 73: Operational Amplifier SPICE test circuit

The operational amplifier that was chosen was tested with spice simulation. With test signals
at 400kHz which is the maximum frequency that the magnetic incremental rotary encoders can
output. With the circuit shown in Fig. 73 it can handle the signal, but it is not perfect. This
is not a problem, since the motor will never reach speeds that will cause it to output a signal
of 400 kHz. Since the motor will only spin at 1000 RPM or less. 1000 RPM can be used to
determine a more realistic frequency. The rotary encoder outputs 1000 pulses per revolution,
which at 1000 RPM would give a frequency of 1000RP M

60s
· 1000PPR = 16666.67Hz, but to have

some headroom it can be increased to 40kHz which is 1
10 of the maximum output frequency.

This gives us the results in Fig. 74, and we can see that it does not overshoot and that it can
handle the frequency.

117

10. ELECTRONICS

0µs 20µs 40µs 60µs 80µs 100µs 120µs 140µs 160µs 180µs 200µs
0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

-390µA

-360µA

-330µA

-300µA

-270µA

-240µA

-210µA

-180µA

-150µA

-120µA

V(output)

V(a-)

V(a+)

I(V1)

Figure 74: OPAMP result with test signals at 40kHz

10.8 PCB Design VMN |

A Printed Circuit Board (PCB) consists of copper and dielectric layers, the most common
dielectric material is Fire-Retardant 4 (FR4). PCBs are used to connect components together.
The copper layers are etched to provide the traces that connect the components together. vias
are used to connect traces or planes together that are located on different layers.

118

10. ELECTRONICS

Figure 75: 3D view of the PCB

10.8.1 Schematic VMN |

A schematic diagram is needed to create a PCB, this is used to know all of the components
that are in the circuit and how they are connected. The schematic is also used to create the
Bill of Materials (BOM). The program that has been used to create the schematic and pcb
layout is Altium Designer, this is because it has a lot of features and is free for students.

The current schematic for the stepper motor drivers can be seen in Fig. E in Appendix E. This
is based on the datasheet[30] and the evaluation board TMC5160-BOB[31]. Originally, the
MOSFETs used was the AO4882 taken from the TMC5160-BOB, but it was swapped out with
the NTD3055L104 in the final design. This was done so the current limit could be increased in
the future. This MOSFET also uses a DPAK footprint so it could be replaced by other DPAK
MOSFETs. The NTD3055L104 has a drain current of 10A at 100°C, compared to the drain
current of the AO4882 of 3A at 70°C.

119

10.
E

LE
C

T
R

O
N

IC
S

10.8.2 BOM VMN |

Figure 76: BOM PCB

120

10. ELECTRONICS

Fig. 76 is a list of all the components for the PCB and the connector that are used. This list
includes the total component price for one board and three board. The exported BOM from
Altium Designer can be viewed in Appendix E.E

10.8.3 PCB layout VMN |

Figure 77: PCB layer view with all layers visable

In Fig. 77, we can see the PCB layers of the PCB with designators and outlines of all the
components. I assigned the schematic sheets to rooms to restrain where the components can be
placed and to help move the components to the correct room. Rooms also has other function-
alities like copying the layout of another room if the components are the same, this function

121

10. ELECTRONICS

was not used since I used a flat design for the schematic instead of a hierarchical design. To
connect the MOSFETs together and to the connector, polygon pours have been used instead
of traces to help with heat dissipation. The top and bottom layers are connected with a lot of
small vias to help with heat dissipation.

The decoupling capacitors that are used for the IC are placed close to the pins that require
them. This is done for EMC concerns.

10.8.4 Electromagnetic Compatibility VMN |

Electromagnetic Compatibility (EMC) is one of the most important aspects to consider when
designing a PCB and circuit. EMC concerns the generation of Electromagnetic Interference
(EMI) and how EMI affects the circuit. This affects the functionality of the circuit and/or
whether it will affect other circuits/systems.

One mitigation for EMI is decoupling capacitors close to an IC’s pins. This is done to keep the
pin voltage stable and avoid EMI from external and/or internal sources. Decoupling capacitors
are also used to avoid creating EMI.

The layer stackup of a PCB is also important to consider since it can help mitigate EMI. The
layer stackup used for this PCB is signal+pwr/gnd/gnd/signal+pwr. The outer layers are used
for signals and power, while the inner layers are used for ground. This is to have ground close
to the signal and also to be able to use vias where ground is needed. Another layout that
could have been used is signal/gnd/pwr/signal. The internal ground layers are used to prevent
interference between the top and bottom layers.

The main concern for this PCB and EMC is the switching of the MOSFETs, and how much
EMI it would create. EMC is a very complex subject and can be difficult to design around.

10.8.5 PCB Assembly VMN |

The first revision that was ordered were assembled at the university using the pick-and-place
machine, and reflow oven as seen in Fig. 78

122

10. ELECTRONICS

(a) Pick-and-Place machine (b) Reflow Oven

Figure 78: PCB assembly

After being soldered, the PCB was tested by connecting it to the power, but it ended up being
shorted. This was caused by a mishap when generating the drill file. Some of the silkscreen was
also missing. To remedy this, some troublesome areas were drilled and cut to remove direct
shorts from the power rails to the ground. This was a success, but there was still something
wrong with it. New PCBs were ordered the next day with the correct files, but will not arrive
before the deadline for this report. It may arrive before the USN Expo or the day after. At
least it will be assembled and tested before the final presentation.

10.9 Microcontroller & Computer VMN |

To control the stepper motors we are using an Arduino UNO R4 WiFi provided to us by Hy-
droplant Technologies. This has just enough pins for the stepper motor drivers, the servomotor,
and the limit switches. With the DM320T and DM332T the Arduino does not have enough
pins for the rotary encoders, to add this functionality Arduino UNO R4 WiFi could be swapped
out for another microcontroller or use port expanders to add additional I/O ports.

10.10 Electrical Signals & Communication VMN |

10.10.1 DM320T/DM332T Stepper Motor Driver VMN |

123

10. ELECTRONICS

Direction & Pulse
Direction and pulse are the two most common ways to control a stepper motor driver.
The direction signal has two states, high or low. This will simply choose between spinning
clockwise or counterclockwise. The pulse signal also has two states, high or low. When
the pulse goes high, it signals to the stepper motor driver to go one step. The logic level
for this setup is +5V.

Rotary Encoder Signals
The rotary encoder has 6 signals, which are A+, A-, B+, B-, Z+, and Z-. The rotary
encoder has two signals for each phase, as it is a differential signal. This is done to
minimize noise. For this application, the only signals that will be used are A+ and B+.
This could be changed in the future by implementing an differential operational amplifier
before the input

Enable Pin
The Enable pin is used to enable the stepper motor driver when the pin is set to high
(+5V), and disable it when set to low (0V/GND).

10.10.2 TMC5160 Stepper Motor Driver VMN |

UART/RS485
UART is used to control all of the stepper motors, with the configuration of the TMC5160
it is used in a differential signal mode. This is almost the same as the RS485 standard.
The TMC5160 operates on half-duplex so it will send data or receive data, but it cannot
do both at the same time. Most of the configuration is done by setting parameters
in software, except for the maximum current limit, which is set on a hardware level.
The UART interface is also used to send movement controls and receive data from the
TMC5160. It is a two-wire interface and addresses are used to control multiple drivers
with the same two wires.

NAI / NAO Next Address In and Next Address Out are used to connect the drivers
together and increment the address of the drivers that have been connected.

124

11. SOFTWARE

11 Software

This section outlines the various software components required for the whole system to work
as required. Please refer to Appendix F for detailed Doxygen-generated code documentation.

11.1 Leafy Automation Central JCDH | SME

The Leafy Automation Central provides a HTTP server which hosts the Human Machine
Interface (HMI), Robot Operating System 2 (ROS2), AI models, ML algorithms and other
utilities critical to system functionality.

Leafy Automation Central is an essential piece of software. It is where a lot of the heavy lifting
and data processing happens. Microcontrollers are often very limited in available resources
(often only kilobytes of ram), which is why a piece of software running on dedicated hardware
is necessary. Leafy Automation Central is intended to run on the Raspberry Pi 5, although
there is no functional limitation on which type of device it can run on (provided sufficient
processing power).

In order to facilitate communication between all devices of the Leafy Automation system, a
local network must be setup. Initial testing began using a hotspot on a computer running
Microsoft Windows 10, but the intention will be to host a hotspot on the Raspberry Pi 5, thus
removing the need for a standalone networking device. As the Leafy Automation system will
be deployed to many different types of networks, testing on a wide area of possible network
configurations gives us valuable evidence to verify system general stability.

11.1.1 Areas of responsibility JCDH | SME

The Leafy Automation Central is divided up into the following main areas of responsibility:

125

11. SOFTWARE

Table 5: Leafy Automation Central - Areas of responsibility

System Purpose

AI and CV processing Identifies and classifies the lettuce using var-
ious AI models and algorithms.

Robotic conversions Converts the data points compiled by the AI
recognition to concrete real-world coordinates
usable by the robotics (grip point).

Web server Allows the Leafy Automation Core to com-
municate with the Leafy Automation Central

Human Machine Interface (HMI) A Graphical User Interface (GUI) which let’s
you interface with the system, give com-
mands and see information

Please refer to Appendix G.14 for the HTTP based API implementation of Central.

11.2 HMI JCDH | SME

The Human Machine Interface (HMI) is the part of our system which interfaces with a human.
A Graphical User Interface (GUI) is presented to the user where they can view useful informa-
tion like system status and camera feeds. This interface also allows for initiating / stopping
system functions. 1

Although our system is autonomous, human oversight is still required, especially for initial
testing and for taking spot checks or quality control. The HMI is accessible from the Leafy
Automation Central IP address. Figure 79 shows how the user interfaces with the HMI, and in
turn how the HMI interfaces with the rest of the system.

1The HMI is part of the Leafy Automation Central codebase, but contained in its own module.

126

11. SOFTWARE

Figure 79: HMI diagram

The following are the aims for the HMI:

• User friendly

• Snappy

• Accessible

11.2.1 Dashboard JCDH | SME

Figure 80 shows the HMI dashboard in action. It includes a camera feed, system modules state,
controls for starting / stopping the system, a log panel and login information. Please refer to
Appendix G.11 for an earlier iteration the dashboard.

127

11. SOFTWARE

Figure 80: HMI dashboard

Underlying HMI architecture

The HMI itself is written in HTML, CSS and JS, utilizing Bootstrap for the layout and main
styling, which is a common web-app configuration. The reason for this configuration is because
it makes quick prototyping / development easy. On the backend Python Flask is used.

JQuery is used to connect the pieces of the webapp. The HMI utilizes a Model View Controller
(MVC) architecture for optimal code organization [32], as seen in Figure 81.

128

11. SOFTWARE

Figure 81: MVC - control flow

Camera feed

The initial iteration of the camera feed started with a HTTP-based endpoint to stream the
camera feed. This was later extended with a WebSocket implementation, which enabled low
latency communication. Please refer to Appendix G.10 for more info on earlier iterations. 2

11.2.2 Login, authentication and session handling JCDH | SME

The user is greeted with a login page before gaining access to the Dashboard as seen in Figure
82.

2Research was done on using a ROS2 compatible JavaScript library for complete integration with the ROS2
ecosystem, but this work was set aside due to time constraints [33].

129

11. SOFTWARE

Figure 82: HMI login page

Authentication and password hashing

Authentication and password hashing is implemented using functionality from Werkzeug [34].
The reason we hash passwords is that in case of a data leak, or hacking attempt, the users
password will not actually be known as there will never be stored a clear text version of the
users password, and only a hashed version of the password which for all practical purposes will
be impossible to decipher. The hashed password which is stored in the users table (Table 7),
is stored in the scrypt format, which you can read more about in Appendix G.10.4.

Session cookie

A session cookie implements a way for the Human Machine Interface (HMI) to remember the
user after they have logged in, so that the next time they visit the HMI they do not have to
login again.

130

11. SOFTWARE

11.3 Database JCDH | SME

Every system of moderate complexity needs a database to organize persistent data in a struc-
tured way. Leafy Automation Central keeps this data in a database which is called SQLite. A
small, fast and self-contained SQL database engine. 3

Currently, the main responsibility of the database is to store which users have access to the
system. The user authentication and authorization is implemented in the HMI.

Here is a list of the primary data types in SQLite (the list is short, which shows the
simplicity of database, as opposed to other larger database software like MySQL) [36].

• NULL - No value.

• INTEGER - Signed integer (only positive values).

• REAL - Floating point value (decimal number).

• TEXT - Text string (utf-8).

• BLOB - Binary data, stored exactly “as is”.

11.3.1 The need for a database JCDH | SME

Data needs to be persisted between reboots of the server and, whereas storing data in variables
would be fine for some use cases, the data would be lost upon the next restart of the server. 4

Why we use SQLite over other databases

We believe that using SQLite is the correct approach for our system for the following reasons:

3SQLite is actually the most used database in the world, being used in everything from mobile apps to
embedded devices. According to the SQLite website there are over 1 trillion active SQLite database instances
in use today [35].

4While visiting a dry-cleaner which made use of AI models and robotics for folding laundry, they emphasized
the importance of keeping historic data from the folding process in order to fine tune the AI models. In order
to achieve this a database had to be deployed to facilitate the storage.

131

11. SOFTWARE

1. SQLite implements a much smaller subset of functionality, which is similar to MySQL,
which reduces complexity.

2. Upgrading to MySQL would require minimal refactoring of existing SQL queries due to
their similarities in syntax.

11.3.2 Database tables in use JCDH | SME

Figure 83 shows an overview of database tables and their relationships. Please refer to Appendix
G.13 for in-progress work on the database.

Figure 83: Database overview diagram

Note: Arrows indicate foreign key relationships, and the crows foot indicate a one-to-many relation-
ship.

11.3.3 Users and Access levels tables JCDH | SME

In this context AUTO INCREMENT means that the column (which in most cases will be
id) will automatically count +1 for each new row in the table [37], PRIMARY KEY uniquely

132

11. SOFTWARE

identifies each row in the table, CURRENT_TIMESTAMP stores the current UTC (Co-
ordinated Universal Time) time in the format YYYY-MM-DD HH:MM:SS and UNIQUE
ensures that no duplicate values will be used [38].

Users table (users)

Name Description Datatype Metadata

id The unique id of the user INTEGER AUTO INCREMENT, PRI-
MARY KEY

created_at The timestamp for when this
user was created

TEXT CURRENT_TIMESTAMP

username The unique username of the
user

TEXT NOT NULL, UNIQUE

password The hashed password of the
user

TEXT NOT NULL

email Users email TEXT NOT NULL

first_name The first name of the user TEXT NOT NULL

last_name The last name of the user TEXT NOT NULL

access_level_id The access level of the user,
which is a foreign key to the
specific access_level in the
access_levels table

INTEGER FOREIGN KEY to ac-
cess_levels.id

Table 6: Database: Users table structure

id created_at username password email first_name last_name access_level_id
1 2025-04-07

11:20:05
admin [hashed-

password]
admin@example.com John Green 1

2 2025-04-08
09:39:29

spectator [hashed-
password]

spectator@example.com Leafy Green 2

Table 7: Database: Users table example

Access levels table (access_levels)

133

11. SOFTWARE

Name Description Datatype Metadata

id The unique id of the
access level

INTEGER AUTO INCRE-
MENT, PRIMARY
KEY

name The name of the spe-
cific access level

TEXT NOT NULL,
UNIQUE

Table 8: Database: Access levels table structure

Each user gets one of two access levels:

• admin

• spectator

Where admin corresponds to a user who has access to both managing and viewing the system,
and spectator which only has the ability to view system info.

id name

1 admin

2 spectator

Table 9: Database: Access levels table example

11.3.4 Side notes JCDH | SME

Appendix G.12 outlines additional research and notes on the database.

134

11. SOFTWARE

11.4 Leafy Automation Core JCDH | SME

The Leafy Automation Core has multiple important responsibilities. This is the software which
runs on the embedded devices within the Main System. It is the codebase which runs on the
ESP32-CAM module and the Arduino (which handles direct signaling between robotics). This
codebase is divided up into the two above mentioned parts, and the code to compile is decided
based on the target devices.

This codebase communicates directly with the Leafy Automation Central which serves as a
“base of operations” keeping track of the current state of the overall system and deciding which
state the system is in.

Please see Appendix G.7 for more details about Leafy Automation Core (initial HTTP iteration
and benchmarking), and Appendix G.17 for earlier research.

11.4.1 Why WiFi was chosen over a wired connection JCDH | SME

Networking is a central piece of the system as a whole. Without networking, the individual
components would fail to communicate with each other. It is of course possible to communicate
across devices and modules using a wired connection, but we believe connection over network
protocols like TCP / UDP as in our case creates a much more modular and easy to work with
system. Also, this approach allows for easy integration with other IoT devices in the future. 5

6

11.4.2 Code reuse JCDH | SME

Both the esp32-cam and Arduino share the same codebase. This might seem strange at first,
but there is a simple reason for it, which is code reuse. Most of the network stack is identical
between these devices, therefore it simplifies the codebase greatly by removing the need for
duplicate code. Which part of the codebase will be used (ESP32-CAM or Arduino robotics) is
decided using compile time switches, as seen in Listing 1.

5Protocols like MQTT, HTTP and ROS2 all make use of TCP / UDP as the underlying protocol.
6The goal when it came to the first iteration of networking was to get something up and running as soon

as possible. Based on earlier experience, and availability of documentation it was decided to just build this
iteration on HTTP, which builds on top of the TCP protocol.

135

11. SOFTWARE

void setup () {
#ifdef PLATFORMIO_ENV_UNO_R4_WIFI

main_base_setup ();
#elif PLATFORMIO_ENV_ESP32CAM

main_cam_setup ();
#endif

}

Listing 1: Leafy Automation Core codebase compile time switches

11.4.3 Real-Time Operating System (RTOS) future proofing JCDH | SME

The code in Leafy Automation Core is organized in a way where there are intermediate abstrac-
tions between the system drivers and “user space” code. This allows for a smooth transition in
the future if a switch to a RTOS like Zephyr is to be made, our code can be mostly reused.

At this stage of proof-of-concept development, our code is running on an Arduino. Because the
Arduino has simple abstractions around the underlying driver, these abstractions lend them-
selves to be easily ported to other microcontrollers.

The diagrams in Figure 84 outlines how a future transition to an RTOS could look like.

Figure 84: Real-time OS future proofing

136

11. SOFTWARE

11.5 Design and Implementation of Arduino
Firmware EG |

In this chapter, we present the design and implementation of the low-level firmware that runs
on the Arduino R4 WiFi (Core) and serves as the real-time controller for the Leafy Automation
robotic arm. This firmware is responsible for interfacing with the systems wireless network (as
described earlier in this chapter 11), decoding high-level commands issued by the Raspberry
Pi 5 (Central) ROS2 Control Layer nodes (as described in the Layered module-based design,
section 7), driving stepper and servo motors to execute pick-and-place motions, and reporting
status updates back to Central.

11.5.1 Hardware components and their identifiers EG |

Before delving into the firmware logic, it is important to understand the physical hardware
that is controlled by Leafy Automation Core, along with the naming conventions that we use.
For the purpose of this chapter, Figure 85 shows a simplified naming overview which is further
elaborated witha more technical detail in Table 10. More information about the project naming
conventions can be seen in section 10.4 Definition robot arm 8.1.1, and further technical detail
about the motors in section 13.4 Stepper motor driver ??

Figure 85: Naming of joint motors, including driver and gear ratio information

137

11. SOFTWARE

Table 10: Naming conventions including key technical detail.

Joint Joint ID Motor driver Gear ratio

Base rotation J0 DM332T 1/10
Shoulder J1 DM332T 1/50
Elbow J2 DM332T 1/50
Wrist J3 DM320T 1/19
Wrist rotation J4 DM320T 1/16
End effector (gripper) EF Servo N/A

Each joint is assigned a short identifier (J0 ... J4 for the five stepperdriven axes, and EF for the
servo driven end-effector controlling the gripper). These IDs appear in our code (for example
moveJoint(J2, <number of steps>) and in code documentation.

A brief mention about gear ratios

Gear ratio, such as for example 1/50 for the motor running J1, means the motor must turn 50
times to produce one full joint revolution. In the Core firmware, this gear ratio setting is used
to convert the desired joint speed (in RPM) into the correct motor pulse rate. This means that
a higher gear reduction lets us run the motor faster while the joint moves at a slower, more
controllable speed. More information about this can be read in SECTION VETLE?

Centralised configuration in config.h

Hardwarespecific constants and operating constraints relating to Core are defined centrally in
the /include/config.h file. Examples include Arduino pin assignments, microstep settings, gear
ratios, and maximum RPM values. Keeping these parameters in one place allows developers
to quickly and easily retune the system for different mechanical configurations, without having
to modify the control logic directly.

138

11. SOFTWARE

11.5.2 Overview of Library dependencies EG |

The Core firmware relies on several, well established Arduino libraries. Table 11 gives a short
overview, and the sections that follow we will explain how they are used in the various software
modules.

Table 11: Arduino library dependencies

Library Version Purpose

AccelStepper [39] v1.64 Non-blocking stepper motor control.
PubSubClient [40] Hydroplantno fork MQTT client for publish/subscribe messaging.
WiFiS3 [41] Arduino SA Wi-Fi connectivity.
Servo [42] Arduino SA PWM-based control for the gripper servo.

11.5.3 The Software build on Leafy Automation Core EG |

Priority when designing the software for Core has been on building for simplicity to facilitate
rapid testing and modularity to make the code easy to understand and modify. These priorities
align with the architectural drivers detailed in section 10.1 Project Constraints and Architectural
Drivers 7.

139

11. SOFTWARE

Figure 86: Diagram showing the main software components of Leafy Automation Core, includ-
ing the MQTT-based connection to Central.

As discussed in Section ??, communication between Central and Core is achieved by using a
MQTT bridge. In this setup, the MQTT broker resides on Central side, with Central publishing
high-level commands (for example MOVE or GRIP) to specific topics that Core subscribes to.
On the other side, by utilising the PubSubClient library [40], Core publishes status updates
and heartbeats back to Central via dedicated topics, ensuring a clear, decoupled exchange of
control and feedback.

The Leafy Automation firmware is built based on a cooperative super-loop scheduling pattern.
In this pattern, all tasks are placed sequentially inside a single, never-ending main loop, where

140

11. SOFTWARE

each task runs to completion until the next one begins.[43]

This solution was selected because it minimises code and memory overhead, provides predictable
timing which is important for real-time control, and because it facilitates rapid development
and debugging, thus paving the way for fast proto-typing. This makes it an efficient solution
in line with the project constraints as detailed in section 7. [43]

It is important to note that with this setup, all software modules must use only non-blocking
operations to keep timing consistent and predictable. In practice, this means advancing mo-
tors in small increments (using AccelStepper::run()) and basing state-machine transitions on
elapsed-time checks (millis()), rather than any blocking calls like delay().

We shall explore how all the software components fit together, and how each pass of the Main
Loop services MQTT traffic, advances the robotic-arm movements, updates the gripper, and
sends status updates in a non-blocking cycle.

11.5.4 Main Loop() EG |

Building on the cooperative super-loop model described above, the Main Loop implements a
fixed sequence that drives every aspect of Cores operation. During each iteration, the following
five routines see in Table 87 are invoked in the following order:

Figure 87: Sequence diagram showing the Main Loop() on Core.

141

11. SOFTWARE

mqttLoop() Maintains the MQTT connection to Centrals broker, performing reconnection
attempts with exponential back-off [44] and dispatching any received messages to the Commu-
nication Manager.

updateMotors() Cycles through each stepper joint and invokes AccelStepper::run() [39].
When a motors internal timing states that a microstep is due, it executes exactly one step.
By invoking run() on every joint each run of the main loop, all axes advance in parallel in a
non-blocking fashion.

updateGripper() Executes a timed state-machine check (see Figure: XXX). If the elapsed
time since the last moveGripper() call exceeds the configured travel duration (defined in /in-
clude/config.h), the internal moving flag is cleared. (This strategy inspired from Arduino
documentation [45]).

checkActionStatus() Each loop, it checks if any ongoing action (move, grip, or calibrate) has
finished. If so, it sends the corresponding DONE message and resets that actions flag.

sendHeartbeat() Publishes a periodic alive signal to inform Central that Core remains oper-
ational.

11.5.5 MQTT Client Module EG |

The objective of this module is to bridge high-level Central commands and the low level Core
motor control together, using MQTT. Thereby, minimising coupling while ensuring reliable
message delivery. By isolating all networking logic in this module, the higher-level control code
remains agnostic of transport details. [40]

Key interfaces:

initMQTT() Configures PubSubClient with the broker address and callback function, then
attempts an initial connection and subscribes to the control topics (motion, gripper, calibrate).

mqttLoop() Periodically invoked to sustain the network link. Unsuccessful connection at-
tempts employ an exponential back-off strategy (2 s, 4 s, , 60 s) to prevent network congestion
[44].

publishStatus(const char*, const String) Publishes status strings (e.g. MOVE DONE) to
designated topics, logging any transmission failures to the serial console.

setMessageHandler(void (*)(const String)) Tells the MQTT Client which function to run
whenever a new message arrives. In our code, we pass handleIncomingCommand, so every time

142

11. SOFTWARE

Core receives an MQTT payload, it automatically calls that function with the message text.
Inspired by code example [46].

11.5.6 Communication Manager EG |

The objective of the Command Manager is to interpret the textual commands received over
MQTT and translate them into motor instructions, while maintaining reliable message received
and instruction complete handshakes. Figure 88 demonstrates how Core processes a MOVE
command, based on the Command Manager’s functionality. Here, Central publishes a MOVE
message to the MQTT broker, which Core receives in mqttLoop(). Cores Communication
Manager dispatches the motion, the drivers execute until completion, and checkActionStatus()
publishes MOVE DONE back through MQTT to Central.

This decoupling of parsing, dispatch, and status logic promotes modifiability as new commands
can be added by extending this module alone, without altering networking or driver code.

Main functions in the Command Manager:

Command parsing with handleIncomingCommand() This function, inspired by code
example [46], starts by trimming off white spaces. It then separates the message based on
the command keyword (MOVE, GRIP, CALIBRATE), and publishes the raw command to
topic status/command_received to acknowledge receipt. Then, the following actions happen,
depending on which command has been received:

A MOVE command: Parses five integer positions, invokes moveJoint() for joints J0 J4,
and sets movementInProgress = true. A GRIP command: Calls moveGripper(state) and sets
gripperInProgress = true.

A GRIP command: On a GRIP message, the function publishes the incoming command,
parses a single integer argument (0 or 1), and passes it to moveGripper(state). It then sets
gripperInProgress = true so that the next status poll can detect completion.

A CALIBRATE command: When a CALIBRATE command is received, this function
publishes the payload, parses the integer argument (0 = cancel, 1 = start), and immediately
acknowledges with CALIBRATE RECEIVED. If starting, it calls calibrateAllJoints(), waits for
the homing sequence to complete, then publishes CALIBRATION DONE. On cancel, it clears
the flag and publishes CALIBRATE CANCELED.

The process is illustrated in Figure 89

143

11. SOFTWARE

Completion monitoring with checkActionStatus() Periodically checks whether each in-
progress action has completed its task, and publishes the corresponding DONE message exactly
once.

144

11.
SO

F
T

W
A

R
E

Figure 88: Sequence diagram showing the execution of an example MOVE command sent from Central to Core

145

11. SOFTWARE

Figure 89: Flow chart showing handleIncomingCommand()

146

11. SOFTWARE

11.5.7 Motor Driver EG |

The role of the Motor Driver is to provide precise, concurrent control of five stepper-driven
joints with non-blocking motion and a homing routine for calibration.[39] [47]

Key functions:

initMotors()
Reads per-joint constants (MICROSTEPS, GEAR_RATIO[], MAX_OUTPUT_RPM[], pin mappings)
from config.h, computes the required step-rate via the following formula:

steps/s = MAX_OUTPUT_RPM
60

× MICROSTEPS
GEAR_RATIO

and then configures each AccelStepper instances maximum speed and acceleration.

moveJoint(index, stepCount) Queues a relative microstep move for the specified joint.

updateMotors() Calls run() on each stepper once per loop pass, ensuring concurrent stepping.[47]

calibrateAllJoints() Performs a blocking routine to locate left and right limit switches, mea-
sure travel range, return to the midpoint, and zero the position for each joint. [48]

allJointsDone() / calibrationDone() Reports whether queued motions or the homing se-
quence have completed. By using the AccelStepper librarys [39] non-blocking API, the module
performs multi-joint motion within the super-loop. Homing is the only blocking operation. We
considered this to be justified by it being a critical safety feature, given that the initial motor
drivers provide no other means for step position feedback.

147

11. SOFTWARE

11.5.8 Gripper Driver EG |

Figure 90: Simple state diagram showing the state transition conditions and actions.

The Gripper Driver module controls the gripper endeffector (EF) servo via a simple, nonblock-
ing, timebased state machine (See Figure 90). When a moveGripper(state) command is
called, the function records the current time in moveStartTime and sets an internal moving
flag. On each pass of the main loop, updateGripper() computes:

∆t = millis() − moveStartTime

this is then compare to the predefined duration GRIP_MOVE_TIME_MS. The moving flag is cleared
when ∆t ≥ GRIP_MOVE_TIME_MS, showing that the gripper EF has reached it’s target position.

Two advantages to this strategy:

1. By avoiding any blocking calls, the Main Loop is free to service motor updates and MQTT
traffic at high frequency.

148

11. SOFTWARE

2. The elapsed-time check ensures the gripper completes its motion in a fixed, known inter-
val, without creating slowdown elsewhere in the system.

This strategy is inspired by the following sources: [42] [49]

11.6 Camera JCDH | SME

The ESP32-CAM is a low-cost camera development board intended for various IoT and indus-
trial applications, including smart agriculture. It integrates the ESP32 chip directly on the
same board, which makes it function as its own computer [50].7 Our particular board uses the
OV2640 camera module, which has a max resolution of 1600x1200 pixels [51].

11.6.1 ESP32-CAM supported resolutions JCDH | SME

The ESP32-CAM supports the following resolutions (lower resolutions takes less time for the
ESP32, network, AI models and Computer Vision (CV) to process) [52]:

• FRAMESIZE_96X96, // 96x96

• FRAMESIZE_QQVGA, // 160x120

• FRAMESIZE_QCIF, // 176x144

• FRAMESIZE_HQVGA, // 240x176

• FRAMESIZE_240X240, // 240x240

• FRAMESIZE_QVGA, // 320x240

• FRAMESIZE_CIF, // 400x296

• FRAMESIZE_HVGA, // 480x320

• FRAMESIZE_VGA, // 640x480

• FRAMESIZE_SVGA, // 800x600

• FRAMESIZE_XGA, // 1024x768
7The original intent was to connect the camera module to the Arduino, but because it was later found

that this camera module has its own ESP32 chip it proved easier to just stream the data directly from the
ESP32-CAM to the Leafy Automation Central.

149

11. SOFTWARE

• FRAMESIZE_HD, // 1280x720

• FRAMESIZE_SXGA, // 1280x1024

• FRAMESIZE_UXGA, // 1600x1200

11.6.2 Handling low light conditions JCDH | SME

The testing indicated that the camera quality suffered greatly in low light conditions. Figure
91 shows an image of the printed chessboard from Figure G.53 on a neutral background. This
image taken by the ESP32-CAM indicates how important targeted lighting or direct daylight
is for the handling area. 8

Figure 91: ESP32-CAM low light conditions

8Note that viewing the content of the image in Figure 91 is difficult, but it emphasises the importance of a
brightly lit scene.

150

11. SOFTWARE

11.6.3 Verifying feasibility of detecting lettuce at a distance of
0.3 meters JCDH | SME

This distance was chosen because it is well within the reach of the robot arm. The lens of the
particular ESP32-CAM we use has a Field Of View (FOV) of 65 ° [53].

Using the formula for calculating the viewer distance from the Valve Developer Community
[54], we can input known values and rearrange them to deduce the screenwidth (how much of
the scene width is visible in the image):

viewer distance = screenwidth
2 tan(F OV

2)

⇒ screenwidth = viewer distance × 2 tan(FOV

2
) = 0.3 × 2 tan(65

2
)

= 0.382242156 meters ≈ 0.38 meters

Measurements indicate that a normal-sized Norwegian crispy salad is roughly 20 cm in width,
which proves that the camera captures the salad within the image when located on the robot
arm. 9

11.6.4 Calibration and handling camera distortion JCDH | SME

Cameras can introduce distortion to images like radial distortion, which makes straight lines
appear curved, and tangential distortion which means that the camera lens is not perfectly
aligned with the imaging plane [55]. Figure 92 shows an example of tangential distortion,
where the camera sensor is not parallel with the imaging plane. Image calibration using a
chessboard aims to solve this issue, although if intrinsic camera values are known beforehand,
or manually fine-tuned, this step can be skipped.

9Manual testing with the esp32-cam and a measuring tape was done to double check results.

151

11. SOFTWARE

Figure 92: Example of unaligned camera lens in relation to imaging plane (tangential distortion)

11.7 Artificial Intelligence (AI) and Computer Vision
(CV) JCDH | SME

Artificial Intelligence (AI) and Machine Learning (ML) are important technologies and critical
parts of image recognition. This section outlines the underlying technology of modern AI mod-
els and ML algorithms, and how they are used in our system. 10

These days, a lot of fuzz is made about AI. Why do we need it, and what does it do? Well,
because of today’s environment around AI technology, we have to be careful in validating if a
technology is actually useful and adds real value to our system goals.

11.7.1 What is Artificial Intelligence? JCDH | SME

Artificial Intelligence (AI) refers to computer software which mimics the intelligence of biolog-
ical life. 11 Appendix G.1 outlines AI concepts, technical analysis, training and benchmarking
in great detail.

10Machine Learning (ML) is actually a sub-category of Artificial Intelligence (AI), but the terms are used
interchangeably in many cases.

11Artificial Intelligence was actually an integral part of developing the COVID-19 vaccine as quickly and
efficiently as was done. As a part of this process millions of people contributed collectively trough projects like
Folding@home which allowed people to run protein folding AI models locally on their computers, providing
valuable insights into viral mechanisms and potential treatments. [56]

152

11. SOFTWARE

Overall, AI models have showed to be a valuable resource for achieving the requirements of
Hydroplant Technologies, especially depth estimation. Fine-tuning object detection models to
a satisfactory point has proven to be time-consuming and resource intensive, and although
further work must be done for this type of model to become useful, the research we have done
will be a good baseline to work on in the future. It is believed that object detection AI models
are superior for diverse sets of plants, based on testing.

For more info on the initial AI testing, please refer to Appendix G.3.

11.7.2 What is Computer Vision (CV)? JCDH | SME

Computer Vision generates useful data points from a visual source, like an image. 12 Appendix
10.4 outlines Computer Vision concepts, technical analysis and development in detail.

11.7.3 Combining multiple different AI and CV technologies JCDH | SME

The consensus is that combining different technologies can give improved accuracy for the robot
arm, and each technology is a tradeoff between performance and complexity. The goal of each
technology is to create an abstraction of the real world, whether this abstraction actually is close
enough is something that must be tested and considered thoroughly, but it is our belief that the
plethora of AI and CV technologies explored creates a useful baseline for further development.

11.7.4 Classifying a plant and creating a “plant_type” JCDH | SME

Figure 93 shows the process of predicting a plant type. The model is fed a list of possible
values, which are called “candidate labels”. From on the image supplied, a score for each
candidate label is generated which indicates how confident the AI model is in its prediction.
The AI model used for this task is called “openai/clip-vit-base-patch32”. This is a unique kind
of image classification model which hasn’t been specifically trained on the source images [57]
[58].

12In many cases, Computer Vision tries to mimic how vision works in biology.

153

11. SOFTWARE

Figure 93: Plant type pipeline

11.7.5 Creating a “grip point” JCDH | SME

In order to facilitate the proper movement of the robot arm, a grip point has to be generated.
This is done using a combination of AI models and custom developed CV algorithms. Figure
94 shows the process of generating a gripping point from a source image. 13

Depth estimation is done using the “depth-anything/Depth-Anything-V2-Metric-Indoor-Large-
hf” [59] [60] AI model, while mask and geometry generation is done using custom developed
algorithms which rely on PlantCV and OpenCV.

13The chessboard seen in Figure 94 is used for image calibration and testing purposes.

154

11.
SO

F
T

W
A

R
E

Figure 94: Grip point pipeline

155

11. SOFTWARE

11.7.6 AI models and CV algorithms used in Leafy Automation JCDH | SME

The following is a list of all AI models and CV algorithms used in the system (more on these
in Appendix 1):

• Image Classification - Classifies what objects are within an image. In our case, which
type of lettuce.

• Depth Estimation - Estimates a distance in meters from the camera sensor for each
pixel in an image.

• Mask Generation - Separates an object of interest from the rest of the image but giving
it a white color, while everything else is a black color. 14

The different AI and CV codebases are divided up into tasks, which can be seen in Figure 95.
The reason for using the tasks concept is that its a well established term within the Hugging
Face documentation, and extending it to mean any AI or CV related task makes sense
from an application organization perspective [61].

Figure 95: AI tasks directory structure

14Testing indicated that using a custom developed Computer Vision algorithm for mask generation gave
quicker and more accurate results than using an AI model. This due to the process of identifying lettuce being
highly specialized, and not general purpose which most AI models are optimized for.

156

11. SOFTWARE

11.8 Code quality and maintainability JCDH | SME

This subsection outlines different approaches we use for writing high quality and maintainable
code.

11.8.1 Type hinting JCDH | SME

Python is a dynamically typed language which means that variables does not require you to
define variable types, this stands in contrast to languages like C++ which do enforce types
(statically typed languages). Statically typed languages offers many benefits like improved
code readability and reduction in bugs related to wrong assumptions about variable types
(e.g. passing a string such as "2" instead of the integer 2, which is a common mistake in
programming). We make use of both Python and C++ in our codebase, and altough Python
is not a statically typed language it supports "type hinting" (meaning labeling a variable as a
specific type) which we make extensive use of.

def auth(username : str , password : str) -> bool:
...

Figure 96: Python type hinting example

As seen in Figure 96 the “auth” function defines that it requires two arguments (username,
password) of type str (string), and returns a bool.

11.8.2 Unit testing JCDH | SME

We need a way to confirm that our system works as expected after implementing new features
in our codebase. Therefore unit testing is certainly one of the key methods to measure system
stability by. Unit testing is the practice of testing small units of code (e.g. functions), and
asserting that these units of code actually return the expected values.

11.8.3 Benchmarking class JCDH | SME

In order to deduce the performance of an arbitrary block of code, benchmarking must be done.

157

11. SOFTWARE

This was achieved by using a custom developed class which allows you to measure the time it
takes to execute a piece of code and export the data as a diagram. Please refer to Appendix
G.G for details on using this script.

11.8.4 Environment variables JCDH | SME

Environment variables are used to store variables which should not be in the source code, and
which are only loaded at runtime. Examples are passwords and access tokens. A file called
“.env” is used to achieve this for the Leafy Automation Central, and a file called “secrets.h” in
Leafy Automation Core, which is separated from the commited codebase by using a “.gitignore”
file.

158

12. DESIGN REVIEW

12 Design Review

A formal design review was conducted with both our internal and external supervisors to
present the current status of our robotic arm project and receive valuable feedback for the
remaining project period. This review served as a checkpoint for assessing progress across all
departmentsmechanical, electrical, and softwareand to identify critical tasks for completion.

Mechanical Department

The mechanical team presented the fabricated components and demonstrated their functionality
with attached and programmed motors. A prototype of the gripper was showcased, successfully
demonstrating its gripping force. However, the rotational torque could not be tested during the
review due to a loose connection between the stepper motor and the gripper body. Additionally,
we presented printed components for the joints and arms, as well as a prototype of the base
that successfully demonstrated rotational motion.
Software Department

The software team provided an overview of the system architecture, including the Arduino mi-
crocontrollers, AI and the central control unit based on a Raspberry Pi. The feedback regarding
our approach to system architecture was positive. We received valuable advice concerning mo-
tion planning and were encouraged to explore integration with ROS2 for improved modularity
and scalability. Another point of discussion was the importance of demonstrating some level of
motion in the final prototype, to visually showcase the robotic arm’s capabilities. Furthermore,
the camera system was reviewed, including considerations for optimal placement, the number of
cameras (single vs. dual), and appropriate angles for maximizing visual coverage and accuracy
during plant recognition and harvesting.

Electrical Department

The electrical team was tasked with connecting all electrical components while ensuring effi-
cient and safe cable management. Proper cable routing and space claim are critical to prevent
interference between moving parts and electrical lines. One essential improvement highlighted
during the review was the need to integrate limit switches for the stepper motors responsible for
rotational movement. Without these, the system risks mechanical failure due to over-rotation.
Additionally, if time permits, it was advised that we implement safety mechanisms to handle
potential failuressuch as broken limit switches or misaligned componentsto protect both the
hardware and users.

159

12. DESIGN REVIEW

Summary and Reflection

The feedback from our supervisors was both insightful and constructive. One key takeaway is
the importance of time management in the final project phase. With limited time remaining, we
must focus on completing the most critical features. Any components, functions, or improve-
ments that cannot be implemented within this timeframe will be documented in a dedicated
chapter titled Future Work ??. This ensures continuity and provides a clear foundation for
Hydroplant Technologies AS to continue development if desired. It is important to emphasize
that this project is a proof-of-concept. While functional components have been developed, and
preliminary integrations have been made, the current system is not yet suitable for commercial
or industrial use. Further refinement, testing, and validation will be required to achieve full
operational readiness.

160

13. PROTOTYPE

13 Prototype

We will look at the latest iterations of parts to be chosen as the prototype to be built. The
robot arm parts are continuously developed to meet the requirements to move effectively in the
designated area. We will also introduce the process of 3D-printing, since almost all parts are
printed.

13.1 3D printing |

We will shortly describe how 3D-print is used in the industry. Also what materials we used
and the techniques we used to improve and reinforce prints.
Group member DAB has his own printer at home that we can use, and we can also request
parts printed by teacher Richard at USN Kongsberg.

13.1.1 Rapid prototyping DAB | SME

Rapid Prototyping is widely incorporated in many different project models because it is an
iterative process. It also helps to reduce time used in development, increases the end prod-
ucts quality, makes it easier to visualize concepts, has low cost and fast production time of
prototypes.

13.1.2 Materials used DAB | SME

PLA–Polylactic acid
PETG–Polyethylene terephthalate glycol
TPU–Thermoplastic polyurethane
The most commonly available plastics for 3D-printing is PLA and PETG. PLA has more tensile
strength but is more brittle, and more sensitive to moisture.
PETG is not as durable as PLA. It is a lot more flexible, has higher UV resistance and is more
resistant to heat and chemicals.
TPU is a flexible filament which is hard to print because it can slip in the extruder gears. Low
speed and high temp printing is required.

13.1.3 Printing DAB | SME

This section will discuss a bit about general printing and some things you need to think about.

161

13. PROTOTYPE

There are plenty of articles and videos online going in full detail for each topic.

Bed Adhesion

It is critical to have good bed adhesion so that the parts that are printed does not loosen from
the print bed wile printing, or the print lifting in some areas which will lead to warping or
worst case the extruder hits the print and knocks it off while printing.

To improve adhesion, you can use tape, glue sticks and hair spray. It is most common to use
hair spray, since it has good effect. You can also upgrade the printer bed by applying steel
PEI sheet. PEI is a Polyetherimide, which is a a thermoplastic coating with good adhesion
properties that requires little to no surface prep for many different types of filament. Some
of the PEI sheets come with two sides, one smooth and one textured surface, for better grip.
Another benefit is that it is made out of steel, which makes it easier to remove parts from the
steel plate since it loosens more effortlessly.

Print temperature, print speed and cooling

These three thing are related to each other. Printing temperature is critical to attain good flow
of material at the speed range you want to print, without overheating the filament and having
correct fan speed to cool the layer at a correct speed to achieve good adhesion of the layers and
minimal stringing of material.

Part print orientation/layer direction

Knowing which direction to print the parts, is also critical, especially if it is bearing some kind
of load in a specific direction. Since you can adjust the part orientation to achieve desirable
layer direction to bear load, instead of splitting the layers as easily.

Infill and wall line count

Infill describes how much the inside of the printed part is filled in (%) and what type of structure
the infill has. The infill at full, alternates layers 90°line pattern.

It is also possible to choose the defined amount of wall lines you want, this is calculated auto-
matically, but sometimes it is better to have thicker walls for strength overall, or if you want
to have heat inserts or drive screws directly.

Layer height

162

13. PROTOTYPE

With a finer layer height, you can have a more detailed part, but it will not be as strong as
thick layer lines since you reduce number of layers required. If you have a large nozzle with a
high layer height, it will produce stronger parts but will not be visually appealing.

13.1.4 Printing arm part DAB | SME

We designed the parts in Solid Works in the material it is supposed to be in the industrial
context, so no adjustments were made just for a 3D-printed version. The only change was that
we used PETG since it is more flexible and it increases the layer lines so that the screws have
good amount of space to screw in and form treads nicely in the plastic.

We had some problems with the print. It split up in the layer lines because of the force from
screws being tightened, and the screw was tapping its own threads. Unfortunately, we could
not change the direction of layer lines since the load acting on the arm would not allow me to
print it.

163

13. PROTOTYPE

13.2 The base prototype BMR |

This version was designed mainly for additive manufacturing (3D-print) for the prototype of
the robot arm. A section view of the assembly can be seen in fig. 97, the green and blue hues
are part of the rotating part of the base attached to the arm, while the pink and orange hues
are stationary and secured to the shaft and the table. An exploded view showing the assembly
can be seen in fig. 98.

Figure 97: Section view of base assembly (CAD bearings from [5] and CAD motor from [3])

164

13. PROTOTYPE

Figure 98: Exploded view of base assembly (CAD bearings from [5])

The inner shaft is reinforced with 6 x Ø2.5 mm steel rods to counteract the weakness of the
layer lines in the 3D print (as discussed in section 13). The outer housing polymer parts are
sandwiched between two disks of MDF that are laser cut for better tolerance in the interface

165

13. PROTOTYPE

to the arm, and also provides a more even load distribution. A hole going through the outer
housing from the limit switches to the top allows for the wires to connect to the control units
at top. All parts can be seen in fig. 99, and assembled in fig. 100.

The bearings used are two deep groove ball bearings (SKF 6006-2RS1), that can take both
radial and axial loads. These are supported between the shaft and outer housing.

Figure 99: 3D printed parts for the base before assembly

Figure 100: The base prototype assembly

166

13. PROTOTYPE

13.3 The joints/arm DAB | SME

In this section we will look at the printed iterations and discuss problems discovered or tweaks
needed.

13.3.1 Direct drive joints DAB | SME

We printed several variations/iteration to check how it looks physically and to check fitment.
This method of printing and testing, or visual check is called rapid prototyping which is
widely used and implemented in various production models across the world. More about
rapid prototyping/3D-printing you can find at the beginning of this section. 13.

(a) iterations (b) latest test fit

Figure 101: direct drive Joint prototypes

167

13. PROTOTYPE

13.3.2 Belt drive DAB | SME

Figure 102: Robot arm V0.1B

We chose to go with a belt driven version for the ability to adjust the gear ratio after gear
boxes of the motors (See section 10 for more information about motors). This will allow us to
fine tune the torque to our requirements. Another benefit is that we offset the motors closer to
the base, which in turn helps with weight management of the robot arm.

The biggest motor in joint one is offset off centre to work as a counter balance weight. NEMA
23 motor gross weight is 1.67kg which works well for us, since the arm itself without motors
is around 950 grams with parts in aluminium and not 3D-print. With motors included it is
around 2251 grams.

The robot arm meets our requirement for angle of rotation, and flexibility of the design. This
implies that the design can be easily adjusted for future modifications or adaptation for other
task because of multi assembly design.

Design can bee realistically developed with the available resources, and budget supplied by our
employer, but because of our time constraint, we can only manage to 3D-print a prototype.

168

13. PROTOTYPE

The durability should be adequate by looking in what working conditions the robot arm is
in. Aluminium does not rust like steel, this is important since the robot is placed in 23℃high
humidity environment.

Aluminium has a good protective oxide layer, and is used widely across the world as food safe
material in food production and more. You can also get antibacterial anodizing coating which
is comprised of quaternary ammonium compounds, used in high contact areas. By looking on
research papers, it kills 99.9% in 5 min [62].

Compared to AR4-MK2 kit [63]
The total reach of our arm is 60cm but working range is 50cm. Payload 850-1kg, do not have
weight requirements, but try to get as low as possible.
The DIY kit has a total reach of 62.9cm. Payload 1.9kg, total weight 12.25Kg

Quick moment calculation

We did some rough hand calculations to check if we exceed the holding torque of the motors
after gearing. Since our arm has to have a payload of 1kg, and also consider the gripper to
have a maximum load of 1kg, we need to ensure that we have no problems down the road.
Joint one has a small margin of holding torque, joint 2 is with a wide margin and joint 1 is
overkill we have more than we need.

Price
Price per meter for aluminum profile is 110kr in zeptobit store [27] where our employer buys it.
Aluminium profile length used in our prototype is 190mm link 1 double row, but link 2 length
is 120mm single row.
Total length of alu profile needed is 500mm. 110kr/1000mm=0.11 price per mm. so total price
for aluminium profile for robot is 500*0.11=55kr.

Also looking up the cost of CNC machining for joints and shafts in JLCCNC if we chose to
order. The total price with shipping is 184.23 without 25%mva, With mva 230.29.

169

13. PROTOTYPE

13.4 Gripper development and Testing SME | JCDH

The first prototype design focused on a jaw-style gripper, designed to facilitate initial testing,
data collection, and integration with electronic components. This prototype was not intended
to serve as the final end-effector for the robotic arm but rather as a preliminary functional
model to streamline early-stage testing and optimize the development process. Given its pur-
pose, the jaw gripper will be kept relatively simple, ensuring that it remains an efficient and
cost-effective starting point. Additionally, a key design consideration will be the modularity
and replaceability of the gripper, which must be accounted for from the early development
stages. Furthermore, whether to incorporate soft touch technology in this prototype or delay
its implementation to a later iteration that more closely aligns with the final design must be
evaluated.

For the subsequent prototypes, the focus will shift toward developing a more advanced grip-
per that better replicates the flexibility and functionality of a human hand. These iterations
will incorporate finger-based gripping mechanisms along with soft touch technology, such as
the Fin-Ray gripper principle, to enhance adaptability when handling objects with complex
geometries. The incorporation of soft touch elements is essential to prevent damage to deli-
cate produce, such as salad greens, during pick-and-place operations. By refining the design
through an iterative prototyping process, the final gripper will achieve an optimal balance of
flexibility, precision, and delicacy, meeting the specific requirements of agricultural automation.

13.4.1 Gripper V1 SME | JCDH

This initial prototype was developed with the objective of creating a simple, quick-to-assemble
design that could be efficiently modelled in SolidWorks, and easily 3D printed and assembled.
It serves primarily as a test model to validate the fundamental design and assembly process
and does not represent the final product. The design process began with the gripper’s fingers,
which are shaped somewhat like spatulas. The prototype features two fingers designed to work
in unison to gently lift a salad plant and place it into a designated area.

170

13. PROTOTYPE

(a) Finger gripper (b) Finger grip-
per front

Figure 103: Gripper fingers

To integrate the gripper with the NEMA 11 stepper motor (See section 10 for more information
about motors) and the rest of the robotic arm, a structural base was designed. An indent was
added on the underside to securely place the servo motor, along with holes for fastening the
screws. A central hole was also incorporated to allow the motor shaft to connect to the internal
gearing mechanism responsible for actuating the fingers.

(a) Gripper body (b) Gripper body, underneath

Figure 104: Gripper body

Subsequent modifications included the addition of screw holes to mount the gear components
and structural supports. The body was further extruded to accommodate the stepper motor,
and a through-hole was created for the Z-screw, enabling rotational movement of the gripper.
This extruded section also partially encloses the stepper motor to protect it from dust and

171

13. PROTOTYPE

mechanical interference.

Following this, the gearing components were designed. Two nearly identical gear holders were
created, differing only in that one interfaces directly with the servo motor and includes mount-
ing holes for attachment to the motor fan. These gear holders are mechanically linked to the
gripper fingers.

(a) Gear part 1, connec-
tion to servo motor

(b) Gear part 2

Figure 105: Gearing components

To enhance structural integrity and minimize the risk of mechanical failure, two additional
support components were developed to link the gripper fingers to the main body. Due to the
unavailability of an accurate NEMA 11 stepper motor model in the CAD library, a simplified
version was modelled based on real-world measurements. This enabled accurate dimensional
validation and ensured a proper fit during the assembly process. All components were sub-
sequently assembled in a SolidWorks® (SolidWorks) environment. As emphasized, this is an
early-stage prototype intended for testing and design validation, not the finalized product.

172

13. PROTOTYPE

(a) NEMA 11 (b) Support compo-
nents

Figure 106: Support and stepper motor

Throughout development, several iterations were made to the body design. Ultimately, the
enclosing section around the stepper motor was removed to reduce material usage and decrease
the overall weight of the gripper. Since the motor is securely fastened using a Z-screw, the
enclosure was deemed unnecessary at this stage. However, a secondary fastener may be added
near the motor tip in future versions to provide additional stability. This decision will be made
following further structural evaluation, including Finite Element Method (FEM)

(a) Gripper assembly front (b) Gripper assembly back

Figure 107: Gripper assembly

The final version of Prototype 1 appears as shown. Upon completion of the design, the Solid-
Works models were exported as STL (STL) files and sent to a 3D printer. Printing began with
the support structures and the components interfacing with the stepper motor, followed by the
gripper body and the two fingers. The first print attempt of the body and fingers failed due to
poor bed adhesion, necessitating a restart. The second attempt was successful.

173

13. PROTOTYPE

After printing, all components were assembled using screws. The servo motor (See section 10 for
more information about motors) was then connected to the gear-driven component responsible
for actuating the gripper. However, the motors side sliders interfered with full insertion into the
designated cavity, requiring light sanding with sandpaper to ensure a snug fit. Once all parts
were in place, the screws were tightened, and the prototype was prepared for initial testing.

Figure 108: Gripper prototype 1

13.4.2 V1 - Assembly and Initial Testing SME | JCDH

Upon completion of the 3D printing process for all components of Prototype 1, the assembly
phase was initiated. The parts were mechanically fastened using appropriate screws, and the
assembly tolerances were sufficient to allow all components to fit together as intended. Follow-
ing mechanical integration, the servo motor was mounted and coupled with the internal gear
mechanism to assess the functionality of the gripper.

Once all electrical systems were connected and verified, a control script was uploaded to the
microcontroller to test the actuation of the gripping mechanism. The servo-driven gripper
successfully executed basic open-and-close motions, confirming that the mechanism was func-
tionally operational in its initial configuration.

During this test phase, one observation was that the gear engagement could have been opti-
mized. Specifically, the mating gears did not achieve full rotational contactlimiting the overall

174

13. PROTOTYPE

range of motion slightly. Although this did not hinder basic gripping functionality, the lim-
ited contact area reduced potential grip span and torque efficiency. This shortcoming was
documented and directly informed improvements implemented in Prototype 2, where the gear
profiles and tolerances were refined for better performance.

In terms of rotational capability, the stepper motor was mounted through a central bore in the
gripper body and secured using a Ø4 mm Z-screw. While the Z-screw initially fit, the tolerances
between the printed hole and the screw shaft were too close, resulting in material wear during
repeated threading. This caused the hole to widen over time, and during the design review
demonstration, the Z-screw failed to maintain its positionrendering the rotation functionality
inoperable during that phase. As a result, while gripping force was demonstrably successful,
the rotational movement of the gripper could not be showcased.

This issue highlighted the need for reinforced mounting solutions for the stepper motor. In
the subsequent iteration, additional structural support and fastening mechanisms were incor-
porated to ensure the motor remained securely attached during repeated use and under applied
torque.

These lessons from Prototype 1 provided critical feedback for mechanical robustness, modular-
ity, and motion fidelity, which were all addressed in the next design iteration.

13.4.3 Gripper V2 SME | JCDH

Building upon the insights gained from the first prototype, the second gripper iteration was
designed to improve both functionality and structural integrity while maintaining a modular
and cost-effective approach. Since the final prototype will not undergo industrial deployment
at this stage, and given the limited project budget, it was decided to not use machined compo-
nents in favour of 3D-printed parts using PLA which was used for the structural components
due to its rigidity and ease of printing, while TPU which was chosen for the Fin-Ray fingers
thanks to its elasticity.

Although machined steel parts would undoubtedly offer greater mechanical robustness, par-
ticularly relevant for agricultural applications, these will be discussed in section 15.1. The
exclusive use of 3D-printed components enables rapid iteration and low-cost manufacturing.
Moreover, 3D printing is easily accessible and aligns well with the proof-of-concept nature of
the project. Given the initial success of Prototype 1, Prototype 2 was designed as an improved

175

13. PROTOTYPE

and functionally enhanced version with a focus on soft-touch handling.

Fin-Ray Concept for Soft Gripping

Figure 109: Fin-Ray gripper

To meet the requirements for handling delicate agricultural produce, such as leafy greens, the
Fin-Ray gripping principle was selected for this prototype. This bio-inspired design allows the
gripper fingers to adapt passively to the shape of objects, ensuring a gentle grip without the
need for integrated sensors. Increased force causes the Fin-Ray fingers to wrap more completely
around the object, thereby minimizing the risk of damage to sensitive plant matter.

Design and Material Considerations

As with the initial prototype, SolidWorks was used as the CAD platform for designing all
components. The development process began with the most critical elements: the Fin-Ray
fingers. These components were designed to be printed in TPU, allowing for the necessary
flexibility and deformation properties. The design was inspired by existing Fin-Ray concepts
found in literature and online resources, but was scaled and adapted to fit the dimensions of the
robotic arm. The finger geometry draws inspiration from human hand proportions to enhance
ergonomic compatibility.

The initial finger design featured an internal triangular structure with wall segments to facilitate
controlled deformation. To improve flexibility, the wall thickness was reduced near the edges.
Two M4 mounting holes were included at the base of each finger to secure them to a connecting
plate.

176

13. PROTOTYPE

(a) Finger, front (b) Finger, side

Figure 110: Fin-Ray fingers

Structural and Mechanical Integration

Following the development of the fingers, a solid intermediate mounting plate was designed to
connect the fingers to the main body. This plate includes cutouts to reduce weight and material
usage while maintaining mechanical strength. The plate is affixed to both the fingers and the
body using M4 screws.

Figure 111: Mounting plate

To secure the mounting plate to the gripper body, support brackets were developed. These sym-
metrical components extend from the front to the underside of the gripper, providing structural
rigidity and minimizing flex during operation. Like the plate, they are fastened using M4 hard-
ware.

177

13. PROTOTYPE

(a) Support bracket, front (b) Support bracket

Figure 112: Support brackets

Gripper Body and Motor Housing

The central body of the gripper serves as the interface for all mechanical and motor components.
On the left side of the body, a Ø9.3 mm hole was dimensioned to accommodate the shaft of
a servo motor responsible for actuating the fingers. This aperture was precisely sized to allow
the motor shaft to pass through and be secured from the front side. On the right, a Ø3 mm
hole was included for an auxiliary support shaft, which will be fixed using an M4 screw.

An indent was added on the underside of the gripper body to seat the servo motor, with Ø3.5
mm holes for M4 screws to secure it in place. Additional side holes allow for attachment of the
support brackets mentioned earlier.

To integrate the NEMA 11 stepper motor at the base of the gripper, a Ø6 mm hole was included.
The hole was shaped to match the motor shaft profile for improved fit and stability. Two Ø3
mm holes were also added from the top to allow screws to secure the shaft directly, providing
greater rigidity compared to Prototype 1, which relied solely on a Z-screw.

178

13. PROTOTYPE

(a) Gripper body (b) Gripper body, underside

Figure 113: Fin-Ray gripper body

Gear Mechanism

The gear components responsible for transferring torque from the servo motor to the gripper
fingers were subsequently developed. These gears feature teeth modeled using a freehand ap-
proach and will be tested for fit and performance. One gear interfaces directly with the servo
motor via one center hole of Ø4mm and two Ø1.5 mm holes that align with a fan mount. Due
to a 2 mm offset created by this mounting interface, a corresponding 2 mm extruded base was
added to the opposing gear to ensure collinearity. Both gear components are secured with M4
screws.

(a) Gearing, motor (b) Gearing part with-
out motor

(c) Gearing underside

Figure 114: Gearing components

Final Assembly and Validation

All components were assembled in SolidWorks to assess fit and functional alignment. This
assembly phase revealed the need for minor adjustments to part lengths and hole placements
to ensure proper alignment and fastening. Also, we needed to add two brackets on the sides of
the gripper body, as seen in Figure 115, to make sure the gripper will interface with the limit

179

13. PROTOTYPE

switches that is connected to the end effector. The final assembly emphasizes modularity, ease
of maintenance, and material efficiency.

Although the design closely resembles Prototype 1 in form, significant improvements were
made in structural robustness and finger actuation. The current design remains optimized for
3D printing, but could be further refined for metal machining as discussed in later sections
15.1.

Once the design was finalized, STL files were generated, and the 3D printing of individual
components began.

Figure 115: Fin-Ray gripper, exploded view

Figure 116: Final Fin-Ray assembly

13.4.4 V2 - Assembly and Initial Testing SME | JCDH

180

13. PROTOTYPE

Once the SolidWorks model of the second gripper prototype was completed, the components
were 3D printed and subsequently assembled using standard screws. The components fit to-
gether well, and the Fin-Ray-inspired gripper was ready for initial testing.

The gripper was mounted onto the end-effector using two Z-screws, which securely fastened it
to the shaft of the stepper motor. Functional tests were then conducted using various objects
to evaluate the grippers adaptability and performance. One important observation was that
the surface of the gripper fingers, printed in TPU, was very smooth. This caused the gripper
to slide on smooth objects, reducing its gripping effectiveness. This limitation is addressed
further in the Future Work section 15.1, where improvements such as textured or coated finger
surfaces are discussed.

Since the robotic system is primarily intended for harvesting lettuce, a practical test was con-
ducted using a Crispi lettuce head. The aim was to evaluate how well the Fin-Ray fingers
conform to the organic shape of the lettuce and whether it could be lifted securely. The gripper
performed successfully in this test, easily picking up the lettuce. During this experiment, dis-
placement measurements of the gripper fingers were recorded by a caliper (Figure 118) and later
used as input for a Finite Element Method analysis, visualizing deformation when gripping a
crispi salad. (see Figure 119).

Figure 117: Fin-Ray gripping test

181

13. PROTOTYPE

Figure 118: Displacement measurements from practical test

It is worth noting that the TPU material used for the fingers was not included in the default
SolidWorks materials library. Therefore, to conduct the FEM study, we relied on empirical data
obtained from the physical tests. For accurate stress and deformation analysis, especially in
industrial applications, precise material properties should be implemented in FEM simulations.
This is crucial to determine a reliable Factor of Safety (FOS), which cannot be fully trusted
without correct input data.

182

13. PROTOTYPE

Figure 119: Fin-Ray finger displacement FEM

In addition to the soft gripper analysis, a separate FEM study was carried out on the gear
components that actuate the gripper. Before initiating the simulation, hand calculations were
performed to determine the forces acting on the gear teeth 64. SolidWorks contact analysis
revealed that only two teeth are engaged at any given time. Although the gear consists of a total
of eight teeth, the load is shared by just two. The total tangential force was therefore distributed
evenly across these two engaged teeth. A detailed breakdown of the force calculations can be
found in Figure 64.

These calculated forces were then used as input in SolidWorks for the FEM study. The resulting
simulation (Figure 120) highlights the areas of maximum and minimum stress on the gear.
Given that the gears are 3D printed in PLA, the FOS (Factor Of Safety) is relatively low and
is not suitable for demanding industrial environments. For real-world implementation, these
components should ideally be manufactured using machined materials. This point is further
discussed in chapter 15.1.

183

13. PROTOTYPE

Figure 120: Stress Analysis gear components

Figure 121: Close up, maximum stress

184

13. PROTOTYPE

Figure 122: Safety Factor

Since PLA was also not available in the SolidWorks materials library by default, it was manually
added. The material properties were sourced online and entered into the software [64].

Conclusion of Initial Testing

The initial tests demonstrate that the second gripper prototype functions effectively as a proof
of concept. The Fin-Ray fingers adapt well to organic shapes and successfully pick and place
lettuce heads without causing damage. While some improvements are needed to enhance grip
stability and material accuracy in FEM simulations, the prototype serves as a solid foundation
for further development.

13.4.5 Physical model DAB |

Pictures of physical model

185

13. PROTOTYPE

(a) Robot Arm (b) Close up Gripper

Figure 123: Finished Physical Model

186

13. PROTOTYPE

13.5 Specifications robot arm prototype BMR |

The configuration space quantified (built on calculations from section 8.1.1).

Figure 124: Prototype specification

187

14. CONCLUSION

14 Conclusion

This Bachelor thesis, carried out in collaboration with Hydroplant Technologies AS, aimed
to develop a autonomous and versatile robotic system for harvesting leafy greens in farming
environments. As a proof-of-concept project, we focused on the design and integration of a
robotic arm capable of gentle harvesting and relocating produce such as lettuce. The system is
intended to play a vital role within Hydroplant‘s future goal of creating an automated pipeline
from seeds to packaged product, contributing to more sustainable and efficient food production.

Throughout the project, our multidisciplinary teams effort was applied across mechanical de-
sign, electronics and software systems. Several prototypes were developed and evaluated. Me-
chanically, a modular robotic arm and multiple gripper designs were implemented and iterated
by using assembly techniques and 3D-printed components to allow rapid prototyping and test-
ing. As far as electronics goes, custom PCBs were created to control motors and sensors. While
on the software side, the system was partially integrated with ROS2, forming the foundation for
future autonomous behaviour. Additionally, initial efforts were made in developing AI-based
object recognition and a database for logging plant interactions.

The final prototype demonstrates that the system is viable and can be developed further into a
innovative solution for the agricultural automation domain. However, significant work needs to
be done to transition the prototype into a fully deployable product. This includes redesigning
parts for machining, improving mechanical tolerances and component durability, enhancing
software architecture, and verifying system behaviour through comprehensive simulations and
field testing. A more detailed roadmap for these improvements is described in the 15.1 Chapter.

This project has not only served as a technical challenge, but also highlighted the potential
impact of robotics in future food systems. By reducing manual labour, increasing hygiene
and optimizing autonomous harvesters like the one prototyped in this project, could play a
central role in transforming the agricultural industry towards more sustainable and scalable
practices. The insights, designs, ans experience gained through this proof-of-concept form a
strong foundation for Hydroplant Technologies to further develop and refine the system into a
production ready solution.

188

15. REFLECTION

15 Reflection

Throughout the project period the group has had a steep learning curve, both when it comes
to the technical aspects of the project and the more administrative sides. Nobody in the group
had prior knowledge with robotics, so there was many new concepts and expressions to get
familiarized with.

Group collaboration

We had some initial ideas about how we wanted to structure the project work and the collab-
oration between the different engineering disciplines in our group. Despite different ways of
working, we managed to find a good way to collaborate and communicate.

We had some challenges working with a set project model (scrum), and ended up working
around a hybrid solution where we choose to adapt some of the elements that worked well
for the group, like daily stand up meetings. The expectations from the University, that each
student had his/her own work description, sometimes conflicted with the idea of collaborating
towards a main goal.

Time planning

The group got the project assignment 6 weeks into the bachelor period and had some startup
challenges. As a result of the delayment, many key planning and decision making meetings
occurred relatively late in the process, which introduced time management difficulties and
increased the pressure on both development and integration phases. We also faced some chal-
lenges with task planning and time estimations, mainly due to lack of experience around how
much time was needed for the specific tasks. Having a better overview and more milestones
could maybe have improved the work flow and integration process.

Group structure

At the onset of this thesis, we decided to arrange ourselves in a flat leadership structure believ-
ing that this would encourage creativity and a strong sense of shared ownership. As we now
near the end of this experience, we acknowledge that there are mixed feelings about this deci-
sion as it did not come without cost. Examples of this are more and longer meetings than we
might have needed. Lack of individual accountability also led to tasks being left unattended. It
is therefore believed by some members of our team that the flat leadership structure took a toll

189

15. REFLECTION

on our overall efficiency. Retrospectively, it is considered that splitting areas of responsibilities
into clearly defined roles with attached accountability could have been a better hybrid solution.

Hydroplant partnership

For the partnership with our employer Hydroplant Technologies, we have had a really good
communication and relationship with them.
The employer was very engaged in the progression of the project, very responsive, and always
tried to meet our requests.

15.1 Future work

This chapter will outline the recommendations for future development of our project, and the
robotic system. Covering mechanical design, electrical integration and data-related improve-
ments. While the current prototype demonstrates a proof-of-concept, additional development
is required to enhance the performance, durability and application range. We will go through
proposed directions that will guide this project from a proof-of-concept prototype, to a fully
operational and scalable solution for agricultural automation.

15.1.1 Future work - Base BR |

Future work for the base includes:

• adjusting the design for machining in the actual material (for example AISI 1035 stainless
steel).

• Test the parts and assembly with FEA.

• Choose suitable bearings and bearing arrangements.

• fine-tune the shaft and housing design to fit the chosen bearings.

To see some of the initiating thoughts around these topics, see appendix D

15.1.2 Future work - Joints DAB | SME

Creating hollow shafts for wire to pass through. This will eliminate wire bending and will only
twist the pairs of wires together which lessens the strain.

190

15. REFLECTION

Tensioner mechanism between CNC part and aluminium profile. It is quite crucial since it
will eliminate play between the parts which will lead to reduced tolerance stacking and in turn
increase accuracy of the robot overall.

Further FEA testing of parts. see appendix further work in appendix D

After these improvements, it would be nice to see and test actual CNC parts.

Casing for the arm is more for the aesthetic purposes, and also so that the belts and frame
parts are protected against gunk, dust and more depending on the environment it will be used
inn.

15.1.3 Future work - Gripper SME | JCDH

Transitioning from Prototyping to Production

Although the current gripper prototypes serve as effective proof-of-concept models, additional
work is necessary to transition the system into a production-ready state suitable for real-world
agricultural automation. The following areas have been identified for future improvement:

• Machined Components for Strength

While 3D printed PLA and TPU parts are sufficient for testing and demonstration, they are
not ideal for the strict demands of agricultural environments. Components such as the gripper
body, gear assemblies, and support structures would benefit from being machined in aluminum
or stainless steel to enhance durability, precision, and resistance to environmental factors like
humidity, temperature, and mechanical shock.

• Improved Gear Mechanisms

The current gearing system was created manually and may not provide optimal efficiency or
alignment. Future iterations should include precision-designed gear profiles and potentially
integrate bearings or bushings to reduce friction and wear. Simulation tools like the Finite
Element Method FEM and motion studies in SolidWorks can also be used to improve the
testing and verification of stress distribution and torque transmission.

191

15. REFLECTION

• Sensor Integration

Although the Fin-Ray fingers provide passive compliance, future versions could integrate tactile
or force sensors to enable active feedback and adaptive control. This would enhance the robots
ability to handle a wider variety of crops with varying fragility and shapes, improving reliability
in dynamic environments.

• Surface texture enhancement for Fin-Ray fingers

During testing of the Fin-Ray fingers, it was observed that the TPU print has a very smooth
surface finish, which limits the gripping ability on smooth objects. While the current surface
works for soft and deformable objects like lettuce, it lacks sufficient friction for handling a wider
range of agricultural produce. Future iterations should explore the integration of textured
coatings, surface patterns, or friction-enhancing materials such as silicone overlays or rubber
based inserts. These modifications would broaden the gripperťs applicability beyond lettuce
and improve overall grip reliability.

• Integration of bearing support

In the current gripper design, the gear component that is not directly connected to the servo
motor is secured only with a screw, which may be sufficient for short-term prototyping and
testing, but lacks the mechanical stability required for long-term use. To reduce wear, friction
and axial play during rotation, it is recommended that future iterations incorporate a bearing
system for this passive gear. Proper bearing support would significantly improve durability, en-
sure smoother operations under load, and enhance the overall reliability of the gear mechanism
in further gripper development.

• Calculations and simulations

Future work should also include detailed calculations of gripping force and torque requirements
to ensure the gripper can reliably handle various payloads. These calculations should be per-
formed both analytically and by using Finite Element Method (FEM) simulations to verify
stress distribution and structural integrity under different loading conditions.

Particular attention should be given to the potential for bending in the stepper motor shaft,
as this could impact precision and long-term durability. Incorporating these analyses will
contribute to the optimization of component sizing, material selection, and overall gripper
performance.

192

15. REFLECTION

• Environmental Testing

The prototypes have yet to undergo field testing under realistic agricultural conditions. Evalu-
ating performance in outdoor settingsexposed to dust, moisture, and temperature variationwill
be essential to validate long-term stability and identify any points of mechanical or electronic
failure.

15.1.4 Future work - Electronics VMN |

• PCB redesign

– EMC

– Dual package MOSFETs for smaller PCB

– Smaller component packages (resistors, capacitors)

• PCB Assembly

• PCB Testing

• Add option for UART or SPI

• Tune the driver for each motor

15.1.5 Future work - Software JCDH | SME

• Complete AI object detection model with custom dataset.

• Complete Database work for logging plant identification logs.

• Connect up HMI to robotics.

• Transition to a Real Time Operating System.

15.1.6 Future work - Architecture and robotics EG |

Upgrading the ROS2 Architecture. Once initial proof-of-concept testing is complete, the ar-
chitecture ought to be upgraded with ROS2 services and actions. We suggest the following
adaptations:

193

15. REFLECTION

Synchronous Task Negotiation via Service We propose that instead of publishing the next
task on a topic, that a service is called with a custom leafy_msgs/TaskGoal. This way, the
Task Planner sends out a request and waits until the service provider confirms it received and
accepted the goal. This handshake prevents loss or out-of-order tasks and lets reject invalid
requests before starting execution.

Motion via Action We propose that the Motion Planner node is set up as an action server.
This would replace the one-way /planned_trajectory topic as the client instead sends a trajec-
tory_msgs/JointTrajectory goal and receive periodic progress feedback, as well as a final result
indicating success or failure. This upgrade would also support action cancellation in response
to events such as obstacle detection. This upgrade would improve safety and flexibility for the
system.

Benefits Introducing services for important exchanges and actions for long-running tasks aligns
well with ROS2 design guidelines. It introduces some added setup (service and action servers/-
clients) but pays dividends in robustness, explicit error handling, and future extensibility (e.g.,
dynamic replanning or conditional preemption).

These upgrades would naturally call for some adaptations on the Arduino Core. Our initial
thoughts suggest the following:

New MQTT Topics: Add the following subscriptions to initMQTT():

• /leafy_a/execute_trajectory/goal

• /leafy_a/execute_trajectory/cancel alongside existing command topics.

Cancel Handling: handleTrajectoryGoal() or handleTrajectoryCancel() should be intro-
duced to the Communication Manager message dispatching.

Stop motors stopAllMotors() should be introduced to the Motor Driver module.

Feedback updateMotors() needs to be adapted to provide /leafy_a/execute_trajectory/feedback
via (publishStatus()).

Software libraries to consider:

MoveIt 2 This library is the used as an industry-standard for motion planning, kinematics,
collision

194

REFERENCES

References

[1] “Hivemind — itfag.usn.no,” https://itfag.usn.no/grupper/D01-23/, [Accessed 29-03-2025].

[2] V. Kumar, “Robot geometry and kinematics,” accessed: 2024-05-08. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d875497e3d8e2f31311
2d6d20426ba9986b90dc9

[3] Stepperonline, “Nema 17 stepper motor,” accessed: 2024-05-02. [Online]. Available:
https://www.omc-stepperonline.com/nema-17-stepper-motor-l-39mm-gear-ratio-10-1-hig
h-precision-planetary-gearbox-17hs15-1684s-hg10

[4] H. D. Young, “Sears and zemansky’s university physics.” Place of publication not identified,
2016.

[5] SKF, “6006-2rs1,” accessed: 2024-05-02. [Online]. Available: https://www.skf.com/group/
products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1

[6] “ISO/IEC/IEEE 29148:2018 — iso.org,” https://www.iso.org/standard/72089.html,
[Accessed 18-05-2025].

[7] A. Sols, Systems engineering: theory and practice. Madrid Universidad Pontificia Comillas
2014, 2014, oCLC: 892528234.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, fourth edition. ed.,
ser. The SEI series in software engineering. Boston: Addison-Wesley, 2022.

[9] S. Mbugua, J. Korongo, and S. Mbuguah, “On software modular architecture: Concepts,
metrics and trends,” International Journal of Computer & Organization Trends, vol. 10,
pp. 3–10, 03 2022.

[10] Raspberry Pi Ltd, “Raspberry pi 5 raspberry pi,” 2023, accessed: 2024-05-02. [Online].
Available: https://www.raspberrypi.com/products/raspberry-pi-5/

[11] Open Source Robotics Foundation, “Installing ros 2 on raspberry pi ros 2
documentation: Jazzy,” 2024, accessed: 2024-05-02. [Online]. Available: https:
//docs.ros.org/en/jazzy/How-To-Guides/Installing-on-Raspberry-Pi.html

[12] Arduino AG, “Arduino uno r4 wifi,” 2023, accessed: 2024-05-02. [Online]. Available:
https://store.arduino.cc/products/uno-r4-wifi

[13] S. T. Mbugua, J. Korongo, and S. Mbuguah, “On software modular architecture:
Concepts, metrics and trends,” International Journal of Computer & Organization Trends,
vol. 12, no. 1, pp. 3–10, 2022. [Online]. Available: https://www.researchgate.net/publicati
on/360726289_On_Software_Modular_Architecture_Concepts_Metrics_and_Trends

195

https://itfag.usn.no/grupper/D01-23/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d875497e3d8e2f313112d6d20426ba9986b90dc9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d875497e3d8e2f313112d6d20426ba9986b90dc9
https://www.omc-stepperonline.com/nema-17-stepper-motor-l-39mm-gear-ratio-10-1-high-precision-planetary-gearbox-17hs15-1684s-hg10
https://www.omc-stepperonline.com/nema-17-stepper-motor-l-39mm-gear-ratio-10-1-high-precision-planetary-gearbox-17hs15-1684s-hg10
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://www.iso.org/standard/72089.html
https://www.raspberrypi.com/products/raspberry-pi-5/
https://docs.ros.org/en/jazzy/How-To-Guides/Installing-on-Raspberry-Pi.html
https://docs.ros.org/en/jazzy/How-To-Guides/Installing-on-Raspberry-Pi.html
https://store.arduino.cc/products/uno-r4-wifi
https://www.researchgate.net/publication/360726289_On_Software_Modular_Architecture_Concepts_Metrics_and_Trends
https://www.researchgate.net/publication/360726289_On_Software_Modular_Architecture_Concepts_Metrics_and_Trends

REFERENCES

[14] A. Bonci, F. Gaudeni, M. C. Giannini, and S. Longhi, “Robot operating system 2 (ros2)-
based frameworks for increasing robot autonomy: A survey,” Applied sciences, vol. 13,
no. 23, p. 12796, 2023.

[15] Open Robotics. (2025) ROS 2 documentation (jazzy). Accessed: 2025-05-14. [Online].
Available: https://docs.ros.org/en/jazzy/

[16] The Apache Software Foundation. (2004) Apache license, version 2.0. Accessed:
2025-05-14. [Online]. Available: https://www.apache.org/licenses/LICENSE-2.0.html

[17] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating
system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, p.
eabm6074, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotic
s.abm6074

[18] Open Robotics. (2020) Ros noetic api: sensor_msgs/Image message. Accessed:
2025-05-15. [Online]. Available: https://docs.ros.org/en/noetic/api/sensor_msgs/html/ms
g/Image.html

[19] ——. (2025) Ros index. Accessed: 2025-05-15. [Online]. Available: https://index.ros.org/
?search_packages=true

[20] Udemy. (2025) ROS2 for Beginners [online course]. Accessed: 2025-05-15. [Online].
Available: https://www.udemy.com/course/ros2-for-beginners/learn/lecture/20260476#
overview

[21] Open Robotics. (2018) Ros melodic api: std_srvs/SetBool service. Accessed: 2025-05-15.
[Online]. Available: https://docs.ros.org/en/melodic/api/std_srvs/html/srv/SetBool.html

[22] ——. (2025) Understanding ros 2 services. Accessed: 2025-05-15. [Online]. Available:
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Servi
ces/Understanding-ROS2-Services.html

[23] ——. (2020) Ros noetic api: control_msgs/FollowJointTrajectory action. Accessed:
2025-05-15. [Online]. Available: https://docs.ros.org/en/noetic/api/control_msgs/html/a
ction/FollowJointTrajectory.html

[24] ——. (2020) Understanding ros 2 actions. Accessed: 2025-05-15. [Online]. Available:
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actio
ns/Understanding-ROS2-Actions.html

[25] R. G. Budynas, “Shigley’s mechanical engineering design,” USA, 2021.

[26] “Online CNC Machining Service - JLCCNC.” [Online]. Available: https://jlccnc.com/

[27] “ZeptoBit AS.” [Online]. Available: https://www.zeptobit.com/index.php?product=10

196

https://docs.ros.org/en/jazzy/
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html
https://index.ros.org/?search_packages=true
https://index.ros.org/?search_packages=true
https://www.udemy.com/course/ros2-for-beginners/learn/lecture/20260476#overview
https://www.udemy.com/course/ros2-for-beginners/learn/lecture/20260476#overview
https://docs.ros.org/en/melodic/api/std_srvs/html/srv/SetBool.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/noetic/api/control_msgs/html/action/FollowJointTrajectory.html
https://docs.ros.org/en/noetic/api/control_msgs/html/action/FollowJointTrajectory.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://jlccnc.com/
https://www.zeptobit.com/index.php?product=10

REFERENCES

[28] [Online]. Available: https://www.maedler.de/

[29] Core Electronics. (2025) Df metal geared 15kg standard servo 270ř (dss-m15s). Accessed:
2025-05-18. [Online]. Available: https://core-electronics.com.au/df-metal-geared-15kg-sta
ndard-servo-270-dss-m15s.html

[30] TMC5160A Stepper Motor Driver, Analog Devices, 2023, available at https://www.anal
og.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18
.pdf, Revision V1.18.

[31] TMC5160-BOB Evaluation board, Analog Devices, 2021, available at https://www.analog
.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.
10.pdf, Revision V1.10.

[32] ardalis, “Overview of ASP.NET Core MVC — learn.microsoft.com,” https://learn.micros
oft.com/nb-no/aspnet/core/mvc/overview, [Accessed 14-05-2025].

[33] “GitHub - RobotWebTools/roslibjs: The Standard ROS JavaScript Library —
github.com,” https://github.com/RobotWebTools/roslibjs, [Accessed 15-05-2025].

[34] “Werkzeug - Werkzeug Documentation (3.1.x) — werkzeug.palletsprojects.com,” https:
//werkzeug.palletsprojects.com/en/stable/, [Accessed 06-04-2025].

[35] “SQLite Home Page — sqlite.org,” https://www.sqlite.org, [Accessed 30-03-2025].

[36] “Datatypes In SQLite — sqlite.org,” https://www.sqlite.org/datatype3.html, [Accessed
30-03-2025].

[37] “SQLite Autoincrement — sqlite.org,” https://www.sqlite.org/autoinc.html, [Accessed
30-03-2025].

[38] “CREATE TABLE — sqlite.org,” https://www.sqlite.org/lang_createtable.html, [Ac-
cessed 30-03-2025].

[39] M. McCauley, “AccelStepper: Flexible stepper motor control library for arduino,” https:
//www.airspayce.com/mikem/arduino/AccelStepper/, 2025, accessed: 2025-05-17.

[40] hydroplantno, “PubSubClient: Arduino mqtt client library (fork),” https://github.com/h
ydroplantno/pubsubclient, 2025, accessed: 2025-05-17.

[41] A. SA, “WiFiS3: Arduino wi-fi library for the uno r4 wifi,” https://github.com/arduino
/ArduinoCore-renesas/tree/main/libraries/WiFiS3, 2025, accessed: 2025-05-17.

[42] ——, “Servo: Arduino library for hobby servo control,” https://docs.arduino.cc/libraries/
servo/, 2025, accessed: 2025-05-17.

197

https://www.maedler.de/
https://core-electronics.com.au/df-metal-geared-15kg-standard-servo-270-dss-m15s.html
https://core-electronics.com.au/df-metal-geared-15kg-standard-servo-270-dss-m15s.html
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.10.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.10.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.10.pdf
https://learn.microsoft.com/nb-no/aspnet/core/mvc/overview
https://learn.microsoft.com/nb-no/aspnet/core/mvc/overview
https://github.com/RobotWebTools/roslibjs
https://werkzeug.palletsprojects.com/en/stable/
https://werkzeug.palletsprojects.com/en/stable/
https://www.sqlite.org
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/autoinc.html
https://www.sqlite.org/lang_createtable.html
https://www.airspayce.com/mikem/arduino/AccelStepper/
https://www.airspayce.com/mikem/arduino/AccelStepper/
https://github.com/hydroplantno/pubsubclient
https://github.com/hydroplantno/pubsubclient
https://github.com/arduino/ArduinoCore-renesas/tree/main/libraries/WiFiS3
https://github.com/arduino/ArduinoCore-renesas/tree/main/libraries/WiFiS3
https://docs.arduino.cc/libraries/servo/
https://docs.arduino.cc/libraries/servo/

REFERENCES

[43] Y. H. Hee, M. K. Ishak, M. S. M. Asaari, and M. T. A. Seman, “Embedded
operating system and industrial applications: a review,” Bulletin of Electrical Engineering
and Informatics, vol. 10, no. 3, pp. 1687–1700, June 2021. [Online]. Available:
https://beei.org/index.php/EEI/article/view/2526

[44] E. Team, “Ensuring reliable iot device connectivity: Best practices for mqtt client auto-
reconnection,” https://www.emqx.com/en/blog/mqtt-client-auto-reconnect-best-practic
es, Sep. 12 2024, accessed: 2025-05-17.

[45] Arduino, “BlinkWithoutDelay: Arduino tutorial on non-blocking timing,” https://www.
arduino.cc/en/Tutorial/BlinkWithoutDelay, 2025, accessed: 2025-05-17.

[46] D. McAulay, “SerialCommandExample: Arduino serial command parsing library exam-
ple,” https://github.com/kroimon/Arduino-SerialCommand/blob/master/examples/Serial
CommandExample/SerialCommandExample.pde, 2025, accessed: 2025-05-17.

[47] M. McCauley, “AccelStepper multistepper example,” https://www.airspayce.com/mike
m/arduino/AccelStepper/MultiStepper_8pde-example.html, 2025, accessed: 2025-05-17.

[48] Y. . Brainy-Bits, “Homing stepper motors using the accelstepper library,” https://www.br
ainy-bits.com/post/homing-stepper-motors-using-the-accelstepper-library, 2020, accessed:
2025-05-17.

[49] J. Rullan, “StateMachine arduino example,” https://github.com/jrullan/StateMachine/
tree/master/examples/arduino_state_machine, 2025, accessed: 2025-05-18.

[50] “ESP32-CAM camera development board | 安信可科技
— docs.ai-thinker.com,” https://docs.ai-thinker.com/en/esp32-cam, [Accessed 11-05-2025].

[51] “GitHub - espressif/esp32-camera — github.com,” https://github.com/espressif/esp32-c
amera, [Accessed 11-05-2025].

[52] E. Systems, “arduino-esp32: Arduino core for the esp32,” https://github.com/espressif/a
rduino-esp32, 2025, accessed: 17.03.2025.

[53] “ESP32-CAM: The Complete Machine Vision Guide — blog.arducam.com,” https://blog
.arducam.com/esp32-machine-vision-learning-guide/, [Accessed 14-05-2025].

[54] V. D. Community, “Field of View - Valve Developer Community — devel-
oper.valvesoftware.com,” https://developer.valvesof tware.com/wiki/Field_of_View,
[Accessed 28-04-2025].

[55] “OpenCV: Camera Calibration — docs.opencv.org,” https://docs.opencv.org/4.x/dc/dbb
/tutorial_py_calibration.html, [Accessed 11-05-2025].

[56] “Folding@home - Fighting disease with a world wide distributed super computer. — foldin-
gathome.org,” https://foldingathome.org, [Accessed 29-03-2025].

198

https://beei.org/index.php/EEI/article/view/2526
https://www.emqx.com/en/blog/mqtt-client-auto-reconnect-best-practices
https://www.emqx.com/en/blog/mqtt-client-auto-reconnect-best-practices
https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay
https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay
https://github.com/kroimon/Arduino-SerialCommand/blob/master/examples/SerialCommandExample/SerialCommandExample.pde
https://github.com/kroimon/Arduino-SerialCommand/blob/master/examples/SerialCommandExample/SerialCommandExample.pde
https://www.airspayce.com/mikem/arduino/AccelStepper/MultiStepper_8pde-example.html
https://www.airspayce.com/mikem/arduino/AccelStepper/MultiStepper_8pde-example.html
https://www.brainy-bits.com/post/homing-stepper-motors-using-the-accelstepper-library
https://www.brainy-bits.com/post/homing-stepper-motors-using-the-accelstepper-library
https://github.com/jrullan/StateMachine/tree/master/examples/arduino_state_machine
https://github.com/jrullan/StateMachine/tree/master/examples/arduino_state_machine
https://docs.ai-thinker.com/en/esp32-cam
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://blog.arducam.com/esp32-machine-vision-learning-guide/
https://blog.arducam.com/esp32-machine-vision-learning-guide/
https://developer.valvesoftware.com/wiki/Field_of_View
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://foldingathome.org

REFERENCES

[57] “openai/clip-vit-base-patch32 Hugging Face — huggingface.co,” https://huggingface.co/o
penai/clip-vit-base-patch32, [Accessed 13-05-2025].

[58] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” 2021. [Online]. Available:
https://arxiv.org/abs/2103.00020

[59] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao, “Depth anything v2,”
arXiv:2406.09414, 2024.

[60] “depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf Hugging Face — hugging-
face.co,” https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Lar
ge-hf, [Accessed 13-05-2025].

[61] “Tasks - Hugging Face — huggingface.co,” https://huggingface.co/tasks, [Accessed 07-
05-2025].

[62] J. Jann, O. Drevelle, X. G. Chen, M. Auclair-Gilbert, G. Soucy, N. Faucheux, and L.-C.
Fortier, “Rapid antibacterial activity of anodized aluminum-based materials impregnated
with quaternary ammonium compounds for high-touch surfaces to limit transmission of
pathogenic bacteria,” RSC Advances, vol. 11, no. 60, pp. 38 172–38 188. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044312/

[63] “Annin Robotics.” [Online]. Available: https://www.anninrobotics.com

[64] National Library of Medicine. (2025) Mechanical properties of 3d-printing polylactic acid
parts subjected to bending stress and fatigue testing. Accessed: 2025-05-18. [Online].
Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC6926899/

[65] DornaRobotics, “Types of robot grippers and their applications,” 13. october, 2023.
[Online]. Available: https://dorna.ai/blog/types-of-grippers-for-robots/

[66] Alan Brown, “Seven big advances in soft robotic grippers,” 22. April, 2020. [Online].
Available: https://www.asme.org/topics-resources/content/seven-big-advances-in-soft-r
obotic-grippers

[67] Lucia Beccai, “A deep learning method for vision based force prediction of a soft
fin ray gripper using simulation data,” 25. May, 2021. [Online]. Available: https:
//www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.631371/full

[68] Source Robotics, “Soft robotic grippers - fin ray effect,” 11. December, 2024. [Online].
Available: https://source-robotics.com/blogs/blog/soft-robotic-grippers-fin-ray-effect

[69] Yahia A. AboZaid, Mahmoud T. Aboelrayat, Irene S. Fahim, Ahmed G. Radwan, “Soft
robotic grippers: A review on technologies, materials, and applications,” 17.April 2024.

199

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://arxiv.org/abs/2103.00020
https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf
https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf
https://huggingface.co/tasks
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044312/
https://www.anninrobotics.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC6926899/
https://dorna.ai/blog/types-of-grippers-for-robots/
https://www.asme.org/topics-resources/content/seven-big-advances-in-soft-robotic-grippers
https://www.asme.org/topics-resources/content/seven-big-advances-in-soft-robotic-grippers
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.631371/full
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.631371/full
https://source-robotics.com/blogs/blog/soft-robotic-grippers-fin-ray-effect

REFERENCES

[Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S09244247240
03741

[70] H. Face, “Image classification,” 2025, accessed: 29.03.2025. [Online]. Available:
https://huggingface.co/tasks/image-classification

[71] “What is Object Detection? - Hugging Face — huggingface.co,” https://huggingface.co/t
asks/object-detection, [Accessed 15-04-2025].

[72] Unsplash, “Photo by Bhong Bahala on Unsplash — unsplash.com,” https://unsplash.c
om/photos/a-couple-of-people-that-are-walking-down-a-street-npv1LcdKOqY, [Accessed
16-04-2025].

[73] R. 100, “lettuce pallets dataset,” https://universe.robof low.com/roboflow-100
/lettuce-pallets , may 2023, visited on 2025-05-18. [Online]. Available: https:
//universe.roboflow.com/roboflow-100/lettuce-pallets

[74] “Deed - Attribution 4.0 International - Creative Commons — creativecommons.org,” https:
//creativecommons.org/licenses/by/4.0/, [Accessed 18-04-2025].

[75] F. Ciaglia, F. S. Zuppichini, P. Guerrie, M. McQuade, and J. Solawetz, “Roboflow 100: A
rich, multi-domain object detection benchmark,” 2022.

[76] Ultralytics, “YOLO Data Augmentation — docs.ultralytics.com,” https://docs.ultralytics
.com/guides/yolo-data-augmentation/, [Accessed 11-05-2025].

[77] H. Face, “Depth estimation,” 2025, accessed: 29.03.2025. [Online]. Available:
https://huggingface.co/tasks/depth-estimation

[78] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth anything:
Unleashing the power of large-scale unlabeled data,” 2024. [Online]. Available:
https://arxiv.org/abs/2401.10891

[79] R. P. Ltd, “Raspberry Pi 5,” https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-pro
duct-brief.pdf, [Accessed 01-04-2025].

[80] “Tokenizer — huggingface.co,” https://huggingface.co/docs/transformers/en/main_cla
sses/tokenizer, [Accessed 11-04-2025].

[81] “time Time access and conversions — docs.python.org,” https://docs.python.org/3/libr
ary/time.html, [Accessed 13-04-2025].

[82] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka, J. Gonzalez, K. Keutzer,
and P. Vajda, “Visual transformers: Token-based image representation and processing for
computer vision,” 2020.

200

https://www.sciencedirect.com/science/article/abs/pii/S0924424724003741
https://www.sciencedirect.com/science/article/abs/pii/S0924424724003741
https://huggingface.co/tasks/image-classification
https://huggingface.co/tasks/object-detection
https://huggingface.co/tasks/object-detection
https://unsplash.com/photos/a-couple-of-people-that-are-walking-down-a-street-npv1LcdKOqY
https://unsplash.com/photos/a-couple-of-people-that-are-walking-down-a-street-npv1LcdKOqY
 https://universe.roboflow.com/roboflow-100/lettuce-pallets
 https://universe.roboflow.com/roboflow-100/lettuce-pallets
https://universe.roboflow.com/roboflow-100/lettuce-pallets
https://universe.roboflow.com/roboflow-100/lettuce-pallets
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://docs.ultralytics.com/guides/yolo-data-augmentation/
https://docs.ultralytics.com/guides/yolo-data-augmentation/
https://huggingface.co/tasks/depth-estimation
https://arxiv.org/abs/2401.10891
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://huggingface.co/docs/transformers/en/main_classes/tokenizer
https://huggingface.co/docs/transformers/en/main_classes/tokenizer
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

REFERENCES

[83] “MySQL :: MySQL 8.4 Reference Manual :: 1.2.1 What is MySQL? — dev.mysql.com,”
https://dev.mysql.com/doc/refman/8.4/en/what-is-mysql.html, [Accessed 06-04-2025].

[84] “DB Browser for SQLite — sqlitebrowser.org,” https://sqlitebrowser.org, [Accessed 02-
04-2025].

[85] “Home — opencv.org,” https://opencv.org, [Accessed 15-05-2025].

[86] “PlantCV — plantcv.org,” https://plantcv.org, [Accessed 15-05-2025].

[87] R. v. HSV for Computer Vision | Rehan Guha Portfolio & Blog, “RGB v. HSV for Com-
puter Vision — rehanguha.github.io,” https://rehanguha.github.io/articles/rbg-vs-hsv-for
-computer-vision, [Accessed 06-05-2025].

[88] P. D. Team, “Watershed Segmentation - PlantCV — plantcv.readthedocs.io,” https://pl
antcv.readthedocs.io/en/stable/watershed, [Accessed 04-05-2025].

[89] “OpenCV: Image Segmentation with Watershed Algorithm — docs.opencv.org,” https:
//docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html, [Accessed 08-05-2025].

[90] “OpenCV: Create calibration pattern — docs.opencv.org,” https://docs.opencv.org/4.x/
da/d0d/tutorial_camera_calibration_pattern.html, [Accessed 29-04-2025].

[91] “OpenCV: Camera Calibration and 3D Reconstruction — docs.opencv.org,” https://docs
.opencv.org/4.11.0/d9/d0c/group__calib3d.html, [Accessed 09-05-2025].

[92] S. Josefsson, “RFC 7914: The scrypt Password-Based Key Derivation Function — data-
tracker.ietf.org,” https://datatracker.ietf.org/doc/html/rfc7914, [Accessed 08-04-2025].

201

https://dev.mysql.com/doc/refman/8.4/en/what-is-mysql.html
https://sqlitebrowser.org
https://opencv.org
https://plantcv.org
https://rehanguha.github.io/articles/rbg-vs-hsv-for-computer-vision
https://rehanguha.github.io/articles/rbg-vs-hsv-for-computer-vision
https://plantcv.readthedocs.io/en/stable/watershed
https://plantcv.readthedocs.io/en/stable/watershed
https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html
https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html
https://docs.opencv.org/4.x/da/d0d/tutorial_camera_calibration_pattern.html
https://docs.opencv.org/4.x/da/d0d/tutorial_camera_calibration_pattern.html
https://docs.opencv.org/4.11.0/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.11.0/d9/d0c/group__calib3d.html
https://datatracker.ietf.org/doc/html/rfc7914

BIBLIOGRAPHY

Bibliography

[Bib1] H. Ott, Electromagnetic Compatibility Engineering, 1st ed. Wiley, 2009. [Online].
Available: libgen.li/file.php?md5=5afbcaac73ac4851f5f53d5513350fd3

[Bib2] M. O. Hara, EMC at Component and PCB Level, 1st ed. Chantilly: Elsevier Science
& Technology, 1998.

202

libgen.li/file.php?md5=5afbcaac73ac4851f5f53d5513350fd3

Appendices

203

Appendix A

Requirements earlier work

1 Requirements

This section is still under development and should only be seen as collaborative notes and under
no circumstances as finished work at this current stage.

Introducing Requirement development
Talk about the importance of requirements and why they must be customer and stakeholder
led, and well defined (quantifiable etc, for validation, verification..). Something worthwhile in
one of the ISO standards on this? ISO 15288, IEEE 29148?
Talk about how requirements should guide the design process. Follow the main principles from
Sols book, i.e. talking about problem domain (user stories, use cases etc..) and solution domain
(system requirements. Note the step-by-step process on page 139 that involves stakeholder
requirements guiding us towards selecting the preferred design concept.
Stakeholder→Stakeholder requirements → System requirements → Verification methods

Requirements may be categorised as follows:

• Product requirements

• Process requirements

• External requirements

• (this canshould? be adapted to our project needs.)

How will we be developing requirements?

204

1. REQUIREMENTS

Figure A.1: Taken from page 134 in Alberto Sols’ book will adapt.

Talk a about stakeholders and their role in helping us develop our requirements. (More on this
in a later chapter)

• How were building our requirements hierarchy from a structural sense (Sols and the
ISO/IEEEs)

– Problem domain, understanding the problem, written in language suitable for non
technical stakeholders:
User stories →Use cases

– Solution domain

∗ System requirements (Acceptance criteria?), Verification and Validation testing.
∗ For high level requirements in particular, remember to write about the feedback

process w/ customer/key stakeholders, to ensure were all on the same page etc.

– Traceability. Being able to trace any requirement all the way up to stakeholders and
their needs?

– Process for drilling down into system specification requirements from top level use
cases

– Categories of priority (A, B, C).

– Categories for easier reading: Functional, non-functional, performance, constraints,
etc

– Perhaps mention about requirement characteristics ref Sols pg. 148. But this might
be overkill?

205

1. REQUIREMENTS

– Traceability. Being able to trace any system requirement all the way up to stake-
holder need

1.0.1 How will we go about finding requirements? EG |

• Stakeholder analysis (refer to that chapter)

• Visiting leafy green producers

• Learning from our key stakeholder; HP Technologies

• Documentation dive

• Literature review helpful here?

• Perhaps mention about consideration to food safety and machine regulations but this is
probably covered in stakeholder analysis

Figure A.2: Draft Requirement Matrix

• SH-ID: Stakeholder ID

• US-ID: User Story ID

• UC-ID: Use Case ID

• REQ-ID: Requirement ID

A.2

1.0.2 Verification and Validation EG |

• Talk about how well go about this.

206

1. REQUIREMENTS

• Story cards and acceptance criteria? Not yet defined

Initial ideas for Acceptance criteria summary (MUST be worked more on!)

Figure A.3: Draft Acceptance criteria matrix

V&V testing

Figure A.4: Draft Verification and Validation matrix

1.0.3 Current state of requirements EG | BMR

Disse tabellene legges inn for å vise at requirements jobbes med, men vi har ikke rukket å
oppdatere videre med delen i rapporten før innlevering. Det gjøres forøvrig oppmerksom om at
ID-nummereringen her ikke er riktig. Og sist, vi har en egen tabell hvor vi legger inn forslag
til nye requirements mens vi jobber med prosjektet, som tas opp for diskusjon i fellesskap.

207

1. REQUIREMENTS

Figure A.5: User stories

Figure A.6: User story - autonomous harvesting

208

1. REQUIREMENTS

Figure A.7: User story - plant recognition

Figure A.8: User story - optimal handling

209

1. REQUIREMENTS

Figure A.9: User story - safety and efficiency

210

Appendix B

General

1 Group Philosophy (initial outlines) JCDH | -

1.1 Introduction JCDH | -

These are the initial outlines of our group philosophy:

• We aim to foster a fun, positive and creative environment that is based on collaboration,
all members feel valued. We therefore base ourselves on a flat leadership style, where
tasks and responsibilities are shared and assigned based on team discussions and evolving
project needs.

• We aim to foster a collaborative environment where all members feel valued.

• We will base our decision making and task allocation on a flat leadership structure, where
tasks and responsibilities are shared and assigned.

• Our project should be a time of great learning and fun. We should try aim to keep a
sustainable workload, avoiding too much crunch time late in the project. We shall strive
for efficiency through being well prepared, exploring options and planning well. A safe
and enjoyable environment.

• A safe and fun place to be.

211

1.2 Flat structure JCDH | -

Maintain a flat structure, with responsibilities shared and assigned based on team discussions
and evolving project needs.

1.3 Iterative process JCDH | -

Everything can’t be perfect on the first try. That’s why an iterative process is extremely useful.

212

2 Project Model earlier work EG | -

Her har ikke teksten endret seg siden første innlevering (tid). Mesteparten av teksten slik den
står nå bil bli flyttet over i appendix.

Multidiciplinary group
At the very beginning, it was agreed by the founding members that a core value of our group
collaboration would be to fully embrace the opportunities to broaden our knowledge and our
skills as ambitiously and well targeted as we could. Our goal would be to depart in June as
a fresh generation of new engineers, confident and well prepared for the future with as much
industry-relevant knowledge and real-life experience as possible. Members that since joined
were presented with this philosophy and eagerly embraced it.
One of the new and highly interesting learning opportunities that we identified early on was
to opt for building a multidisciplinary group, preferably one covering all three engineering
disciplines. This felt like a daunting task as we had very little experience with this type of
collaboration from beforehand and, furthermore, had only very limited understanding of each
others work methodology and workflows. Yet, we considered multidisciplinary collaboration as
a relevant skill to hold across all engineering fields, and therefore it was a challenge we eagerly
wanted to take on.
With determined optimism we concluded that although this would add extra complexity to
our project, the benefits we would stand to gain from choosing this experience would be well
worth the added investments of effort required to obtain it. It was recognised, however, that
this choice would require extra effort and diligence put into building effective communication,
project management, and interfacing.

Balancing the needs of many, with an end goal in sight
An important project management factor found early was that most members in our group are
influenced by personal circumstances that may affect their availability or work capacity during
the time we intended to spend together. For instance, some live further afield and are likely,
at some points, to experience transportation issues during the extremes of Norwegian weather
conditions. Some have family commitments that might require them to stay at home during
times when children are ill. Also, they may be less available for project work during late nights
and weekends, than others who might in fact prefer to work during these times. Furthermore,
some are bound by out-of-project work commitments that greatly affect their working schedule
and time availability.
It was recognised that each member of the group brings valuable knowledge, experience, skills,
and ideas to the table, together with the key ingredients of a positive attitude, collaboration-

213

and solution-mindedness. It was therefore collectively decided to move forward with the above-
mentioned complicating factors; both of building a multidisciplinary focused group, and to
create an environment that everyone is able to thrive in.
For this to succeed, certain criteria must be met. It was reasoned that communication must be
structured through regular meetings, detailed minutes, and supporting documentation and user
guides produced and shared regularly. We agreed on core working hours (further detailed
in a different section? Or here?), to facilitate ease of communication and encourage
collaborative efforts, alongside our regular set meetings. However, when necessary, exceptions
could also be made by group agreement. An example of this was when one of our members was
granted a special adaptation of the core working hours setup to accommodate for their work
commitments.

Put in a paragraph about starting with a well thought out plan and project model, but to also
hold a view of continual improvement through early identification of problems/bottle necks
etc, and applying risk based thinking in order to see problems before they arise. Maybe also
loosely learn from the ISO way of thinking with the PDCA cycle (Plan, Do, Check, Act). Fre-
quent evaluations of process à improve continuously as we go along à Regular, slightly adapted
SCRUM Retrospectives.

Also throw in some good stuff about the importance of clear communication. Plan, responsi-
bilities/accountability, support, sharing documentation. Everyone knowing where to find key
information in order to understand what is expected and who does what. Partnering up on
tasks.

INTERFACING

Talk about the nice stuff too. Team building, learning from each other, supporting each other,
cakes!

Structured as a company, but not quite

Find an elegant way to lead into the two key topics of this subsection:

• Group following a company-like structure

• Discuss how the leadership team works

– Flat leadership hierarchy no leader

– Lead over to talking about agile project model → SCRUM

214

Company-like structure

Talk about how were designing our group as a mini company with a leadership team and its
technology departments.

• Think: A company with a leadership team. The team, here consisting of all the group
members together, make all the important decisions. We allocate budget, discuss concepts
and directions of development, develop requirements, plan and refine the product back
log. We monitor progress and make adaptations as necessary. We guide the teams and
hold them accountable.

• The company has three development departments: Mechanical (consisting of our three
mechanical engineers), Software (our two software engineers, and Electrical. Electrical
consists of one electronics engineer who is backed up by one of the mechanical engineers
and one of the software engineers. These two members committed themselves from the
start to supporting the needs of the electronics department when required, as part of
their roles.

Why have we decided to organise ourselves this way?

Each engineering discipline uses their own workflow, tools and processes to conduct their work.
However, these methodologies dont always overlap too well. Therefore, instead of imposing
the processes and tools preferred by one discipline onto everyone else and expecting them to
spend the time finding less efficient work arounds, we opted a different approach. Our take
instead was to focus on managing the project on group level where wed apply an agile based
model, adapted from SCRUM to manage and structure our progress. Wed also be setting the
main standards for tools and templates such as risk management, requirements development
and so forth on this level. However, although the product backlog would largely sit at the
leadership level, each department would be given the freedom to develop and produce their
work using their own preferred techniques. An example to illustrate how this freedom might
prove beneficial is where it would mechanical engineers tend to work incrementally whereas
software development might prefer to develop their work in a more evolutionary way.

215

It was decided to focus our leadership team on deciding the work that needed to be done, and
to allow the department teams to utilise their own workflows, tools and methods in order to
deliver on the orders they receive.

• Partitioning our discipline related efforts into subsections allows us pass important deci-
sions on topics such as concepts, direction and problem domain related requirements on
the leadership level, and send these down the line to the departments as work orders

• to follow a main project model on the leadership level, yet at the same time allowing the
different departments to follow their own workflow and processes that dont necessarily
overlap all too well.

Tricky bit elegantly move over to talking about the bread and butter of this section: The
actual project model!

Agile work methodology based on SCRUM

Ive not had chance to write up on this topic yet, but please see the presentation slides I
prepared and showed before the oppgave was given, they can be found in the appendix. There
are significant amounts of information there.

216

SCRUM supports a flat leadership structure, which is another approach our group was keen to
explore.

• Talk about flat leadership hierarchy.

• Why is this a good idea? -All the good references..

• Why did we decide to run with it?

• How have we chosen to apply it, and why?

217

3 Project Methodology EG | -

3.0.1 Earlier work towards creating backlog items for ROS 2 im-
plementation EG | -

218

4. ARCHITECTURE

4 Architecture

4.0.1 Early work understanding communication and signals EG | -

Figure B.1: Interfacing elektro og data

219

4.
A

R
C

H
IT

E
C

T
U

R
E

Figure B.2: Signalinterfacing elektro og data

220

4. ARCHITECTURE

,

221

4.
A

R
C

H
IT

E
C

T
U

R
E

Figure B.3: Communication and signal details from the early diagram above

222

4. ARCHITECTURE

4.0.2 Early work on architecture EG | -

4.0.3 Early work on workflow EG | -

4.0.4 Early work on understanding communication EG | -

223

4. ARCHITECTURE

Figure B.4: Early architectural design

Figure B.5: Early architectural design

224

4. ARCHITECTURE

Figure B.6: Early attempts at mapping processes

225

4. ARCHITECTURE

Figure B.7: Enter Caption

226

4.
A

R
C

H
IT

E
C

T
U

R
E

Figure B.8: Thoughts for future work.

227

5. DESIGN AND WEBSITE

5 Design and Website

5.1 Design JCDH | -

The design will be used for presentations, website, and the thesis. Keeping a consistent look
across all these items is important to maintain a professional look.

The design philosophy was taken by combining parts of nature (plants) and modernity. This
fusion creates a clean and natural look. Figure B.19 shows the color palette we landed on.

Figure B.9: Our project color palette

5.1.1 Project logo design SME | JCDH

The visual identity of our project is represented by the logo shown in Figure B.10. The design
was primarily inspired by the project title, Leafy Automation, and reflects both the nature of
our work and the agricultural domain in which the project operates. Given that the primary
function of the robotic system is to harvest leafy greens, the choice of a green color palette and
the inclusion of a leaf motif in the logo was both symbolic and appropriate.

The leaf element in the logo not only refers to the crops our system is designed to handle
but also establishes a visual link to our project partner, Hydroplant Technologies AS, whose
branding similarly incorporates a leaf. This further reinforces the connection between our work
and the broader vision of sustainable and modern horticultural practices.

The design process began with a hand-drawn sketch in a digital notebook. The initial concept
was iteratively refined to strike a balance between organic shapes and professional aesthetics.
Ultimately, the final version was created by combining freehand elements with typefaces that
complemented the natural curves of the leaf. The fonts used were (Codigra and BirdsofPar-

228

5. DESIGN AND WEBSITE

adise), chosen for their readability and visual harmony with the drawing.

After finalizing the layout and structure, the logo was imported into Canva for final adjust-
ments. The background was removed to ensure versatility across multiple applications, includ-
ing presentations, promotional materials, and project accessories. As an example, the logo was
featured on the custom name tags designed for the team, as illustrated in Section 5.1.2.

Figure B.10: Project logo

5.1.2 Name tags SME | -

229

5. DESIGN AND WEBSITE

Beatrix Rimestad

Figure B.11: Name tag: Beatrix Rimestad

Daniels Blomnieks

Figure B.12: Name tag: Daniels Blomnieks

Elin Gravningen

Figure B.13: Name tag: Elin Gravningen

Jim Christian
Haukvik

Figure B.14: Name tag: Jim Christian Haukvik

Vetle Myhre
Nilsen

Figure B.15: Name tag: Vetle Myhre Nilsen

Sunniva Myrvang
Eineteig

Figure B.16: Name tag: Sunniva Myrvang Eineteig

5.1.3 Recruitment ad JCDH, EG | -

230

5. DESIGN AND WEBSITE

Figure B.17: Recruitment ad

All pictures used in the recruitment ad have permissive and free-to-use licenses from unsplash.com
which don’t require attribution.

5.2 Website JCDH | -

The website is hosted on USN’s servers and can be found at https://itfag.usn.no/grupper/D08-

231

https://unsplash.com
https://itfag.usn.no/grupper/D08-25
https://itfag.usn.no/grupper/D08-25

5. DESIGN AND WEBSITE

25/ which is a subdirectory on an Apache instance.

Although the server includes support for both PHP and a MySQL (including PHPmyadmin),
there is no requirement to use these technologies, and reduced complexity often causes less
issues down the road.

The website is written using the Bootstrap Toolkit which is a CSS toolkit that simplifies the
process of website development and prototyping.

Git was considered for the website, but it was decided that because of it’s simplicity and in
order to consolidate resources on the engineering project itself, it was not needed. The group
agreed upon not using too much time or resources on developing the website.

Figure B.18: Website, iteration 1

5.2.1 Security considerations JCDH | -

When developing websites, there are in most cases a great many security considerations to keep
in mind. A good approach is to keep this list of can-be security issues as small as possible.
Therefore, the choice to drop technologies like PHP and MySQL - and only focusing on pure
HTML documents - keeps our website stable and secure for the foreseeable future.

A curated list of potential security issues regarding PHP and MySQL follows:

• Out-of-date PHP version

232

https://itfag.usn.no/grupper/D08-25
https://itfag.usn.no/grupper/D08-25
https://getbootstrap.com/

5. DESIGN AND WEBSITE

• MySQL injections

5.3 Website source code JCDH | -

<! doctype html >
<html lang="en">

<head >
<meta charset ="utf -8">
<meta name=" viewport " content ="width =device -width , initial -scale =1">
<meta name=" description " content =" Explore the project , learn about

our talented team , dive into our sprints , and access important documents
to stay informed .">

<link rel="icon" href=" assets /img/logo.png">
<title >Leafy Automation </ title >

<!-- Open Graph -->
<meta property ="og:title " content ="Leafy Automation ">
<meta property ="og: description " content =" Explore the project , learn

about our talented team , dive into our sprints , and access important
documents to stay informed .">

<meta property ="og:image " content ="https :// itfag .usn.no/ grupper /D08
-25/ demo2 / assets /img/logo.jpg">

<link href="https :// cdn. jsdelivr .net/npm/ bootstrap@5 .3.3/ dist/css/
bootstrap .min.css" rel=" stylesheet " integrity ="sha384 -
QWTKZyjpPEjISv5WaRU9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW + ALEwIH "
crossorigin =" anonymous ">

<link rel=" stylesheet " href="https :// cdnjs . cloudflare .com/ajax/libs/
font - awesome /6.7.2/ css/all.min.css" integrity ="sha512 - Evv84Mr4kqVGRNSgIGL
/F/ aIDqQb7xQ2vcrdIwxfjThSH8CSR7PBEakCr51Ck +w+/ U6swU2Im1vVX0SVk9ABhg =="
crossorigin =" anonymous " referrerpolicy ="no - referrer " />

<link href=" assets /css/style .css" rel=" stylesheet ">
</head >
<body id="top">

<nav class =" navbar navbar -expand -lg">
<div class =" container ">

Leafy Automation </
span >

<button class ="navbar - toggler border -0" type=" button " data -
bs - toggle =" collapse " data -bs - target ="# navbarNav " aria - controls =" navbarNav
" aria - expanded ="false " aria - label =" Toggle navigation ">

<i class ="fa -solid fa - ellipsis "></i>
</ button >

<div class =" collapse navbar - collapse " id=" navbarNav ">
<ul class ="navbar -nav ms -auto">

233

5. DESIGN AND WEBSITE

<li class ="nav -item">
Project

info

<li class ="nav -item">

The people

<li class ="nav -item">

Sprints

<li class ="nav -item">

Documents <
/a>

</div >
</div >

</nav >

<!-- Hero Section -->
<div class ="container - fluid pb -5 pt -5 hero">

<div class ="row">
<div class ="col -md -6 d-flex align -items - center ps -md -5 pb -5"

>
<div class ="hero -info">

<h1 >We are Leafy Automation </h1 >
<p>Explore the project , learn about our talented

team , dive into our sprints , and access important documents to stay
informed .</p>

Read
more

</div >
</div >

<div class ="col -md -6">
<img src=" assets /img/logo.jpg" class ="img -fluid hero -img

my -md -2 floating -image " alt="Hero Image ">
</div >

</div >
</div >

<!-- Project Info Section -->
<div id="project -info" class =" section bg - light ">

<div class =" container ">
<h2 class ="mb -5">Project Info </h2 >

<div class ="row">
<div class ="col -md -12 mb -4">

234

5. DESIGN AND WEBSITE

<div class ="card">
<div class ="card -body">

<h4 >Description </h4 >
<p>Hydroplant Technologies seeks to develop

an autonomous system for efficient lettuce harvesting and handling in
vertical farming . The goal is to automate the process from harvesting to
further processing in a sustainable , scalable , and cost - effective way.</p
>

</div >
</div >

</div >

<div class ="col -md -12 mb -4">
<div class ="card">

<div class ="card -body">
<h4 >Objectives </h4 >

Recognize and handle different types
of lettuce .

Transport lettuce between system
areas safely .

Position accurately for optimal
operation .

</div >

</div >
</div >

<div class ="col -md -12 mb -4">
<div class ="card">

<div class ="card -body">
<h4 >Key Requirements </h4 >

Recognition :</ strong >
Identify lettuce types using sensors .

Movement :</ strong > Precise ,
safe transport of lettuce .

Positioning :</ strong >
Accurate location within the system .

Quality Check:</ strong >
Identify and remove bad leaves .

</div >

</div >
</div >

<div class ="col -md -12 mb -4">
<div class ="card">

<div class ="card -body">

235

5. DESIGN AND WEBSITE

<h4 >Expected Deliverables </h4 >

Prototype or simulation of the
system .

Design and technical documentation .<
/li >

Testing and evaluation reports .

</div >
</div >

</div >

<div class ="col -md -12 mb -4">
<div class ="card">

<div class ="card -body">
<h4 >Additional Info </h4 >
<p>This project supports Hydroplant

Technologies ' vision to enhance vertical farming 's sustainability and
cost - efficiency .</p>

</div >
</div >

</div >
</div >

</div >
</div >

<!-- People Section -->
<div id=" people " class =" section ">

<div class =" container ">
<h2 class ="mb -5">The People </h2 >

<div class ="row">
<div class ="col -md -4 mb -4">

<div class ="card">
<img src=" assets /img/ people / sunniva .jpg" class ="

card -img -top" alt=" Person 1">
<div class ="card -body">

<h5 class ="card -title ">Sunniva Myrvang
Eineteig </h5 >

<p class ="card -text">Machine
engineer </ strong >
 External contact Instagram </p>

</div >
</div >

</div >

<div class ="col -md -4 mb -4">
<div class ="card">

<img src=" assets /img/ people /jim.jpg" class ="card
-img -top" alt=" Person 2">

236

5. DESIGN AND WEBSITE

<div class ="card -body">
<h5 class ="card -title ">Jim Christian Dale

Haukvik </h5 >
<p class ="card -text">Computer

engineer </ strong >
 AI Network - protocol Website ClickUp </p>
</div >

</div >
</div >

<div class ="col -md -4 mb -4">
<div class ="card">

<img src=" assets /img/ people / beatrix .jpg" class ="
card -img -top" alt=" Person 3">

<div class ="card -body">
<h5 class ="card -title ">Beatrix Møller

Rimestad </h5 >
<p class ="card -text">Machine

engineer </ strong >
 Internal contact </p>
</div >

</div >
</div >

</div >

<div class ="row">
<div class ="col -md -4 mb -4">

<div class ="card">
<img src=" assets /img/ people /elin.jpg" class ="

card -img -top" alt=" Person 4">
<div class ="card -body">

<h5 class ="card -title ">Elin Gravningen </h5 >
<p class ="card -text">Computer

engineer </ strong >
 Robotics Risk - analysis SCRUM </p>
</div >

</div >
</div >

<div class ="col -md -4 mb -4">
<div class ="card">

<img src=" assets /img/ people / daniels .jpg" class ="
card -img -top" alt=" Person 5">

<div class ="card -body">
<h5 class ="card -title ">Daniels Aleksandrs

Blomnieks </h5 >
<p class ="card -text">Machine

engineer </ strong >
 LaTeX Risk - analysis </p>
</div >

</div >
</div >

237

5. DESIGN AND WEBSITE

<div class ="col -md -4 mb -4">
<div class ="card">

<img src=" assets /img/ people /vetle .jpg" class ="
card -img -top" alt=" Person 6">

<div class ="card -body">
<h5 class ="card -title ">Vetle Myhre Nilsen </

h5 >
<p class ="card -text">Electronics

engineer </ strong >
 LaTeX Group - environment </p>
</div >

</div >
</div >

</div >
</div >

</div >

<!-- Sprints Section -->
<!-- https :// undraw .co -->
<div id=" sprints " class =" section bg -light ">

<div class =" container ">
<h2 class ="mb -5">Sprints </h2 >

<!-- Sprint 1 -->
<div class ="card mb -4 sprint ">

<div class ="row align -items - center ">
<div class ="col -md -4">

<img src=" assets /img/ illustrations /team.svg"
class ="img -fluid sprint -img" alt=" Sprint 1">

</div >

<div class ="col -md -8">
<div class ="card -body">

<h3 class ="card -title ">Sprint 1</h3 >
<p class ="card -text">In the first sprint we

working on gripper concepts , robotics concepts , motor driver , networking
and camera functionality .</p>

</div >
</div >

</div >
</div >

<!-- Sprint 2 -->
<div class ="card mb -4 sprint ">

<div class ="row align -items - center flex -md -row - reverse ">

<div class ="col -md -4">
<img src=" assets /img/ illustrations /team.svg" class ="

img -fluid sprint -img" alt=" Sprint 2">
</div >

238

5. DESIGN AND WEBSITE

<div class ="col -md -8">
<div class ="card -body">

<h3 class ="card -title ">Sprint 2</h3 >
<p class ="card -text">In sprint 2 we worked on

CAD and hardware , AI model training and ROS2. We now have a functional
mechanical base , fine tuned object detection models , and a defined
communication structure .</p>

</div >
</div >
</div >

</div >

<!-- Sprint 3 -->
<div class ="card mb -4 sprint ">

<div class ="row align -items - center ">
<div class ="col -md -4">

<img src=" assets /img/ illustrations /team.svg"
class ="img -fluid sprint -img" alt=" Sprint 3">

</div >

<div class ="col -md -8">
<div class ="card -body">

<h3 class ="card -title ">Sprint 3</h3 >
<p class ="card -text">Sprint 3 included

completion of mechanical assembly , Arduino modules (ROS2 and motor
control), HMI and AI salad detection .</p>

</div >
</div >

</div >
</div >

</div >
</div >

<!-- Documents Section -->
<div id=" documents " class =" section bg -dark text -light ">

<div class =" container ">
<h2 class ="mb -5">Documents </h2 >

<!-- Bachelor Thesis -->
<div class ="card text -dark mb -3">

<div class ="card -body">
<h5 class ="card -title ">Bachelor Thesis </h5 >
<p class ="card -text">Coming soon </p>
<!--Download --

>
</div >

</div >
</div >

239

5. DESIGN AND WEBSITE

</div >

<!-- group image -->
<div id=" group ">

<img src=" assets /img/group .jpg" class ="img - fluid group -img"
style ="object -fit: cover ;" alt="Group Image ">

</div >

<!-- Footer Section -->
<div class =" container ">

<footer class ="d-flex flex -wrap justify -content - between align -
items - center py -3 my -4">

<div class ="col -md -4 d-flex align -items - center ">
ľ 2025

Leafy Automation
</div >

<ul class ="nav col -md -4 justify -content -end list - unstyled d-
flex">

<li class ="ms -3"><a class ="text -body - secondary " href="
https :// www. instagram .com/ leafyautomation "><i class ="fa - brands fa -
instagram "></i>

</ footer >

</div >

<script src="https :// cdn. jsdelivr .net/npm/ bootstrap@5 .3.3/ dist/js/
bootstrap . bundle .min.js" integrity ="sha384 -
YvpcrYf0tY3lHB60NNkmXc5s9fDVZLESaAA55NDzOxhy9GkcIdslK1eN7N6jIeHz "
crossorigin =" anonymous "></ script >

<script src="https :// code. jquery .com/jquery -3.7.1. min.js" integrity =
"sha256 -/ JqT3SQfawRcv / BIHPThkBvs0OEvtFFmqPF /lYI/Cxo=" crossorigin ="
anonymous "></ script >

<script src=" assets /js/main.js"></ script >
</body >

</html >

Listing B.1: index.html

@import url('https :// fonts . googleapis .com/css2? family = Poppins :ital ,wght@0
,100;0 ,200;0 ,300;0 ,400;0 ,500;0 ,600;0 ,700;0 ,800;0 ,900;1 ,100;1 ,200;1 ,300;1 ,400;1 ,500;1 ,600;1 ,700;1 ,800;1 ,900&
display =swap ');

@import url('https :// fonts . googleapis .com/css2? family =Sour+Gummy :ital ,wght@0
,100..900;1 ,100..900& display =swap ');

body {
font - family : 'Poppins ', sans -serif;

}

240

5. DESIGN AND WEBSITE

h1 , h2 {
font - family : 'Poppins ', sans -serif;

}

p, ul li {
line - height : 1.8 em;

}

ul {
padding : 0;

}

.card -body p:last -child ,

.card -body ul:last - child {
margin - bottom : 0;

}

#project -info ul {
list - style : none;

}

#project -info ul li :: before {
content : '\1 F331 ';
margin -right : 10px;

}

.hero .hero -info {
opacity : 0;
animation : fadeIn 1s ease -in -out forwards ;

}

@keyframes fadeIn {
from {

opacity : 0;
transform : translateY (20 px);

}

to {
opacity : 1;
transform : translateY (0);

}
}

.floating -image {
display : block ;
margin : 0 auto;
animation : float 3s ease -in -out infinite ;

}

241

5. DESIGN AND WEBSITE

@keyframes float {
0% {

transform : translateY (0);
}
50% {

transform : translateY (-10px);
}
100% {

transform : translateY (0);
}

}

nav. navbar {
box - shadow : none;

}

. navbar {
position : fixed;
width: 100%;
top: 0;
left: 0;
z-index: 999;
background : #fff;
border - bottom : 1px solid rgba (0, 0, 0, 0.1);

}

. navbar .navbar - brand img {
height : 40px;
width: 40 px;
border - radius : 50%;
object -fit: cover;

}

. navbar .navbar - brand span {
font - family : " Poppins ", sans -serif;
font -size: 1.5 rem;
font - weight : bold;
transition : 0.2s;
vertical -align: middle ;
padding -left: 5px;

}

. navbar .navbar - brand span:hover {
color :#4 d6e5c;

}

. navbar .container -fluid {
padding -left: 3rem;
padding -right : 3rem;

242

5. DESIGN AND WEBSITE

}

.navbar - scroll {
background : #fff;
box - shadow : 0 2px 4px rgba (0, 0, 0, 0.1);

}

.hero {
margin -top: 63px;

}

.hero h1 {
font -size: 3rem;
font - weight : bold;
color: #668 d76;

}

.hero -img {
border - radius : 5px;
width: 100%;
object -fit: cover;

}

. section {
padding : 5rem 0;

}

.navbar -brand , h2 {
color: #668 d76;

}

people .card:hover {
transform : scale (1.02) ;
transition : transform 0.3s ease -in -out;

}

people img {
height : 500 px;
width: 100%;
object -fit: cover;
filter : grayscale (100%) ;

}

sprints . sprint {
margin : 50px auto;

}

sprints .card img {
padding : 10px;

243

5. DESIGN AND WEBSITE

border - radius : 5px;
}

#group img {
filter : grayscale (100%) ;

}

.btn -plant {
background -color: #668 d76;
color: #fff;

}

.btn -plant:hover {
background -color: #4 d6e5c;
color: #fff;

}

Listing B.2: style.css

jQuery (function ($) {
$(window). scroll (function () {

if ($(window). scrollTop () > 0) {
$(". navbar "). addClass ("navbar - scroll ");

} else {
$(". navbar "). removeClass ("navbar - scroll ");

}
});

});

Listing B.3: main.js

244

5. DESIGN AND WEBSITE

6 Scrum Presentation EG | -

245

11.02.2025

SCRUM: EN AGIL TILNÆRMING TIL PROSJEKTARBEID
HVORDAN SAMARBEIDE OG LEVERE VERDI GJENNOM ITERATIV UTVIKLING

VI SER PÅ
 Tradisjonell opp mot moderne prosjektarbeid

 Hovedprinsipper og verdier i SCRUM

 Forberedelse
 Rollene

 Visjon og Story board mapping

 The Product Backlog – Backlog grooming

 “The definition of Done”

 Product Roadmap

 Scrum-struktur
 Planning

 Daily scrum

 Sprint review

 Retrospektive

 Sprint

HVA ER UTFORDRINGEN?

Hvordan kan vi levere et knallbra prosjekt med ulik fagbakgrunn, komplekse utfordringer, og stramme tidsfrister?

TRADISJONELL MATE Å JOBBE PÅ

Requirements

Design/
implementasjon

Testing/Verifikasjon

Deployment

Vannfallsmetoden

• Kunden gir et oppdrag
• Magic occurs
• Kunden får produktet sitt til avtalt tid

TRADISJONELL MÅTE Å JOBBE PÅ

Requirements

Design/

implementasjon

Testing/Verifikasjon

Deployment Kundens perspektiv

Skrive requirements utvikling Testing Leveranse

TRADISJONELL MÅTE Å JOBBE PÅ

Requirements

Design/

implementasjon

Testing/Verifikasjon

Deployment Kundens perspektiv

Skrive requirements utvikling Testing Leveranse

1 2

3 4

5 6

11.02.2025

VEL OG BRA – I DEN IDEELLE VERDEN

Men, shit quite frequently happens:

 Endring i krav eller spesifikasjoner

 Eks: Et team jobber med å designe en prototyp for en ny maskin, men halvveis i prosjektet endres spesifikasjonene fordi
kunden ønsker å inkludere en ny funksjon basert på markedsundersøkelser.

 Forsinket oppdagelse av feil

 En utvikler leverer et design som videreføres til produksjonsfasen, men under testfasen oppdages at en komponent ikke
oppfyller ytelseskravene.

 Manglende kundeinvolvering

 Et team utvikler en programvareløsning, men kunden er kun involvert i starten og slutten av prosjektet. Når løsningen
leveres, oppdager kunden at produktet ikke oppfyller deres faktiske behov.

 Uventede teknologiske endringer

 Et team jobber med å utvikle et nytt produkt basert på en bestemt teknologi, men halvveis i prosjektet lanseres en ny, mer
effektiv teknologi som gjør den opprinnelige løsningen utdatert.

VEL OG BRA – I DEN IDEELLE VERDEN

 Vannfallsmetoden gir lav fleksibilitet og tilpasningsevne

 Problemer oppdages sent, som ofte krever enorme ressurser å korrigere

 Legger ikke opp til jevnlig tilbakemelding fra kunde (som ikke nødvendigvis kan så mye teknisk)

 Planlegging og diskusjon rundt utviklingsoppgaver skjer primært i begynnelsen av prosjektet

En studie publisert i International Journal of Project Management fant at prosjekter som benyttet agile metoder hadde
28% høyere sannsynlighet for å levere på tid sammenlignet med de som brukte vannfallsmetoden.
Videre viste en rapport fra Standish Group at agile prosjekter hadde en suksessrate på 42%, mens
tradisjonelle vannfallsprosjekter lå på 14%

AGILT PROSJEKTARBEID

Stort prosjekt  Bryter opp I biter  Bitene utvikles (i iterasjoner)  Deler av produktet leveres underveis “releases”  Hele produktet ferdigstilles
til slutt.

AGILT PROSJEKTARBEID

Handler om å bryte opp et stort prosjekt til mange små komponenter, og bygge dem opp bit for bit gjennom en
strukturert, iterativ prosess.

Iterasjon 1

Iterasjon 2

Iterasjon n

Leveranse

AGILT PROSJEKTARBEID

Handler om å bryte opp et stort prosjekt til mange små komponenter, og bygge dem opp bit for bit gjennom en
strukturert, iterativ prosess.

Iterasjon 1

Iterasjon 2

Iterasjon n

Leveranse

AGILT….. SCRUM?

7 8

9 10

11 12

11.02.2025

AGILT….. SCRUM?

Ikke en arbeidsmetode, men et rammeverk som gir oss
struktur, fleksibilitet, og fokus…

…basert på noen kjerneverdier

AGILT….. SCRUM?

Fokus Teamet fokuserer på sprintets mål og oppgavene som
gir mest verdi for produktet.

Åpenhet Teamet har en transparent arbeidskultur hvor det
deles åpent om fremdrift, utfordringer, og
beslutninger.

Engasjement Teamet forplikter seg til å oppnå sprintets mål og
jobber helhjertet for å levere verdi. Dedikasjon til
både oppgaver og samarbeidet.

Respekt Teamet respekterer hverandres roller, ferdigheter og
perspektiver.

Mot Teamet har mot til å ta utfordrende beslutninger, gi
ærlige tilbakemeldinger, og adressere problemer
direkte.

SCRUM MANIFESTO

OK, OK, OK….. NOK ABSTRAKTE GREIER

Over til noe litt mer håndfast og praktisk

Lage en interaktiv treningssykkel.

EKSEMPEL CASE

Oppdrag:

3x maskiningeniører 2x dataingeniører

Development teamKarstein

SCRUM TEAM

3x maskiningeniører 2x dataingeniører

I SCRUM har vi tre “roller”

Developer – Alle utviklerne på teamet

Product Owner - Product Owner er ansvarlig for å gi
teamet klarhet i hva som skal bygges, og sikre at det
reflekterer kundenes og interessentenes krav.

Scrum Master – Scrum Master hjelper teamet med å følge
Scrum-prosessen, fjerner hindringer og sørger for at teamet
kan jobbe effektivt. Altså ikke en «sjef», men en fasilitator
som server teamet.

Development team:

13 14

15 16

17 18

11.02.2025

SCRUM TEAM

3x maskiningeniører 2x dataingeniører

I SCRUM har vi tre “roller”

Developer – Alle utviklerne på teamet

Product Owner - Product Owner er ansvarlig for å gi
teamet klarhet i hva som skal bygges, og sikre at det
reflekterer kundenes og interessentenes krav.

Scrum Master – Scrum Master hjelper teamet med å følge
Scrum-prosessen, fjerner hindringer og sørger for at teamet
kan jobbe effektivt. Altså ikke en «sjef», men en fasilitator
som server teamet.

Development team:

VISJON - HØYNIVÅ BESKRIVELSE AV PRODUKTET

Funksjonelle krav

 User Stories

 Fokus på brukerens behov og opplevelse (funksjonelle krav).

 Formulert i et enkelt språk for å fremme god kommunikasjon mellom utviklere og ikke tekniske interessenter

Tekniske krav

 Fokus på de spesifikke tekniske egenskapene

 Presist, teknisk språk som beskriver hvordan produktet skal fungere.

 Spesifiserer målbare parametere, som ytelse, sikkerhet, toleranser, materialvalg, osv.

EKSEMPEL

Standardmal for User Stories:

Som [brukerrolle] vil jeg [mål/behov] slik at [fordel/verdi].

Funksjonelt krav

 Som en bruker vil jeg ha en treningssykkel som måler pedalfrekvens og motstand, slik at jeg kan holde oversikt
over treningsøktene mine.

Tekniske krav

 Sykkelen skal være utstyrt med en magnetisk sensor som kan måle pedalfrekvens i området 20–150 omdreininger
per minutt (RPM) med en nøyaktighet på ±2 RPM.

 Motstandssystemet skal være basert på et elektromagnetisk bremsesystem som kan generere belastning fra 10 til
500 watt, med en justerbarhet på minst 1 watt per trinn.

EKSEMPEL

Standardmal for User Stories:

Som [brukerrolle] vil jeg [mål/behov] slik at [fordel/verdi].

Funksjonelt krav

 Som en bruker vil jeg ha en treningssykkel som måler pedalfrekvens og motstand, slik at jeg kan holde oversikt
over treningsøktene mine.

Tekniske krav

 Sykkelen skal være utstyrt med en magnetisk sensor som kan måle pedalfrekvens i området 20–150 omdreininger
per minutt (RPM) med en nøyaktighet på ±2 RPM.

 Motstandssystemet skal være basert på et elektromagnetisk bremsesystem som kan generere belastning fra 10 til
500 watt, med en justerbarhet på minst 1 watt per trinn.

EKSEMPEL

Standardmal for User Stories:

Som [brukerrolle] vil jeg [mål/behov] slik at [fordel/verdi].

Funksjonelt krav

 Som en bruker vil jeg ha en treningssykkel som måler pedalfrekvens og motstand, slik at jeg kan holde oversikt
over treningsøktene mine.

Tekniske krav

 Sykkelen skal være utstyrt med en magnetisk sensor som kan måle pedalfrekvens i området 20–150 omdreininger
per minutt (RPM) med en nøyaktighet på ±2 RPM.

 Motstandssystemet skal være basert på et elektromagnetisk bremsesystem som kan generere belastning fra 10 til
500 watt, med en justerbarhet på minst 1 watt per trinn.

VISION BOARD

19 20

21 22

23 24

11.02.2025

FRA VISJON TIL BACKLOG STORYBOARD MAPPING

…eller digital, f.eks med www.cardboardit.com

STORYBOARD MAPPING

Back bone: De overordnede områdene eller temaene som representerer
de viktigste delene av produktet.

STORYBOARD MAPPING

“Epics”: Dette er store funksjonelle blokker eller funksjonsområder innenfor
hvert backbone item.

STORYBOARD MAPPING

Stories: Dette er de minste og mest detaljerte komponentene. De
beskriver enkeltstående funksjoner eller bruksscenarioer som kan
utvikles og testes separat

STORYBOARD MAPPING

Sy
nk

en
de

pr
io

ri
te

t

25 26

27 28

29 30

11.02.2025

STORYBOARD MAPPING

Minimum viable product

STORYBOARD MAPPING

THE PRODUCT BACKLOG BACKLOGGEN

Struktur
 Øverst: Mest prioriterte og detaljerte oppgaver, klare for

utvikling.
 Nederst: Mindre detaljert, ideer og fremtidige planer.

Fleksibilitet
 Backloggen justeres etter behov, krav og innsikt.

Ansvar
 Product Owner administrerer prioriteringer.
 Teamet bidrar med estimering og detaljering.

Mål
 Fokuserer alltid på å levere mest verdi først.

• At Backloggen er prioritert

• Estimert arbeid per story

• Oppdatere eller fjerne irrelevante stories

• Sikre at stories er "klare"
• Kontrollere at de øverste oppgavene i

backloggen har klare akseptansekriterier og
er forståelige for teamet

• Definition of «Done»

BACKLOG GROOMING/REFINEMENT

Backlog grooming foregår regelmessig, og varer typisk 30-60 min.

De vanligste oppgavene

MEN HVA BETYR AT
EN STORY ER “KLAR”?

Men hva betyr at en story er “KLAR”?

31 32

33 34

35 36

11.02.2025

EKSEMPEL PÅ EN “KLAR” USER STORY

Tittel: Justerbart sete for ergonomisk tilpasning

Beskrivelse:
Som en bruker ønsker jeg å kunne justere setet opp og ned samt frem og tilbake, slik at jeg kan tilpasse sykkelen til min
kroppsstørrelse for en komfortabel og trygg treningsopplevelse.

Akseptansekriterier:

 Setet skal kunne justeres vertikalt i minst 5 nivåer (3 cm intervaller).

 Setet skal kunne skyves horisontalt (minst 10 cm justeringsområde).

 Mekanismen skal være enkel å betjene med én hånd.

Tekniske detaljer:

 Bruk en låsemekanisme med fjærbelastning for enkel justering.

 Materialer skal tåle en vektbelastning på opptil 150 kg.

 Test for minst 10 000 sykluser for slitestyrke.

Estimat:
3 dager arbeidstid (inkludert testing).

“Klar” betyr at den er
godt definert, fostålig og

arbeidsmengde er
estimert.

Ja, ja, ja. Hva med når den er “Ferdig”
da?

MEN HVA BETYR AT
EN STORY ER “KLAR”?

EKSEMPELER PÅ “DEFINITION OF DONE”

For en software story:

• Koden er skrevet og sjekket inn i
versjonskontrollsystemet.

• Enhetstester er skrevet og bestått.

• Funksjonen er manuelt testet og validert mot
akseptansekriterier.

• Ingen kjente feil knyttet til oppgaven.

• Dokumentasjonen er oppdatert (brukerveiledning og
tekniske spesifikasjoner).

For et fysisk produkt:

• Mekanismen fungerer som spesifisert under
realistiske forhold.

• Komponenter har bestått holdbarhetstesting (f.eks.
stress- eller brukssimulering).

• Brukermanual er oppdatert.

• Produktet er montert og klar for kundevalidering.
NÅ ER VI STRAKS KLARE!
DET SISTEVI TRENGER ER EN TIDSLINJE – ET PRODUCT ROADMAP

Release 1

Release 2

Release 3

PRODUCT ROADMAP

Link

KLAR FOR SPRINT PLANNING

Nå har vi:

 Story board map

 Groomed Product Backlog

 Definition of Done

 Product Roadmap

= masse forarbeid i boks

…Endelig kan vi snakke om sprinter

37 38

39 40

41 42

11.02.2025

SPRINT

 Time boxing

 Sprints har fast varighet

 Sprint-mål

 Et klart og overordnet mål for hva teamet skal
oppnå.

 Inkrement

 Resultatet er et fungerende produkt eller
funksjonalitet som kan vurderes.

 The sprint board

NOEN FASTSATTE MØTER

 Sprint planning

 Planlegge arbeidet som skal løses

 Daily Scrum

 Et standup-møte på max 15 minutter hver dag

 Sprint Review

 Gjennomgang og demonstrasjon av fullførte leveranser til
kunde

 Sprint retrospektive

 Evaluering av hva som fungerte bra og hva som kan
forbedres i neste sprint

NOEN FASTSATTE MØTER

 Sprint planning

 Planlegge arbeidet som skal løses

 Daily Scrum

 Et standup-møte på max 15 minutter hver dag

 Sprint Review

 Gjennomgang og demonstrasjon av fullførte
leveranser til kunde

 Sprint retrospektive

 Evaluering av hva som fungerte bra og hva som
kan forbedres i neste sprint

…ser kanskje mye ut, men er faktisk veldig tideffektivt!

SPRINT PLANNING

Sprint Planning

Formål: Bestemme hva som skal oppnås og hvordan
arbeidet skal utføres i sprinten.

Deltakere: Scrum Master, Product Owner og
Utviklingsteamet.

Innhold:

 Velge stories fra backloggen som skal fullføres i
sprinten.

 Planlegge oppgaver og arbeidsflyt for å levere
sprintmålet.

Resultat: Et klart Sprint-mål og en Sprint Backlog.

DAILY SCRUM

Daily Scrum

Formål: Sikre fremdrift mot sprintmålet og identifisere
hindringer.

Tid: Maks 15 minutter – hold møtet kort og fokusert.

Deltakere: Hele Scrum-teamet.

Struktur:

 Hva har jeg gjort siden sist?

 Hva skal jeg gjøre i dag?

 Er det noen hindringer som står i veien?

Resultat: Fremmer kommunikasjon, synlighet og
ansvarlighet.

SPRINT REVIEW

Sprint Review

Formål: Evaluere og demonstrere arbeidet som er fullført i
sprinten.

Deltakere: Scrum-teamet og interessenter (stakeholders).

Innhold:

 Demonstrasjon av det fungerende produktinkrementet.

 Diskusjon om hva som er oppnådd, og hva som gjenstår.

 Innsamling av tilbakemeldinger fra interessenter.

Resultat: Oppdatering av Backloggen basert på
tilbakemeldinger.

43 44

45 46

47 48

11.02.2025

SPRINT REVIEW

Sprint Retrospective

Formålet: Reflektere over sprinten og finne
forbedringsområder.

Deltakere: Kun Scrum-teamet (trygt rom for ærlig
diskusjon).

Innhold:

 Hva fungerte bra?

 Hva kan forbedres?

 Hvilke tiltak kan vi iverksette for å bli bedre?

Resultat: Konkrete forbedringspunkter for neste sprint.

LEGG OPP TIL SUKSESS

SCRUM BOARD

 Visualisere fremdrift, oppgaver og status på
arbeidet i sprinten.

 Kan være fysisk (whiteboard) eller digitalt.

 Mange måter, men veldig vanlig å kombinere
med Kanban

 Brukes aktivt i møter og for å holde synlig
oversikt

SCRUM BOARD

 Visualisere fremdrift, oppgaver og status på
arbeidet i sprinten.

 Kan være fysisk (whiteboard) eller digitalt.

 Mange måter, men veldig vanlig å kombinere
med Kanban

 Brukes aktivt i møter og for å holde synlig
oversikt

TO ORD OM MULTITASKING

Oh no…. A “fun, little exercise” time!

TO ORD OM MULTITASKING

Oh no…. A “fun, little exercise” time!

49 50

51 52

53 54

11.02.2025

TO ORD OM MULTITASKING

Oh no…. A “fun, little exercise” time!

Er det effektivt å multitaske?

OPPSUMMERING
 Tradisjonell opp mot moderne prosjektarbeid

 Hovedprinsipper og verdier i SCRUM

 Forberedelse
 Rollene

 Visjon, User Stories, Story board mapping

 The Product Backlog – Backlog grooming

 “The definition of Done”

 Product Roadmap

 Gjennomføring - Sprints
 Planning

 Daily scrum

 Sprint review

 Retrospektive

 Sprint

WE’RE DONE!

55 56

57

7. CLICKUP SPRINTS AND BACKLOG

7 ClickUp sprints and backlog

7.1 Sprints

Figure B.19: Sprint1

256

Sprint 2

Name Assigne Status
Joint 2 Daniels COMPLETE
Cad tegning base (V1, V2, V3 ...) Beatrix COMPLETE
Produkesjon av enheter til base Beatrix COMPLETE
Complete object detection AI model Jim COMPLETE
Train Object Detection AI model with open-
source dataset from Hugging Face and
deduce viability. Jim COMPLETE
CAD Prototype (gripper) Sunniva COMPLETE
Choose soft touch for the gripper Sunniva COMPLETE
Define all ROS2 Interfaces (msg / srv / action) Elin COMPLETE

Sprint 3

Name Assigne Status
Sette opp nodene som skal utvikles Elin Complete
create cable routing clips to frame Daniels Complete
Joint 1 Daniels Complete
Arduino - CommunicationManager Elin Complete
Arduino - MotorControl Elin Complete

Implement some kind of AI model which can

give information about the salads size /

dimensions Jim Complete
Arduino - GripperControler Elin Complete
Define requirements for base Beatrix Complete
V5 - Base Beatrix Complete

Bli enig om interface specification Jim, Elin, Vetle IN PROGRESS
finne en løsning på 20mm shaft Daniels IN PROGRESS
CAD model with soft touch Sunniva IN PROGRESS x
3D-print soft touch (TPU) Sunniva IN PROGRESS

Choose components Vetle TO DO
> MOSFET simulation Vetle TO DO
Design an interchangable gripper mechanism Sunniva TO DO
PCB Layout Vetle TO DO
> PCB art Vetle TO DO
> ECM Vetle TO DO
Draw schematic Vetle TO DO
> EMC checks and ... Vetle TO DO
> Simulation of RC filters for limit switches Vetle TO DO
mount for camera frame Daniels TO DO

7. CLICKUP SPRINTS AND BACKLOG

7.2 Backlog

259

Backlog

Name Assigne Status List
Vurdere Github repo for nettside Jim, Elin TO DO Web
LaTeX kurs for gruppen Daniels, Vetle TO DO Felles arbeid
Rydde opp i rapport - mapper Daniels, Vetle TO DO Felles arbeid
Robotics core Elin
> Define interfaces between core and
motors, including sensors. Elin, Vetle TO DO Dataingeniør arbeid
> Define interfaces between core and
central Elin, Jim TO DO Dataingeniør arbeid
> Single stepper motor control Elin TO DO Dataingeniør arbeid
>> Rotate motor forwards and
backwards TO DO Dataingeniør arbeid
>> Move motor at different speeds
(needs to be defined) TO DO Dataingeniør arbeid
>> Test that kill switch stops operations
but holds position TO DO Dataingeniør arbeid
> Expand code to operate 2 motors Elin TO DO Dataingeniør arbeid
>> Each motor works independently TO DO Dataingeniør arbeid
>> Both motors can operate
independently at the same time TO DO Dataingeniør arbeid
> Implement synchronized movement Elin TO DO Dataingeniør arbeid
>> Both motors move together at the
same speed TO DO Dataingeniør arbeid
> Make motor control library Elin TO DO Dataingeniør arbeid

>> Reusable functions for moving,
stopping, speed, changing direction, kill
switch. (?) TO DO Dataingeniør arbeid
> Implement limit switches Elin, Vetle TO DO Dataingeniør arbeid
>> Movement stops when limit is
reached TO DO Dataingeniør arbeid
>> The system logs and reports the
occurrence to operator/farmer? TO DO Dataingeniør arbeid
> Implement emergency stop Elin, Vetle TO DO Dataingeniør arbeid
>> Pressing the button immediately
halts all movement. TO DO Dataingeniør arbeid

>> Resume button that resumes action TO DO Dataingeniør arbeid
>> Reset button sending robots back to
starting positions?
> Position tracking? Elin TO DO Dataingeniør arbeid
> Automate movement sequences Elin TO DO Dataingeniør arbeid
>> Set a "home" position TO DO Dataingeniør arbeid
> System integration Elin TO DO Dataingeniør arbeid
> Implement gripper pressure sensor Elin, Vetle TO DO Dataingeniør arbeid
> Implement motor currency sensors Elin, Vetle TO DO Dataingeniør arbeid
Choosing motor Vetle TO DO Elektronikkingeniør arbeid
Stepper motor driver development Elin, Vetle TO DO Elektronikkingeniør arbeid
> Current sensing TO DO Elektronikkingeniør arbeid
> Stallguard TO DO Elektronikkingeniør arbeid
> Limit switches TO DO Elektronikkingeniør arbeid
> Rotary encoder TO DO Elektronikkingeniør arbeid
Power delivery Vetle TO DO Elektronikkingeniør arbeid
Choosing interface for motors Vetle TO DO Elektronikkingeniør arbeid

PCB? Vetle TO DO Elektronikkingeniør arbeid
Force sensor TO DO Elektronikkingeniør arbeid
Bilder opp fra bedriftsbesøk på Insta Sunniva TO DO SoMe
Based on results from open-source
object detection dataset, decide if we
need to compile our own dataset. Jim TO DO AI
Compile a dataset with associated
labels and bounding boxes from images
of the lettuce. Jim TO DO AI
Train the object detection AI model with
the dataset Jim TO DO AI
Build standalone Python script for live
detection Jim TO DO AI
Refactor AI for ROS2 compatibility Jim TO DO AI
Finalize AI models Jim TO DO AI
Opprette kommunikasjon mellom
nodene i ROS2 TO DO Robotics
ROS2 Utvikle arm_controller TO DO Robotics
ROS2 Utvikle FSM (task planner) TO DO Robotics
ROS2 Innlemme og interface AI --> task
planner TO DO Robotics
ROS2 Implementere motion_planner
(Enkel) TO DO Robotics
ROS2 Implementere FSM TO DO Robotics
Lage felles ROS2 launch-fil TO DO Robotics
Full Hardware/software-test TO DO Robotics
Legge til kallibreringsrutine TO DO Robotics
Sette opp MQTT Broker & ROS2 TO DO Robotics
Complete the http protocol class Jim TO DO Misc

Finalize first iteration of API layer
between central and core Jim TO DO Misc
Check if citations are correct according
to style guidelines Jim TO DO Misc
Write about login table and login screen
in thesis Jim TO DO Misc
Write a section about ClickUp TO DO Misc
Regenerate Doxygen docs for code and
put in the thesis before delivering Jim TO DO Misc
Explain the code I wrote in the thesis Jim TO DO Misc
Lisens på Powerpoint og Visio stock
images. Kan de brukes i bachelor
rapport? Jim TO DO Misc

Make sure variable names and product
names are italic or bold text in thesis Jim TO DO Misc
Implement token based security for the
API Jim TO DO Misc
Implement a class abstraction for
interacting with the camera Jim TO DO Camera

Refactor Camera for ROS2 compatibility Jim TO DO Camera
Create a login screen and users
database for HMI Jim TO DO HMI
Build a live detection demo Jim TO DO HMI
Design basic HMI layout Jim TO DO HMI
Develop basic functional HMI Jim TO DO HMI
Finalize HMI Jim TO DO HMI

Fine tune and test the Green
Percentage Image segmentation
algorithm Jim TO DO ML
Complete database for HMI, Camera
and AI Jim TO DO Network
Prepare integration adapter for ROS2
(future-ready) Jim TO DO Network
Authorization checks for api Jim TO DO Network
Document AI pipeline and UI behavior Jim TO DO General
Finalize software, document
architecture, and record test logs. Jim TO DO General
CAD simuleringer Beatrix IN PROGRESS Robot base
Valg av materialer Beatrix IN PROGRESS Robot base
Cad tegning kasse kontrollenheter Beatrix TO DO Robot base
Produksjon av elementer til kasse
kontrollenheter Beatrix TO DO Robot base
Dokumentere base og design
begrunnelser TO DO Robot base
development of arm prototype Daniels IN PROGRESS Robot arm
> joint belt drive Daniels IN PROGRESS Robot arm
>> SW simulations Daniels IN PROGRESS Robot arm
> joint direct drive Daniels IN PROGRESS Robot arm
>> SW simulations Daniels IN PROGRESS Robot arm
> simulation of assembly Daniels IN PROGRESS Robot arm
physical prototype Daniels TO DO Robot arm
3D print Daniels TO DO Robot arm
Gripper/end effector research og
konseptforslag Sunniva IN PROGRESS Gripper / end effector

> Design for pressure/force sensor or
mechanical stop Sunniva IN PROGRESS Gripper / end effector
> Soft touch på end effectoren, hva
funker best? Sunniva IN PROGRESS Gripper / end effector
> Sensor touch? Eller mekanisk Sunniva IN PROGRESS Gripper / end effector
> Kamera plassering på griper eller
håndledd på arm? Sunniva, Jim IN PROGRESS Gripper / end effector
> Motor til griper, hvilken type? Sunniva, Vetle IN PROGRESS Gripper / end effector
> Kobling fra arm til griper Sunniva, Daniels IN PROGRESS Gripper / end effector
gripe arm konsepter Sunniva IN PROGRESS Gripper / end effector
> kanskje solidworks modell? Daniels IN PROGRESS Gripper / end effector
Requirements: Calculations (weight,
force, torque, etc.) Sunniva TO DO Gripper / end effector
FEM analysis in SW of gripper Sunniva TO DO Gripper / end effector
3D-Print gripper parts Sunniva TO DO Gripper / end effector
connect gripper parts after print Sunniva TO DO Gripper / end effector
Install motor/servo for testing Sunniva, Vetle TO DO Gripper / end effector
Perform grip test Sunniva TO DO Gripper / end effector
Connect gripper/end effector to robot
arm Sunniva, Daniels TO DO Gripper / end effector

Final testing Jim, Elin, Beatrix, Sunniva, Daniels, Vetle TO DO Gripper / end effector
Final documentation Sunniva TO DO Gripper / end effector
Teste assembly for dynamiske
belastninger i forskjellige
konfigurasjoner (FEM) Beatrix TO DO Structural integrity
Order PCB Vetle TO DO Custom PCB
Order components Vetle TO DO Order components

Appendix C

mechanical

1 belts and pulleys DAB |

just a more detailed explanation. all parts are from maedler website [28]

1.0.1 Pulleys DAB |

pulley choice was made based on what bearings we had available based on its internal diameter.
But pulley for joint 1 had to be also sized so that the pulley itself is not too big and comes in
the way of maneuverability of the robot.
the list and info of pulley is in belt drive subsection 9. These pulleys do not have set screws,
its a clamp type where its held by the clamping force. one motor shaft was to short to have
the belt close to the frame as possible, so we decided to add 2 set screw M3 in pulley groove to
fasten it see in figure C.1.

266

Figure C.1: pulley joint 3 motor side

There is also a pulley for joint 2 motor side, the shaft is almost to short so a good idea would
be to also add 2 set screws to it instead of relying on the clamp with minimal contact.
CAD models for pulleys are all available to download from maedler supplier. use of Their
cad files are for internal use only and not for commercial use. since they just redirect to a
government site abut the general use of Cad files.

1.0.2 Belts DAB |

Belt type is T5 10mm belt. the five means the distance from center of the peak to center of
the peak is 5mm that is called pitch, and width of 10mm. these belts are timing belts
Belt lengths were chosen trough meddler calculator. There you can input pulley teeth amount
and the distance from the pulleys center to center, and also select what kind of belt width and
type. then it gives the correct belt length.
after that we look at what is the closest size they sell and chose a little bit over size a few mm
to be on the safe side and we will add a belt tensioner which will almost eliminate all the sag
in the belt.

267

2 Robot Gripper Concepts SME |

A gripper is the mechanical component of a robot’s end effector designed to grasp, hold, or
transport objects. Performing as the "hand" of a robotic arm, the gripper enables the robot to
interact with physical objects efficiently.

The most common types of grippers include vacuum, pneumatic, hydraulic, and electric grip-
pers. In our project, we prioritize high flexibility and the use of materials that do not damage
plants. Through research, I identified various types of grippers, some of which are more suitable
for our application than others.

2.0.1 Jaw gripper SME |

One type we examined is the jaw gripper, a parallel gripper that is among the most versatile
and widely used in robotics. This gripper features two opposing jaws that move parallel to each
other, enabling it to grasp objects of different shapes and sizes. The jaw gripper is well suited
for pick-and-place operations due to its precision and ability to handle both small and large
irregularly shaped objects. Additionally, by controlling the gripping force and incorporating
soft-touch materials on the jaws, this type of gripper can safely manage fragile objects or
materials requiring a delicate touch.

Figure C.2: Jaw gripper
[65]

2.0.2 Finger gripper SME |

Another end effector that we explored is the finger gripper, which offers greater flexibility than

268

the jaw gripper. This type is particularly effective for handling objects with irregular shapes or
intricate geometries. Finger grippers provide a highly adaptable solution for robotics, as they
consist of multiple fingers that conform to an object’s shape during grasping. The fingers can be
made from rigid materials for stability or soft materials to protect delicate items, depending on
the specific application. A combination of both materials can also be used to balance gripping
force with a gentle touch.

Figure C.3: Finger gripper
[65]

2.0.3 Soft gripper SME |

Lastly, we investigated soft grippers, which include several gripper types. These grippers are
highly adaptable and applicable across various industries. In agricultural harvesting, soft-
touch technology has recently gained attention due to its ability to handle delicate crops,
cost-effectiveness, and potential for automated harvesting. Soft grippers can consist of one or
multiple fingers and are often constructed from rubber or silicone, making them suitable for
diverse applications.

Figure C.4: Soft gripper
[66]

269

Soft grippers are primarily powered by pneumatic or hydraulic systems, utilizing compressed
air or pressurized fluids to generate mechanical movement. This energy conversion mechanism
allows for smooth and controlled gripper operation.

2.0.4 Fin-ray grippers SME |

Fin-Ray grippers are a type of soft robotic gripper designed for grasping complex and de-
formable objects. They are inspired by the fin-ray effect, a natural phenomenon observed in
the fins of fish. This principle has been adapted for robotics, enabling grippers to adapt to an
object’s shape without requiring extensive actuation systems.

The structure of Fin-Ray grippers is characterized by a triangular shape, where the fins consist
of two flexible elements arranged in a V-shaped configuration. When an external force is ap-
plied to the fins, the structure deforms in a way that enhances the gripping capability, allowing
the gripper to wrap around objects gently and securely.

One of the key advantages of Fin-Ray grippers is their ease of design and manufacturing. The
fin-ray effect can be efficiently modeled using CAD software and is well-suited for additive
manufacturing. These grippers can be 3D-printed, making them a cost-effective and accessible
solution for various robotic applications. [67]

(a) Fin-ray Gripper (b) Fish fin-ray effect

Figure C.5: Fin-Ray concept
[68]

2.1 Soft Touch in Agricultural Robotics SME |

In agricultural robotics, particularly in environments where robots handle delicate food prod-
ucts such as salad greens, a soft touch feature is usually incorporated to prevent damage to

270

the plants. Traditional robotic grippers, which are often designed for industrial applications,
may apply excessive force on fragile products, leading to reduced quality or waste. Therefore,
integrating soft touch technology in robotic grippers enhances their ability to handle sensitive
agricultural products effectively.

The materials commonly used to achieve a soft touch include silicone and rubber, both of which
provide flexibility and cushioning to minimize pressure on delicate items. However, when select-
ing materials for agricultural applications, it is essential to ensure compliance with food-contact
safety regulations. Regulatory standards dictate that all materials in direct contact with edible
products must be non-toxic, non-reactive, and free from harmful substances to maintain food
safety and quality.

Soft touch technology is typically implemented in the fingers of the robotic gripper, as these
components make direct contact with plants or products. One of the most effective methods
for achieving a soft touch is silicone molding, a process that allows for precise shaping of the
gripper’s contact surfaces. Silicone molding offers several advantages, including customizability,
durability, and biocompatibility, making it a suitable choice for agricultural applications. By
tailoring the shape and flexibility of the gripper fingers, robots can handle a wide variety of
plants while ensuring minimal stress on the harvested items.

The integration of soft touch technology in robotic grippers represents a significant advancement
in automated harvesting and food processing. With the increasing demand for automation in
agriculture, soft touch solutions not only improve efficiency but also contribute to reducing food
waste by ensuring gentler handling of crops. As research and technology evolve, further inno-
vations in material science and robotic control mechanisms will likely enhance the effectiveness
and adaptability of soft touch grippers in agricultural applications. [69]

271

3 3D-Printing for gripper development SME |

Additive Manufacturing Overview

3D printing, also known as additive manufacturing, is a fabrication process that creates objects
by depositing material layer by layer, directly from a digital model. This technique contrasts
with traditional subtractive methods such as milling or turning, where material is removed
from a solid block.

For prototyping purposes, 3D printing offers significant advantages in terms of speed, cost-
efficiency, and design flexibilityespecially for iterative development and rapid testing cycles.

Materials and Techniques

The gripper components in this project were manufactured using FDM, one of the most acces-
sible and widely used 3D printing methods. This technology melts thermoplastic filaments and
extrudes them layer by layer to form the final geometry.

Two primary materials were used:

• PLA: Chosen for its ease of printing, rigidity, and availability. PLA was used for all
structural components where stiffness and dimensional accuracy were required.

• TPU: Selected for the Fin-Ray fingers in Prototype 2, TPU offers the flexibility and
elasticity necessary for soft-touch gripping. It allows the fingers to deform around the
object being handled, reducing the need for sensors while enhancing adaptability.

Design Considerations

Because 3D printed parts generally have lower mechanical strength compared to machined metal
parts, the designs had to account for stress distribution, layer adhesion, and print orientation.
The geometry was optimized to avoid weak points, and features such as ribbing, filleting, and
strategic wall thickness were incorporated to enhance structural integrity.

Moreover, modularity was prioritized to facilitate reprinting and replacement of individual com-
ponents without needing to manufacture the entire assembly again. This modular approach was
especially valuable for testing and educational environments with limited budgets and access
to industrial manufacturing tools.

272

Benefits and Limitations

The primary advantage of using 3D printing in this context was the ability to rapidly iterate on
the design at minimal cost. Changes could be made in CAD and quickly verified with a physical
prototype. However, 3D printing is not ideal for all application components that experience
high mechanical loads or require long-term durability, and may eventually need to be replaced
with machined metal versions. These considerations are explored in more detail in chapter 15.1.

273

Appendix D

Mechanical design

1 Forces acting on base BMR | —

When designing and choosing the different elements for the base, it has been important to know
what forces the base will be subjected to, both in static equilibrium and during operation. In
addition to the combined weight of the whole arm, the base also needs to handle the moment
caused by off center mass, see fig. D.1.

To lower the strain on the motor shaft and reduce the power wasted on sliding friction between
rotating parts, we use bearings to support and control both the axial load and the moment
forces caused by off center load.

The axial load comes from the weight of the complete arm with payload (around 80 N). The
radial load comes from the moment of the off center mass of the outstretched arm, and the
magnitude of this force to be transferred through the bearings is dependent on the distance
and arrangement of the bearings.

The motor needs to be strong enough to rotate the combined weight of the arm with poayload
at the specified speed.

To find the exact values for this, a dynamic analysis with the inertia of each element in the arm
would be the correct way. This is a quite complex calculation, and is left out for this thesis.

274

Figure D.1: Forces acting on base and bearings

275

2 base HPT interface BMR | —

For mounting of the robot arm, the base flange needs to be secured to a fixed surface by 4 X
M8 bolts (see fig.). This could be directly on a working table, on a separate mounting table or
for example a rail system (see fig.).

Important to consider - calibrate - put in parameter for the height (difference working table/-
mounting table).

Figure D.2: Interface for base flange

276

Figure D.3: Interface future possibilities

277

3 full scale model BMR | —

Figure D.4: Full scale model

278

4 Further work on base BMR | —

This section contains some thoughts around the future development of the base that has not
been implemented yet due to time constraints.

FEA and shaft layout

Initial analysis on the shaft has given a better understanding into where the stress concentra-
tions and problematic areas are situated and which applied loads affect the shaft the most.
Running the studies with different shaft lengths and different distances/loads between the two
bearings gave some insights. Figure D.5 shows the positioning of the applied loads.

279

Figure D.5: Load applied in FEA

Axial load (from weight of arm + payload)
The axial load (80 N) is trivial and can be disregarded.

Radial load (from moment created by offset weight of arm + payload))
The radial load is affected by the distance between the two bearings. A longer distance between
the two bearings makes the radial loads they shall transfer smaller (using values from hand
calculations for the moment load). These loads are placed on 1/4 of the shaft circumference
to simulate the actual force distribution from the bearing. Even when shortening the distance
(down to 20 mm) to create higher loads, these do not seem to create problem areas.

280

Load from motor shaft
This load is set to act on one side of the key-slot wall, and is set to 2500 N (input: maximum
permissable torque of the motor of 10 Nm divided by the distance of 4 mm to the shaft axis).
The longer the shaft is, it creates the highest stress concentrations from the load of the rotating
motor shaft at the fixed bottom part. Considerations about how the shaft shall be fixed to the
table-base flange should be made. Also a shorter shaft is preferred, this will also reduce effects
of bending and deflection [25, p. 377].

One such simulation can be seen as a stress plot and a FOS plot in figure D.6. This shaft has a
bore diameter for the bearings of 25 mm and the shaft is 32 mm. The distance of the bearings
is 22 mm and the radial load set to 900 N.

Figure D.6: stress plot for shaft

Machining
The shaft itself can be turned easily, but the hole for the shaft of the motor with it’s key can
hardly be machined directly (as the design of the prototype). An idea is to design the upper
part of the shaft with an open slit for the keyway for the ease of machining, and place a sleeve
over the shafts to reduce stress at the keyway slit (see fig. D.7). The key slit should not be
directly above the shaft shoulder, since these both will have stress concentrations that can
combine [25, p 405].

281

Figure D.7: The left side is hard to machine, right side with sleeve as an alternativ

Bearings and bearing arrangement
Bearings are a "wear item", meaning that they need to be exchanged after a certain time/revolu-
tions. Choosing the right bearings for the application and ensuring proper mounting, facilitates
a longer bearing life (as specified by the manufacturer).

The bearings for the base needs to take both axial and moment loads, whereof the moment
loads will produce radial loads also. There are many specialized bearings for combined load
situations, but they are often quite expensive. Angular contact ball bearings or tapered roller
bearings are both suitable choices at a more reasonable price.

Studying some bearings (from the manufacturer SKF) with a bore diameter > 20 mm, and
comparing their load ratings with the loads working on the base, shows that they will all be
oversized. The axial/thrust load is so low compared to the load ratings that the bearings min-
imum load requirements is not fulfilled, and it would be necessary to apply a pre-load to the
bearings.

Many manufacturers of bearings (like SKF) have very good online resources like calculators
for bearing arrangements etc. When a bearing is chosen, they also provide information of
corresponding abutment dimensions, geometrical tolerances and CAD models to integrate into
an assembly.

282

5 Further work on arms/joints DAB |

5.1 FEA on parts |

Initial analysis to have a better insight of where the stresses are located to make correct ad-
justments to improve part strength and design.

5.1.1 Shaft of each joint |

joint 1
tested firstly bending forces on the shaft end diameter of 20mm and middle diameter where
arm bolts up is 24mm. bearing support where bearing sits on shaft dark blue points and with
a force of 40.1N the purple arrows in figure D.8.with one fixture at the end where pulley sits.

Figure D.8: shaft bending forces

In this design study see figure D.9 try to find permissible torque when factor of safety is 1.5.
and we can see it is at 46Nm at n=1.5 factor of safety.

283

Figure D.9: shaft torque forces design study

joint 2
had problems doing design studdy, discovered that increasing mesh quality made the factor of
safety show 0 but when you check in static it shows perfectly fine. becouse of this didnt have
time to put in.
joint 3
applying Bending forces for joint 3 shaft that is 8mm see figure D.10. purple arrows are 19.62N
force downwards. bearing support dark blue points and also fixture in the shaft pin hole.

284

Figure D.10: shaft bending forces

design study figure D.11 shows that the shaft can endure 4.6Nm before dropping below factor
of safety of n=1.5.

Figure D.11: shaft torque forces design study

285

Appendix E

Electronics

1 Schematic VMN | -

286

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

Stepper motor driver

1 2

31

Size

Title

Number Revision

Sheet of
Drawn By:File: StepperDriver1.SchDoc

Date: 17/05/2025

A4

Vetle Myhre Nilsen

VCC29
VCC IO20

HB1 1

HB2 44

CB1 2

CB2 43

DIAG0 SWN26 DIAG1 SWP27

CA1 42

CA2 35

HA1 41

HA2 36

BMA1 40
BMA2 37

LA1 39

LA2 38

BMB1 48
BMB2 45

LB1 47

LB2 46

5VOUT 5
12VOUT 3

CLK12

CPI32 CPO31

CS CFG313

DRV ENN28

ENCA DCIN CFG524 ENCB DCEN CFG423

ENCN DCO CFG625

REFL STEP17

REFR DIR18

SCK CFG214

SD MODE21

SDI CFG115
SDO CFG016

SPI MODE22

SRAH 8
SRAL 7

SRBH 9
SRBL 10

TST MODE11

VCP34

VS33 VSA4

GNDA 6
GNDD 19

GNDD 30
Exposed Die Tie 49

U1

TMC5160A-TA-T

1 2

100nF

C6

Vm

+5

GND

+5

SPI low & SD low = UART

Clock low = Int clock

SPI high & SD low = SPI
SPI low & SD high = Standalone Step/Dir
SPI high & SD high = Step/Dir + SPI config

ENCBConnectors and differential op amps[5A]
ENCAConnectors and differential op amps[3A]

UART_PConnectors and differential op amps[3C], StepperDriver2[1B]

UART_NConnectors and differential op amps[3D], StepperDriver2[1B]

Vm

REFL
REFR

2
1

1
R6

1
2

220nF
C9

GND

CA1/2 and CB1/2 is either 220nF or 470nF

GND

1
2

470nF
C12

2 1
47

R14

2 1

47

R9

2 1
47

R7

GND

BMB2
BMB1

BMA2

BMA1

BMB1
BMB2

BMA2
BMA1

LA2

GND

HA2

LB2

HB2

HA2

1
2

470nF
C2

GND

Vm

GND

LB2

HB2

BMA1

BMA2

2 1
47

R18

BMB2

BMB1

1

3
4

Q2
NTD3055L104T4G

1

3
4

Q4
NTD3055L104T4G

1

3
4 Q3

NTD3055L104T4G

1

3
4 Q1

NTD3055L104T4G

1

3
4

Q6
NTD3055L104T4G

1

3
4

Q8
NTD3055L104T4G

1

3
4 Q5

NTD3055L104T4G

1

3
4 Q7

NTD3055L104T4G
LA2

21 R1

15R

21 R5

15R
21 R4

15R

21 R13

15R

21 R11

15R

21 R10

15R

21 R12

15R

21 R2

15R

1
2
3
4

J2

EBQA-04-C-C

2
1

R8
R075

2
1

R16
R075

2
1

P1

61300211121

2
1

P2

61300211121

GND

GND

REFR

REFL

2
1

10k
R15

2
1

10k
R19

21
22k

R20

21
22k

R17

+5

1
2

+ C1
220uF 80V

NAStepperDriver2[1B]

1
2 2.2µF

C4

1
2 2.2µF

C5

GND

+5

1
2

470nF
C3

GND

1 2

220nF

C7

1 2
220nF

C13

1 2

220nF

C15

1 2

220nF

C8

1
2

+ C11
220uF 80V

+5

1
2

1nF
C18

1
2

1nF
C17

UART_P
UART_N

2

3

1

2

3

J1

PREC003SAAN-RC

NAIConnectors and differential op amps[1D]

+5 +5

1
2 2.2nF

C16

1 2

22nF

C14

2
1

2.2
R3

1
2 2.2nF

C10

BMA1

BMB1
BMA2

BMB2

PIC101
PIC102 COC1

PIC201

PIC202
COC2

PIC301

PIC302
COC3 PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601 PIC602

COC6
PIC701 PIC702

COC7

PIC801 PIC802

COC8

PIC901

PIC902
COC9

PIC1001

PIC1002
COC10

PIC1101
PIC1102 COC11

PIC1201

PIC1202
COC12

PIC1301 PIC1302

COC13

PIC1401 PIC1402

COC14

PIC1501 PIC1502

COC15

PIC1601

PIC1602
COC16

PIC1701

PIC1702
COC17

PIC1801

PIC1802
COC18

PIJ101

PIJ102

PIJ103

COJ1
PIJ201

PIJ202

PIJ203

PIJ204

COJ2

PIP101

PIP102

COP1

PIP201

PIP202

COP2

PIQ101

PIQ103

PIQ104 COQ1

PIQ201

PIQ203

PIQ204
COQ2

PIQ301

PIQ303

PIQ304 COQ3

PIQ401

PIQ403

PIQ404
COQ4

PIQ501

PIQ503

PIQ504 COQ5

PIQ601

PIQ603

PIQ604
COQ6

PIQ701

PIQ703

PIQ704 COQ7

PIQ801

PIQ803

PIQ804
COQ8

PIR101 PIR102

COR1

PIR201 PIR202

COR2

PIR301

PIR302
COR3

PIR401 PIR402

COR4
PIR501 PIR502

COR5

PIR601

PIR602
COR6

PIR701 PIR702

COR7

PIR801

PIR802

COR8

PIR901 PIR902

COR9

PIR1001 PIR1002

COR10

PIR1101 PIR1102

COR11

PIR1201 PIR1202

COR12

PIR1301 PIR1302

COR13

PIR1401 PIR1402

COR14

PIR1501

PIR1502
COR15 PIR1601

PIR1602

COR16

PIR1701 PIR1702

COR17

PIR1801 PIR1802

COR18

PIR1901

PIR1902
COR19

PIR2001 PIR2002

COR20

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

PIU109

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017

PIU1018

PIU1019

PIU1020

PIU1021

PIU1022

PIU1023

PIU1024

PIU1025

PIU1026

PIU1027

PIU1028

PIU1029

PIU1030

PIU1031

PIU1032

PIU1033

PIU1034

PIU1035

PIU1036

PIU1037

PIU1038

PIU1039

PIU1040

PIU1041

PIU1042

PIU1043

PIU1044

PIU1045

PIU1046

PIU1047

PIU1048

PIU1049

COU1

PIC401

PIR302

PIR1502

PIR1902

PIU105

PIU1020

PIC1502

PIJ201

PIQ603

PIQ804
PIU1040

NLBMA1

PIC1302

PIJ202

PIQ503

PIQ704
PIU1037

NLBMA2

PIC802

PIJ203

PIQ203

PIQ404

PIU1048
NLBMB1

PIC702

PIJ204

PIQ103

PIQ304

PIU1045
NLBMB2

PIC101 PIC201

PIC301 PIC402 PIC502

PIC901

PIC1101 PIC1201

PIC1701

PIC1801

PIJ103

PIP101

PIP201

PIR802
PIR901

PIR1602
PIR1801

PIU106

PIU1011

PIU1012

PIU1013

PIU1014

PIU1019

PIU1021

PIU1022

PIU1025

PIU1028

PIU1030

PIU1049

PIR1102

PIU1036
NLHA2

PIR202

PIU1044
NLHB2

PIR1302

PIU1038
NLLA2

PIR502

PIU1046
NLLB2

PIC302

PIR301
PIU1029

PIC501

PIU103

PIC601

PIC902

PIR601
PIU104

PIU1033

PIC602 PIU1034 PIC701

PIU1043

PIC801 PIU102

PIC1001

PIR702

PIU109

PIC1002
PIR902

PIU1010

PIC1301 PIU1035

PIC1401

PIU1032

PIC1402 PIU1031

PIC1501 PIU1042

PIC1601

PIR1402

PIU108

PIC1602

PIR1802

PIU107

PIJ101

PIJ102

PIU1015

PIP102

PIR1501
PIR1701

PIP202
PIR1901

PIR2001

PIQ101

PIR201

PIQ201 PIR102

PIQ301 PIR501

PIQ303 PIQ403
PIR701

PIR801

PIQ401 PIR402

PIQ501

PIR1101

PIQ601 PIR1002

PIQ701

PIR1301

PIQ703 PIQ803
PIR1401

PIR1601

PIQ801

PIR1202

PIR101

PIU101

PIR401

PIU1047

PIR1001

PIU1041

PIR1201 PIU1039

PIU1016

PIU1023

PIU1024

PIC1802
PIR2002

PIU1017
NLREFL

PIC1702
PIR1702

PIU1018
NLREFR

PIU1026

NLUART0N

PIU1027 NLUART0P

PIC102 PIC202

PIC1102 PIC1202

PIQ104 PIQ204

PIQ504 PIQ604

PIR602

POENCA
POENCB

PONA

PONAI

POUART0N

POUART0P

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

*

* *

32

Size

Title

Number Revision

Sheet of
Drawn By:File: StepperDriver2.SchDoc

Date: 17/05/2025

A4

*

VCC29
VCC IO20

HB1 1

HB2 44

CB1 2

CB2 43

DIAG0 SWN26 DIAG1 SWP27

CA1 42

CA2 35

HA1 41

HA2 36

BMA1 40
BMA2 37

LA1 39

LA2 38

BMB1 48
BMB2 45

LB1 47

LB2 46

5VOUT 5
12VOUT 3

CLK12

CPI32 CPO31

CS CFG313

DRV ENN28

ENCA DCIN CFG524 ENCB DCEN CFG423

ENCN DCO CFG625

REFL STEP17

REFR DIR18

SCK CFG214

SD MODE21

SDI CFG115
SDO CFG016

SPI MODE22

SRAH 8
SRAL 7

SRBH 9
SRBL 10

TST MODE11

VCP34

VS33 VSA4

GNDA 6
GNDD 19

GNDD 30
Exposed Die Tie 49

U2

TMC5160A-TA-T

GND

+5_2

GND

2 1
47

R34

2 1

47

R29

2 1
47

R27

SPI low & SD low = UART
SPI high & SD low = SPI
SPI low & SD high = Standalone Step/Dir
SPI high & SD high = Step/Dir + SPI config

ENCB2Connectors and differential op amps[5B]
ENCA2Connectors and differential op amps[3B]

UART_PConnectors and differential op amps[3C], StepperDriver1[1B]

UART_NConnectors and differential op amps[3D], StepperDriver1[1B]

GND

Vm

BMB2_2
BMB1_2

BMA2_2

BMA1_2

BMB1_2
BMB2_2

BMA2_2
BMA1_2

LA2_2

GND

HA2_2

LB2_2

HB2_2

HA2_2

GND

Vm

GND

LB2_2

HB2_2

BMA1_2

BMA2_2

REFL_2
REFR_2

2 1
47

R36

BMB2_2

BMB1_2

1

3
4

Q10
NTD3055L104T4G

1

3
4

Q12
NTD3055L104T4G

1

3
4 Q11

NTD3055L104T4G

1

3
4 Q9

NTD3055L104T4G

1

3
4

Q14
NTD3055L104T4G

1

3
4

Q16
NTD3055L104T4G

1

3
4 Q13

NTD3055L104T4G

1

3
4 Q15

NTD3055L104T4G

LA2_2

21 R21

15R

21 R25

15R
21 R24

15R

21 R33

15R

21 R31

15R

21 R30

15R

21 R32

15R

21 R22

15R

1
2
3
4

J3

EBQA-04-C-C

BMA1_2
BMA2_2

1 2

100nF

C24

Vm

+5_2 +5_2

2
1

1
R26

1
2

220nF
C27

GND

2
1

R28
R075

2
1

R35
R075

1
2

470nF
C20

1
2

470nF
C29

1
2

+ C19
220uF 80V

2
1

P4

61300211121

GND

2
1

10k
R38

21
22k

R40 REFL_2

+5_2

21
22k

R39

+5_2

2
1

P3

61300211121

GND

2
1

10k
R37

REFR_2

1
2

470nF
C21

GND

1
2 2.2µF

C22

1
2 2.2µF

C23

GND

NAStepperDriver1[1B]
NAOConnectors and differential op amps[1D]

1 2

220nF

C25

1 2

220nF

C26

1 2

220nF

C33

1 2
220nF

C31

1
2

+ C30
220uF 80V

1
2

1nF
C361

2

1nF
C35

+5_2 +5_2

1
2 2.2nF

C34

1 2

22nF

C32

2
1

2.2
R23

1
2 2.2nF

C28
BMB1_2
BMB2_2

PIC1901
PIC1902 COC19

PIC2001

PIC2002
COC20

PIC2101

PIC2102
COC21 PIC2201

PIC2202
COC22

PIC2301

PIC2302
COC23

PIC2401 PIC2402

COC24
PIC2501 PIC2502

COC25

PIC2601 PIC2602

COC26

PIC2701

PIC2702
COC27

PIC2801

PIC2802
COC28

PIC2901

PIC2902
COC29

PIC3001
PIC3002 COC30

PIC3101 PIC3102

COC31

PIC3201 PIC3202

COC32

PIC3301 PIC3302

COC33

PIC3401

PIC3402
COC34

PIC3501

PIC3502
COC35

PIC3601

PIC3602
COC36

PIJ301

PIJ302

PIJ303

PIJ304

COJ3

PIP301

PIP302

COP3

PIP401

PIP402

COP4

PIQ901

PIQ903

PIQ904 COQ9

PIQ1001

PIQ1003

PIQ1004
COQ10

PIQ1101

PIQ1103

PIQ1104 COQ11

PIQ1201

PIQ1203

PIQ1204
COQ12

PIQ1301

PIQ1303

PIQ1304 COQ13

PIQ1401

PIQ1403

PIQ1404
COQ14

PIQ1501

PIQ1503

PIQ1504 COQ15

PIQ1601

PIQ1603

PIQ1604
COQ16

PIR2101 PIR2102

COR21

PIR2201 PIR2202

COR22

PIR2301

PIR2302
COR23

PIR2401 PIR2402

COR24
PIR2501 PIR2502

COR25

PIR2601

PIR2602
COR26

PIR2701 PIR2702

COR27

PIR2801

PIR2802

COR28

PIR2901 PIR2902

COR29

PIR3001 PIR3002

COR30

PIR3101 PIR3102

COR31

PIR3201 PIR3202

COR32

PIR3301 PIR3302

COR33

PIR3401 PIR3402

COR34

PIR3501

PIR3502

COR35

PIR3601 PIR3602

COR36

PIR3701

PIR3702
COR37

PIR3801

PIR3802
COR38

PIR3901 PIR3902

COR39

PIR4001 PIR4002

COR40

PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

PIU2017

PIU2018

PIU2019

PIU2020

PIU2021

PIU2022

PIU2023

PIU2024

PIU2025

PIU2026

PIU2027

PIU2028

PIU2029

PIU2030

PIU2031

PIU2032

PIU2033

PIU2034

PIU2035

PIU2036

PIU2037

PIU2038

PIU2039

PIU2040

PIU2041

PIU2042

PIU2043

PIU2044

PIU2045

PIU2046

PIU2047

PIU2048

PIU2049

COU2

PIC2201

PIR2302

PIR3702
PIR3802

PIU205

PIU2020

PIC3302

PIJ301

PIQ1403

PIQ1604
PIU2040

NLBMA102

PIC3102

PIJ302

PIQ1303

PIQ1504
PIU2037

NLBMA202

PIC2602

PIJ303

PIQ1003

PIQ1204

PIU2048
NLBMB102

PIC2502

PIJ304

PIQ903

PIQ1104

PIU2045
NLBMB202

PIC1901 PIC2001

PIC2101
PIC2202 PIC2302

PIC2701

PIC2901 PIC3001

PIC3501
PIC3601

PIP301

PIP401

PIR2802
PIR2901

PIR3502
PIR3601

PIU206

PIU2011

PIU2012

PIU2013

PIU2014

PIU2019

PIU2021

PIU2022

PIU2025

PIU2028

PIU2030

PIU2049

PIR3102

PIU2036
NLHA202

PIR2202

PIU2044
NLHB202

PIR3302

PIU2038
NLLA202

PIR2502

PIU2046
NLLB202

PIC2102

PIR2301
PIU2029

PIC2301

PIU203

PIC2401

PIC2702

PIR2601
PIU204

PIU2033

PIC2402 PIU2034 PIC2501

PIU2043

PIC2601 PIU202

PIC2801

PIR2702

PIU209

PIC2802

PIR2902

PIU2010

PIC3101 PIU2035

PIC3201

PIU2032

PIC3202 PIU2031

PIC3301 PIU2042

PIC3401

PIR3402

PIU208

PIC3402

PIR3602

PIU207

PIP302
PIR3701

PIR3901

PIP402
PIR3801

PIR4001

PIQ901

PIR2201

PIQ1001 PIR2102

PIQ1101 PIR2501

PIQ1103 PIQ1203
PIR2701

PIR2801

PIQ1201 PIR2402

PIQ1301

PIR3101

PIQ1401 PIR3002

PIQ1501

PIR3301

PIQ1503 PIQ1603
PIR3401

PIR3501

PIQ1601

PIR3202

PIR2101

PIU201

PIR2401

PIU2047

PIR3001

PIU2041

PIR3201 PIU2039

PIU2015

PIU2016

PIU2023

PIU2024

PIU2026

PIU2027

PIC3602
PIR4002

PIU2017
NLREFL02

PIC3502
PIR3902

PIU2018
NLREFR02

PIC1902 PIC2002

PIC2902
PIC3002

PIQ904 PIQ1004

PIQ1304 PIQ1404

PIR2602

POENCA2
POENCB2

PONA

PONAO

POUART0N

POUART0P

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

*

* *

33

Size

Title

Number Revision

Sheet of
Drawn By:File: Connectors and differential op amps.SchDoc

Date: 17/05/2025

A4

*

1
3

4

2
5

V-

V+

U3
TLV9101IDBVR

21
10k

R41

21
10k

R45

21
10k

R43

2
1

10k
R471

2 110pF
C37

GND

+5

GND

1
3

4

2
5

V-

V+

U5
TLV9101IDBVR

21
10k

R49

21
10k

R53

21
10k

R51
2

1

10k
R551

2 110pF
C39

GND

+5_2

GND

ENCA StepperDriver1[2C] 1
3

4

2
5

V-

V+

U4
TLV9101IDBVR

21
10k

R42

21
10k

R46

21
10k

R44

2
1

10k
R481

2 110pF
C38

GND

+5

GND

1
3

4

2
5

V-

V+

U6
TLV9101IDBVR

21
10k

R50

21
10k

R54

21
10k

R52

2
1

10k
R561

2 110pF
C40

GND

+5_2

GND

ENCB2 StepperDriver2[1C]
B+_2
B-_2

B+_1
B-_1

GND

+5

GND

B+_1

B-_1

B+_2

B-_2

+5_2

UART_P StepperDriver1[1B], StepperDriver2[1B]

UART_N StepperDriver1[1B], StepperDriver2[1B]

2
1

120
R57

2
1

P5

61300211121

NAO StepperDriver2[1B]

NAI StepperDriver1[1B]

ENCB StepperDriver1[2C]

ENCA2 StepperDriver2[1C]

+5

1
2 100nF

C41

1
2 100nF

C42

1
2 100nF

C43

1
2 100nF

C44

GND

1 12 23 34 45 56 6
J5

TBP02R2-381-06BE

1 12 23 34 45 56 6
J4

TBP02R2-381-06BE

1 12 23 34 45 56 6
J6

TBP02R1-381-06BE

UART_P

UART_N

+5_2

GND

Vm

1
2
3
4

J7

TBP01R1-508-04BE

1

ST1

PTH-M2D5X5

1

ST2

PTH-M2D5X5

1

ST3

PTH-M2D5X5

1

ST4

PTH-M2D5X5

PIC3701

PIC3702
COC37 PIC3801

PIC3802
COC38

PIC3901

PIC3902
COC39 PIC4001

PIC4002
COC40

PIC4101

PIC4102
COC41

PIC4201

PIC4202
COC42

PIC4301

PIC4302
COC43

PIC4401

PIC4402
COC44

PIJ401

PIJ402

PIJ403

PIJ404

PIJ405

PIJ406

COJ4

PIJ501

PIJ502

PIJ503

PIJ504

PIJ505

PIJ506

COJ5

PIJ601

PIJ602

PIJ603

PIJ604

PIJ605

PIJ606

COJ6

PIJ701

PIJ702

PIJ703

PIJ704

COJ7

PIP501

PIP502

COP5

PIR4101 PIR4102

COR41
PIR4201 PIR4202

COR42

PIR4301 PIR4302

COR43
PIR4401 PIR4402

COR44

PIR4501 PIR4502

COR45
PIR4601 PIR4602

COR46

PIR4701

PIR4702

COR47 PIR4801

PIR4802

COR48

PIR4901 PIR4902

COR49
PIR5001 PIR5002

COR50

PIR5101 PIR5102

COR51
PIR5201 PIR5202

COR52

PIR5301 PIR5302

COR53
PIR5401 PIR5402

COR54

PIR5501

PIR5502

COR55 PIR5601

PIR5602

COR56

PIR5701

PIR5702
COR57

PIST101

COST1

PIST201

COST2

PIST301

COST3

PIST401

COST4

PIU301

PIU302 PIU303

PIU304
PIU305

COU3

PIU401

PIU402 PIU403

PIU404
PIU405

COU4

PIU501

PIU502 PIU503

PIU504
PIU505

COU5

PIU601

PIU602 PIU603

PIU604
PIU605

COU6

PIC4301 PIC4401

PIJ406

PIU305 PIU405

PIC4101 PIC4201

PIJ506

PIU505 PIU605

PIJ402

PIR4401

NLB001

PIJ502

PIR5201

NLB002

PIJ401

PIR4601

NLB001

PIJ501

PIR5401

NLB002

PIC3702 PIC3802

PIC3902 PIC4002

PIC4102 PIC4202 PIC4302 PIC4402

PIJ405

PIJ505

PIJ701

PIJ702

PIR4702 PIR4802

PIR5502 PIR5602

PIU302 PIU402

PIU502 PIU602

PIC3701

PIR4502

PIR4701

PIU303

PIC3801

PIR4602

PIR4801

PIU403

PIC3901

PIR5302

PIR5501

PIU503

PIC4001

PIR5402

PIR5601

PIU603

PIJ403

PIR4501

PIJ404 PIR4301

PIJ503

PIR5301

PIJ504 PIR5101

PIJ601

PIJ606

PIP502

PIR5702

PIR4101

PIR4302

PIU304

PIR4102

PIU301

PIR4201

PIR4402

PIU404

PIR4202

PIU401

PIR4901

PIR5102

PIU504

PIR4902

PIU501

PIR5001

PIR5202

PIU604

PIR5002

PIU601

PIST101 PIST201 PIST301 PIST401

PIJ603

PIJ605

PIR5701 NLUART0N
PIJ602

PIJ604

PIP501

NLUART0P

PIJ703

PIJ704

POENCA

POENCA2

POENCB

POENCB2

PONAI

PONAO
POUART0N

POUART0P

2 PCB layers VMN | —

290

PAC102 PAC101

COC1

PAC202 PAC201

COC2

PAC301 PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC601 PAC602

COC6

PAC702
PAC701

COC7

PAC802
PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1102 PAC1101

COC11

PAC1202 PAC1201

COC12

PAC1302
PAC1301

COC13

PAC1401 PAC1402

COC14

PAC1502
PAC1501

COC15

PAC1602 PAC1601

COC16

PAC1701
PAC1702

COC17

PAC1801
PAC1802

COC18

PAC1902 PAC1901

COC19

PAC2002 PAC2001

COC20

PAC2101 PAC2102

COC21

PAC2202 PAC2201
COC22

PAC2302 PAC2301
COC23

PAC2401 PAC2402
COC24

PAC2502
PAC2501

COC25
PAC2602
PAC2601

COC26

PAC2701 PAC2702
COC27

PAC2802 PAC2801

COC28

PAC2902 PAC2901

COC29

PAC3002 PAC3001

COC30

PAC3102
PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAC3402 PAC3401

COC34

PAC3501
PAC3502

COC35

PAC3601
PAC3602

COC36

PAC3702

PAC3701

COC37

PAC3802

PAC3801

COC38

PAC3902

PAC3901

COC39
PAC4002

PAC4001

COC40

PAC4102 PAC4101

COC41
PAC4202 PAC4201

COC42

PAC4302 PAC4301
COC43

PAC4402 PAC4401
COC44

PAJ103

PAJ101
PAJ102

COJ1 PAJ204

PAJ201

PAJ202

PAJ203

COJ2

PAJ303

PAJ302

PAJ304

PAJ301

COJ3

PAJ405 PAJ401 PAJ402 PAJ403 PAJ404 PAJ406

COJ4

PAJ505 PAJ504 PAJ503 PAJ502 PAJ501 PAJ506
COJ5

PAJ604

PAJ602

PAJ605

PAJ603

PAJ606

PAJ601

COJ6

PAJ703

PAJ704

PAJ701

PAJ702

COJ7

PAP101
PAP102

COP1

PAP201
PAP202

COP2

PAP301
PAP302

COP3

PAP401
PAP402

COP4

PAP501
PAP502

COP5

PAQ104 PAQ101

PAQ103

COQ1

PAQ204 PAQ201

PAQ203

COQ2

PAQ303
PAQ304 PAQ301
COQ3

PAQ403

PAQ401 PAQ404
COQ4

PAQ504 PAQ501

PAQ503

COQ5

PAQ604 PAQ601

PAQ603

COQ6

PAQ703
PAQ704 PAQ701
COQ7

PAQ803
PAQ804 PAQ801
COQ8

PAQ904
PAQ903

PAQ901

COQ9

PAQ1004
PAQ1003

PAQ1001

COQ10

PAQ1104
PAQ1101

PAQ1103

COQ11

PAQ1204
PAQ1201

PAQ1203

COQ12

PAQ1304
PAQ1303

PAQ1301
COQ13

PAQ1404
PAQ1401

PAQ1403

COQ14

PAQ1504 PAQ1501

PAQ1503

COQ15

PAQ1604
PAQ1603

PAQ1601

COQ16

PAR101 PAR102

COR1

PAR202 PAR201

COR2

PAR302 PAR301

COR3

PAR402 PAR401

COR4

PAR501 PAR502

COR5

PAR602

PAR601

COR6

PAR701
PAR702

COR7

PAR802 PAR801
COR8

PAR901
PAR902

COR9

PAR1001 PAR1002

COR10

PAR1102 PAR1101

COR11

PAR1202 PAR1201

COR12

PAR1301 PAR1302

COR13

PAR1401 PAR1402

COR14

PAR1501 PAR1502
COR15

PAR1602 PAR1601
COR16

PAR1701 PAR1702

COR17

PAR1801

PAR1802

COR18

PAR1901 PAR1902
COR19

PAR2001 PAR2002

COR20

PAR2101 PAR2102

COR21

PAR2202 PAR2201

COR22

PAR2301 PAR2302

COR23

PAR2401 PAR2402

COR24

PAR2502 PAR2501

COR25

PAR2602

PAR2601

COR26

PAR2701 PAR2702
COR27

PAR2802 PAR2801
COR28

PAR2901 PAR2902
COR29

PAR3001 PAR3002

COR30

PAR3101 PAR3102

COR31

PAR3201 PAR3202

COR32

PAR3302 PAR3301

COR33

PAR3401 PAR3402
COR34

PAR3502 PAR3501
COR35

PAR3601 PAR3602
COR36

PAR3701 PAR3702

COR37

PAR3801 PAR3802
COR38

PAR3902 PAR3901

COR39

PAR4002 PAR4001

COR40

PAR4102

PAR4101

COR41

PAR4201

PAR4202

COR42

PAR4301

PAR4302

COR43

PAR4402

PAR4401

COR44

PAR4502

PAR4501

COR45

PAR4602

PAR4601

COR46

PAR4702

PAR4701

COR47

PAR4802

PAR4801

COR48

PAR4902 PAR4901

COR49

PAR5002 PAR5001

COR50

PAR5102

PAR5101

COR51

PAR5202

PAR5201

COR52
PAR5302

PAR5301

COR53
PAR5402

PAR5401

COR54

PAR5502

PAR5501

COR55
PAR5602

PAR5601

COR56

PAR5702

PAR5701

COR57

PAST101
COST1

PAST201
COST2

PAST301
COST3

PAST401
COST4

PAU1021

PAU1019

PAU1025

PAU1022

PAU1014

PAU1013

PAU1012

PAU1028 PAU1030

PAU1049
PAU1011 PAU106

PAU1027 PAU1026

PAU105

PAU1020

PAU1016

PAU1033

PAU104

PAU1044

PAU1048
PAU1047

PAU1046
PAU1045

PAU1043
PAU1042

PAU1041
PAU1040
PAU1039

PAU1038
PAU1037 PAU1024

PAU1023

PAU1018

PAU1017

PAU1015

PAU1036 PAU1035 PAU1034 PAU1032 PAU1031 PAU1029

PAU1010 PAU109 PAU108 PAU107 PAU103 PAU102 PAU101
COU1

PAU206 PAU2011 PAU2012

PAU2049
PAU2030 PAU2028 PAU2025

PAU2013

PAU2014

PAU2022

PAU2021

PAU2019

PAU2026 PAU2027

PAU2016

PAU201 PAU202 PAU203 PAU204 PAU207 PAU208 PAU209 PAU2010

PAU2029 PAU2031 PAU2032 PAU2033 PAU2034 PAU2035 PAU2036

PAU2017
PAU2018

PAU2023

PAU2024 PAU2037

PAU2038
PAU2039

PAU2040

PAU2041

PAU2042

PAU2043

PAU2044

PAU2045

PAU2046

PAU2047

PAU2048

PAU2015

PAU2020

PAU205

COU2

PAU305

PAU302 PAU301 PAU303

PAU304

COU3

PAU405 PAU404

PAU402 PAU401 PAU403
COU4

PAU505

PAU502 PAU501 PAU503

PAU504

COU5
PAU605

PAU602 PAU601 PAU603

PAU604

COU6

PAC401

PAC4301

PAC4401

PAJ406

PAR302

PAR1502

PAR1902

PAU105

PAU1020

PAU305

PAU405

PAC2201

PAC4101 PAC4201

PAJ506

PAR2302

PAR3702

PAR3802

PAU205

PAU2020

PAU505 PAU605

PAJ402

PAR4401

PAJ502 PAR5201

PAJ401

PAR4601

PAJ501 PAR5401

PAC1502

PAJ201

PAQ603
PAQ804

PAU1040

PAC3302

PAJ301

PAQ1403
PAQ1604

PAU2040

PAC1302

PAJ202

PAQ503
PAQ704

PAU1037

PAC3102

PAJ302

PAQ1303
PAQ1504

PAU2037

PAC802

PAJ203

PAQ203
PAQ404

PAU1048

PAC2602

PAJ303

PAQ1003
PAQ1204

PAU2048

PAC702

PAJ204

PAQ103
PAQ304

PAU1045

PAC2502

PAJ304

PAQ903
PAQ1104

PAU2045

PAC101

PAC201

PAC301

PAC402

PAC502

PAC901

PAC1101

PAC1201

PAC1701

PAC1801

PAC1901

PAC2001

PAC2101

PAC2202
PAC2302

PAC2701

PAC2901

PAC3001

PAC3501

PAC3601

PAC3702

PAC3802

PAC3902

PAC4002

PAC4102 PAC4202

PAC4302

PAC4402

PAJ103

PAJ405

PAJ505

PAJ701

PAJ702

PAP101

PAP201

PAP301

PAP401

PAR802

PAR901

PAR1602 PAR1801

PAR2802
PAR2901

PAR3502

PAR3601

PAR4702

PAR4802

PAR5502 PAR5602

PAU106 PAU1011 PAU1012
PAU1013
PAU1014

PAU1019

PAU1021
PAU1022

PAU1025 PAU1028 PAU1030

PAU1049

PAU206 PAU2011 PAU2012
PAU2013

PAU2014

PAU2019

PAU2021

PAU2022

PAU2025 PAU2028 PAU2030

PAU2049

PAU302

PAU402

PAU502 PAU602

PAR1102

PAU1036

PAR3102

PAU2036

PAR202

PAU1044

PAR2202

PAU2044

PAR1302

PAU1038

PAR3302

PAU2038

PAR502

PAU1046

PAR2502

PAU2046

PAC302

PAR301

PAU1029

PAC501

PAU103

PAC601

PAC902

PAR601

PAU104

PAU1033

PAC602

PAU1034

PAC701 PAU1043

PAC801

PAU102

PAC1001

PAR702

PAU109

PAC1002

PAR902

PAU1010

PAC1301

PAU1035

PAC1401

PAU1032

PAC1402

PAU1031
PAC1501

PAU1042

PAC1601
PAR1402

PAU108

PAC1602

PAR1802

PAU107

PAC2102

PAR2301

PAU2029

PAC2301

PAU203

PAC2401

PAC2702
PAR2601

PAU204

PAU2033

PAC2402

PAU2034

PAC2501
PAU2043

PAC2601

PAU202

PAC2801

PAR2702

PAU209

PAC2802

PAR2902

PAU2010

PAC3101

PAU2035

PAC3201

PAU2032

PAC3202

PAU2031 PAC3301

PAU2042

PAC3401

PAR3402

PAU208

PAC3402

PAR3602

PAU207

PAC3701

PAR4502

PAR4701
PAU303

PAC3801

PAR4602

PAR4801 PAU403

PAC3901

PAR5302

PAR5501
PAU503

PAC4001

PAR5402

PAR5601
PAU603

PAJ101

PAJ606

PAJ102
PAU1015

PAJ403

PAR4501

PAJ404

PAR4301

PAJ503 PAR5301 PAJ504 PAR5101

PAJ601

PAU2016

PAP102
PAR1501

PAR1701

PAP202
PAR1901

PAR2001

PAP302 PAR3701

PAR3901

PAP402
PAR3801

PAR4001

PAP502

PAR5702

PAQ101

PAR201

PAQ201

PAR102

PAQ301 PAR501

PAQ303

PAQ403

PAR701

PAR801

PAQ401 PAR402

PAQ501

PAR1101

PAQ601

PAR1002

PAQ701 PAR1301

PAQ703

PAQ803

PAR1401

PAR1601
PAQ801 PAR1202

PAQ901

PAR2201

PAQ1001

PAR2102

PAQ1101 PAR2501

PAQ1103

PAQ1203

PAR2701

PAR2801

PAQ1201 PAR2402

PAQ1301

PAR3101

PAQ1401

PAR3002

PAQ1501 PAR3301

PAQ1503

PAQ1603

PAR3401

PAR3501

PAQ1601 PAR3202

PAR101

PAU101

PAR401

PAU1047

PAR1001

PAU1041

PAR1201

PAU1039

PAR2101

PAU201

PAR2401

PAU2047

PAR3001

PAU2041

PAR3201

PAU2039

PAR4101

PAR4302

PAU304

PAR4102

PAU1024

PAU301

PAR4201

PAR4402

PAU404
PAR4202

PAU1023

PAU401

PAR4901

PAR5102

PAU504

PAR4902

PAU2024

PAU501

PAR5001

PAR5202

PAU604

PAR5002

PAU2023

PAU601

PAU1016

PAU2015

PAC1802
PAR2002

PAU1017

PAC3602

PAR4002

PAU2017

PAC1702
PAR1702

PAU1018

PAC3502

PAR3902

PAU2018

PAJ603

PAJ605

PAR5701

PAU1026

PAU2026

PAJ602

PAJ604
PAP501

PAU1027

PAU2027

PAC102

PAC202

PAC1102

PAC1202

PAC1902

PAC2002

PAC2902

PAC3002

PAJ703

PAJ704

PAQ104

PAQ204

PAQ504

PAQ604

PAQ904

PAQ1004

PAQ1304

PAQ1404

PAR602

PAR2602

PAC102 PAC101

COC1

PAC202 PAC201

COC2

PAC301 PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC601 PAC602

COC6

PAC702
PAC701

COC7

PAC802
PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1102 PAC1101

COC11

PAC1202 PAC1201

COC12

PAC1302
PAC1301

COC13

PAC1401 PAC1402

COC14

PAC1502
PAC1501

COC15

PAC1602 PAC1601

COC16

PAC1701
PAC1702

COC17

PAC1801
PAC1802

COC18

PAC1902 PAC1901

COC19

PAC2002 PAC2001

COC20

PAC2101 PAC2102

COC21

PAC2202 PAC2201
COC22

PAC2302 PAC2301
COC23

PAC2401 PAC2402
COC24

PAC2502
PAC2501

COC25
PAC2602
PAC2601

COC26

PAC2701 PAC2702
COC27

PAC2802 PAC2801

COC28

PAC2902 PAC2901

COC29

PAC3002 PAC3001

COC30

PAC3102
PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAC3402 PAC3401

COC34

PAC3501
PAC3502

COC35

PAC3601
PAC3602

COC36

PAC3702

PAC3701

COC37

PAC3802

PAC3801

COC38

PAC3902

PAC3901

COC39
PAC4002

PAC4001

COC40

PAC4102 PAC4101

COC41
PAC4202 PAC4201

COC42

PAC4302 PAC4301
COC43

PAC4402 PAC4401
COC44

PAJ103

PAJ101
PAJ102

COJ1 PAJ204

PAJ201

PAJ202

PAJ203

COJ2

PAJ303

PAJ302

PAJ304

PAJ301

COJ3

PAJ405 PAJ401 PAJ402 PAJ403 PAJ404 PAJ406

COJ4

PAJ505 PAJ504 PAJ503 PAJ502 PAJ501 PAJ506
COJ5

PAJ604

PAJ602

PAJ605

PAJ603

PAJ606

PAJ601

COJ6

PAJ703

PAJ704

PAJ701

PAJ702

COJ7

PAP101
PAP102

COP1

PAP201
PAP202

COP2

PAP301
PAP302

COP3

PAP401
PAP402

COP4

PAP501
PAP502

COP5

PAQ104 PAQ101

PAQ103

COQ1

PAQ204 PAQ201

PAQ203

COQ2

PAQ303
PAQ304 PAQ301
COQ3

PAQ403

PAQ401 PAQ404
COQ4

PAQ504 PAQ501

PAQ503

COQ5

PAQ604 PAQ601

PAQ603

COQ6

PAQ703
PAQ704 PAQ701
COQ7

PAQ803
PAQ804 PAQ801
COQ8

PAQ904
PAQ903

PAQ901

COQ9

PAQ1004
PAQ1003

PAQ1001

COQ10

PAQ1104
PAQ1101

PAQ1103

COQ11

PAQ1204
PAQ1201

PAQ1203

COQ12

PAQ1304
PAQ1303

PAQ1301
COQ13

PAQ1404
PAQ1401

PAQ1403

COQ14

PAQ1504 PAQ1501

PAQ1503

COQ15

PAQ1604
PAQ1603

PAQ1601

COQ16

PAR101 PAR102

COR1

PAR202 PAR201

COR2

PAR302 PAR301

COR3

PAR402 PAR401

COR4

PAR501 PAR502

COR5

PAR602

PAR601

COR6

PAR701
PAR702

COR7

PAR802 PAR801
COR8

PAR901
PAR902

COR9

PAR1001 PAR1002

COR10

PAR1102 PAR1101

COR11

PAR1202 PAR1201

COR12

PAR1301 PAR1302

COR13

PAR1401 PAR1402

COR14

PAR1501 PAR1502
COR15

PAR1602 PAR1601
COR16

PAR1701 PAR1702

COR17

PAR1801

PAR1802

COR18

PAR1901 PAR1902
COR19

PAR2001 PAR2002

COR20

PAR2101 PAR2102

COR21

PAR2202 PAR2201

COR22

PAR2301 PAR2302

COR23

PAR2401 PAR2402

COR24

PAR2502 PAR2501

COR25

PAR2602

PAR2601

COR26

PAR2701 PAR2702
COR27

PAR2802 PAR2801
COR28

PAR2901 PAR2902
COR29

PAR3001 PAR3002

COR30

PAR3101 PAR3102

COR31

PAR3201 PAR3202

COR32

PAR3302 PAR3301

COR33

PAR3401 PAR3402
COR34

PAR3502 PAR3501
COR35

PAR3601 PAR3602
COR36

PAR3701 PAR3702

COR37

PAR3801 PAR3802
COR38

PAR3902 PAR3901

COR39

PAR4002 PAR4001

COR40

PAR4102

PAR4101

COR41

PAR4201

PAR4202

COR42

PAR4301

PAR4302

COR43

PAR4402

PAR4401

COR44

PAR4502

PAR4501

COR45

PAR4602

PAR4601

COR46

PAR4702

PAR4701

COR47

PAR4802

PAR4801

COR48

PAR4902 PAR4901

COR49

PAR5002 PAR5001

COR50

PAR5102

PAR5101

COR51

PAR5202

PAR5201

COR52
PAR5302

PAR5301

COR53
PAR5402

PAR5401

COR54

PAR5502

PAR5501

COR55
PAR5602

PAR5601

COR56

PAR5702

PAR5701

COR57

PAST101
COST1

PAST201
COST2

PAST301
COST3

PAST401
COST4

PAU1021

PAU1019

PAU1025

PAU1022

PAU1014

PAU1013

PAU1012

PAU1028 PAU1030

PAU1049
PAU1011 PAU106

PAU1027 PAU1026

PAU105

PAU1020

PAU1016

PAU1033

PAU104

PAU1044

PAU1048
PAU1047

PAU1046
PAU1045

PAU1043
PAU1042

PAU1041
PAU1040
PAU1039

PAU1038
PAU1037 PAU1024

PAU1023

PAU1018

PAU1017

PAU1015

PAU1036 PAU1035 PAU1034 PAU1032 PAU1031 PAU1029

PAU1010 PAU109 PAU108 PAU107 PAU103 PAU102 PAU101
COU1

PAU206 PAU2011 PAU2012

PAU2049
PAU2030 PAU2028 PAU2025

PAU2013

PAU2014

PAU2022

PAU2021

PAU2019

PAU2026 PAU2027

PAU2016

PAU201 PAU202 PAU203 PAU204 PAU207 PAU208 PAU209 PAU2010

PAU2029 PAU2031 PAU2032 PAU2033 PAU2034 PAU2035 PAU2036

PAU2017
PAU2018

PAU2023

PAU2024 PAU2037

PAU2038
PAU2039

PAU2040

PAU2041

PAU2042

PAU2043

PAU2044

PAU2045

PAU2046

PAU2047

PAU2048

PAU2015

PAU2020

PAU205

COU2

PAU305

PAU302 PAU301 PAU303

PAU304

COU3

PAU405 PAU404

PAU402 PAU401 PAU403
COU4

PAU505

PAU502 PAU501 PAU503

PAU504

COU5
PAU605

PAU602 PAU601 PAU603

PAU604

COU6

PAC401

PAC4301

PAC4401

PAJ406

PAR302

PAR1502

PAR1902

PAU105

PAU1020

PAU305

PAU405

PAC2201

PAC4101 PAC4201

PAJ506

PAR2302

PAR3702

PAR3802

PAU205

PAU2020

PAU505 PAU605

PAJ402

PAR4401

PAJ502 PAR5201

PAJ401

PAR4601

PAJ501 PAR5401

PAC1502

PAJ201

PAQ603
PAQ804

PAU1040

PAC3302

PAJ301

PAQ1403
PAQ1604

PAU2040

PAC1302

PAJ202

PAQ503
PAQ704

PAU1037

PAC3102

PAJ302

PAQ1303
PAQ1504

PAU2037

PAC802

PAJ203

PAQ203
PAQ404

PAU1048

PAC2602

PAJ303

PAQ1003
PAQ1204

PAU2048

PAC702

PAJ204

PAQ103
PAQ304

PAU1045

PAC2502

PAJ304

PAQ903
PAQ1104

PAU2045

PAC101

PAC201

PAC301

PAC402

PAC502

PAC901

PAC1101

PAC1201

PAC1701

PAC1801

PAC1901

PAC2001

PAC2101

PAC2202
PAC2302

PAC2701

PAC2901

PAC3001

PAC3501

PAC3601

PAC3702

PAC3802

PAC3902

PAC4002

PAC4102 PAC4202

PAC4302

PAC4402

PAJ103

PAJ405

PAJ505

PAJ701

PAJ702

PAP101

PAP201

PAP301

PAP401

PAR802

PAR901

PAR1602 PAR1801

PAR2802
PAR2901

PAR3502

PAR3601

PAR4702

PAR4802

PAR5502 PAR5602

PAU106 PAU1011 PAU1012
PAU1013
PAU1014

PAU1019

PAU1021
PAU1022

PAU1025 PAU1028 PAU1030

PAU1049

PAU206 PAU2011 PAU2012
PAU2013

PAU2014

PAU2019

PAU2021

PAU2022

PAU2025 PAU2028 PAU2030

PAU2049

PAU302

PAU402

PAU502 PAU602

PAR1102

PAU1036

PAR3102

PAU2036

PAR202

PAU1044

PAR2202

PAU2044

PAR1302

PAU1038

PAR3302

PAU2038

PAR502

PAU1046

PAR2502

PAU2046

PAC302

PAR301

PAU1029

PAC501

PAU103

PAC601

PAC902

PAR601

PAU104

PAU1033

PAC602

PAU1034

PAC701 PAU1043

PAC801

PAU102

PAC1001

PAR702

PAU109

PAC1002

PAR902

PAU1010

PAC1301

PAU1035

PAC1401

PAU1032

PAC1402

PAU1031
PAC1501

PAU1042

PAC1601
PAR1402

PAU108

PAC1602

PAR1802

PAU107

PAC2102

PAR2301

PAU2029

PAC2301

PAU203

PAC2401

PAC2702
PAR2601

PAU204

PAU2033

PAC2402

PAU2034

PAC2501
PAU2043

PAC2601

PAU202

PAC2801

PAR2702

PAU209

PAC2802

PAR2902

PAU2010

PAC3101

PAU2035

PAC3201

PAU2032

PAC3202

PAU2031 PAC3301

PAU2042

PAC3401

PAR3402

PAU208

PAC3402

PAR3602

PAU207

PAC3701

PAR4502

PAR4701
PAU303

PAC3801

PAR4602

PAR4801 PAU403

PAC3901

PAR5302

PAR5501
PAU503

PAC4001

PAR5402

PAR5601
PAU603

PAJ101

PAJ606

PAJ102
PAU1015

PAJ403

PAR4501

PAJ404

PAR4301

PAJ503 PAR5301 PAJ504 PAR5101

PAJ601

PAU2016

PAP102
PAR1501

PAR1701

PAP202
PAR1901

PAR2001

PAP302 PAR3701

PAR3901

PAP402
PAR3801

PAR4001

PAP502

PAR5702

PAQ101

PAR201

PAQ201

PAR102

PAQ301 PAR501

PAQ303

PAQ403

PAR701

PAR801

PAQ401 PAR402

PAQ501

PAR1101

PAQ601

PAR1002

PAQ701 PAR1301

PAQ703

PAQ803

PAR1401

PAR1601
PAQ801 PAR1202

PAQ901

PAR2201

PAQ1001

PAR2102

PAQ1101 PAR2501

PAQ1103

PAQ1203

PAR2701

PAR2801

PAQ1201 PAR2402

PAQ1301

PAR3101

PAQ1401

PAR3002

PAQ1501 PAR3301

PAQ1503

PAQ1603

PAR3401

PAR3501

PAQ1601 PAR3202

PAR101

PAU101

PAR401

PAU1047

PAR1001

PAU1041

PAR1201

PAU1039

PAR2101

PAU201

PAR2401

PAU2047

PAR3001

PAU2041

PAR3201

PAU2039

PAR4101

PAR4302

PAU304

PAR4102

PAU1024

PAU301

PAR4201

PAR4402

PAU404
PAR4202

PAU1023

PAU401

PAR4901

PAR5102

PAU504

PAR4902

PAU2024

PAU501

PAR5001

PAR5202

PAU604

PAR5002

PAU2023

PAU601

PAU1016

PAU2015

PAC1802
PAR2002

PAU1017

PAC3602

PAR4002

PAU2017

PAC1702
PAR1702

PAU1018

PAC3502

PAR3902

PAU2018

PAJ603

PAJ605

PAR5701

PAU1026

PAU2026

PAJ602

PAJ604
PAP501

PAU1027

PAU2027

PAC102

PAC202

PAC1102

PAC1202

PAC1902

PAC2002

PAC2902

PAC3002

PAJ703

PAJ704

PAQ104

PAQ204

PAQ504

PAQ604

PAQ904

PAQ1004

PAQ1304

PAQ1404

PAR602

PAR2602

PAC102 PAC101

COC1

PAC202 PAC201

COC2

PAC301 PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC601 PAC602

COC6

PAC702
PAC701

COC7

PAC802
PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1102 PAC1101

COC11

PAC1202 PAC1201

COC12

PAC1302
PAC1301

COC13

PAC1401 PAC1402

COC14

PAC1502
PAC1501

COC15

PAC1602 PAC1601

COC16

PAC1701
PAC1702

COC17

PAC1801
PAC1802

COC18

PAC1902 PAC1901

COC19

PAC2002 PAC2001

COC20

PAC2101 PAC2102

COC21

PAC2202 PAC2201
COC22

PAC2302 PAC2301
COC23

PAC2401 PAC2402
COC24

PAC2502
PAC2501

COC25
PAC2602
PAC2601

COC26

PAC2701 PAC2702
COC27

PAC2802 PAC2801

COC28

PAC2902 PAC2901

COC29

PAC3002 PAC3001

COC30

PAC3102
PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAC3402 PAC3401

COC34

PAC3501
PAC3502

COC35

PAC3601
PAC3602

COC36

PAC3702

PAC3701

COC37

PAC3802

PAC3801

COC38

PAC3902

PAC3901

COC39
PAC4002

PAC4001

COC40

PAC4102 PAC4101

COC41
PAC4202 PAC4201

COC42

PAC4302 PAC4301
COC43

PAC4402 PAC4401
COC44

PAJ103

PAJ101
PAJ102

COJ1 PAJ204

PAJ201

PAJ202

PAJ203

COJ2

PAJ303

PAJ302

PAJ304

PAJ301

COJ3

PAJ405 PAJ401 PAJ402 PAJ403 PAJ404 PAJ406

COJ4

PAJ505 PAJ504 PAJ503 PAJ502 PAJ501 PAJ506
COJ5

PAJ604

PAJ602

PAJ605

PAJ603

PAJ606

PAJ601

COJ6

PAJ703

PAJ704

PAJ701

PAJ702

COJ7

PAP101
PAP102

COP1

PAP201
PAP202

COP2

PAP301
PAP302

COP3

PAP401
PAP402

COP4

PAP501
PAP502

COP5

PAQ104 PAQ101

PAQ103

COQ1

PAQ204 PAQ201

PAQ203

COQ2

PAQ303
PAQ304 PAQ301
COQ3

PAQ403

PAQ401 PAQ404
COQ4

PAQ504 PAQ501

PAQ503

COQ5

PAQ604 PAQ601

PAQ603

COQ6

PAQ703
PAQ704 PAQ701
COQ7

PAQ803
PAQ804 PAQ801
COQ8

PAQ904
PAQ903

PAQ901

COQ9

PAQ1004
PAQ1003

PAQ1001

COQ10

PAQ1104
PAQ1101

PAQ1103

COQ11

PAQ1204
PAQ1201

PAQ1203

COQ12

PAQ1304
PAQ1303

PAQ1301
COQ13

PAQ1404
PAQ1401

PAQ1403

COQ14

PAQ1504 PAQ1501

PAQ1503

COQ15

PAQ1604
PAQ1603

PAQ1601

COQ16

PAR101 PAR102

COR1

PAR202 PAR201

COR2

PAR302 PAR301

COR3

PAR402 PAR401

COR4

PAR501 PAR502

COR5

PAR602

PAR601

COR6

PAR701
PAR702

COR7

PAR802 PAR801
COR8

PAR901
PAR902

COR9

PAR1001 PAR1002

COR10

PAR1102 PAR1101

COR11

PAR1202 PAR1201

COR12

PAR1301 PAR1302

COR13

PAR1401 PAR1402

COR14

PAR1501 PAR1502
COR15

PAR1602 PAR1601
COR16

PAR1701 PAR1702

COR17

PAR1801

PAR1802

COR18

PAR1901 PAR1902
COR19

PAR2001 PAR2002

COR20

PAR2101 PAR2102

COR21

PAR2202 PAR2201

COR22

PAR2301 PAR2302

COR23

PAR2401 PAR2402

COR24

PAR2502 PAR2501

COR25

PAR2602

PAR2601

COR26

PAR2701 PAR2702
COR27

PAR2802 PAR2801
COR28

PAR2901 PAR2902
COR29

PAR3001 PAR3002

COR30

PAR3101 PAR3102

COR31

PAR3201 PAR3202

COR32

PAR3302 PAR3301

COR33

PAR3401 PAR3402
COR34

PAR3502 PAR3501
COR35

PAR3601 PAR3602
COR36

PAR3701 PAR3702

COR37

PAR3801 PAR3802
COR38

PAR3902 PAR3901

COR39

PAR4002 PAR4001

COR40

PAR4102

PAR4101

COR41

PAR4201

PAR4202

COR42

PAR4301

PAR4302

COR43

PAR4402

PAR4401

COR44

PAR4502

PAR4501

COR45

PAR4602

PAR4601

COR46

PAR4702

PAR4701

COR47

PAR4802

PAR4801

COR48

PAR4902 PAR4901

COR49

PAR5002 PAR5001

COR50

PAR5102

PAR5101

COR51

PAR5202

PAR5201

COR52
PAR5302

PAR5301

COR53
PAR5402

PAR5401

COR54

PAR5502

PAR5501

COR55
PAR5602

PAR5601

COR56

PAR5702

PAR5701

COR57

PAST101
COST1

PAST201
COST2

PAST301
COST3

PAST401
COST4

PAU1021

PAU1019

PAU1025

PAU1022

PAU1014

PAU1013

PAU1012

PAU1028 PAU1030

PAU1049
PAU1011 PAU106

PAU1027 PAU1026

PAU105

PAU1020

PAU1016

PAU1033

PAU104

PAU1044

PAU1048
PAU1047

PAU1046
PAU1045

PAU1043
PAU1042

PAU1041
PAU1040
PAU1039

PAU1038
PAU1037 PAU1024

PAU1023

PAU1018

PAU1017

PAU1015

PAU1036 PAU1035 PAU1034 PAU1032 PAU1031 PAU1029

PAU1010 PAU109 PAU108 PAU107 PAU103 PAU102 PAU101
COU1

PAU206 PAU2011 PAU2012

PAU2049
PAU2030 PAU2028 PAU2025

PAU2013

PAU2014

PAU2022

PAU2021

PAU2019

PAU2026 PAU2027

PAU2016

PAU201 PAU202 PAU203 PAU204 PAU207 PAU208 PAU209 PAU2010

PAU2029 PAU2031 PAU2032 PAU2033 PAU2034 PAU2035 PAU2036

PAU2017
PAU2018

PAU2023

PAU2024 PAU2037

PAU2038
PAU2039

PAU2040

PAU2041

PAU2042

PAU2043

PAU2044

PAU2045

PAU2046

PAU2047

PAU2048

PAU2015

PAU2020

PAU205

COU2

PAU305

PAU302 PAU301 PAU303

PAU304

COU3

PAU405 PAU404

PAU402 PAU401 PAU403
COU4

PAU505

PAU502 PAU501 PAU503

PAU504

COU5
PAU605

PAU602 PAU601 PAU603

PAU604

COU6

PAC401

PAC4301

PAC4401

PAJ406

PAR302

PAR1502

PAR1902

PAU105

PAU1020

PAU305

PAU405

PAC2201

PAC4101 PAC4201

PAJ506

PAR2302

PAR3702

PAR3802

PAU205

PAU2020

PAU505 PAU605

PAJ402

PAR4401

PAJ502 PAR5201

PAJ401

PAR4601

PAJ501 PAR5401

PAC1502

PAJ201

PAQ603
PAQ804

PAU1040

PAC3302

PAJ301

PAQ1403
PAQ1604

PAU2040

PAC1302

PAJ202

PAQ503
PAQ704

PAU1037

PAC3102

PAJ302

PAQ1303
PAQ1504

PAU2037

PAC802

PAJ203

PAQ203
PAQ404

PAU1048

PAC2602

PAJ303

PAQ1003
PAQ1204

PAU2048

PAC702

PAJ204

PAQ103
PAQ304

PAU1045

PAC2502

PAJ304

PAQ903
PAQ1104

PAU2045

PAC101

PAC201

PAC301

PAC402

PAC502

PAC901

PAC1101

PAC1201

PAC1701

PAC1801

PAC1901

PAC2001

PAC2101

PAC2202
PAC2302

PAC2701

PAC2901

PAC3001

PAC3501

PAC3601

PAC3702

PAC3802

PAC3902

PAC4002

PAC4102 PAC4202

PAC4302

PAC4402

PAJ103

PAJ405

PAJ505

PAJ701

PAJ702

PAP101

PAP201

PAP301

PAP401

PAR802

PAR901

PAR1602 PAR1801

PAR2802
PAR2901

PAR3502

PAR3601

PAR4702

PAR4802

PAR5502 PAR5602

PAU106 PAU1011 PAU1012
PAU1013
PAU1014

PAU1019

PAU1021
PAU1022

PAU1025 PAU1028 PAU1030

PAU1049

PAU206 PAU2011 PAU2012
PAU2013

PAU2014

PAU2019

PAU2021

PAU2022

PAU2025 PAU2028 PAU2030

PAU2049

PAU302

PAU402

PAU502 PAU602

PAR1102

PAU1036

PAR3102

PAU2036

PAR202

PAU1044

PAR2202

PAU2044

PAR1302

PAU1038

PAR3302

PAU2038

PAR502

PAU1046

PAR2502

PAU2046

PAC302

PAR301

PAU1029

PAC501

PAU103

PAC601

PAC902

PAR601

PAU104

PAU1033

PAC602

PAU1034

PAC701 PAU1043

PAC801

PAU102

PAC1001

PAR702

PAU109

PAC1002

PAR902

PAU1010

PAC1301

PAU1035

PAC1401

PAU1032

PAC1402

PAU1031
PAC1501

PAU1042

PAC1601
PAR1402

PAU108

PAC1602

PAR1802

PAU107

PAC2102

PAR2301

PAU2029

PAC2301

PAU203

PAC2401

PAC2702
PAR2601

PAU204

PAU2033

PAC2402

PAU2034

PAC2501
PAU2043

PAC2601

PAU202

PAC2801

PAR2702

PAU209

PAC2802

PAR2902

PAU2010

PAC3101

PAU2035

PAC3201

PAU2032

PAC3202

PAU2031 PAC3301

PAU2042

PAC3401

PAR3402

PAU208

PAC3402

PAR3602

PAU207

PAC3701

PAR4502

PAR4701
PAU303

PAC3801

PAR4602

PAR4801 PAU403

PAC3901

PAR5302

PAR5501
PAU503

PAC4001

PAR5402

PAR5601
PAU603

PAJ101

PAJ606

PAJ102
PAU1015

PAJ403

PAR4501

PAJ404

PAR4301

PAJ503 PAR5301 PAJ504 PAR5101

PAJ601

PAU2016

PAP102
PAR1501

PAR1701

PAP202
PAR1901

PAR2001

PAP302 PAR3701

PAR3901

PAP402
PAR3801

PAR4001

PAP502

PAR5702

PAQ101

PAR201

PAQ201

PAR102

PAQ301 PAR501

PAQ303

PAQ403

PAR701

PAR801

PAQ401 PAR402

PAQ501

PAR1101

PAQ601

PAR1002

PAQ701 PAR1301

PAQ703

PAQ803

PAR1401

PAR1601
PAQ801 PAR1202

PAQ901

PAR2201

PAQ1001

PAR2102

PAQ1101 PAR2501

PAQ1103

PAQ1203

PAR2701

PAR2801

PAQ1201 PAR2402

PAQ1301

PAR3101

PAQ1401

PAR3002

PAQ1501 PAR3301

PAQ1503

PAQ1603

PAR3401

PAR3501

PAQ1601 PAR3202

PAR101

PAU101

PAR401

PAU1047

PAR1001

PAU1041

PAR1201

PAU1039

PAR2101

PAU201

PAR2401

PAU2047

PAR3001

PAU2041

PAR3201

PAU2039

PAR4101

PAR4302

PAU304

PAR4102

PAU1024

PAU301

PAR4201

PAR4402

PAU404
PAR4202

PAU1023

PAU401

PAR4901

PAR5102

PAU504

PAR4902

PAU2024

PAU501

PAR5001

PAR5202

PAU604

PAR5002

PAU2023

PAU601

PAU1016

PAU2015

PAC1802
PAR2002

PAU1017

PAC3602

PAR4002

PAU2017

PAC1702
PAR1702

PAU1018

PAC3502

PAR3902

PAU2018

PAJ603

PAJ605

PAR5701

PAU1026

PAU2026

PAJ602

PAJ604
PAP501

PAU1027

PAU2027

PAC102

PAC202

PAC1102

PAC1202

PAC1902

PAC2002

PAC2902

PAC3002

PAJ703

PAJ704

PAQ104

PAQ204

PAQ504

PAQ604

PAQ904

PAQ1004

PAQ1304

PAQ1404

PAR602

PAR2602

PAC102 PAC101

COC1

PAC202 PAC201

COC2

PAC301 PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC601 PAC602

COC6

PAC702
PAC701

COC7

PAC802
PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1102 PAC1101

COC11

PAC1202 PAC1201

COC12

PAC1302
PAC1301

COC13

PAC1401 PAC1402

COC14

PAC1502
PAC1501

COC15

PAC1602 PAC1601

COC16

PAC1701
PAC1702

COC17

PAC1801
PAC1802

COC18

PAC1902 PAC1901

COC19

PAC2002 PAC2001

COC20

PAC2101 PAC2102

COC21

PAC2202 PAC2201
COC22

PAC2302 PAC2301
COC23

PAC2401 PAC2402
COC24

PAC2502
PAC2501

COC25
PAC2602
PAC2601

COC26

PAC2701 PAC2702
COC27

PAC2802 PAC2801

COC28

PAC2902 PAC2901

COC29

PAC3002 PAC3001

COC30

PAC3102
PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAC3402 PAC3401

COC34

PAC3501
PAC3502

COC35

PAC3601
PAC3602

COC36

PAC3702

PAC3701

COC37

PAC3802

PAC3801

COC38

PAC3902

PAC3901

COC39
PAC4002

PAC4001

COC40

PAC4102 PAC4101

COC41
PAC4202 PAC4201

COC42

PAC4302 PAC4301
COC43

PAC4402 PAC4401
COC44

PAJ103

PAJ101
PAJ102

COJ1 PAJ204

PAJ201

PAJ202

PAJ203

COJ2

PAJ303

PAJ302

PAJ304

PAJ301

COJ3

PAJ405 PAJ401 PAJ402 PAJ403 PAJ404 PAJ406

COJ4

PAJ505 PAJ504 PAJ503 PAJ502 PAJ501 PAJ506
COJ5

PAJ604

PAJ602

PAJ605

PAJ603

PAJ606

PAJ601

COJ6

PAJ703

PAJ704

PAJ701

PAJ702

COJ7

PAP101
PAP102

COP1

PAP201
PAP202

COP2

PAP301
PAP302

COP3

PAP401
PAP402

COP4

PAP501
PAP502

COP5

PAQ104 PAQ101

PAQ103

COQ1

PAQ204 PAQ201

PAQ203

COQ2

PAQ303
PAQ304 PAQ301
COQ3

PAQ403

PAQ401 PAQ404
COQ4

PAQ504 PAQ501

PAQ503

COQ5

PAQ604 PAQ601

PAQ603

COQ6

PAQ703
PAQ704 PAQ701
COQ7

PAQ803
PAQ804 PAQ801
COQ8

PAQ904
PAQ903

PAQ901

COQ9

PAQ1004
PAQ1003

PAQ1001

COQ10

PAQ1104
PAQ1101

PAQ1103

COQ11

PAQ1204
PAQ1201

PAQ1203

COQ12

PAQ1304
PAQ1303

PAQ1301
COQ13

PAQ1404
PAQ1401

PAQ1403

COQ14

PAQ1504 PAQ1501

PAQ1503

COQ15

PAQ1604
PAQ1603

PAQ1601

COQ16

PAR101 PAR102

COR1

PAR202 PAR201

COR2

PAR302 PAR301

COR3

PAR402 PAR401

COR4

PAR501 PAR502

COR5

PAR602

PAR601

COR6

PAR701
PAR702

COR7

PAR802 PAR801
COR8

PAR901
PAR902

COR9

PAR1001 PAR1002

COR10

PAR1102 PAR1101

COR11

PAR1202 PAR1201

COR12

PAR1301 PAR1302

COR13

PAR1401 PAR1402

COR14

PAR1501 PAR1502
COR15

PAR1602 PAR1601
COR16

PAR1701 PAR1702

COR17

PAR1801

PAR1802

COR18

PAR1901 PAR1902
COR19

PAR2001 PAR2002

COR20

PAR2101 PAR2102

COR21

PAR2202 PAR2201

COR22

PAR2301 PAR2302

COR23

PAR2401 PAR2402

COR24

PAR2502 PAR2501

COR25

PAR2602

PAR2601

COR26

PAR2701 PAR2702
COR27

PAR2802 PAR2801
COR28

PAR2901 PAR2902
COR29

PAR3001 PAR3002

COR30

PAR3101 PAR3102

COR31

PAR3201 PAR3202

COR32

PAR3302 PAR3301

COR33

PAR3401 PAR3402
COR34

PAR3502 PAR3501
COR35

PAR3601 PAR3602
COR36

PAR3701 PAR3702

COR37

PAR3801 PAR3802
COR38

PAR3902 PAR3901

COR39

PAR4002 PAR4001

COR40

PAR4102

PAR4101

COR41

PAR4201

PAR4202

COR42

PAR4301

PAR4302

COR43

PAR4402

PAR4401

COR44

PAR4502

PAR4501

COR45

PAR4602

PAR4601

COR46

PAR4702

PAR4701

COR47

PAR4802

PAR4801

COR48

PAR4902 PAR4901

COR49

PAR5002 PAR5001

COR50

PAR5102

PAR5101

COR51

PAR5202

PAR5201

COR52
PAR5302

PAR5301

COR53
PAR5402

PAR5401

COR54

PAR5502

PAR5501

COR55
PAR5602

PAR5601

COR56

PAR5702

PAR5701

COR57

PAST101
COST1

PAST201
COST2

PAST301
COST3

PAST401
COST4

PAU1021

PAU1019

PAU1025

PAU1022

PAU1014

PAU1013

PAU1012

PAU1028 PAU1030

PAU1049
PAU1011 PAU106

PAU1027 PAU1026

PAU105

PAU1020

PAU1016

PAU1033

PAU104

PAU1044

PAU1048
PAU1047

PAU1046
PAU1045

PAU1043
PAU1042

PAU1041
PAU1040
PAU1039

PAU1038
PAU1037 PAU1024

PAU1023

PAU1018

PAU1017

PAU1015

PAU1036 PAU1035 PAU1034 PAU1032 PAU1031 PAU1029

PAU1010 PAU109 PAU108 PAU107 PAU103 PAU102 PAU101
COU1

PAU206 PAU2011 PAU2012

PAU2049
PAU2030 PAU2028 PAU2025

PAU2013

PAU2014

PAU2022

PAU2021

PAU2019

PAU2026 PAU2027

PAU2016

PAU201 PAU202 PAU203 PAU204 PAU207 PAU208 PAU209 PAU2010

PAU2029 PAU2031 PAU2032 PAU2033 PAU2034 PAU2035 PAU2036

PAU2017
PAU2018

PAU2023

PAU2024 PAU2037

PAU2038
PAU2039

PAU2040

PAU2041

PAU2042

PAU2043

PAU2044

PAU2045

PAU2046

PAU2047

PAU2048

PAU2015

PAU2020

PAU205

COU2

PAU305

PAU302 PAU301 PAU303

PAU304

COU3

PAU405 PAU404

PAU402 PAU401 PAU403
COU4

PAU505

PAU502 PAU501 PAU503

PAU504

COU5
PAU605

PAU602 PAU601 PAU603

PAU604

COU6

PAC401

PAC4301

PAC4401

PAJ406

PAR302

PAR1502

PAR1902

PAU105

PAU1020

PAU305

PAU405

PAC2201

PAC4101 PAC4201

PAJ506

PAR2302

PAR3702

PAR3802

PAU205

PAU2020

PAU505 PAU605

PAJ402

PAR4401

PAJ502 PAR5201

PAJ401

PAR4601

PAJ501 PAR5401

PAC1502

PAJ201

PAQ603
PAQ804

PAU1040

PAC3302

PAJ301

PAQ1403
PAQ1604

PAU2040

PAC1302

PAJ202

PAQ503
PAQ704

PAU1037

PAC3102

PAJ302

PAQ1303
PAQ1504

PAU2037

PAC802

PAJ203

PAQ203
PAQ404

PAU1048

PAC2602

PAJ303

PAQ1003
PAQ1204

PAU2048

PAC702

PAJ204

PAQ103
PAQ304

PAU1045

PAC2502

PAJ304

PAQ903
PAQ1104

PAU2045

PAC101

PAC201

PAC301

PAC402

PAC502

PAC901

PAC1101

PAC1201

PAC1701

PAC1801

PAC1901

PAC2001

PAC2101

PAC2202
PAC2302

PAC2701

PAC2901

PAC3001

PAC3501

PAC3601

PAC3702

PAC3802

PAC3902

PAC4002

PAC4102 PAC4202

PAC4302

PAC4402

PAJ103

PAJ405

PAJ505

PAJ701

PAJ702

PAP101

PAP201

PAP301

PAP401

PAR802

PAR901

PAR1602 PAR1801

PAR2802
PAR2901

PAR3502

PAR3601

PAR4702

PAR4802

PAR5502 PAR5602

PAU106 PAU1011 PAU1012
PAU1013
PAU1014

PAU1019

PAU1021
PAU1022

PAU1025 PAU1028 PAU1030

PAU1049

PAU206 PAU2011 PAU2012
PAU2013

PAU2014

PAU2019

PAU2021

PAU2022

PAU2025 PAU2028 PAU2030

PAU2049

PAU302

PAU402

PAU502 PAU602

PAR1102

PAU1036

PAR3102

PAU2036

PAR202

PAU1044

PAR2202

PAU2044

PAR1302

PAU1038

PAR3302

PAU2038

PAR502

PAU1046

PAR2502

PAU2046

PAC302

PAR301

PAU1029

PAC501

PAU103

PAC601

PAC902

PAR601

PAU104

PAU1033

PAC602

PAU1034

PAC701 PAU1043

PAC801

PAU102

PAC1001

PAR702

PAU109

PAC1002

PAR902

PAU1010

PAC1301

PAU1035

PAC1401

PAU1032

PAC1402

PAU1031
PAC1501

PAU1042

PAC1601
PAR1402

PAU108

PAC1602

PAR1802

PAU107

PAC2102

PAR2301

PAU2029

PAC2301

PAU203

PAC2401

PAC2702
PAR2601

PAU204

PAU2033

PAC2402

PAU2034

PAC2501
PAU2043

PAC2601

PAU202

PAC2801

PAR2702

PAU209

PAC2802

PAR2902

PAU2010

PAC3101

PAU2035

PAC3201

PAU2032

PAC3202

PAU2031 PAC3301

PAU2042

PAC3401

PAR3402

PAU208

PAC3402

PAR3602

PAU207

PAC3701

PAR4502

PAR4701
PAU303

PAC3801

PAR4602

PAR4801 PAU403

PAC3901

PAR5302

PAR5501
PAU503

PAC4001

PAR5402

PAR5601
PAU603

PAJ101

PAJ606

PAJ102
PAU1015

PAJ403

PAR4501

PAJ404

PAR4301

PAJ503 PAR5301 PAJ504 PAR5101

PAJ601

PAU2016

PAP102
PAR1501

PAR1701

PAP202
PAR1901

PAR2001

PAP302 PAR3701

PAR3901

PAP402
PAR3801

PAR4001

PAP502

PAR5702

PAQ101

PAR201

PAQ201

PAR102

PAQ301 PAR501

PAQ303

PAQ403

PAR701

PAR801

PAQ401 PAR402

PAQ501

PAR1101

PAQ601

PAR1002

PAQ701 PAR1301

PAQ703

PAQ803

PAR1401

PAR1601
PAQ801 PAR1202

PAQ901

PAR2201

PAQ1001

PAR2102

PAQ1101 PAR2501

PAQ1103

PAQ1203

PAR2701

PAR2801

PAQ1201 PAR2402

PAQ1301

PAR3101

PAQ1401

PAR3002

PAQ1501 PAR3301

PAQ1503

PAQ1603

PAR3401

PAR3501

PAQ1601 PAR3202

PAR101

PAU101

PAR401

PAU1047

PAR1001

PAU1041

PAR1201

PAU1039

PAR2101

PAU201

PAR2401

PAU2047

PAR3001

PAU2041

PAR3201

PAU2039

PAR4101

PAR4302

PAU304

PAR4102

PAU1024

PAU301

PAR4201

PAR4402

PAU404
PAR4202

PAU1023

PAU401

PAR4901

PAR5102

PAU504

PAR4902

PAU2024

PAU501

PAR5001

PAR5202

PAU604

PAR5002

PAU2023

PAU601

PAU1016

PAU2015

PAC1802
PAR2002

PAU1017

PAC3602

PAR4002

PAU2017

PAC1702
PAR1702

PAU1018

PAC3502

PAR3902

PAU2018

PAJ603

PAJ605

PAR5701

PAU1026

PAU2026

PAJ602

PAJ604
PAP501

PAU1027

PAU2027

PAC102

PAC202

PAC1102

PAC1202

PAC1902

PAC2002

PAC2902

PAC3002

PAJ703

PAJ704

PAQ104

PAQ204

PAQ504

PAQ604

PAQ904

PAQ1004

PAQ1304

PAQ1404

PAR602

PAR2602

PAC102 PAC101

COC1

PAC202 PAC201

COC2

PAC301 PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC601 PAC602

COC6

PAC702
PAC701

COC7

PAC802
PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1102 PAC1101

COC11

PAC1202 PAC1201

COC12

PAC1302
PAC1301

COC13

PAC1401 PAC1402

COC14

PAC1502
PAC1501

COC15

PAC1602 PAC1601

COC16

PAC1701
PAC1702

COC17

PAC1801
PAC1802

COC18

PAC1902 PAC1901

COC19

PAC2002 PAC2001

COC20

PAC2101 PAC2102

COC21

PAC2202 PAC2201
COC22

PAC2302 PAC2301
COC23

PAC2401 PAC2402
COC24

PAC2502
PAC2501

COC25
PAC2602
PAC2601

COC26

PAC2701 PAC2702
COC27

PAC2802 PAC2801

COC28

PAC2902 PAC2901

COC29

PAC3002 PAC3001

COC30

PAC3102
PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAC3402 PAC3401

COC34

PAC3501
PAC3502

COC35

PAC3601
PAC3602

COC36

PAC3702

PAC3701

COC37

PAC3802

PAC3801

COC38

PAC3902

PAC3901

COC39
PAC4002

PAC4001

COC40

PAC4102 PAC4101

COC41
PAC4202 PAC4201

COC42

PAC4302 PAC4301
COC43

PAC4402 PAC4401
COC44

PAJ103

PAJ101
PAJ102

COJ1 PAJ204

PAJ201

PAJ202

PAJ203

COJ2

PAJ303

PAJ302

PAJ304

PAJ301

COJ3

PAJ405 PAJ401 PAJ402 PAJ403 PAJ404 PAJ406

COJ4

PAJ505 PAJ504 PAJ503 PAJ502 PAJ501 PAJ506
COJ5

PAJ604

PAJ602

PAJ605

PAJ603

PAJ606

PAJ601

COJ6

PAJ703

PAJ704

PAJ701

PAJ702

COJ7

PAP101
PAP102

COP1

PAP201
PAP202

COP2

PAP301
PAP302

COP3

PAP401
PAP402

COP4

PAP501
PAP502

COP5

PAQ104 PAQ101

PAQ103

COQ1

PAQ204 PAQ201

PAQ203

COQ2

PAQ303
PAQ304 PAQ301
COQ3

PAQ403

PAQ401 PAQ404
COQ4

PAQ504 PAQ501

PAQ503

COQ5

PAQ604 PAQ601

PAQ603

COQ6

PAQ703
PAQ704 PAQ701
COQ7

PAQ803
PAQ804 PAQ801
COQ8

PAQ904
PAQ903

PAQ901

COQ9

PAQ1004
PAQ1003

PAQ1001

COQ10

PAQ1104
PAQ1101

PAQ1103

COQ11

PAQ1204
PAQ1201

PAQ1203

COQ12

PAQ1304
PAQ1303

PAQ1301
COQ13

PAQ1404
PAQ1401

PAQ1403

COQ14

PAQ1504 PAQ1501

PAQ1503

COQ15

PAQ1604
PAQ1603

PAQ1601

COQ16

PAR101 PAR102

COR1

PAR202 PAR201

COR2

PAR302 PAR301

COR3

PAR402 PAR401

COR4

PAR501 PAR502

COR5

PAR602

PAR601

COR6

PAR701
PAR702

COR7

PAR802 PAR801
COR8

PAR901
PAR902

COR9

PAR1001 PAR1002

COR10

PAR1102 PAR1101

COR11

PAR1202 PAR1201

COR12

PAR1301 PAR1302

COR13

PAR1401 PAR1402

COR14

PAR1501 PAR1502
COR15

PAR1602 PAR1601
COR16

PAR1701 PAR1702

COR17

PAR1801

PAR1802

COR18

PAR1901 PAR1902
COR19

PAR2001 PAR2002

COR20

PAR2101 PAR2102

COR21

PAR2202 PAR2201

COR22

PAR2301 PAR2302

COR23

PAR2401 PAR2402

COR24

PAR2502 PAR2501

COR25

PAR2602

PAR2601

COR26

PAR2701 PAR2702
COR27

PAR2802 PAR2801
COR28

PAR2901 PAR2902
COR29

PAR3001 PAR3002

COR30

PAR3101 PAR3102

COR31

PAR3201 PAR3202

COR32

PAR3302 PAR3301

COR33

PAR3401 PAR3402
COR34

PAR3502 PAR3501
COR35

PAR3601 PAR3602
COR36

PAR3701 PAR3702

COR37

PAR3801 PAR3802
COR38

PAR3902 PAR3901

COR39

PAR4002 PAR4001

COR40

PAR4102

PAR4101

COR41

PAR4201

PAR4202

COR42

PAR4301

PAR4302

COR43

PAR4402

PAR4401

COR44

PAR4502

PAR4501

COR45

PAR4602

PAR4601

COR46

PAR4702

PAR4701

COR47

PAR4802

PAR4801

COR48

PAR4902 PAR4901

COR49

PAR5002 PAR5001

COR50

PAR5102

PAR5101

COR51

PAR5202

PAR5201

COR52
PAR5302

PAR5301

COR53
PAR5402

PAR5401

COR54

PAR5502

PAR5501

COR55
PAR5602

PAR5601

COR56

PAR5702

PAR5701

COR57

PAST101
COST1

PAST201
COST2

PAST301
COST3

PAST401
COST4

PAU1021

PAU1019

PAU1025

PAU1022

PAU1014

PAU1013

PAU1012

PAU1028 PAU1030

PAU1049
PAU1011 PAU106

PAU1027 PAU1026

PAU105

PAU1020

PAU1016

PAU1033

PAU104

PAU1044

PAU1048
PAU1047

PAU1046
PAU1045

PAU1043
PAU1042

PAU1041
PAU1040
PAU1039

PAU1038
PAU1037 PAU1024

PAU1023

PAU1018

PAU1017

PAU1015

PAU1036 PAU1035 PAU1034 PAU1032 PAU1031 PAU1029

PAU1010 PAU109 PAU108 PAU107 PAU103 PAU102 PAU101
COU1

PAU206 PAU2011 PAU2012

PAU2049
PAU2030 PAU2028 PAU2025

PAU2013

PAU2014

PAU2022

PAU2021

PAU2019

PAU2026 PAU2027

PAU2016

PAU201 PAU202 PAU203 PAU204 PAU207 PAU208 PAU209 PAU2010

PAU2029 PAU2031 PAU2032 PAU2033 PAU2034 PAU2035 PAU2036

PAU2017
PAU2018

PAU2023

PAU2024 PAU2037

PAU2038
PAU2039

PAU2040

PAU2041

PAU2042

PAU2043

PAU2044

PAU2045

PAU2046

PAU2047

PAU2048

PAU2015

PAU2020

PAU205

COU2

PAU305

PAU302 PAU301 PAU303

PAU304

COU3

PAU405 PAU404

PAU402 PAU401 PAU403
COU4

PAU505

PAU502 PAU501 PAU503

PAU504

COU5
PAU605

PAU602 PAU601 PAU603

PAU604

COU6

PAC401

PAC4301

PAC4401

PAJ406

PAR302

PAR1502

PAR1902

PAU105

PAU1020

PAU305

PAU405

PAC2201

PAC4101 PAC4201

PAJ506

PAR2302

PAR3702

PAR3802

PAU205

PAU2020

PAU505 PAU605

PAJ402

PAR4401

PAJ502 PAR5201

PAJ401

PAR4601

PAJ501 PAR5401

PAC1502

PAJ201

PAQ603
PAQ804

PAU1040

PAC3302

PAJ301

PAQ1403
PAQ1604

PAU2040

PAC1302

PAJ202

PAQ503
PAQ704

PAU1037

PAC3102

PAJ302

PAQ1303
PAQ1504

PAU2037

PAC802

PAJ203

PAQ203
PAQ404

PAU1048

PAC2602

PAJ303

PAQ1003
PAQ1204

PAU2048

PAC702

PAJ204

PAQ103
PAQ304

PAU1045

PAC2502

PAJ304

PAQ903
PAQ1104

PAU2045

PAC101

PAC201

PAC301

PAC402

PAC502

PAC901

PAC1101

PAC1201

PAC1701

PAC1801

PAC1901

PAC2001

PAC2101

PAC2202
PAC2302

PAC2701

PAC2901

PAC3001

PAC3501

PAC3601

PAC3702

PAC3802

PAC3902

PAC4002

PAC4102 PAC4202

PAC4302

PAC4402

PAJ103

PAJ405

PAJ505

PAJ701

PAJ702

PAP101

PAP201

PAP301

PAP401

PAR802

PAR901

PAR1602 PAR1801

PAR2802
PAR2901

PAR3502

PAR3601

PAR4702

PAR4802

PAR5502 PAR5602

PAU106 PAU1011 PAU1012
PAU1013
PAU1014

PAU1019

PAU1021
PAU1022

PAU1025 PAU1028 PAU1030

PAU1049

PAU206 PAU2011 PAU2012
PAU2013

PAU2014

PAU2019

PAU2021

PAU2022

PAU2025 PAU2028 PAU2030

PAU2049

PAU302

PAU402

PAU502 PAU602

PAR1102

PAU1036

PAR3102

PAU2036

PAR202

PAU1044

PAR2202

PAU2044

PAR1302

PAU1038

PAR3302

PAU2038

PAR502

PAU1046

PAR2502

PAU2046

PAC302

PAR301

PAU1029

PAC501

PAU103

PAC601

PAC902

PAR601

PAU104

PAU1033

PAC602

PAU1034

PAC701 PAU1043

PAC801

PAU102

PAC1001

PAR702

PAU109

PAC1002

PAR902

PAU1010

PAC1301

PAU1035

PAC1401

PAU1032

PAC1402

PAU1031
PAC1501

PAU1042

PAC1601
PAR1402

PAU108

PAC1602

PAR1802

PAU107

PAC2102

PAR2301

PAU2029

PAC2301

PAU203

PAC2401

PAC2702
PAR2601

PAU204

PAU2033

PAC2402

PAU2034

PAC2501
PAU2043

PAC2601

PAU202

PAC2801

PAR2702

PAU209

PAC2802

PAR2902

PAU2010

PAC3101

PAU2035

PAC3201

PAU2032

PAC3202

PAU2031 PAC3301

PAU2042

PAC3401

PAR3402

PAU208

PAC3402

PAR3602

PAU207

PAC3701

PAR4502

PAR4701
PAU303

PAC3801

PAR4602

PAR4801 PAU403

PAC3901

PAR5302

PAR5501
PAU503

PAC4001

PAR5402

PAR5601
PAU603

PAJ101

PAJ606

PAJ102
PAU1015

PAJ403

PAR4501

PAJ404

PAR4301

PAJ503 PAR5301 PAJ504 PAR5101

PAJ601

PAU2016

PAP102
PAR1501

PAR1701

PAP202
PAR1901

PAR2001

PAP302 PAR3701

PAR3901

PAP402
PAR3801

PAR4001

PAP502

PAR5702

PAQ101

PAR201

PAQ201

PAR102

PAQ301 PAR501

PAQ303

PAQ403

PAR701

PAR801

PAQ401 PAR402

PAQ501

PAR1101

PAQ601

PAR1002

PAQ701 PAR1301

PAQ703

PAQ803

PAR1401

PAR1601
PAQ801 PAR1202

PAQ901

PAR2201

PAQ1001

PAR2102

PAQ1101 PAR2501

PAQ1103

PAQ1203

PAR2701

PAR2801

PAQ1201 PAR2402

PAQ1301

PAR3101

PAQ1401

PAR3002

PAQ1501 PAR3301

PAQ1503

PAQ1603

PAR3401

PAR3501

PAQ1601 PAR3202

PAR101

PAU101

PAR401

PAU1047

PAR1001

PAU1041

PAR1201

PAU1039

PAR2101

PAU201

PAR2401

PAU2047

PAR3001

PAU2041

PAR3201

PAU2039

PAR4101

PAR4302

PAU304

PAR4102

PAU1024

PAU301

PAR4201

PAR4402

PAU404
PAR4202

PAU1023

PAU401

PAR4901

PAR5102

PAU504

PAR4902

PAU2024

PAU501

PAR5001

PAR5202

PAU604

PAR5002

PAU2023

PAU601

PAU1016

PAU2015

PAC1802
PAR2002

PAU1017

PAC3602

PAR4002

PAU2017

PAC1702
PAR1702

PAU1018

PAC3502

PAR3902

PAU2018

PAJ603

PAJ605

PAR5701

PAU1026

PAU2026

PAJ602

PAJ604
PAP501

PAU1027

PAU2027

PAC102

PAC202

PAC1102

PAC1202

PAC1902

PAC2002

PAC2902

PAC3002

PAJ703

PAJ704

PAQ104

PAQ204

PAQ504

PAQ604

PAQ904

PAQ1004

PAQ1304

PAQ1404

PAR602

PAR2602

3 PCB BOM VMN | -

296

Name Description Designator Quantity Manufacturer 1 Manufacturer Part Number 1 Supplier Unit Price 1Supplier Subtotal per Board 1

220uF 80V

Cap Aluminum 220uF 80V 20% Radial
Aluminum Cylindrical Can 5mm 1120mA
10000 hr 105°C Bulk C1, C11, C19, C30 4 Panasonic EEU-FS1K221 1.25 5

Capacitor 470nF +/-20% 25V 0603
Chip Capacitor, 470nF +/-20%, 25V,
0603, Thickness 1 mm C2, C12 2 Murata GRM188R71E474KA12D 0.13 0.26

GRM21BR72A474KA73L

Ceramic Capacitor, Multilayer, Ceramic,
100V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.47uF, Surface Mount, 0805 C3, C20, C21, C29 4 Murata GRM21BR72A474KA73L 0.084 0.336

C2012X7R1C225K125AB

Ceramic Capacitor, Multilayer, Ceramic,
16V, 10% +Tol, 10% -Tol, X7R, 15% TC,
2.2uF, Surface Mount, 0805 C4, C5, C22, C23 4 TDK C2012X7R1C225K125AB 0.17 0.68

Capacitor 100 nF +/-10% 50 V 0805
Chip Capacitor, 100 nF, +/- 10%, 50 V,
0805 (2012 Metric) C6, C24, C41, C42, C43, C44 6 Yageo CC0805KRX7R9BB104 0.027 0.162

C0805C224K1RACTU

Ceramic Capacitor, Multilayer, Ceramic,
100V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.22uF, Surface Mount, 0805 C7, C8, C9, C13, C15, C25, C26, C27, C31, C33 10 KEMET C0805C224K1RACTU 0.173 1.73

C0805C222K5RACTU

Ceramic Capacitor, Multilayer, Ceramic,
50V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.0022uF, Surface Mount, 0805 C10, C16, C28, C34 4 KEMET C0805C222K5RACTU 0.029 0.116

08051C223KAT2A

Ceramic Capacitor, Multilayer, Ceramic,
100V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.022uF, Surface Mount, 0805 C14, C32 2 Kyocera AVX 08051C223KAT2A 0.01 0.02

08055C102KAT2A

Ceramic Capacitor, Multilayer, Ceramic,
50V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.001uF, Surface Mount, 0805 C17, C18, C35, C36 4 Kyocera AVX 08055C102KAT2A 0.015 0.06

GQM2195C2E111JB12D

Ceramic Capacitor, Multilayer, Ceramic,
250V, 5% +Tol, 5% -Tol, C0G, 30ppm/Cel
TC, 0.00011uF, Surface Mount, 0805 C37, C38, C39, C40 4 Murata GQM2195C2E111JB12D

PREC003SAAN-RC

Board Connector, 3 Contact(s), 1 Row(s),
Male, Straight, 0.1 inch Pitch, Solder
Terminal J1 1 Sullins PREC003SAAN-RC 0.31 0.31

EBQA-04-C-C 4 Pin terminal block male pins J2, J3 2 Adam Equipment EBQA-04-C-C 0.6 1.2
TBP02R2-381-06BE Connector J4, J5 2
TBP02R1-381-06BE 2~24 Poles J6 1

TBP01R1-508-04BE Strip Terminal Block J7 1 Same Sky TBP01R1-508-04BE 0.48 0.48

61300211121

Board Connector, 2 Contact(s), 1 Row(s),
Male, Straight, 0.1 inch Pitch, Solder
Terminal, Locking, Black Insulator, Plug P1, P2, P3, P4, P5 5 Wurth Electronics 61300211121 0.12 0.6

Name Description Designator Quantity Manufacturer 1 Manufacturer Part Number 1 Supplier Unit Price 1Supplier Subtotal per Board 1

NTD3055L104T4G

Power Field-Effect Transistor, 12A I(D),
60V, 0.104ohm, 1-Element, N-Channel,
Silicon, Metal-oxide Semiconductor FET Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16 16 ON Semiconductor NTD3055L104T4G 0.945 15.12

15R

Fixed Resistor, Metal Glaze/thick Film,
0.125W, 15ohm, 150V, 1% +/-Tol,
200ppm/Cel, Surface Mount, 0805 R1, R2, R4, R5, R10, R11, R12, R13, R21, R22, R24, R25, R30, R31, R32, R33 16 TE Connectivity CRGCQ0805F15R 0.036 0.576

CRCW08052R20JNEAHP

Fixed Resistor, Metal Glaze/thick Film,
0.5W, 2.2ohm, 150V, 5% +/-Tol,
200ppm/Cel, Surface Mount, 0805 R3, R23 2 Vishay Dale CRCW08052R20JNEAHP 0.013 0.026

CRCW25121R00FKEG

Fixed Resistor, Metal Glaze/thick Film,
1W, 1ohm, 500V, 1% +/-Tol, 100ppm/Cel,
Surface Mount, 2512 R6, R26 2 Vishay Dale CRCW25121R00FKEG 0.3133 0.6266

ERJ-6ENF47R0V

Fixed Resistor, Metal Glaze/thick Film,
0.125W, 47ohm, 150V, 1% +/-Tol,
100ppm/Cel, Surface Mount, 0805 R7, R9, R14, R18, R27, R29, R34, R36 8 Panasonic ERJ-6ENF47R0V 0.052 0.416

R075 RES SHUNT, 2512, 0.075 ohm, 1%, 3W R8, R16, R28, R35 4 Stackpole Electronics CSNL2512FT75L0 0.51 2.04

Resistor 10k +/-1% 0805 125 mW
Chip Resistor, 10 KOhm, +/- 1%, 125 mW,
-55 to 155 degC, 0805 (2012 Metric) R15, R19, R37, R38 4 Vishay CRCW080510K0FKEA 0.026 0.104

RT0805FRE0722KL

Fixed Resistor, Thin Film, 0.125W,
22000ohm, 150V, 1% +/-Tol, 50ppm/Cel,
Surface Mount, 0805 R17, R20, R39, R40 4 Yageo RT0805FRE0722KL 0.0129 0.0516

Resistor 10k +/-1% 1206 250 mW
Chip Resistor, 10 KOhm, +/- 1%, 0.25 W, -
55 to 155 degC, 1206 (3216 Metric) R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56 16 Yageo RC1206FR-0710KL 0.018 0.288

CRG0805F120R

Fixed Resistor, Metal Glaze/thick Film,
0.125W, 120ohm, 150V, 1% +/-Tol,
100ppm/Cel, Surface Mount, 0805 R57 1 TE Connectivity CRG0805F120R 0.006 0.006

PTH-M2D5X5 M2 PTH (2.5mm), 5mm pad ST1, ST2, ST3, ST4 4

TMC5160A-TA-T
Stepper Motor Controller, CMOS,
PQFP48 U1, U2 2 Trinamic TMC5160A-TA-T 8.28 16.56

TLV9101IDBVR
General Purpose Opertational Amplifier 1
Circuit Rail-to-Rail SOT-23-5 U3, U4, U5, U6 4 Texas Instruments TLV9101IDBVR 0.61 2.44

Appendix F

Code Documentation

This chapter contains documentation which was generated from the doc comment in the source
code. The application used for this task is called Doxygen.

1 Leafy Automation Central

299

Leafy Automation Central

Generated by Doxygen 1.13.2

i

1 Namespace Index 1

1.1 Namespace List . 1

2 Hierarchical Index 3

2.1 Class Hierarchy . 3

3 Class Index 5

3.1 Class List . 5

4 File Index 7

4.1 File List . 7

5 Namespace Documentation 9

5.1 access_levels Namespace Reference . 9

5.2 api Namespace Reference . 9

5.2.1 Function Documentation . 9

5.2.1.1 capture_image_route() . 9

5.2.1.2 classify_image_route() . 10

5.2.1.3 get_camera_feed() . 10

5.2.1.4 home() . 10

5.2.1.5 log_route() . 10

5.2.1.6 stats_route() . 10

5.2.1.7 status() . 10

5.2.1.8 visual_get_depth() . 11

5.2.1.9 visual_get_geometry() . 11

5.2.1.10 visual_get_mask() . 11

5.2.2 Variable Documentation . 11

5.2.2.1 routes . 11

5.2.2.2 stats . 11

5.3 benchmark Namespace Reference . 12

5.4 camera_feed Namespace Reference . 12

5.5 chessboard Namespace Reference . 12

5.5.1 Variable Documentation . 12

5.5.1.1 corners . 12

5.5.1.2 gray . 12

5.5.1.3 img . 12

5.5.1.4 pattern_size . 12

5.5.1.5 ret . 12

5.6 db Namespace Reference . 13

5.7 depth_estimation Namespace Reference . 13

5.7.1 Function Documentation . 13

5.7.1.1 estimate_depth() . 13

5.7.2 Variable Documentation . 13

5.7.2.1 estimator_fast . 13

Generated by Doxygen

ii

5.7.2.2 estimator_slow . 14

5.8 green_percentage Namespace Reference . 14

5.8.1 Function Documentation . 14

5.8.1.1 estimate_green_percentage() . 14

5.9 grip_point Namespace Reference . 14

5.9.1 Function Documentation . 15

5.9.1.1 get_grip_point() . 15

5.10 hmi Namespace Reference . 15

5.10.1 Function Documentation . 16

5.10.1.1 dashboard() . 16

5.10.1.2 login() . 16

5.10.1.3 logout() . 16

5.10.2 Variable Documentation . 16

5.10.2.1 routes . 16

5.11 image_analysis Namespace Reference . 17

5.12 image_classification Namespace Reference . 17

5.12.1 Function Documentation . 17

5.12.1.1 classify_image() . 17

5.12.2 Variable Documentation . 17

5.12.2.1 classifier . 17

5.13 log Namespace Reference . 17

5.14 main Namespace Reference . 18

5.14.1 Function Documentation . 18

5.14.1.1 get_frame() . 18

5.14.2 Variable Documentation . 18

5.14.2.1 app . 18

5.14.2.2 debug . 18

5.14.2.3 host . 18

5.14.2.4 metrics . 19

5.14.2.5 model . 19

5.14.2.6 path . 19

5.14.2.7 results . 19

5.14.2.8 socketio . 19

5.14.2.9 True . 19

5.15 mask_generation Namespace Reference . 19

5.15.1 Function Documentation . 20

5.15.1.1 generate_geometry_from_mask() . 20

5.15.1.2 generate_mask() . 20

5.16 misc Namespace Reference . 21

5.16.1 Function Documentation . 21

5.16.1.1 get_device() . 21

5.16.1.2 img_base64() . 21

Generated by Doxygen

iii

5.17 object_detection Namespace Reference . 21

5.17.1 Function Documentation . 22

5.17.1.1 object_detection() . 22

5.17.2 Variable Documentation . 22

5.17.2.1 model . 22

5.18 plant_manager Namespace Reference . 22

5.19 routes Namespace Reference . 22

5.19.1 Function Documentation . 22

5.19.1.1 classify_image_route() . 22

5.19.1.2 home() . 23

5.19.2 Variable Documentation . 23

5.19.2.1 routes . 23

5.20 user Namespace Reference . 23

6 Class Documentation 25

6.1 access_levels.AccessLevel Class Reference . 25

6.1.1 Detailed Description . 25

6.1.2 Member Data Documentation . 25

6.1.2.1 ADMIN . 25

6.1.2.2 SPECTATOR . 25

6.2 benchmark.Benchmark Class Reference . 26

6.2.1 Detailed Description . 26

6.2.2 Constructor & Destructor Documentation . 26

6.2.2.1 __init__() . 26

6.2.3 Member Function Documentation . 27

6.2.3.1 avg() . 27

6.2.3.2 end_lap() . 27

6.2.3.3 save() . 27

6.2.3.4 standard_deviation() . 28

6.2.3.5 start_lap() . 28

6.2.4 Member Data Documentation . 28

6.2.4.1 done . 28

6.2.4.2 max_laps . 28

6.2.4.3 start_time . 28

6.2.4.4 times . 28

6.2.4.5 title . 29

6.2.4.6 xlabel . 29

6.2.4.7 ylabel . 29

6.3 db.DB Class Reference . 29

6.3.1 Detailed Description . 29

6.3.2 Member Function Documentation . 29

6.3.2.1 get_connection() . 29

Generated by Doxygen

iv

6.3.2.2 migrations() . 30

6.3.2.3 migrations_populate() . 30

6.3.2.4 query() . 31

6.3.2.5 table_is_empty() . 32

6.4 image_analysis.ImageAnalysis Class Reference . 32

6.4.1 Detailed Description . 32

6.4.2 Constructor & Destructor Documentation . 32

6.4.2.1 __init__() . 32

6.4.3 Member Data Documentation . 33

6.4.3.1 classification . 33

6.4.3.2 green_percentage . 33

6.4.3.3 score . 33

6.5 log.Log Class Reference . 33

6.5.1 Detailed Description . 33

6.5.2 Constructor & Destructor Documentation . 33

6.5.2.1 __init__() . 33

6.5.3 Member Function Documentation . 34

6.5.3.1 load() . 34

6.5.3.2 save() . 34

6.5.4 Member Data Documentation . 34

6.5.4.1 message . 34

6.6 plant_manager.PlantManager Class Reference . 34

6.6.1 Constructor & Destructor Documentation . 35

6.6.1.1 __init__() . 35

6.6.2 Member Function Documentation . 35

6.6.2.1 detect_plants() . 35

6.6.2.2 draw_geometry() . 35

6.6.2.3 draw_hud() . 36

6.6.2.4 get_binary_image() . 36

6.6.2.5 world_coordinates() . 37

6.6.3 Member Data Documentation . 37

6.6.3.1 image . 37

6.6.3.2 plants . 37

6.7 user.User Class Reference . 37

6.7.1 Constructor & Destructor Documentation . 38

6.7.1.1 __init__() . 38

6.7.2 Member Function Documentation . 38

6.7.2.1 __iter__() . 38

6.7.2.2 auth() . 39

6.7.2.3 get_access_level() . 39

6.7.2.4 get_user() . 39

6.7.2.5 is_admin() . 40

Generated by Doxygen

v

6.7.2.6 is_spectator() . 40

6.7.3 Member Data Documentation . 40

6.7.3.1 access_level_id . 40

6.7.3.2 email . 40

6.7.3.3 first_name . 40

6.7.3.4 last_name . 40

6.7.3.5 password . 40

6.7.3.6 username . 40

7 File Documentation 41

7.1 central/ai/chessboard.py File Reference . 41

7.2 central/ai/nodes/camera_feed.py File Reference . 41

7.3 central/ai/nodes/grip_point.py File Reference . 41

7.4 central/ai/plant_manager.py File Reference . 42

7.5 central/ai/tasks/depth_estimation.py File Reference . 42

7.6 central/ai/tasks/green_percentage.py File Reference . 42

7.7 central/ai/tasks/image_classification.py File Reference . 42

7.8 central/ai/tasks/mask_generation.py File Reference . 43

7.9 central/ai/tasks/object_detection.py File Reference . 43

7.10 central/api.py File Reference . 43

7.11 central/common/access_levels.py File Reference . 44

7.12 central/common/db.py File Reference . 44

7.13 central/common/image_analysis.py File Reference . 44

7.14 central/common/log.py File Reference . 45

7.15 central/common/user.py File Reference . 45

7.16 central/hmi.py File Reference . 45

7.17 central/main.py File Reference . 45

7.18 training/main.py File Reference . 46

7.19 central/routes.py File Reference . 46

7.20 central/static/js/controllers/CameraController.js File Reference . 47

7.21 central/static/js/controllers/StatusController.js File Reference . 47

7.22 central/static/js/main.js File Reference . 47

7.23 central/static/js/models/CameraModel.js File Reference . 47

7.24 central/static/js/models/StatusModel.js File Reference . 47

7.25 central/static/js/views/CameraView.js File Reference . 47

7.26 central/static/js/views/StatusView.js File Reference . 47

7.27 central/util/benchmark.py File Reference . 47

7.28 central/util/misc.py File Reference . 47

Index 49

Generated by Doxygen

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

access_levels . 9
api . 9
benchmark . 12
camera_feed . 12
chessboard . 12
db . 13
depth_estimation . 13
green_percentage . 14
grip_point . 14
hmi . 15
image_analysis . 17
image_classification . 17
log . 17
main . 18
mask_generation . 19
misc . 21
object_detection . 21
plant_manager . 22
routes . 22
user . 23

Generated by Doxygen

2 Namespace Index

Generated by Doxygen

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

benchmark.Benchmark . 26
db.DB . 29
Enum

access_levels.AccessLevel . 25
image_analysis.ImageAnalysis . 32
log.Log . 33
plant_manager.PlantManager . 34
user.User . 37

Generated by Doxygen

4 Hierarchical Index

Generated by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

access_levels.AccessLevel . 25
benchmark.Benchmark . 26
db.DB

Class for managing SQLite database connection . 29
image_analysis.ImageAnalysis . 32
log.Log . 33
plant_manager.PlantManager . 34
user.User . 37

Generated by Doxygen

6 Class Index

Generated by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

central/api.py . 43
central/hmi.py . 45
central/main.py . 45
central/routes.py . 46
central/ai/chessboard.py . 41
central/ai/plant_manager.py . 42
central/ai/nodes/camera_feed.py . 41
central/ai/nodes/grip_point.py . 41
central/ai/tasks/depth_estimation.py . 42
central/ai/tasks/green_percentage.py . 42
central/ai/tasks/image_classification.py . 42
central/ai/tasks/mask_generation.py . 43
central/ai/tasks/object_detection.py . 43
central/common/access_levels.py . 44
central/common/db.py . 44
central/common/image_analysis.py . 44
central/common/log.py . 45
central/common/user.py . 45
central/static/js/main.js . 47
central/static/js/controllers/CameraController.js . 47
central/static/js/controllers/StatusController.js . 47
central/static/js/models/CameraModel.js . 47
central/static/js/models/StatusModel.js . 47
central/static/js/views/CameraView.js . 47
central/static/js/views/StatusView.js . 47
central/util/benchmark.py . 47
central/util/misc.py . 47
training/main.py . 46

Generated by Doxygen

8 File Index

Generated by Doxygen

Chapter 5

Namespace Documentation

5.1 access_levels Namespace Reference

Classes

• class AccessLevel

5.2 api Namespace Reference

Functions

• home ()
• status ()
• stats_route ()
• log_route ()
• get_camera_feed ()
• visual_get_mask ()
• visual_get_geometry ()
• visual_get_depth ()
• capture_image_route ()
• classify_image_route ()

Variables

• routes = Blueprint("api_v1", __name__, url_prefix="/api/v1")
• dict stats

5.2.1 Function Documentation

5.2.1.1 capture_image_route()

api.capture_image_route ()

00094 def capture_image_route():
00095 if not request.data:
00096 return jsonify({"msg": "No image data provided"}), 400
00097
00098 with open("./central/cache/camera01.jpg", "wb") as f:
00099 f.write(request.data)
00100
00101 return jsonify({"msg": "Image saved"})
00102
00103 @routes.route("/classify-image", methods=["POST"])

Generated by Doxygen

10 Namespace Documentation

5.2.1.2 classify_image_route()

api.classify_image_route ()

00104 def classify_image_route():
00105 image = request.data # Raw image data (binary)
00106 #masks = generate_mask(image)
00107
00108 res = {
00109 "class": classify_image(image),
00110 #"mask": masks
00111 }
00112
00113 return jsonify(res)

5.2.1.3 get_camera_feed()

api.get_camera_feed ()

00055 def get_camera_feed():
00056 return visual_get_geometry()
00057

5.2.1.4 home()

api.home ()

00022 def home():
00023 return jsonify({"msg": "Hello from Leafy Automation Central!"})
00024
00025 @routes.route("/status", methods=["GET"])

5.2.1.5 log_route()

api.log_route ()

00049 def log_route():
00050 log = Log(request.args.get("msg"))
00051 log.save()
00052
00053 return jsonify({})
00054

5.2.1.6 stats_route()

api.stats_route ()

00042 def stats_route():
00043 stats["image-capture-time"] = request.args.get("image-capture-time")
00044 stats["image-capture-req-time"] = request.args.get("image-capture-req-time")
00045
00046 return jsonify({"msg": "Data captured"})
00047
00048 @routes.route("/log", methods=["GET"])

5.2.1.7 status()

api.status ()

00026 def status():
00027 image = Image.open("./central/cache/camera01.jpg")
00028 image_classification = classify_image(image)
00029
00030 json = {
00031 "status": "Online",
00032 "img-capture-time": stats["image-capture-time"],
00033 "img-capture-req-time": stats["image-capture-req-time"],
00034 "image-classification": max(image_classification, key=lambda x: x["score"])["label"],
00035 "green-percentage": estimate_green_percentage(cv2.imread("./central/cache/camera01.jpg")),
00036 "log": Log.load()
00037 }
00038
00039 return jsonify(json)
00040
00041 @routes.route("/log-stats", methods=["GET"])

Generated by Doxygen

5.2 api Namespace Reference 11

5.2.1.8 visual_get_depth()

api.visual_get_depth ()

00082 def visual_get_depth():
00083 image = Image.open("./central/cache/camera01.jpg")
00084
00085 depth = estimate_depth(image)
00086
00087 buffer = io.BytesIO()
00088 depth["depth"].save(buffer, format="PNG")
00089 buffer.seek(0)
00090
00091 return base64.b64encode(buffer.getvalue()).decode("utf-8")
00092
00093 @routes.route("/capture-image", methods=["POST"])

5.2.1.9 visual_get_geometry()

api.visual_get_geometry ()

00070 def visual_get_geometry():
00071 image = cv2.imread("./central/cache/camera01.jpg")
00072
00073 plant_manager = PlantManager(image)
00074 bounding_boxes, contours, centroids = plant_manager.detect_plants()
00075 plant_manager.draw_geometry(bounding_boxes, contours, centroids)
00076 image_raw = plant_manager.get_binary_image()
00077
00078 base64_image = base64.b64encode(image_raw.getbuffer()).decode("utf-8")
00079
00080 return base64_image
00081

5.2.1.10 visual_get_mask()

api.visual_get_mask ()

00058 def visual_get_mask():
00059 image = cv2.imread("./central/cache/camera01.jpg")
00060
00061 mask = generate_mask(image)
00062
00063 _, img_encoded = cv2.imencode(".jpg", mask)
00064 img_jpg = io.BytesIO(img_encoded.tobytes())
00065
00066 base64_image = base64.b64encode(img_jpg.getbuffer()).decode("utf-8")
00067
00068 return base64_image
00069

5.2.2 Variable Documentation

5.2.2.1 routes

api.routes = Blueprint("api_v1", __name__, url_prefix="/api/v1")

5.2.2.2 stats

dict api.stats

Initial value:
00001 = {
00002 "image-capture-time": 0,
00003 "image-capture-req-time": 0
00004 }

Generated by Doxygen

12 Namespace Documentation

5.3 benchmark Namespace Reference

Classes

• class Benchmark

5.4 camera_feed Namespace Reference

5.5 chessboard Namespace Reference

Variables

• img = cv2.imread("./central/cache/camera01.jpg")
• gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
• tuple pattern_size = (5, 8)
• ret
• corners

5.5.1 Variable Documentation

5.5.1.1 corners

chessboard.corners

5.5.1.2 gray

chessboard.gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

5.5.1.3 img

chessboard.img = cv2.imread("./central/cache/camera01.jpg")

5.5.1.4 pattern_size

tuple chessboard.pattern_size = (5, 8)

5.5.1.5 ret

chessboard.ret

Generated by Doxygen

5.6 db Namespace Reference 13

5.6 db Namespace Reference

Classes

• class DB

Class for managing SQLite database connection.

5.7 depth_estimation Namespace Reference

Functions

• estimate_depth (image, fast=True)

Variables

• estimator_fast = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Indoor-
Small-hf")

• estimator_slow = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-
Indoor-Large-hf")

5.7.1 Function Documentation

5.7.1.1 estimate_depth()

depth_estimation.estimate_depth (

image,

fast = True)

Estimate the depth of an image using a depth estimation model.
@param image: PIL image.
@param fast: If True, use a faster model with lower accuracy.
@return: Depth estimation result.

00006 def estimate_depth(image, fast=True):
00007 """
00008 Estimate the depth of an image using a depth estimation model.
00009 @param image: PIL image.
00010 @param fast: If True, use a faster model with lower accuracy.
00011 @return: Depth estimation result.
00012 """
00013
00014 if fast:
00015 return estimator_fast(image)
00016 else:
00017 return estimator_slow(image)

5.7.2 Variable Documentation

5.7.2.1 estimator_fast

depth_estimation.estimator_fast = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf")

Generated by Doxygen

14 Namespace Documentation

5.7.2.2 estimator_slow

depth_estimation.estimator_slow = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf")

5.8 green_percentage Namespace Reference

Functions

• estimate_green_percentage (image)

5.8.1 Function Documentation

5.8.1.1 estimate_green_percentage()

green_percentage.estimate_green_percentage (

image)

Estimate the percentage of green pixels in an image.
@param image: OpenCV image.
@return: Percentage of green pixels in the image.

00004 def estimate_green_percentage(image):
00005 """
00006 Estimate the percentage of green pixels in an image.
00007 @param image: OpenCV image.
00008 @return: Percentage of green pixels in the image.
00009 """
00010
00011 image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
00012
00013 lower_green = np.array([35, 40, 40])
00014 upper_green = np.array([85, 255, 255])
00015
00016 mask = cv2.inRange(image_hsv, lower_green, upper_green)
00017
00018 green_pixels = np.count_nonzero(mask)
00019 total_pixels = image.shape[0] * image.shape[1]
00020 green_percentage = (green_pixels / total_pixels) * 100
00021
00022 return round(green_percentage, 2)

5.9 grip_point Namespace Reference

Functions

• get_grip_point (image)

Generated by Doxygen

5.10 hmi Namespace Reference 15

5.9.1 Function Documentation

5.9.1.1 get_grip_point()

grip_point.get_grip_point (

image)

This function uses AI models and CV techniques to calculate the grip point of the point of interest,
which is a lettuce in this case.
@param image: PIL image object
@return: grip point vector (x, y, z)

00007 def get_grip_point(image):
00008 """
00009 This function uses AI models and CV techniques to calculate the grip point of the point of

interest,
00010 which is a lettuce in this case.
00011 @param image: PIL image object
00012 @return: grip point vector (x, y, z)
00013 """
00014
00015 image_opencv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
00016
00017 depth = estimate_depth(image, fast=False)
00018 mask = generate_mask(image_opencv)
00019 bounding_boxes, contours, centroids = generate_geometry_from_mask(image_opencv, mask)
00020
00021 centroid = centroids[0]
00022
00023 x = centroid[0]
00024 y = centroid[1]
00025 z = depth["predicted_depth"][y][x].item()
00026
00027 width, height = image.size
00028 cx = width / 2
00029 cy = height / 2
00030 fx = fy = 500 # Estimate of focal length.
00031
00032 X = (x - cx) * z / fx
00033 Y = (y - cy) * z / fy
00034 Z = z
00035
00036 lettuce_coord_cam_perspective = np.array([X, Y, Z])
00037 cam_vec = np.array([0, 0.5, 0.2]) # Camera position from the robot base center. Must be adjusted

and calibrated.
00038
00039 return lettuce_coord_cam_perspective - cam_vec

5.10 hmi Namespace Reference

Functions

• dashboard ()
• login ()
• logout ()

Variables

• routes = Blueprint("hmi", __name__)

Generated by Doxygen

16 Namespace Documentation

5.10.1 Function Documentation

5.10.1.1 dashboard()

hmi.dashboard ()

00007 def dashboard():
00008 if not "user_id" in session:
00009 return redirect("/login")
00010
00011 user = User.get_user(session["user_id"])
00012
00013 modules = [
00014 {
00015 "name": "Leafy Automation Core",
00016 "description": "The core of Leafy Automation (Arduino) controls motors.",
00017 "status": "Online"
00018 },
00019 {
00020 "name": "Camera Module #1",
00021 "description": "The camera module (esp32-cam).",
00022 "status": "Online"
00023 }
00024]
00025
00026 return render_template("index.html", modules=modules, user=user)
00027
00028 @routes.route("/login", methods=["GET", "POST"])

5.10.1.2 login()

hmi.login ()

00029 def login():
00030 if request.method == "POST":
00031 username: str = request.form.get("username")
00032 password: str = request.form.get("password")
00033
00034 if User.auth(username, password):
00035 user1 = User.get_user(username)
00036 session["user_id"] = user1.username
00037 session["username"] = user1.username
00038 session["email"] = user1.email
00039 session["first_name"] = user1.first_name
00040 session["last_name"] = user1.last_name
00041 session["access_level_id"] = user1.access_level_id
00042
00043 return redirect("/")
00044 else:
00045 return redirect("/login?error=login_failed")
00046 elif request.method == "GET":
00047 return render_template("login.html")
00048
00049 @routes.route("/logout", methods=["GET"])

5.10.1.3 logout()

hmi.logout ()

00050 def logout():
00051 session.clear()
00052 return redirect("/login")

5.10.2 Variable Documentation

5.10.2.1 routes

hmi.routes = Blueprint("hmi", __name__)

Generated by Doxygen

5.11 image_analysis Namespace Reference 17

5.11 image_analysis Namespace Reference

Classes

• class ImageAnalysis

5.12 image_classification Namespace Reference

Functions

• classify_image (image)

Variables

• classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")

5.12.1 Function Documentation

5.12.1.1 classify_image()

image_classification.classify_image (

image)

Classify an image using a pretrained model.
@return: The class of the image.

00005 def classify_image(image):
00006 """
00007 Classify an image using a pretrained model.
00008 @return: The class of the image.
00009 """
00010
00011 return classifier(image=image, candidate_labels=["crispy_lettuce", "arugula"])

5.12.2 Variable Documentation

5.12.2.1 classifier

image_classification.classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")

5.13 log Namespace Reference

Classes

• class Log

Generated by Doxygen

18 Namespace Documentation

5.14 main Namespace Reference

Functions

• get_frame ()

Variables

• app = Flask(__name__)
• socketio = SocketIO(app, cors_allowed_origins="∗")
• debug
• True
• host
• model = YOLO("yolo11n.pt")
• results = model.train(data="training/datasets/leafy-automation/data.yaml", epochs=100, imgsz=640)
• metrics = model.val()
• path = model.export(format="onnx")

5.14.1 Function Documentation

5.14.1.1 get_frame()

main.get_frame ()

00046 def get_frame():
00047 #benchmark = Benchmark("Object Detection Benchmark facebook detr-resnet-50", 100)
00048
00049 while True:
00050 #benchmark.start_lap()
00051 image_data = api.get_camera_feed()
00052 #benchmark.end_lap()
00053
00054 socketio.emit("camera_frame", image_data)
00055 socketio.sleep(0.1)
00056

5.14.2 Variable Documentation

5.14.2.1 app

main.app = Flask(__name__)

5.14.2.2 debug

main.debug

5.14.2.3 host

main.host

Generated by Doxygen

5.15 mask_generation Namespace Reference 19

5.14.2.4 metrics

main.metrics = model.val()

5.14.2.5 model

main.model = YOLO("yolo11n.pt")

5.14.2.6 path

main.path = model.export(format="onnx")

5.14.2.7 results

main.results = model.train(data="training/datasets/leafy-automation/data.yaml", epochs=100,

imgsz=640)

5.14.2.8 socketio

main.socketio = SocketIO(app, cors_allowed_origins="∗")

5.14.2.9 True

main.True

5.15 mask_generation Namespace Reference

Functions

• generate_mask (image)
• generate_geometry_from_mask (image, mask)

Generated by Doxygen

20 Namespace Documentation

5.15.1 Function Documentation

5.15.1.1 generate_geometry_from_mask()

mask_generation.generate_geometry_from_mask (

image,

mask)

Generate geometry from a mask (bounding boxes, centroids and contours).
@param image: OpenCV image.

00023 def generate_geometry_from_mask(image, mask):
00024 """
00025 Generate geometry from a mask (bounding boxes, centroids and contours).
00026 @param image: OpenCV image.
00027 """
00028
00029 labels = pcv.watershed_segmentation(image, mask, 50)
00030
00031 bounding_boxes = []
00032 centroids = []
00033 all_contours = []
00034
00035 for label in np.unique(labels):
00036 # Skip background
00037 if label == 0:
00038 continue
00039
00040 object_mask = np.equal(labels, label).astype(np.uint8)
00041
00042 contours, _ = cv2.findContours(object_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
00043
00044 for contour in contours:
00045 x, y, w, h = cv2.boundingRect(contour)
00046 bounding_boxes.append((x, y, x + w, y + h))
00047
00048 moments = cv2.moments(contour)
00049
00050 if moments["m00"] != 0:
00051 centroids.append(
00052 (int(moments["m10"] / moments["m00"]), int(moments["m01"] / moments["m00"]))
00053)
00054
00055 all_contours.append(contour)
00056
00057 return (bounding_boxes, all_contours, centroids)

5.15.1.2 generate_mask()

mask_generation.generate_mask (

image)

Generate a mask for an image.
@param image: OpenCV image.
@return Image mask.

00005 def generate_mask(image):
00006 """
00007 Generate a mask for an image.
00008 @param image: OpenCV image.
00009 @return Image mask.
00010 """
00011
00012 image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
00013 lower_green = np.array([35, 40, 40])
00014 upper_green = np.array([85, 255, 255])
00015
00016 mask = cv2.inRange(image_hsv, lower_green, upper_green)
00017
00018 img_fill = pcv.fill(bin_img=mask, size=100)
00019 img_fill_holes = pcv.fill_holes(img_fill)
00020
00021 return img_fill_holes
00022

Generated by Doxygen

5.16 misc Namespace Reference 21

5.16 misc Namespace Reference

Functions

• get_device ()
• img_base64 (image)

5.16.1 Function Documentation

5.16.1.1 get_device()

misc.get_device ()

Get the device to be used for AI models.

00005 def get_device():
00006 """
00007 Get the device to be used for AI models.
00008 """
00009
00010 if torch.cuda.is_available():
00011 return "cuda"
00012 elif torch.backends.mps.is_available():
00013 return "mps"
00014 else:
00015 return "cpu"
00016

5.16.1.2 img_base64()

misc.img_base64 (

image)

Convert an image to base64 format.
@param image: OpenCV image.
@return: Base64 encoded string of the image.

00017 def img_base64(image):
00018 """
00019 Convert an image to base64 format.
00020 @param image: OpenCV image.
00021 @return: Base64 encoded string of the image.
00022 """
00023
00024 _, img_encoded = cv2.imencode(".jpg", image)
00025 return base64.b64encode(img_encoded).decode("utf-8")

5.17 object_detection Namespace Reference

Functions

• object_detection (image)

Variables

• model = YOLO("leafy-ai-obj-detection.pt")

Generated by Doxygen

22 Namespace Documentation

5.17.1 Function Documentation

5.17.1.1 object_detection()

object_detection.object_detection (

image)

Performs object detection on an image using a custom-trained YOLOv11 model.
@param image: PIL image.

00005 def object_detection(image):
00006 """
00007 Performs object detection on an image using a custom-trained YOLOv11 model.
00008 @param image: PIL image.
00009 """
00010
00011 return model(image)

5.17.2 Variable Documentation

5.17.2.1 model

object_detection.model = YOLO("leafy-ai-obj-detection.pt")

5.18 plant_manager Namespace Reference

Classes

• class PlantManager

5.19 routes Namespace Reference

Functions

• home ()
• classify_image_route ()

Variables

• routes = Blueprint("routes", __name__)

5.19.1 Function Documentation

5.19.1.1 classify_image_route()

routes.classify_image_route ()

00010 def classify_image_route():
00011 from ai.classify_image import classify_image
00012
00013 image = request.data # Raw image data (binary)
00014
00015 res = {
00016 "class": classify_image(image)
00017 }
00018
00019 return jsonify(res)

Generated by Doxygen

5.20 user Namespace Reference 23

5.19.1.2 home()

routes.home ()

00006 def home():
00007 return jsonify({"msg": "Hello from Leafy Automation Central!"})
00008
00009 @routes.route("/classify-image", methods=["POST"])

5.19.2 Variable Documentation

5.19.2.1 routes

routes.routes = Blueprint("routes", __name__)

5.20 user Namespace Reference

Classes

• class User

Generated by Doxygen

24 Namespace Documentation

Generated by Doxygen

Chapter 6

Class Documentation

6.1 access_levels.AccessLevel Class Reference

Inheritance diagram for access_levels.AccessLevel:

access_levels.AccessLevel

Enum

Static Public Attributes

• int ADMIN = 1
• int SPECTATOR = 2

6.1.1 Detailed Description

Enum for access levels.

6.1.2 Member Data Documentation

6.1.2.1 ADMIN

int access_levels.AccessLevel.ADMIN = 1 [static]

6.1.2.2 SPECTATOR

int access_levels.AccessLevel.SPECTATOR = 2 [static]

The documentation for this class was generated from the following file:

• central/common/access_levels.py

Generated by Doxygen

26 Class Documentation

6.2 benchmark.Benchmark Class Reference

Public Member Functions

• __init__ (self, str title, int max_laps=100, tuple labels=("Lap", "Time"))
• start_lap (self)
• end_lap (self)
• avg (self)
• standard_deviation (self)
• save (self)

Public Attributes

• title = title
• start_time = None
• list times = []
• max_laps = max_laps
• bool done = False
• xlabel = labels[0]
• ylabel = labels[1]

6.2.1 Detailed Description

A class for handling benchmark related tasks.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 __init__()

benchmark.Benchmark.__init__ (

self,

str title,

int max_laps = 100,

tuple labels = ("Lap", "Time"))

Benchmark constructor.
@param title: Title of the benchmark.

00011 def __init__(self, title: str, max_laps: int = 100, labels: tuple = ("Lap", "Time")):
00012 """
00013 Benchmark constructor.
00014 @param title: Title of the benchmark.
00015 """
00016
00017 self.title = title
00018 self.start_time = None
00019 self.times = []
00020 self.max_laps = max_laps
00021 self.done = False
00022 self.xlabel = labels[0]
00023 self.ylabel = labels[1]
00024

Generated by Doxygen

6.2 benchmark.Benchmark Class Reference 27

6.2.3 Member Function Documentation

6.2.3.1 avg()

benchmark.Benchmark.avg (

self)

Returns the average time of the benchmark.
@return: Average time.

00050 def avg(self):
00051 """
00052 Returns the average time of the benchmark.
00053 @return: Average time.
00054 """
00055
00056 return sum(self.times) / len(self.times)
00057

6.2.3.2 end_lap()

benchmark.Benchmark.end_lap (

self)

Ends the current lap.

00032 def end_lap(self):
00033 """
00034 Ends the current lap.
00035 """
00036
00037 if self.done:
00038 return
00039
00040 if len(self.times) == self.max_laps:
00041 print("Benchmark done. Saving results ...")
00042 self.done = True
00043 self.save()
00044 else:
00045 self.times.append(time.perf_counter() - self.start_time)
00046 self.start_time = None
00047
00048 print(f"Current lap ({len(self.times)} / {self.max_laps})")
00049

6.2.3.3 save()

benchmark.Benchmark.save (

self)

Plots the benchmark results.

00066 def save(self):
00067 """
00068 Plots the benchmark results.
00069 """
00070
00071 matplotlib.use(’Agg’) # Use a non-interactive backend. Prevents thread issues.
00072
00073 plt.figure()
00074 plt.plot(self.times)
00075 plt.title(self.title)
00076 plt.xlabel(self.xlabel)
00077 plt.ylabel(self.ylabel)
00078 plt.grid()
00079 plt.savefig(f"{self.title.replace(’ ’, ’_’)}-{int(time.time() * 1000)}.png")
00080 plt.close()
00081
00082 print(f"Benchmark average time: {self.avg()} seconds, standard deviation:

{self.standard_deviation()} seconds")

Generated by Doxygen

28 Class Documentation

6.2.3.4 standard_deviation()

benchmark.Benchmark.standard_deviation (

self)

Returns the standard deviation of the benchmark times.
@return: Standard deviation.

00058 def standard_deviation(self):
00059 """
00060 Returns the standard deviation of the benchmark times.
00061 @return: Standard deviation.
00062 """
00063
00064 return np.std(self.times)
00065

6.2.3.5 start_lap()

benchmark.Benchmark.start_lap (

self)

Starts a new lap.

00025 def start_lap(self):
00026 """
00027 Starts a new lap.
00028 """
00029
00030 self.start_time = time.perf_counter()
00031

6.2.4 Member Data Documentation

6.2.4.1 done

bool benchmark.Benchmark.done = False

6.2.4.2 max_laps

benchmark.Benchmark.max_laps = max_laps

6.2.4.3 start_time

benchmark.Benchmark.start_time = None

6.2.4.4 times

benchmark.Benchmark.times = []

Generated by Doxygen

6.3 db.DB Class Reference 29

6.2.4.5 title

benchmark.Benchmark.title = title

6.2.4.6 xlabel

benchmark.Benchmark.xlabel = labels[0]

6.2.4.7 ylabel

benchmark.Benchmark.ylabel = labels[1]

The documentation for this class was generated from the following file:

• central/util/benchmark.py

6.3 db.DB Class Reference

Class for managing SQLite database connection.

Static Public Member Functions

• get_connection ()
• query (str sql, tuple args=(), bool commit=False)
• table_is_empty (table_name)
• migrations_populate ()
• migrations ()

6.3.1 Detailed Description

Class for managing SQLite database connection.

6.3.2 Member Function Documentation

6.3.2.1 get_connection()

db.DB.get_connection () [static]

Get a new database connection.
@return: SQLite connection object.

00011 def get_connection():
00012 """
00013 Get a new database connection.
00014 @return: SQLite connection object.
00015 """
00016
00017 connection = sqlite3.connect("central.db")
00018 connection.row_factory = sqlite3.Row
00019
00020 return connection
00021

Generated by Doxygen

30 Class Documentation

6.3.2.2 migrations()

db.DB.migrations () [static]

Run database migrations.

00087 def migrations():
00088 """
00089 Run database migrations.
00090 """
00091
00092 connection = DB.get_connection()
00093 cursor = connection.cursor()
00094
00095 # Create users table
00096 cursor.execute("""
00097 CREATE TABLE IF NOT EXISTS users (
00098 id INTEGER PRIMARY KEY AUTOINCREMENT,
00099 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00100 username TEXT NOT NULL UNIQUE,
00101 password TEXT NOT NULL,
00102 email TEXT NOT NULL UNIQUE,
00103 first_name TEXT NOT NULL,
00104 last_name TEXT NOT NULL,
00105 access_level_id INTEGER NOT NULL,
00106 FOREIGN KEY (access_level_id) REFERENCES access_levels(id)
00107)
00108 """)
00109
00110 # Create access_levels table
00111 cursor.execute("""
00112 CREATE TABLE IF NOT EXISTS access_levels (
00113 id INTEGER PRIMARY KEY AUTOINCREMENT,
00114 name TEXT NOT NULL UNIQUE
00115)
00116 """)
00117
00118 # Create logs table
00119 cursor.execute("""
00120 CREATE TABLE IF NOT EXISTS logs (
00121 id INTEGER PRIMARY KEY AUTOINCREMENT,
00122 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00123 message TEXT NOT NULL
00124)
00125 """)
00126
00127 # Create image_analysis table
00128 cursor.execute("""
00129 CREATE TABLE IF NOT EXISTS image_analysis (
00130 id INTEGER PRIMARY KEY AUTOINCREMENT,
00131 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00132 classification TEXT NOT NULL,
00133 green_percentage REAL NOT NULL,
00134 label TEXT NOT NULL,
00135 score REAL NOT NULL
00136)
00137 """)
00138
00139 # Create bounding_boxes table
00140 cursor.execute("""
00141 CREATE TABLE IF NOT EXISTS bounding_boxes (
00142 id INTEGER PRIMARY KEY AUTOINCREMENT,
00143 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00144 xmin INTEGER NOT NULL,
00145 ymin INTEGER NOT NULL,
00146 xmax INTEGER NOT NULL,
00147 ymax INTEGER NOT NULL,
00148 image_analysis_id INTEGER NOT NULL,
00149 FOREIGN KEY (image_analysis_id) REFERENCES image_analysis(id)
00150)
00151 """)
00152
00153 connection.commit()
00154 connection.close()
00155
00156 DB.migrations_populate()

6.3.2.3 migrations_populate()

db.DB.migrations_populate () [static]

Generated by Doxygen

6.3 db.DB Class Reference 31

Populate the database with initial data.

00058 def migrations_populate():
00059 """
00060 Populate the database with initial data.
00061 """
00062
00063 connection = DB.get_connection()
00064 cursor = connection.cursor()
00065
00066 # Insert default access levels
00067 if DB.table_is_empty("access_levels"):
00068 cursor.executemany("INSERT INTO access_levels (name) VALUES (?)", [
00069 ("admin",),
00070 ("spectator",)
00071])
00072
00073 # Insert default users
00074 if DB.table_is_empty("users"):
00075 user1 = user.User("admin", os.getenv("USER1_PASSWORD"), "admin@example.com", "John",

"Green", 1)
00076 user2 = user.User("spectator", os.getenv("USER2_PASSWORD"), "spectator@example.com",

"Leafy", "Green", 2)
00077
00078 cursor.executemany("INSERT INTO users (username, password, email, first_name, last_name,

access_level_id) VALUES (?, ?, ?, ?, ?, ?)", [
00079 (user1.username, user1.password, user1.email, user1.first_name, user1.last_name,

user1.access_level_id),
00080 (user2.username, user2.password, user2.email, user2.first_name, user2.last_name,

user2.access_level_id)
00081])
00082
00083 connection.commit()
00084 connection.close()
00085

6.3.2.4 query()

db.DB.query (

str sql,

tuple args = (),

bool commit = False) [static]

Execute a SQL query.
@param sql: SQL query string.
@param args: Arguments for the SQL query.
@param commit: Whether to commit the transaction.
@return: Result of the query (sqlite3.Row object).

00023 def query(sql: str, args: tuple = (), commit: bool = False):
00024 """
00025 Execute a SQL query.
00026 @param sql: SQL query string.
00027 @param args: Arguments for the SQL query.
00028 @param commit: Whether to commit the transaction.
00029 @return: Result of the query (sqlite3.Row object).
00030 """
00031
00032 connection = DB.get_connection()
00033 cursor = connection.cursor()
00034 cursor.execute(sql, args)
00035
00036 if commit:
00037 connection.commit()
00038
00039 if cursor.description:
00040 result = cursor.fetchall()
00041
00042 connection.close()
00043
00044 return result
00045

Generated by Doxygen

32 Class Documentation

6.3.2.5 table_is_empty()

db.DB.table_is_empty (

table_name) [static]

Check if a table is empty.
@param table_name: Name of the table to check.
@return: True if the table is empty, False otherwise.

00047 def table_is_empty(table_name):
00048 """
00049 Check if a table is empty.
00050 @param table_name: Name of the table to check.
00051 @return: True if the table is empty, False otherwise.
00052 """
00053
00054 res = DB.query(f"SELECT COUNT(*) FROM {table_name}")
00055 return res[0][0] == 0
00056

The documentation for this class was generated from the following file:

• central/common/db.py

6.4 image_analysis.ImageAnalysis Class Reference

Public Member Functions

• __init__ (self, str classification, float green_percentage, float score)

Public Attributes

• classification = classification
• green_percentage = green_percentage
• score = score

6.4.1 Detailed Description

@brief Class for storing image analysis results in db.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 __init__()

image_analysis.ImageAnalysis.__init__ (

self,

str classification,

float green_percentage,

float score)

00008 def __init__(self, classification: str, green_percentage: float, score: float):
00009 self.classification = classification
00010 self.green_percentage = green_percentage
00011 self.score = score

Generated by Doxygen

6.5 log.Log Class Reference 33

6.4.3 Member Data Documentation

6.4.3.1 classification

image_analysis.ImageAnalysis.classification = classification

6.4.3.2 green_percentage

image_analysis.ImageAnalysis.green_percentage = green_percentage

6.4.3.3 score

image_analysis.ImageAnalysis.score = score

The documentation for this class was generated from the following file:

• central/common/image_analysis.py

6.5 log.Log Class Reference

Public Member Functions

• __init__ (self, str message)
• save (self)

Static Public Member Functions

• load ()

Public Attributes

• message = message

6.5.1 Detailed Description

@brief Class for logging messages. Also handles saving logs to the database.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 __init__()

log.Log.__init__ (

self,

str message)

00008 def __init__(self, message: str):
00009 self.message = message
00010

Generated by Doxygen

34 Class Documentation

6.5.3 Member Function Documentation

6.5.3.1 load()

log.Log.load () [static]

Load all log messages from database.

00012 def load():
00013 """
00014 Load all log messages from database.
00015 """
00016
00017 logs = db.DB.query("SELECT * FROM logs")
00018 return logs
00019

6.5.3.2 save()

log.Log.save (

self)

Save the log message to the database.

00020 def save(self):
00021 """
00022 Save the log message to the database.
00023 """
00024
00025 db.DB.query("INSERT INTO logs (message) VALUES (?)", (self.message,), commit=True)

6.5.4 Member Data Documentation

6.5.4.1 message

log.Log.message = message

The documentation for this class was generated from the following file:

• central/common/log.py

6.6 plant_manager.PlantManager Class Reference

Public Member Functions

• __init__ (self, image)
• detect_plants (self)
• world_coordinates (self, x, y, z)
• draw_geometry (self, bounding_boxes, contours, centroids)
• draw_hud (self, bounding_boxes, contours, centroids)
• get_binary_image (self)

Generated by Doxygen

6.6 plant_manager.PlantManager Class Reference 35

Public Attributes

• image = image
• list plants = []

6.6.1 Constructor & Destructor Documentation

6.6.1.1 __init__()

plant_manager.PlantManager.__init__ (

self,

image)

00006 def __init__(self, image):
00007 self.image = image
00008 self.plants = []
00009

6.6.2 Member Function Documentation

6.6.2.1 detect_plants()

plant_manager.PlantManager.detect_plants (

self)

Detects plants in the image using the CV mask_generation task.
@return: A tuple containing bounding boxes, contours, and centroids of detected plants.

00010 def detect_plants(self):
00011 """
00012 Detects plants in the image using the CV mask_generation task.
00013 @return: A tuple containing bounding boxes, contours, and centroids of detected plants.
00014 """
00015 mask = generate_mask(self.image)
00016 return generate_geometry_from_mask(self.image, mask)
00017

6.6.2.2 draw_geometry()

plant_manager.PlantManager.draw_geometry (

self,

bounding_boxes,

contours,

centroids)

Draws geometry (bounding boxes, contours, and centroids) on the image.
@param bounding_boxes: List of bounding boxes.
@param contours: List of contours.
@param centroids: List of centroids.
@return: Image with geometry drawn on.

Generated by Doxygen

36 Class Documentation

00029 def draw_geometry(self, bounding_boxes, contours, centroids):
00030 """
00031 Draws geometry (bounding boxes, contours, and centroids) on the image.
00032 @param bounding_boxes: List of bounding boxes.
00033 @param contours: List of contours.
00034 @param centroids: List of centroids.
00035 @return: Image with geometry drawn on.
00036 """
00037
00038 for i, bbox in enumerate(bounding_boxes):
00039 xmin, ymin, xmax, ymax = bbox
00040 cv2.rectangle(self.image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
00041
00042 for contour in contours:
00043 cv2.drawContours(self.image, [contour], -1, (0, 0, 255), 2)
00044
00045 for centroid in centroids:
00046 cv2.circle(self.image, centroid, 10, (0, 255, 0), -1)
00047
00048 return self.image
00049

6.6.2.3 draw_hud()

plant_manager.PlantManager.draw_hud (

self,

bounding_boxes,

contours,

centroids)

Draws a HUD on the image with useful debugging info.
@param bounding_boxes: List of bounding boxes.
@param contours: List of contours.
@param centroids: List of centroids.
@return: Image with HUD drawn on.

00050 def draw_hud(self, bounding_boxes, contours, centroids):
00051 """
00052 Draws a HUD on the image with useful debugging info.
00053 @param bounding_boxes: List of bounding boxes.
00054 @param contours: List of contours.
00055 @param centroids: List of centroids.
00056 @return: Image with HUD drawn on.
00057 """
00058
00059 image_size_text = f"Image Size: {self.image.shape[1]}x{self.image.shape[0]}"
00060 cv2.putText(self.image, image_size_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255,

255), 1, cv2.LINE_AA)
00061
00062 for i, bbox in enumerate(bounding_boxes):
00063 xmin, ymin, xmax, ymax = bbox
00064
00065 cv2.putText(self.image, f"ID: {i}", (xmin - 300, ymin + 80), cv2.FONT_HERSHEY_PLAIN, 1,

(0, 0, 0), 1)
00066 #coords
00067 cv2.putText(self.image, f"COORDS: ({xmin}, {ymin}) ({xmax}, {ymax})", (xmin - 300, ymin +

100), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 1)
00068 #world coords
00069 world_coords = self.world_coordinates(xmin, ymin, 0)
00070 cv2.putText(self.image, f"WORLD COORDS: ({world_coords[0]:.2f}, {world_coords[1]:.2f},

{world_coords[2]:.2f})", (xmin - 300, ymin + 120), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 1)
00071 #grab point
00072 grab_point = self.world_coordinates(centroids[i][0], centroids[i][1], 0)
00073 cv2.putText(self.image, f"GRAB POINT: ({grab_point[0]:.2f}, {grab_point[1]:.2f},

{grab_point[2]:.2f})", (xmin - 300, ymin + 140), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 1)
00074
00075 return self.image
00076

6.6.2.4 get_binary_image()

plant_manager.PlantManager.get_binary_image (

self)

Generated by Doxygen

6.7 user.User Class Reference 37

Returns the binary image of the detected plants.
@return: Binary image of the detected plants.

00077 def get_binary_image(self):
00078 """
00079 Returns the binary image of the detected plants.
00080 @return: Binary image of the detected plants.
00081 """
00082
00083 _, img_encoded = cv2.imencode(".jpg", self.image)
00084 return io.BytesIO(img_encoded.tobytes())

6.6.2.5 world_coordinates()

plant_manager.PlantManager.world_coordinates (

self,

x,

y,

z)

Returns world coordinates (not yet implemented).
@param x: x coordinate.
@param y: y coordinate.
@param z: z coordinate.
@return: World coordinates (x, y, z).

00018 def world_coordinates(self, x, y, z):
00019 """
00020 Returns world coordinates (not yet implemented).
00021 @param x: x coordinate.
00022 @param y: y coordinate.
00023 @param z: z coordinate.
00024 @return: World coordinates (x, y, z).
00025 """
00026
00027 return (0, 0, 0)
00028

6.6.3 Member Data Documentation

6.6.3.1 image

plant_manager.PlantManager.image = image

6.6.3.2 plants

list plant_manager.PlantManager.plants = []

The documentation for this class was generated from the following file:

• central/ai/plant_manager.py

6.7 user.User Class Reference

Public Member Functions

• __init__ (self, str username, str password, str email, str first_name, str last_name, int access_level_id)
• int get_access_level (self)
• bool is_admin (self)
• bool is_spectator (self)
• __iter__ (self)

Generated by Doxygen

38 Class Documentation

Static Public Member Functions

• bool auth (str username, str password)
• "User" get_user (identifier)

Public Attributes

• username = username
• email = email
• first_name = first_name
• last_name = last_name
• access_level_id = access_level_id
• password = generate_password_hash(password, method="scrypt")

6.7.1 Constructor & Destructor Documentation

6.7.1.1 __init__()

user.User.__init__ (

self,

str username,

str password,

str email,

str first_name,

str last_name,

int access_level_id)

00006 def __init__(self, username: str, password: str, email: str, first_name: str, last_name: str,
access_level_id: int):

00007 self.username = username
00008 self.email = email
00009 self.first_name = first_name
00010 self.last_name = last_name
00011 self.access_level_id = access_level_id
00012
00013 # Make sure to not hash the password if we’re just loading an existing user.
00014 if password != "":
00015 self.password = generate_password_hash(password, method="scrypt")
00016

6.7.2 Member Function Documentation

6.7.2.1 __iter__()

user.User.__iter__ (

self)

00078 def __iter__(self):
00079 return iter((self.username, self.password, self.email, self.first_name, self.last_name,

self.access_level_id))

Generated by Doxygen

6.7 user.User Class Reference 39

6.7.2.2 auth()

bool user.User.auth (

str username,

str password) [static]

Authenticate user with username and password.
@param username: Username of the user.
@param password: Password of the user.
@return: True if authenticated, False otherwise.

00018 def auth(username: str, password: str) -> bool:
00019 """
00020 Authenticate user with username and password.
00021 @param username: Username of the user.
00022 @param password: Password of the user.
00023 @return: True if authenticated, False otherwise.
00024 """
00025
00026 result = db.DB.query("SELECT password FROM users WHERE username = ?", (username,))
00027
00028 if check_password_hash(result[0]["password"], password):
00029 return True
00030
00031 return False
00032

6.7.2.3 get_access_level()

int user.User.get_access_level (

self)

Get user access level.
@return: Access level name.

00052 def get_access_level(self) -> int:
00053 """
00054 Get user access level.
00055 @return: Access level name.
00056 """
00057 result = db.DB.query("SELECT * FROM access_levels WHERE id = ?", (self.access_level_id,))
00058
00059 if result:
00060 return result[0]["name"]
00061
00062 return None
00063

6.7.2.4 get_user()

"User" user.User.get_user (

identifier) [static]

Get user by username or id.
@param identifier: User ID or username.
@return: User object.

00034 def get_user(identifier) -> "User":
00035 """
00036 Get user by username or id.
00037 @param identifier: User ID or username.
00038 @return: User object.
00039 """
00040
00041 if isinstance(identifier, int):
00042 result = db.DB.query("SELECT * FROM users WHERE id = ?", (identifier,))
00043 else:
00044 result = db.DB.query("SELECT * FROM users WHERE username = ?", (identifier,))
00045
00046 if result:
00047 result = result[0]
00048 return User(result["username"], "", result["email"], result["first_name"],

result["last_name"], result["access_level_id"])
00049
00050 return None
00051

Generated by Doxygen

40 Class Documentation

6.7.2.5 is_admin()

bool user.User.is_admin (

self)

Check if user is admin.
@return: True if admin, False otherwise.

00064 def is_admin(self) -> bool:
00065 """
00066 Check if user is admin.
00067 @return: True if admin, False otherwise.
00068 """
00069 return self.access_level_id == AccessLevel.ADMIN.value
00070

6.7.2.6 is_spectator()

bool user.User.is_spectator (

self)

Check if user is spectator.
@return: True if spectator, False otherwise.

00071 def is_spectator(self) -> bool:
00072 """
00073 Check if user is spectator.
00074 @return: True if spectator, False otherwise.
00075 """
00076 return self.access_level_id == AccessLevel.SPECTATOR.value
00077

6.7.3 Member Data Documentation

6.7.3.1 access_level_id

user.User.access_level_id = access_level_id

6.7.3.2 email

user.User.email = email

6.7.3.3 first_name

user.User.first_name = first_name

6.7.3.4 last_name

user.User.last_name = last_name

6.7.3.5 password

user.User.password = generate_password_hash(password, method="scrypt")

6.7.3.6 username

user.User.username = username

The documentation for this class was generated from the following file:

• central/common/user.py

Generated by Doxygen

Chapter 7

File Documentation

7.1 central/ai/chessboard.py File Reference

Namespaces

• namespace chessboard

Variables

• chessboard.img = cv2.imread("./central/cache/camera01.jpg")
• chessboard.gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
• tuple chessboard.pattern_size = (5, 8)
• chessboard.ret
• chessboard.corners

7.2 central/ai/nodes/camera_feed.py File Reference

Namespaces

• namespace camera_feed

7.3 central/ai/nodes/grip_point.py File Reference

Namespaces

• namespace grip_point

Functions

• grip_point.get_grip_point (image)

Generated by Doxygen

42 File Documentation

7.4 central/ai/plant_manager.py File Reference

Classes

• class plant_manager.PlantManager

Namespaces

• namespace plant_manager

7.5 central/ai/tasks/depth_estimation.py File Reference

Namespaces

• namespace depth_estimation

Functions

• depth_estimation.estimate_depth (image, fast=True)

Variables

• depth_estimation.estimator_fast = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-
V2-Metric-Indoor-Small-hf")

• depth_estimation.estimator_slow = pipeline(task="depth-estimation", model="depth-anything/Depth-
Anything-V2-Metric-Indoor-Large-hf")

7.6 central/ai/tasks/green_percentage.py File Reference

Namespaces

• namespace green_percentage

Functions

• green_percentage.estimate_green_percentage (image)

7.7 central/ai/tasks/image_classification.py File Reference

Namespaces

• namespace image_classification

Generated by Doxygen

7.8 central/ai/tasks/mask_generation.py File Reference 43

Functions

• image_classification.classify_image (image)

Variables

• image_classification.classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-
patch32")

7.8 central/ai/tasks/mask_generation.py File Reference

Namespaces

• namespace mask_generation

Functions

• mask_generation.generate_mask (image)
• mask_generation.generate_geometry_from_mask (image, mask)

7.9 central/ai/tasks/object_detection.py File Reference

Namespaces

• namespace object_detection

Functions

• object_detection.object_detection (image)

Variables

• object_detection.model = YOLO("leafy-ai-obj-detection.pt")

7.10 central/api.py File Reference

Namespaces

• namespace api

Generated by Doxygen

44 File Documentation

Functions

• api.home ()
• api.status ()
• api.stats_route ()
• api.log_route ()
• api.get_camera_feed ()
• api.visual_get_mask ()
• api.visual_get_geometry ()
• api.visual_get_depth ()
• api.capture_image_route ()
• api.classify_image_route ()

Variables

• api.routes = Blueprint("api_v1", __name__, url_prefix="/api/v1")
• dict api.stats

7.11 central/common/access_levels.py File Reference

Classes

• class access_levels.AccessLevel

Namespaces

• namespace access_levels

7.12 central/common/db.py File Reference

Classes

• class db.DB

Class for managing SQLite database connection.

Namespaces

• namespace db

7.13 central/common/image_analysis.py File Reference

Classes

• class image_analysis.ImageAnalysis

Generated by Doxygen

7.14 central/common/log.py File Reference 45

Namespaces

• namespace image_analysis

7.14 central/common/log.py File Reference

Classes

• class log.Log

Namespaces

• namespace log

7.15 central/common/user.py File Reference

Classes

• class user.User

Namespaces

• namespace user

7.16 central/hmi.py File Reference

Namespaces

• namespace hmi

Functions

• hmi.dashboard ()
• hmi.login ()
• hmi.logout ()

Variables

• hmi.routes = Blueprint("hmi", __name__)

7.17 central/main.py File Reference

Namespaces

• namespace main

Generated by Doxygen

46 File Documentation

Functions

• main.get_frame ()

Variables

• main.app = Flask(__name__)
• main.socketio = SocketIO(app, cors_allowed_origins="∗")
• main.debug
• main.True
• main.host

7.18 training/main.py File Reference

Namespaces

• namespace main

Variables

• main.model = YOLO("yolo11n.pt")
• main.results = model.train(data="training/datasets/leafy-automation/data.yaml", epochs=100, imgsz=640)
• main.metrics = model.val()
• main.path = model.export(format="onnx")

7.19 central/routes.py File Reference

Namespaces

• namespace routes

Functions

• routes.home ()
• routes.classify_image_route ()

Variables

• routes.routes = Blueprint("routes", __name__)

Generated by Doxygen

7.20 central/static/js/controllers/CameraController.js File Reference 47

7.20 central/static/js/controllers/CameraController.js File Reference

7.21 central/static/js/controllers/StatusController.js File Reference

7.22 central/static/js/main.js File Reference

7.23 central/static/js/models/CameraModel.js File Reference

7.24 central/static/js/models/StatusModel.js File Reference

7.25 central/static/js/views/CameraView.js File Reference

7.26 central/static/js/views/StatusView.js File Reference

7.27 central/util/benchmark.py File Reference

Classes

• class benchmark.Benchmark

Namespaces

• namespace benchmark

7.28 central/util/misc.py File Reference

Namespaces

• namespace misc

Functions

• misc.get_device ()
• misc.img_base64 (image)

Generated by Doxygen

48 File Documentation

Generated by Doxygen

Index

__init__
benchmark.Benchmark, 26
image_analysis.ImageAnalysis, 32
log.Log, 33
plant_manager.PlantManager, 35
user.User, 38

__iter__
user.User, 38

access_level_id
user.User, 40

access_levels, 9
access_levels.AccessLevel, 25

ADMIN, 25
SPECTATOR, 25

ADMIN
access_levels.AccessLevel, 25

api, 9
capture_image_route, 9
classify_image_route, 9
get_camera_feed, 10
home, 10
log_route, 10
routes, 11
stats, 11
stats_route, 10
status, 10
visual_get_depth, 10
visual_get_geometry, 11
visual_get_mask, 11

app
main, 18

auth
user.User, 38

avg
benchmark.Benchmark, 27

benchmark, 12
benchmark.Benchmark, 26

__init__, 26
avg, 27
done, 28
end_lap, 27
max_laps, 28
save, 27
standard_deviation, 27
start_lap, 28
start_time, 28
times, 28
title, 28

xlabel, 29
ylabel, 29

camera_feed, 12
capture_image_route

api, 9
central/ai/chessboard.py, 41
central/ai/nodes/camera_feed.py, 41
central/ai/nodes/grip_point.py, 41
central/ai/plant_manager.py, 42
central/ai/tasks/depth_estimation.py, 42
central/ai/tasks/green_percentage.py, 42
central/ai/tasks/image_classification.py, 42
central/ai/tasks/mask_generation.py, 43
central/ai/tasks/object_detection.py, 43
central/api.py, 43
central/common/access_levels.py, 44
central/common/db.py, 44
central/common/image_analysis.py, 44
central/common/log.py, 45
central/common/user.py, 45
central/hmi.py, 45
central/main.py, 45
central/routes.py, 46
central/static/js/controllers/CameraController.js, 47
central/static/js/controllers/StatusController.js, 47
central/static/js/main.js, 47
central/static/js/models/CameraModel.js, 47
central/static/js/models/StatusModel.js, 47
central/static/js/views/CameraView.js, 47
central/static/js/views/StatusView.js, 47
central/util/benchmark.py, 47
central/util/misc.py, 47
chessboard, 12

corners, 12
gray, 12
img, 12
pattern_size, 12
ret, 12

classification
image_analysis.ImageAnalysis, 33

classifier
image_classification, 17

classify_image
image_classification, 17

classify_image_route
api, 9
routes, 22

corners
chessboard, 12

Generated by Doxygen

50 INDEX

dashboard
hmi, 16

db, 13
db.DB, 29

get_connection, 29
migrations, 29
migrations_populate, 30
query, 31
table_is_empty, 31

debug
main, 18

depth_estimation, 13
estimate_depth, 13
estimator_fast, 13
estimator_slow, 13

detect_plants
plant_manager.PlantManager, 35

done
benchmark.Benchmark, 28

draw_geometry
plant_manager.PlantManager, 35

draw_hud
plant_manager.PlantManager, 36

email
user.User, 40

end_lap
benchmark.Benchmark, 27

estimate_depth
depth_estimation, 13

estimate_green_percentage
green_percentage, 14

estimator_fast
depth_estimation, 13

estimator_slow
depth_estimation, 13

first_name
user.User, 40

generate_geometry_from_mask
mask_generation, 20

generate_mask
mask_generation, 20

get_access_level
user.User, 39

get_binary_image
plant_manager.PlantManager, 36

get_camera_feed
api, 10

get_connection
db.DB, 29

get_device
misc, 21

get_frame
main, 18

get_grip_point
grip_point, 15

get_user

user.User, 39
gray

chessboard, 12
green_percentage, 14

estimate_green_percentage, 14
image_analysis.ImageAnalysis, 33

grip_point, 14
get_grip_point, 15

hmi, 15
dashboard, 16
login, 16
logout, 16
routes, 16

home
api, 10
routes, 22

host
main, 18

image
plant_manager.PlantManager, 37

image_analysis, 17
image_analysis.ImageAnalysis, 32

__init__, 32
classification, 33
green_percentage, 33
score, 33

image_classification, 17
classifier, 17
classify_image, 17

img
chessboard, 12

img_base64
misc, 21

is_admin
user.User, 39

is_spectator
user.User, 40

last_name
user.User, 40

load
log.Log, 34

log, 17
log.Log, 33

__init__, 33
load, 34
message, 34
save, 34

log_route
api, 10

login
hmi, 16

logout
hmi, 16

main, 18
app, 18

Generated by Doxygen

INDEX 51

debug, 18
get_frame, 18
host, 18
metrics, 18
model, 19
path, 19
results, 19
socketio, 19
True, 19

mask_generation, 19
generate_geometry_from_mask, 20
generate_mask, 20

max_laps
benchmark.Benchmark, 28

message
log.Log, 34

metrics
main, 18

migrations
db.DB, 29

migrations_populate
db.DB, 30

misc, 21
get_device, 21
img_base64, 21

model
main, 19
object_detection, 22

object_detection, 21
model, 22
object_detection, 22

password
user.User, 40

path
main, 19

pattern_size
chessboard, 12

plant_manager, 22
plant_manager.PlantManager, 34

__init__, 35
detect_plants, 35
draw_geometry, 35
draw_hud, 36
get_binary_image, 36
image, 37
plants, 37
world_coordinates, 37

plants
plant_manager.PlantManager, 37

query
db.DB, 31

results
main, 19

ret
chessboard, 12

routes, 22
api, 11
classify_image_route, 22
hmi, 16
home, 22
routes, 23

save
benchmark.Benchmark, 27
log.Log, 34

score
image_analysis.ImageAnalysis, 33

socketio
main, 19

SPECTATOR
access_levels.AccessLevel, 25

standard_deviation
benchmark.Benchmark, 27

start_lap
benchmark.Benchmark, 28

start_time
benchmark.Benchmark, 28

stats
api, 11

stats_route
api, 10

status
api, 10

table_is_empty
db.DB, 31

times
benchmark.Benchmark, 28

title
benchmark.Benchmark, 28

training/main.py, 46
True

main, 19

user, 23
user.User, 37

__init__, 38
__iter__, 38
access_level_id, 40
auth, 38
email, 40
first_name, 40
get_access_level, 39
get_user, 39
is_admin, 39
is_spectator, 40
last_name, 40
password, 40
username, 40

username
user.User, 40

visual_get_depth
api, 10

Generated by Doxygen

52 INDEX

visual_get_geometry
api, 11

visual_get_mask
api, 11

world_coordinates
plant_manager.PlantManager, 37

xlabel
benchmark.Benchmark, 29

ylabel
benchmark.Benchmark, 29

Generated by Doxygen

2. LEAFY AUTOMATION CORE

2 Leafy Automation Core

360

Leafy Automation Core

Generated by Doxygen 1.13.2

i

1 Topic Index 1

1.1 Topics . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Topic Documentation 7

4.1 Configuration . 7

4.1.1 Detailed Description . 7

4.1.2 Variable Documentation . 7

4.1.2.1 ARM_JOINTS . 7

4.1.2.2 DIR_PIN . 8

4.1.2.3 GEAR_RATIO . 8

4.1.2.4 GRIP_MOVE_TIME_MS . 8

4.1.2.5 GRIPPER_CLOSED_ANGLE . 8

4.1.2.6 GRIPPER_OPEN_ANGLE . 9

4.1.2.7 GRIPPER_SERVO_PIN . 9

4.1.2.8 LIMIT_LEFT_PINS . 9

4.1.2.9 LIMIT_RIGHT_PINS . 9

4.1.2.10 MAX_OUTPUT_RPM . 10

4.1.2.11 MICROSTEPS . 10

4.1.2.12 STEP_PIN . 10

4.2 Communication Manager . 11

4.2.1 Detailed Description . 11

4.2.2 Function Documentation . 11

4.2.2.1 checkActionStatus() . 11

4.2.2.2 handleIncomingCommand() . 12

4.3 Gripper Driver . 12

4.3.1 Detailed Description . 13

4.3.2 Function Documentation . 13

4.3.2.1 gripperDone() . 13

4.3.2.2 initGripper() . 13

4.3.2.3 moveGripper() . 13

4.3.2.4 updateGripper() . 14

4.3.3 Variable Documentation . 14

4.3.3.1 gripperServo . 14

4.3.3.2 moveStartTime . 14

4.3.3.3 moving . 15

4.4 Motor Driver . 15

4.4.1 Detailed Description . 15

Generated by Doxygen

ii

4.4.2 Function Documentation . 15

4.4.2.1 allJointsDone() . 15

4.4.2.2 calibrateAllJoints() . 16

4.4.2.3 calibrationDone() . 17

4.4.2.4 getJointPosition() . 17

4.4.2.5 initMotors() . 17

4.4.2.6 moveJoint() . 18

4.4.2.7 stopAllJoints() . 18

4.4.2.8 updateMotors() . 18

4.5 MQTT Client Module . 19

4.5.1 Detailed Description . 19

4.5.2 Function Documentation . 19

4.5.2.1 initMQTT() . 19

4.5.2.2 mqttLoop() . 20

4.5.2.3 publishStatus() . 21

4.5.2.4 sendHeartbeat() . 21

4.5.2.5 setMessageHandler() . 22

4.5.3 Variable Documentation . 22

4.5.3.1 MQTT_TOPIC_CALIBRATE . 22

4.5.3.2 MQTT_TOPIC_GRIPPER . 22

4.5.3.3 MQTT_TOPIC_MOTION . 22

4.5.3.4 MQTT_TOPIC_STATUS_CALIBRATION . 23

4.5.3.5 MQTT_TOPIC_STATUS_COMMAND . 23

4.5.3.6 MQTT_TOPIC_STATUS_GRIPPER . 23

4.5.3.7 MQTT_TOPIC_STATUS_HEARTBEAT . 23

4.5.3.8 MQTT_TOPIC_STATUS_MOTION . 23

5 Class Documentation 25

5.1 API Class Reference . 25

5.1.1 Detailed Description . 25

5.1.2 Constructor & Destructor Documentation . 25

5.1.2.1 API() . 25

5.1.3 Member Function Documentation . 26

5.1.3.1 ping() . 26

5.1.4 Member Data Documentation . 26

5.1.4.1 access_token . 26

5.1.4.2 auth_token . 26

5.2 HTTP Class Reference . 27

5.2.1 Detailed Description . 27

5.2.2 Constructor & Destructor Documentation . 28

5.2.2.1 HTTP() . 28

5.2.3 Member Function Documentation . 28

Generated by Doxygen

iii

5.2.3.1 fetch() . 28

5.2.3.2 get() . 28

5.2.3.3 header() . 29

5.2.3.4 json() . 29

5.2.3.5 post() . 30

5.2.3.6 text() . 30

5.2.4 Member Data Documentation . 30

5.2.4.1 client . 30

5.2.4.2 connected . 31

5.2.4.3 host . 31

5.2.4.4 response . 31

5.3 NetCommander Class Reference . 31

5.3.1 Detailed Description . 31

5.3.2 Member Function Documentation . 31

5.3.2.1 connect() . 31

5.3.2.2 disconnect() . 32

6 File Documentation 33

6.1 include/common/api/api.h File Reference . 33

6.2 api.h . 33

6.3 include/common/net/http.h File Reference . 34

6.4 http.h . 34

6.5 include/common/net/net_commander.h File Reference . 35

6.6 net_commander.h . 35

6.7 include/common/secrets.h File Reference . 36

6.7.1 Detailed Description . 36

6.7.2 Macro Definition Documentation . 36

6.7.2.1 MQTT_CLIENT_ID . 36

6.7.2.2 MQTT_PORT . 36

6.7.2.3 MQTT_SERVER . 36

6.7.2.4 WIFI_PASSWORD . 36

6.7.2.5 WIFI_SSID . 37

6.8 secrets.h . 37

6.9 include/common/secrets.sample.h File Reference . 37

6.9.1 Macro Definition Documentation . 37

6.9.1.1 LA_SERVER_ADDR . 37

6.9.1.2 LA_SERVER_PORT . 37

6.9.1.3 LA_SERVER_TOKEN . 38

6.9.1.4 WIFI_PASSWORD . 38

6.9.1.5 WIFI_SSID . 38

6.10 secrets.sample.h . 38

6.11 include/common/util/logger.h File Reference . 38

Generated by Doxygen

iv

6.11.1 Function Documentation . 38

6.11.1.1 logger_print_line() . 38

6.12 logger.h . 39

6.13 include/config.h File Reference . 39

6.13.1 Detailed Description . 40

6.14 config.h . 40

6.15 include/modules/base/main_base.h File Reference . 41

6.15.1 Function Documentation . 41

6.15.1.1 main_base_loop() . 41

6.15.1.2 main_base_setup() . 42

6.16 main_base.h . 42

6.17 include/modules/cam/esp32-cam-gpio.h File Reference . 42

6.17.1 Detailed Description . 43

6.17.2 Macro Definition Documentation . 43

6.17.2.1 HREF_GPIO_NUM . 43

6.17.2.2 LED_GPIO_NUM . 43

6.17.2.3 PCLK_GPIO_NUM . 43

6.17.2.4 PWDN_GPIO_NUM . 43

6.17.2.5 RESET_GPIO_NUM . 44

6.17.2.6 SIOC_GPIO_NUM . 44

6.17.2.7 SIOD_GPIO_NUM . 44

6.17.2.8 VSYNC_GPIO_NUM . 44

6.17.2.9 XCLK_GPIO_NUM . 44

6.17.2.10 Y2_GPIO_NUM . 44

6.17.2.11 Y3_GPIO_NUM . 44

6.17.2.12 Y4_GPIO_NUM . 44

6.17.2.13 Y5_GPIO_NUM . 45

6.17.2.14 Y6_GPIO_NUM . 45

6.17.2.15 Y7_GPIO_NUM . 45

6.17.2.16 Y8_GPIO_NUM . 45

6.17.2.17 Y9_GPIO_NUM . 45

6.17.3 Function Documentation . 45

6.17.3.1 setupCameraConfig() . 45

6.18 esp32-cam-gpio.h . 46

6.19 include/modules/cam/main_cam.h File Reference . 47

6.19.1 Function Documentation . 47

6.19.1.1 main_cam_loop() . 47

6.19.1.2 main_cam_setup() . 47

6.20 main_cam.h . 47

6.21 include/Utilities.h File Reference . 47

6.22 Utilities.h . 47

6.23 src/base/main_base.cpp File Reference . 47

Generated by Doxygen

v

6.24 main_base.cpp . 48

6.25 src/common/api/api.cpp File Reference . 48

6.26 api.cpp . 48

6.27 src/common/net/http.cpp File Reference . 48

6.28 http.cpp . 49

6.29 src/common/net/net_commander.cpp File Reference . 50

6.30 net_commander.cpp . 50

6.31 src/communication_manager/communication_manager.cpp File Reference 50

6.31.1 Detailed Description . 51

6.31.2 Function Documentation . 51

6.31.2.1 handleCalibrationCommand() . 51

6.31.2.2 handleGripperCommand() . 51

6.31.2.3 handleMoveCommand() . 52

6.31.3 Variable Documentation . 52

6.31.3.1 calibrationInProgress . 52

6.31.3.2 gripperInProgress . 52

6.31.3.3 movementInProgress . 52

6.32 communication_manager.cpp . 53

6.33 src/communication_manager/communication_manager.h File Reference 54

6.33.1 Detailed Description . 54

6.34 communication_manager.h . 55

6.35 src/gripper_driver/gripper_driver.cpp File Reference . 55

6.35.1 Detailed Description . 56

6.36 gripper_driver.cpp . 56

6.37 src/gripper_driver/gripper_driver.h File Reference . 57

6.37.1 Detailed Description . 57

6.38 gripper_driver.h . 57

6.39 src/main.cpp File Reference . 58

6.39.1 Detailed Description . 58

6.39.2 Function Documentation . 59

6.39.2.1 loop() . 59

6.39.2.2 setup() . 59

6.40 main.cpp . 60

6.41 src/motor_driver/motor_driver.cpp File Reference . 60

6.41.1 Detailed Description . 61

6.41.2 Variable Documentation . 61

6.41.2.1 homed . 61

6.41.2.2 homing . 62

6.41.2.3 stepperMotors . 62

6.42 motor_driver.cpp . 62

6.43 src/motor_driver/motor_driver.h File Reference . 64

6.43.1 Detailed Description . 64

Generated by Doxygen

vi

6.44 motor_driver.h . 65

6.45 src/mqtt_client/mqtt_client.cpp File Reference . 66

6.45.1 Function Documentation . 67

6.45.1.1 backoffInterval() . 67

6.45.1.2 mqttCallback() . 67

6.45.1.3 mqttClient() . 67

6.45.1.4 subscribeTopics() . 67

6.45.2 Variable Documentation . 68

6.45.2.1 BASE_INTERVAL_MS . 68

6.45.2.2 incomingMessageHandler . 68

6.45.2.3 LAST_ATTEMPT . 68

6.45.2.4 MAX_BACKOFF_MS . 68

6.45.2.5 RETRIES . 68

6.45.2.6 wifiClient . 68

6.46 mqtt_client.cpp . 69

6.47 src/mqtt_client/mqtt_client.h File Reference . 70

6.47.1 Detailed Description . 71

6.48 mqtt_client.h . 71

Index 73

Generated by Doxygen

Chapter 1

Topic Index

1.1 Topics

Here is a list of all topics with brief descriptions:

Configuration . 7
Communication Manager . 11
Gripper Driver . 12
Motor Driver . 15
MQTT Client Module . 19

Generated by Doxygen

2 Topic Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

API
High-level API abstraction for interacting with the Leafy Automation Central 25

HTTP
A simple HTTP client abstraction . 27

NetCommander
Provides a simple interface for connecting to the internet . 31

Generated by Doxygen

4 Class Index

Generated by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

include/config.h
Project-wide configuration constants (pins, timings, ratios) 39

include/Utilities.h . 47
include/common/secrets.h

Network and MQTT credentials for Leafy Automation firmware 36
include/common/secrets.sample.h . 37
include/common/api/api.h . 33
include/common/net/http.h . 34
include/common/net/net_commander.h . 35
include/common/util/logger.h . 38
include/modules/base/main_base.h . 41
include/modules/cam/esp32-cam-gpio.h

This file is based on the esp32-cam CameraWebServer example from the arduino-esp32 repos-
itory. https://github.com/espressif/arduino-esp32 42

include/modules/cam/main_cam.h . 47
src/main.cpp

Entry point for the Arduino Uno R4 Wifi, responsible for low level motor control. Coordinates
hardware and MQTT handling . 58

src/base/main_base.cpp . 47
src/common/api/api.cpp . 48
src/common/net/http.cpp . 48
src/common/net/net_commander.cpp . 50
src/communication_manager/communication_manager.cpp

Implementation of the Communication Manager module . 50
src/communication_manager/communication_manager.h

Parses incoming MQTT commands and publishes status updates 54
src/gripper_driver/gripper_driver.cpp

Controls the gripper servo (End Effector EF) . 55
src/gripper_driver/gripper_driver.h

Controls the gripper servo (End Effector EF) . 57
src/motor_driver/motor_driver.cpp

Implementation of the Motor Driver for joints J0–J4 . 60
src/motor_driver/motor_driver.h

Driver for stepper motors J0–J4 (DM332T/DM320T step/dir drivers) 64
src/mqtt_client/mqtt_client.cpp . 66
src/mqtt_client/mqtt_client.h

Handles MQTT setup, subscriptions, publishing, and heartbeat 70

Generated by Doxygen

6 File Index

Generated by Doxygen

Chapter 4

Topic Documentation

4.1 Configuration

Variables

• static constexpr uint8_t ARM_JOINTS = 5

Number of stepper-driven joints (J0. . . J4).
• static constexpr uint8_t STEP_PIN [ARM_JOINTS]

STEP pin mapping for joints J0. . . J4.
• static constexpr uint8_t DIR_PIN [ARM_JOINTS]

DIR pin mapping for joints J0. . . J4.
• static constexpr uint16_t MICROSTEPS = 200

Microsteps per full revolution.
• static constexpr float GEAR_RATIO [ARM_JOINTS]

Gear ratio for each joint.
• static constexpr float MAX_OUTPUT_RPM [ARM_JOINTS]

Max output RPM per joint.
• static constexpr uint8_t LIMIT_LEFT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s left limit switch (Active LOW)
• static constexpr uint8_t LIMIT_RIGHT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s right limit switch (Active LOW)
• static constexpr uint8_t GRIPPER_SERVO_PIN

PWM pin for the servo controlling the gripper (End Effector, EF).
• static constexpr unsigned long GRIP_MOVE_TIME_MS = 500

Allocated time in milliseconds for the gripper to open/close.
• static constexpr uint8_t GRIPPER_CLOSED_ANGLE = 0

Open closed (degrees) for the gripper servo.
• static constexpr uint8_t GRIPPER_OPEN_ANGLE = 90

Open angle (degrees) for the gripper servo.

4.1.1 Detailed Description

4.1.2 Variable Documentation

4.1.2.1 ARM_JOINTS

uint8_t ARM_JOINTS = 5 [static], [constexpr]

Number of stepper-driven joints (J0. . . J4).

Definition at line 21 of file config.h.

Generated by Doxygen

8 Topic Documentation

4.1.2.2 DIR_PIN

uint8_t DIR_PIN[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

1,
1,
1,
1,
1}

DIR pin mapping for joints J0. . . J4.

Definition at line 35 of file config.h.
00035 {
00036 /* J0 */ 1, // TO DO: Replace 1s with actual pin numbers
00037 /* J1 */ 1,
00038 /* J2 */ 1,
00039 /* J3 */ 1,
00040 /* J4 */ 1};

4.1.2.3 GEAR_RATIO

float GEAR_RATIO[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

1.0f / 10.0f,
1.0f / 50.0f,
1.0f / 50.0f,
1.0f / 19.0f,
1.0f / 16.0f}

Gear ratio for each joint.

Definition at line 48 of file config.h.
00048 {
00049 /* J0 */ 1.0f / 10.0f,
00050 /* J1 */ 1.0f / 50.0f,
00051 /* J2 */ 1.0f / 50.0f,
00052 /* J3 */ 1.0f / 19.0f,
00053 /* J4 */ 1.0f / 16.0f};

4.1.2.4 GRIP_MOVE_TIME_MS

unsigned long GRIP_MOVE_TIME_MS = 500 [static], [constexpr]

Allocated time in milliseconds for the gripper to open/close.

Definition at line 85 of file config.h.

4.1.2.5 GRIPPER_CLOSED_ANGLE

uint8_t GRIPPER_CLOSED_ANGLE = 0 [static], [constexpr]

Open closed (degrees) for the gripper servo.

Definition at line 89 of file config.h.

Generated by Doxygen

4.1 Configuration 9

4.1.2.6 GRIPPER_OPEN_ANGLE

uint8_t GRIPPER_OPEN_ANGLE = 90 [static], [constexpr]

Open angle (degrees) for the gripper servo.

Definition at line 93 of file config.h.

4.1.2.7 GRIPPER_SERVO_PIN

uint8_t GRIPPER_SERVO_PIN [static], [constexpr]

Initial value:
=

1

PWM pin for the servo controlling the gripper (End Effector, EF).

Definition at line 80 of file config.h.

4.1.2.8 LIMIT_LEFT_PINS

uint8_t LIMIT_LEFT_PINS[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

xx, xx, xx, xx, xx}

Array of digital input pins connected to each joint’s left limit switch (Active LOW)

Definition at line 68 of file config.h.
00068 {
00069 xx, xx, xx, xx, xx}; // Replace with pin numbers

4.1.2.9 LIMIT_RIGHT_PINS

uint8_t LIMIT_RIGHT_PINS[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

xx, xx, xx, xx, xx}

Array of digital input pins connected to each joint’s right limit switch (Active LOW)

Definition at line 75 of file config.h.
00075 {
00076 xx, xx, xx, xx, xx}; // Replace with pin numbers

Generated by Doxygen

10 Topic Documentation

4.1.2.10 MAX_OUTPUT_RPM

float MAX_OUTPUT_RPM[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

30.0f,
20.0f,
20.0f,
25.0f,
25.0f}

Max output RPM per joint.

Definition at line 57 of file config.h.
00057 {
00058 /* J0 */ 30.0f,
00059 /* J1 */ 20.0f,
00060 /* J2 */ 20.0f,
00061 /* J3 */ 25.0f,
00062 /* J4 */ 25.0f};

4.1.2.11 MICROSTEPS

uint16_t MICROSTEPS = 200 [static], [constexpr]

Microsteps per full revolution.

Definition at line 44 of file config.h.

4.1.2.12 STEP_PIN

uint8_t STEP_PIN[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

1,
1,
1,
1,
1}

STEP pin mapping for joints J0. . . J4.

Precondition

STEP_PIN size must equal ARM_JOINTS

Definition at line 26 of file config.h.
00026 {
00027 /* J0 */ 1, // TO DO: Replace 1s with actual pin numbers
00028 /* J1 */ 1,
00029 /* J2 */ 1,
00030 /* J3 */ 1,
00031 /* J4 */ 1};

Generated by Doxygen

4.2 Communication Manager 11

4.2 Communication Manager

Files

• file communication_manager.cpp

Implementation of the Communication Manager module.

Functions

• void handleIncomingCommand (const String &command)

Handle an incoming command and route it to the appropriate module.
• void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

4.2.1 Detailed Description

4.2.2 Function Documentation

4.2.2.1 checkActionStatus()

void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

Checks in-progress flags and publishes DONE messages.

Note

Must be called each loop to detect action completion promptly.

Returns

void

Checks the movementInProgress, gripperInProgress, and calibrationInProgress flags. For each flag that is set, it
calls the corresponding completion test:

• allJointsDone() for MOVE

• gripperDone() for GRIP

• calibrationDone() for CALIBRATE If the test returns true, it publishes the respective “DONE” status via
publishStatus() and clears the in-progress flag.

Returns

void

Note

Must be called in every main loop to catch completions promptly.

Definition at line 112 of file communication_manager.cpp.
00112 {
00113
00114 if (calibrationInProgress && calibrationDone()) {
00115 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00116 calibrationInProgress = false;
00117 }
00118 if (movementInProgress && allJointsDone()) {
00119 publishStatus(MQTT_TOPIC_STATUS_MOTION, "MOVE DONE");
00120 movementInProgress = false;
00121 }
00122
00123 if (gripperInProgress && gripperDone()) {
00124 publishStatus(MQTT_TOPIC_STATUS_GRIPPER, "GRIPPER DONE");
00125 gripperInProgress = false;
00126 }
00127 }

Generated by Doxygen

12 Topic Documentation

4.2.2.2 handleIncomingCommand()

void handleIncomingCommand (

const String & command)

Handle an incoming command and route it to the appropriate module.

Decode and route a received command string.

Parameters

command Text like "MOVE 100 200 300 400 500" or "GRIP 1".

Returns

void

Note

Is called from the MQTT Client's callback.

Definition at line 30 of file communication_manager.cpp.
00030 {
00031 String trimmed = command;
00032 trimmed.trim(); // Removing leading/trailing whitespaces
00033
00034 if (trimmed.startsWith("MOVE")) {
00035 handleMoveCommand(trimmed);
00036 } else if (trimmed.startsWith("GRIP")) {
00037 handleGripperCommand(trimmed);
00038 } else if (trimmed.startsWith("CALIBRATE")) {
00039 handleCalibrationCommand(trimmed);
00040 } else {
00041 Serial.print("[CommunicationManager] Unknown command: ");
00042 Serial.println(trimmed);
00043 }
00044 }

4.3 Gripper Driver

Functions

• void initGripper ()

Initialise the gripper servo on its PWM pin and open it.

• void moveGripper (int state)

Command the gripper to open (state=0) or close (state=1).

• void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.

• bool gripperDone ()

Returns true if the gripper has completed its movement.

Variables

• static Servo gripperServo
• static bool moving = false
• static unsigned long moveStartTime = 0

Generated by Doxygen

4.3 Gripper Driver 13

4.3.1 Detailed Description

4.3.2 Function Documentation

4.3.2.1 gripperDone()

bool gripperDone ()

Returns true if the gripper has completed its movement.

Check whether the gripper has completed its action.

Returns

true if no gripper motion is in progress.

Definition at line 52 of file gripper_driver.cpp.
00052 { return !moving; }

4.3.2.2 initGripper()

void initGripper ()

Initialise the gripper servo on its PWM pin and open it.

Initialise the gripper servo and set to open position.

Precondition

GRIPPER_SERVO_PIN must be defined in config.h.

Postcondition

Servo is attached and moved to open angle.

Returns

void

Definition at line 22 of file gripper_driver.cpp.
00022 {
00023 gripperServo.attach(GRIPPER_SERVO_PIN);
00024 gripperServo.write(GRIPPER_OPEN_ANGLE);
00025 moving = false;
00026 }

4.3.2.3 moveGripper()

void moveGripper (

int state)

Command the gripper to open (state=0) or close (state=1).

Command the gripper to open or close.

Generated by Doxygen

14 Topic Documentation

Parameters

state 0 = open, 1 = close.

Returns

void

Definition at line 30 of file gripper_driver.cpp.
00030 {
00031 uint8_t angle;
00032 if (state) {
00033 angle = GRIPPER_CLOSED_ANGLE;
00034 } else {
00035 angle = GRIPPER_OPEN_ANGLE;
00036 }
00037 gripperServo.write(angle);
00038 moveStartTime = millis();
00039 moving = true;
00040 }

4.3.2.4 updateGripper()

void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.

Must be called frequently to update the gripper motion state.

Returns

void

Definition at line 44 of file gripper_driver.cpp.
00044 {
00045 if (moving && (millis() - moveStartTime >= GRIP_MOVE_TIME_MS)) {
00046 moving = false;
00047 }
00048 }

4.3.3 Variable Documentation

4.3.3.1 gripperServo

Servo gripperServo [static]

Definition at line 14 of file gripper_driver.cpp.

4.3.3.2 moveStartTime

unsigned long moveStartTime = 0 [static]

Definition at line 18 of file gripper_driver.cpp.

Generated by Doxygen

4.4 Motor Driver 15

4.3.3.3 moving

bool moving = false [static]

Definition at line 17 of file gripper_driver.cpp.

4.4 Motor Driver

Files

• file motor_driver.cpp

Implementation of the Motor Driver for joints J0–J4.

Functions

• void initMotors ()

Initialise all stepper drivers’ speed & acceleration per config.h settings.
• void moveJoint (uint8_t jointIndex, int32_t stepCount)

Queue a relative microstep move for a specific joint.
• void updateMotors ()

Must be called every loop in order to advance the stepper motors.
• void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.
• bool calibrationDone ()

Check if calibration has completed.
• bool allJointsDone ()

Check if all steppers have reached their targets.
• int32_t getJointPosition (uint8_t jointIndex)

Get the current microstep position of a joint.
• void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

4.4.1 Detailed Description

4.4.2 Function Documentation

4.4.2.1 allJointsDone()

bool allJointsDone ()

Check if all steppers have reached their targets.

Returns

true if every joint’s distanceToGo()==0.

Definition at line 116 of file motor_driver.cpp.
00116 {
00117 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00118 if (stepperMotors[j].distanceToGo() != 0)
00119 return false;
00120 }
00121 return true;
00122 }

Generated by Doxygen

16 Topic Documentation

4.4.2.2 calibrateAllJoints()

void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.

Run a blocking homing (calibration) sequence on all stepper joints.

Precondition

LIMIT_LEFT_PINS[] and LIMIT_RIGHT_PINS[] must be defined in /include/config.h.

Postcondition

After return, currentPosition()==0 for each motor.

Returns

void

Note

This routine blocks until all limit switches have been found.

Definition at line 55 of file motor_driver.cpp.
00055 {
00056 const unsigned long timeoutMs = 5000; // max time per switch
00057 const unsigned int debounceMs = 50; // debounce delay
00058 homing = true;
00059 homed = false;
00060
00061 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00062 unsigned long startTime;
00063 bool switchState;
00064
00065 // Drive toward left switch
00066 stepperMotors[j].setMaxSpeed(MICROSTEPS * 100.0f);
00067 stepperMotors[j].moveTo(-1000000);
00068 startTime = millis();
00069 while (true) {
00070 stepperMotors[j].run();
00071 switchState = digitalRead(LIMIT_LEFT_PINS[j]) == LOW; // active low
00072 if (switchState) {
00073 delay(debounceMs);
00074 if (digitalRead(LIMIT_LEFT_PINS[j]) == LOW)
00075 break;
00076 }
00077 if (millis() - startTime > timeoutMs)
00078 break;
00079 }
00080 stepperMotors[j].setCurrentPosition(0);
00081
00082 // Drive toward right switch
00083 stepperMotors[j].moveTo(1000000);
00084 startTime = millis();
00085 while (true) {
00086 stepperMotors[j].run();
00087 switchState = digitalRead(LIMIT_RIGHT_PINS[j]) == LOW;
00088 if (switchState) {
00089 delay(debounceMs);
00090 if (digitalRead(LIMIT_RIGHT_PINS[j]) == LOW)
00091 break;
00092 }
00093 if (millis() - startTime > timeoutMs)
00094 break;
00095 }
00096 long maxSteps = stepperMotors[j].currentPosition();
00097
00098 // Return to midpoint
00099 long mid = maxSteps / 2;
00100 stepperMotors[j].setCurrentPosition(0);
00101 stepperMotors[j].moveTo(mid);
00102 while (stepperMotors[j].distanceToGo() != 0) {
00103 stepperMotors[j].run();
00104 }
00105 stepperMotors[j].setCurrentPosition(0);
00106 }
00107
00108 homed = true;
00109 homing = false;
00110 }

Generated by Doxygen

4.4 Motor Driver 17

4.4.2.3 calibrationDone()

bool calibrationDone ()

Check if calibration has completed.

Returns

true if the last call to calibrateAllJoints() completed.

Definition at line 113 of file motor_driver.cpp.
00113 { return homed; }

4.4.2.4 getJointPosition()

int32_t getJointPosition (

uint8_t jointIndex)

Get the current microstep position of a joint.

Parameters

jointIndex Index of the joint (0. . . 4).

Returns

Current position in microsteps (zeroed at last calibration).

Definition at line 125 of file motor_driver.cpp.
00125 {
00126 return stepperMotors[jointIndex].currentPosition();
00127 }

4.4.2.5 initMotors()

void initMotors ()

Initialise all stepper drivers’ speed & acceleration per config.h settings.

Initialise stepper parameters(max speed & acceleration).

Precondition

STEP_PIN[], DIR_PIN[], MICROSTEPS, GEAR_RATIO[] and MAX_OUTPUT_RPM[] must be configured via
config.h.

Postcondition

Each steppers[j] has its maxSpeed and acceleration set.

Returns

void

Definition at line 29 of file motor_driver.cpp.
00029 {
00030 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00031 // compute max step rate: (RPM/60) * (microsteps/gear_ratio)
00032 float stepsPerSec =
00033 (MAX_OUTPUT_RPM[j] / 60.0f) * (MICROSTEPS / GEAR_RATIO[j]);
00034 stepperMotors[j].setMaxSpeed(stepsPerSec);
00035 stepperMotors[j].setAcceleration(stepsPerSec * 2.0f);
00036 }
00037 homed = false;
00038 }

Generated by Doxygen

18 Topic Documentation

4.4.2.6 moveJoint()

void moveJoint (

uint8_t jointIndex,

int32_t stepCount)

Queue a relative microstep move for a specific joint.

Parameters

jointIndex Index of the joint (0. . . 4, i.e. J0. . . J4).

steps Signed microstep delta (positive=forward, negative=backward).

Returns

void

Definition at line 41 of file motor_driver.cpp.
00041 {
00042 stepperMotors[jointIndex].move(stepCount);
00043 }

4.4.2.7 stopAllJoints()

void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

Returns

void

Definition at line 130 of file motor_driver.cpp.
00130 {
00131 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00132 stepperMotors[j].stop();
00133 }
00134 }

4.4.2.8 updateMotors()

void updateMotors ()

Must be called every loop in order to advance the stepper motors.

Returns

void

Definition at line 46 of file motor_driver.cpp.
00046 {
00047 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00048 stepperMotors[j].run();
00049 }
00050 }

Generated by Doxygen

4.5 MQTT Client Module 19

4.5 MQTT Client Module

Functions

• void initMQTT ()

Initialise MQTT server and set callback.

• bool publishStatus (const char ∗topic, const String &message)

Publish a status message and report failure.

• void sendHeartbeat ()

Register the handler for incoming MQTT messages.

• void setMessageHandler (void(∗handler)(const String &msg))

Registers a callback to handle incoming parsed MQTT messages.

• void mqttLoop ()

Process incoming messages and reconnect with exponential backoff.

Variables

• constexpr char MQTT_TOPIC_MOTION [] = "leafy_automation/motion"
• constexpr char MQTT_TOPIC_GRIPPER [] = "leafy_automation/gripper"
• constexpr char MQTT_TOPIC_CALIBRATE [] = "leafy_automation/calibrate"
• constexpr char MQTT_TOPIC_STATUS_COMMAND []
• constexpr char MQTT_TOPIC_STATUS_MOTION []
• constexpr char MQTT_TOPIC_STATUS_GRIPPER []
• constexpr char MQTT_TOPIC_STATUS_CALIBRATION []
• constexpr char MQTT_TOPIC_STATUS_HEARTBEAT []

4.5.1 Detailed Description

4.5.2 Function Documentation

4.5.2.1 initMQTT()

void initMQTT ()

Initialise MQTT server and set callback.

Initialises MQTT connection and subscribes to control topics.

Precondition

WiFi is connected via initWiFi().

Postcondition

Single connect attempt. Further reconnects in mqttLoop().

Returns

void

Generated by Doxygen

20 Topic Documentation

Precondition

WiFi must already be connected via initWiFi().

Postcondition

Control topics are subscribed and the incoming message callback is set.

Definition at line 62 of file mqtt_client.cpp.
00062 {
00063 mqttClient.setServer(MQTT_SERVER, MQTT_PORT);
00064 mqttClient.setCallback(mqttCallback);
00065
00066 // Establish connection attempt
00067 if (mqttClient.connect(MQTT_CLIENT_ID)) {
00068 subscribeTopics();
00069 Serial.println("MQTT connected.");
00070 } else {
00071 Serial.print("MQTT connect failed, rc=");
00072 Serial.println(mqttClient.state());
00073 }
00074 }

4.5.2.2 mqttLoop()

void mqttLoop ()

Process incoming messages and reconnect with exponential backoff.

Process incoming MQTT traffic and attempt reconnects if needed.

Must be called frequently in loop() to maintain the connection.

Note

Must be called frequently in loop() to maintain connection.

Returns

void

Note

Must be called frequently in loop() to maintain the connection.

Returns

void

Definition at line 132 of file mqtt_client.cpp.
00132 {
00133 unsigned long now = millis();
00134
00135 if (!mqttClient.connected() &&
00136 (now - LAST_ATTEMPT >= backoffInterval(RETRIES))) {
00137 if (mqttClient.connect(MQTT_CLIENT_ID)) {
00138 Serial.println("MQTT reconnected");
00139 subscribeTopics();
00140 RETRIES = 0;
00141 } else {
00142 RETRIES++;
00143 Serial.println("MQTT reconnect failed, will retry");
00144 }
00145 LAST_ATTEMPT = now;
00146 }
00147 mqttClient.loop();
00148 }

Generated by Doxygen

4.5 MQTT Client Module 21

4.5.2.3 publishStatus()

bool publishStatus (

const char ∗ topic,

const String & message)

Publish a status message and report failure.

Publishes a status message to a given MQTT topic.

Parameters

topic MQTT topic string.

message Payload to publish.

Returns

true if publish was accepted; false otherwise.

Parameters

topic The MQTT topic to publish to.

msg The payload string.

Returns

true if the message was successfully handed off to the network, otherwise returns false.

Definition at line 83 of file mqtt_client.cpp.
00083 {
00084 bool ok = mqttClient.publish(topic, message.c_str());
00085 if (!ok) {
00086 Serial.print("Publish failed to topic: ");
00087 Serial.println(topic);
00088 }
00089 return ok;
00090 }

4.5.2.4 sendHeartbeat()

void sendHeartbeat ()

Register the handler for incoming MQTT messages.

Sends a periodic "alive" signal to the status/heartbeat topic.

Parameters

handler Function invoked when message is received.

Returns

void

void

Definition at line 98 of file mqtt_client.cpp.
00098 {
00099 static unsigned long lastPing = 0;
00100 if (millis() - lastPing >= 1000) {
00101 publishStatus(MQTT_TOPIC_STATUS_HEARTBEAT, "alive");
00102 lastPing = millis();
00103 }
00104 }

Generated by Doxygen

22 Topic Documentation

4.5.2.5 setMessageHandler()

void setMessageHandler (

void(∗ handler)(const String &msg))

Registers a callback to handle incoming parsed MQTT messages.

To set user defined callback to handle parsed MQTT messages.

Parameters

handler Function to call with message string.

Returns

void

Parameters

handler Function to call when a new message arrives.

Note

This function should be called after initMQTT() to set the callback

Definition at line 112 of file mqtt_client.cpp.
00112 {
00113 incomingMessageHandler = handler;
00114 }

4.5.3 Variable Documentation

4.5.3.1 MQTT_TOPIC_CALIBRATE

char MQTT_TOPIC_CALIBRATE[] = "leafy_automation/calibrate" [inline], [constexpr]

Definition at line 22 of file mqtt_client.h.

4.5.3.2 MQTT_TOPIC_GRIPPER

char MQTT_TOPIC_GRIPPER[] = "leafy_automation/gripper" [inline], [constexpr]

Definition at line 21 of file mqtt_client.h.

4.5.3.3 MQTT_TOPIC_MOTION

char MQTT_TOPIC_MOTION[] = "leafy_automation/motion" [inline], [constexpr]

Definition at line 20 of file mqtt_client.h.

Generated by Doxygen

4.5 MQTT Client Module 23

4.5.3.4 MQTT_TOPIC_STATUS_CALIBRATION

char MQTT_TOPIC_STATUS_CALIBRATION[] [inline], [constexpr]

Initial value:
=

"leafy_automation/status/calibration"

Definition at line 31 of file mqtt_client.h.

4.5.3.5 MQTT_TOPIC_STATUS_COMMAND

char MQTT_TOPIC_STATUS_COMMAND[] [inline], [constexpr]

Initial value:
=

"leafy_automation/status/command_received"

Definition at line 25 of file mqtt_client.h.

4.5.3.6 MQTT_TOPIC_STATUS_GRIPPER

char MQTT_TOPIC_STATUS_GRIPPER[] [inline], [constexpr]

Initial value:
=

"leafy_automation/status/gripper"

Definition at line 29 of file mqtt_client.h.

4.5.3.7 MQTT_TOPIC_STATUS_HEARTBEAT

char MQTT_TOPIC_STATUS_HEARTBEAT[] [inline], [constexpr]

Initial value:
=

"leafy_automation/status/heartbeat"

Definition at line 33 of file mqtt_client.h.

4.5.3.8 MQTT_TOPIC_STATUS_MOTION

char MQTT_TOPIC_STATUS_MOTION[] [inline], [constexpr]

Initial value:
=

"leafy_automation/status/motion"

Definition at line 27 of file mqtt_client.h.

Generated by Doxygen

24 Topic Documentation

Generated by Doxygen

Chapter 5

Class Documentation

5.1 API Class Reference

High-level API abstraction for interacting with the Leafy Automation Central.

#include <api.h>

Public Member Functions

• API (String access_token)

Constructs an API object.
• bool ping ()

Pings the Leafy Automation Central. Used to check if the server is online.

Static Public Attributes

• static const String access_token

The access token for the Leafy Automation Central.

Private Attributes

• String auth_token = LA_SERVER_TOKEN

5.1.1 Detailed Description

High-level API abstraction for interacting with the Leafy Automation Central.

Definition at line 10 of file api.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 API()

API::API (

String access_token)

Constructs an API object.

Generated by Doxygen

26 Class Documentation

Parameters

access_token The access token for the Leafy Automation Central.

Definition at line 3 of file api.cpp.
00003 {
00004 this->auth_token = access_token;
00005 }

5.1.3 Member Function Documentation

5.1.3.1 ping()

bool API::ping ()

Pings the Leafy Automation Central. Used to check if the server is online.

This function sends a GET request to the '/' endpoint of the Leafy Automation Central, and checks for a response.
Used to check if the server is online.

Returns

Whether the ping was successful.

Definition at line 7 of file api.cpp.
00007 {
00008 return HTTP(LA_SERVER_ADDR)
00009 .get("/")
00010 .fetch()
00011 .text() != "";
00012 }

5.1.4 Member Data Documentation

5.1.4.1 access_token

const String API::access_token [static]

The access token for the Leafy Automation Central.

Definition at line 15 of file api.h.

5.1.4.2 auth_token

String API::auth_token = LA_SERVER_TOKEN [private]

Definition at line 34 of file api.h.

The documentation for this class was generated from the following files:

• include/common/api/api.h
• src/common/api/api.cpp

Generated by Doxygen

5.2 HTTP Class Reference 27

5.2 HTTP Class Reference

A simple HTTP client abstraction.

#include <http.h>

Public Member Functions

• HTTP (String host)

Constructs a HTTP object.

• HTTP & header (String key, String value)

Adds a header to the HTTP request.

• HTTP & get (String path)

Performs an HTTP GET request.

• HTTP & post (String path, uint8_t ∗data, size_t data_length)

Performs an HTTP POST request.

• HTTP & fetch ()

Ends the HTTP request and returns the response.

• String text ()

Returns the response as plaintext.

• JsonDocument json ()

Returns the response as a JSON document.

Private Attributes

• String host
• String response
• bool connected = false

Static Private Attributes

• static WiFiClient client

5.2.1 Detailed Description

A simple HTTP client abstraction.

This class provides basic HTTP functionalities such as GET and POST requests using a provided NetCommander
instance for network communication.

https://datatracker.ietf.org/doc/html/rfc2616

Definition at line 16 of file http.h.

Generated by Doxygen

28 Class Documentation

5.2.2 Constructor & Destructor Documentation

5.2.2.1 HTTP()

HTTP::HTTP (

String host)

Constructs a HTTP object.

Definition at line 5 of file http.cpp.
00005 {
00006 this->host = host;
00007 this->connected = client.connect(host.c_str(), LA_SERVER_PORT);
00008
00009 if (!this->connected) {
00010 Serial.println("HTTP request failed");
00011 }
00012 }

5.2.3 Member Function Documentation

5.2.3.1 fetch()

HTTP & HTTP::fetch ()

Ends the HTTP request and returns the response.

Returns

The HTTP response as a String.

Definition at line 54 of file http.cpp.
00054 {
00055 if (!this->connected) {
00056 return *this;
00057 }
00058
00059 while (client.connected()) {
00060 if (client.available()) {
00061 this->response += (char) client.read();
00062 }
00063 }
00064
00065 client.stop();
00066
00067 return *this;
00068 }

5.2.3.2 get()

HTTP & HTTP::get (

String path)

Performs an HTTP GET request.

Parameters

host The hostname or IP address to connect to.
path The resource path to request.

Generated by Doxygen

5.2 HTTP Class Reference 29

Returns

The HTTP object instance.

Definition at line 24 of file http.cpp.
00024 {
00025 if (!this->connected) {
00026 return *this;
00027 }
00028
00029 HTTP::client.println("GET " + path + " HTTP/1.1");
00030 HTTP::client.println("Host: " + this->host);
00031 HTTP::client.println("Connection: close");
00032 client.println(); // Double crlf (carriage return line feed) to end the request.
00033
00034 return *this;
00035 }

5.2.3.3 header()

HTTP & HTTP::header (

String key,

String value)

Adds a header to the HTTP request.

Parameters

key The header key.

value The header value.

Returns

The HTTP object instance.

Definition at line 14 of file http.cpp.
00014 {
00015 if (!this->connected) {
00016 return *this;
00017 }
00018
00019 HTTP::client.println(key + ": " + value);
00020
00021 return *this;
00022 }

5.2.3.4 json()

JsonDocument HTTP::json ()

Returns the response as a JSON document.

Returns

The JSON document.

Definition at line 74 of file http.cpp.
00074 {
00075 JsonDocument doc;
00076
00077 DeserializationError error = deserializeJson(doc, this->response);
00078
00079 if (error) {
00080 Serial.print("deserializeJson() failed: ");
00081 Serial.println(error.c_str());
00082
00083 doc.clear();
00084 }
00085
00086 return doc;
00087 }

Generated by Doxygen

30 Class Documentation

5.2.3.5 post()

HTTP & HTTP::post (

String path,

uint8_t ∗ data,

size_t data_length)

Performs an HTTP POST request.

Parameters

host The hostname or IP address to connect to.
data The data to send.
data_length Length of the data to send.

Returns

The HTTP object instance.

Definition at line 37 of file http.cpp.
00037 {
00038 if (!this->connected) {
00039 return *this;
00040 }
00041
00042 HTTP::client.println("POST " + path + " HTTP/1.1");
00043 HTTP::client.println("Host: " + this->host);
00044 HTTP::client.println("Content-Type: application/octet-stream");
00045 HTTP::client.println("Content-Length: " + String(data_length));
00046 HTTP::client.println("Connection: keep-alive");
00047 client.println(); // Double crlf (carriage return line feed) to end the request.
00048
00049 HTTP::client.write(data, data_length);
00050
00051 return *this;
00052 }

5.2.3.6 text()

String HTTP::text ()

Returns the response as plaintext.

Returns

The response as a String.

Definition at line 70 of file http.cpp.
00070 {
00071 return this->response;
00072 }

5.2.4 Member Data Documentation

5.2.4.1 client

WiFiClient HTTP::client [static], [private]

Definition at line 76 of file http.h.

Generated by Doxygen

5.3 NetCommander Class Reference 31

5.2.4.2 connected

bool HTTP::connected = false [private]

Definition at line 74 of file http.h.

5.2.4.3 host

String HTTP::host [private]

Definition at line 72 of file http.h.

5.2.4.4 response

String HTTP::response [private]

Definition at line 73 of file http.h.

The documentation for this class was generated from the following files:

• include/common/net/http.h
• src/common/net/http.cpp

5.3 NetCommander Class Reference

Provides a simple interface for connecting to the internet.

#include <net_commander.h>

Public Member Functions

• void connect (String ssid, String password)

Connects to a Wi-Fi network.
• void disconnect ()

Disconnects from the Wi-Fi network.

5.3.1 Detailed Description

Provides a simple interface for connecting to the internet.

NetCommander wraps the WiFiS3 library to simplify Wi-Fi connection handling. It manages network credentials
and provides a WiFiClient instance for communication.

Definition at line 20 of file net_commander.h.

5.3.2 Member Function Documentation

5.3.2.1 connect()

void NetCommander::connect (

String ssid,

String password)

Connects to a Wi-Fi network.

Generated by Doxygen

32 Class Documentation

Parameters

ssid The SSID (name) of the Wi-Fi network.

password The password for the Wi-Fi network.

Definition at line 3 of file net_commander.cpp.
00003 {
00004 Serial.println("Connecting to WiFi...");
00005
00006 WiFi.begin(ssid.c_str(), password.c_str());
00007
00008 while (WiFi.status() != WL_CONNECTED) {
00009 delay(1000);
00010 Serial.println(".");
00011 }
00012
00013 Serial.println("Connected to WiFi!");
00014 }

5.3.2.2 disconnect()

void NetCommander::disconnect ()

Disconnects from the Wi-Fi network.

Definition at line 16 of file net_commander.cpp.
00016 {
00017 WiFi.disconnect();
00018 Serial.println("Disconnected from WiFi.");
00019 }

The documentation for this class was generated from the following files:

• include/common/net/net_commander.h
• src/common/net/net_commander.cpp

Generated by Doxygen

Chapter 6

File Documentation

6.1 include/common/api/api.h File Reference

#include "common/secrets.h"
#include "common/net/http.h"

Classes

• class API

High-level API abstraction for interacting with the Leafy Automation Central.

6.2 api.h

Go to the documentation of this file.
00001 /**
00002 * @brief High-level API abstraction for interacting with the Leafy Automation Central.
00003 */
00004
00005 #pragma once
00006
00007 #include "common/secrets.h"
00008 #include "common/net/http.h"
00009
00010 class API {
00011 public:
00012 /**
00013 * @brief The access token for the Leafy Automation Central.
00014 */
00015 static const String access_token;
00016
00017 /**
00018 * @brief Constructs an API object.
00019 *
00020 * @param access_token The access token for the Leafy Automation Central.
00021 */
00022 API(String access_token);
00023
00024 /**
00025 * @brief Pings the Leafy Automation Central. Used to check if the server is online.
00026 *
00027 * @details This function sends a GET request to the ’/’ endpoint of the Leafy Automation

Central,
00028 * and checks for a response. Used to check if the server is online.
00029 *
00030 * @return Whether the ping was successful.
00031 */
00032 bool ping();
00033 private:
00034 String auth_token = LA_SERVER_TOKEN;
00035 };

Generated by Doxygen

34 File Documentation

6.3 include/common/net/http.h File Reference

#include <ArduinoJson.h>
#include "common/net/net_commander.h"

Classes

• class HTTP

A simple HTTP client abstraction.

6.4 http.h

Go to the documentation of this file.
00001 /**
00002 * @brief A simple HTTP client abstraction.
00003 *
00004 * @details This class provides basic HTTP functionalities such as GET and POST requests
00005 * using a provided NetCommander instance for network communication.
00006 *
00007 * https://datatracker.ietf.org/doc/html/rfc2616
00008 */
00009
00010 #pragma once
00011
00012 #include <ArduinoJson.h>
00013
00014 #include "common/net/net_commander.h"
00015
00016 class HTTP {
00017 public:
00018 /**
00019 * @brief Constructs a HTTP object.
00020 */
00021 HTTP(String host);
00022
00023 /**
00024 * @brief Adds a header to the HTTP request.
00025 *
00026 * @param key The header key.
00027 * @param value The header value.
00028 * @return The HTTP object instance.
00029 */
00030 HTTP& header(String key, String value);
00031
00032 /**
00033 * @brief Performs an HTTP GET request.
00034 *
00035 * @param host The hostname or IP address to connect to.
00036 * @param path The resource path to request.
00037 * @return The HTTP object instance.
00038 */
00039 HTTP& get(String path);
00040
00041 /**
00042 * @brief Performs an HTTP POST request.
00043 *
00044 * @param host The hostname or IP address to connect to.
00045 * @param data The data to send.
00046 * @param data_length Length of the data to send.
00047 * @return The HTTP object instance.
00048 */
00049 HTTP& post(String path, uint8_t* data, size_t data_length);
00050
00051 /**
00052 * @brief Ends the HTTP request and returns the response.
00053 *
00054 * @return The HTTP response as a String.
00055 */
00056 HTTP& fetch();
00057
00058 /**
00059 * @brief Returns the response as plaintext.

Generated by Doxygen

6.5 include/common/net/net_commander.h File Reference 35

00060 *
00061 * @return The response as a String.
00062 */
00063 String text();
00064
00065 /**
00066 * @brief Returns the response as a JSON document.
00067 *
00068 * @return The JSON document.
00069 */
00070 JsonDocument json();
00071 private:
00072 String host;
00073 String response;
00074 bool connected = false;
00075
00076 static WiFiClient client;
00077 };

6.5 include/common/net/net_commander.h File Reference

#include <Arduino.h>
#include "common/secrets.h"

Classes

• class NetCommander

Provides a simple interface for connecting to the internet.

6.6 net_commander.h

Go to the documentation of this file.
00001 /**
00002 * @brief Provides a simple interface for connecting to the internet.
00003 *
00004 * @details NetCommander wraps the WiFiS3 library to simplify Wi-Fi connection handling.
00005 * It manages network credentials and provides a `WiFiClient‘ instance for communication.
00006 */
00007
00008 #pragma once
00009
00010 #include <Arduino.h>
00011
00012 #ifdef PLATFORMIO_ENV_UNO_R4_WIFI
00013 #include "WiFiS3.h"
00014 #elif PLATFORMIO_ENV_ESP32CAM
00015 #include <WiFi.h>
00016 #endif
00017
00018 #include "common/secrets.h"
00019
00020 class NetCommander {
00021 public:
00022 /**
00023 * @brief Connects to a Wi-Fi network.
00024 *
00025 * @param ssid The SSID (name) of the Wi-Fi network.
00026 * @param password The password for the Wi-Fi network.
00027 */
00028 void connect(String ssid, String password);
00029
00030 /**
00031 * @brief Disconnects from the Wi-Fi network.
00032 */
00033 void disconnect();
00034 };

Generated by Doxygen

36 File Documentation

6.7 include/common/secrets.h File Reference

Network and MQTT credentials for Leafy Automation firmware.

Macros

• #define WIFI_SSID "your-ssid"
• #define WIFI_PASSWORD "your-password"
• #define MQTT_SERVER "your-broker-ip"
• #define MQTT_PORT 1883
• #define MQTT_CLIENT_ID "LeafyAutomationClient"

6.7.1 Detailed Description

Network and MQTT credentials for Leafy Automation firmware.

Definition in file secrets.h.

6.7.2 Macro Definition Documentation

6.7.2.1 MQTT_CLIENT_ID

#define MQTT_CLIENT_ID "LeafyAutomationClient"

Definition at line 17 of file secrets.h.

6.7.2.2 MQTT_PORT

#define MQTT_PORT 1883

Definition at line 16 of file secrets.h.

6.7.2.3 MQTT_SERVER

#define MQTT_SERVER "your-broker-ip"

Definition at line 15 of file secrets.h.

6.7.2.4 WIFI_PASSWORD

#define WIFI_PASSWORD "your-password"

Definition at line 12 of file secrets.h.

Generated by Doxygen

6.8 secrets.h 37

6.7.2.5 WIFI_SSID

#define WIFI_SSID "your-ssid"

Definition at line 11 of file secrets.h.

6.8 secrets.h

Go to the documentation of this file.
00001 /**
00002 * @file secrets.h
00003 * @brief Network and MQTT credentials for Leafy Automation firmware.
00004 *
00005 */
00006
00007 #ifndef SECRETS_H
00008 #define SECRETS_H
00009
00010 // WiFi credentials
00011 #define WIFI_SSID "your-ssid"
00012 #define WIFI_PASSWORD "your-password"
00013
00014 // MQTT broker settings
00015 #define MQTT_SERVER "your-broker-ip"
00016 #define MQTT_PORT 1883
00017 #define MQTT_CLIENT_ID "LeafyAutomationClient"
00018 // Not sure if this will be required yet, keeping for now
00019 // #define MQTT_USERNAME "your-mqtt-username"
00020 // #define MQTT_PASSWORD "your-mqtt-password"
00021
00022 #endif // SECRETS_H
00023

6.9 include/common/secrets.sample.h File Reference

Macros

• #define WIFI_SSID "your-ssid"
• #define WIFI_PASSWORD "your-password"
• #define LA_SERVER_ADDR "ip-addr"
• #define LA_SERVER_PORT 5000
• #define LA_SERVER_TOKEN "your-token"

6.9.1 Macro Definition Documentation

6.9.1.1 LA_SERVER_ADDR

#define LA_SERVER_ADDR "ip-addr"

Definition at line 9 of file secrets.sample.h.

6.9.1.2 LA_SERVER_PORT

#define LA_SERVER_PORT 5000

Definition at line 10 of file secrets.sample.h.

Generated by Doxygen

38 File Documentation

6.9.1.3 LA_SERVER_TOKEN

#define LA_SERVER_TOKEN "your-token"

Definition at line 11 of file secrets.sample.h.

6.9.1.4 WIFI_PASSWORD

#define WIFI_PASSWORD "your-password"

Definition at line 8 of file secrets.sample.h.

6.9.1.5 WIFI_SSID

#define WIFI_SSID "your-ssid"

Copy this file to secrets.h and fill in the values

Definition at line 7 of file secrets.sample.h.

6.10 secrets.sample.h

Go to the documentation of this file.
00001 /**
00002 * Copy this file to secrets.h and fill in the values
00003 */
00004
00005 #pragma once
00006
00007 #define WIFI_SSID "your-ssid"
00008 #define WIFI_PASSWORD "your-password"
00009 #define LA_SERVER_ADDR "ip-addr"
00010 #define LA_SERVER_PORT 5000
00011 #define LA_SERVER_TOKEN "your-token"

6.11 include/common/util/logger.h File Reference

#include "Arduino.h"
#include "common/net/http.h"

Functions

• void logger_print_line (String msg)

Simple logger which outputs to a REST endpoint.

6.11.1 Function Documentation

6.11.1.1 logger_print_line()

void logger_print_line (

String msg)

Simple logger which outputs to a REST endpoint.

Generated by Doxygen

6.12 logger.h 39

Parameters

msg The message to log.

Definition at line 11 of file logger.h.
00011 {
00012 String res = HTTP(LA_SERVER_ADDR)
00013 .get("/api/v1/log?msg=" + msg)
00014 .fetch()
00015 .text();
00016 }

6.12 logger.h

Go to the documentation of this file.
00001 #pragma once
00002
00003 #include "Arduino.h"
00004
00005 #include "common/net/http.h"
00006
00007 /**
00008 * @brief Simple logger which outputs to a REST endpoint.
00009 * @param msg The message to log.
00010 */
00011 void logger_print_line(String msg) {
00012 String res = HTTP(LA_SERVER_ADDR)
00013 .get("/api/v1/log?msg=" + msg)
00014 .fetch()
00015 .text();
00016 }

6.13 include/config.h File Reference

Project-wide configuration constants (pins, timings, ratios).

#include <Arduino.h>

Variables

• static constexpr uint8_t ARM_JOINTS = 5

Number of stepper-driven joints (J0. . . J4).

• static constexpr uint8_t STEP_PIN [ARM_JOINTS]

STEP pin mapping for joints J0. . . J4.

• static constexpr uint8_t DIR_PIN [ARM_JOINTS]

DIR pin mapping for joints J0. . . J4.

• static constexpr uint16_t MICROSTEPS = 200

Microsteps per full revolution.

• static constexpr float GEAR_RATIO [ARM_JOINTS]

Gear ratio for each joint.

• static constexpr float MAX_OUTPUT_RPM [ARM_JOINTS]

Max output RPM per joint.

• static constexpr uint8_t LIMIT_LEFT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s left limit switch (Active LOW)

Generated by Doxygen

40 File Documentation

• static constexpr uint8_t LIMIT_RIGHT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s right limit switch (Active LOW)

• static constexpr uint8_t GRIPPER_SERVO_PIN

PWM pin for the servo controlling the gripper (End Effector, EF).

• static constexpr unsigned long GRIP_MOVE_TIME_MS = 500

Allocated time in milliseconds for the gripper to open/close.

• static constexpr uint8_t GRIPPER_CLOSED_ANGLE = 0

Open closed (degrees) for the gripper servo.

• static constexpr uint8_t GRIPPER_OPEN_ANGLE = 90

Open angle (degrees) for the gripper servo.

6.13.1 Detailed Description

Project-wide configuration constants (pins, timings, ratios).

Author

Elin Gravningen

Central place for hardware mapping and motion parameters that may vary as the project develops (such as adapting
gripping according to plant type).

Definition in file config.h.

6.14 config.h

Go to the documentation of this file.
00001 // config.h
00002 #ifndef CONFIG_H
00003 #define CONFIG_H
00004
00005 #include <Arduino.h>
00006
00007 /**
00008 * @file config.h
00009 * @author Elin Gravningen
00010 * @brief Project-wide configuration constants (pins, timings, ratios).
00011 * @details Central place for hardware mapping and motion parameters that
00012 * may vary as the project develops (such as adapting gripping according to
00013 * plant type).
00014 *
00015 * @defgroup Configuration Configuration
00016 * @{
00017 */
00018
00019 /// @var ARM_JOINTS
00020 /// Number of stepper-driven joints (J0...J4).
00021 static constexpr uint8_t ARM_JOINTS = 5;
00022
00023 /// @var STEP_PIN
00024 /// STEP pin mapping for joints J0...J4.
00025 /// @pre STEP_PIN size must equal ARM_JOINTS
00026 static constexpr uint8_t STEP_PIN[ARM_JOINTS] = {
00027 /* J0 */ 1, // TO DO: Replace 1s with actual pin numbers
00028 /* J1 */ 1,
00029 /* J2 */ 1,
00030 /* J3 */ 1,
00031 /* J4 */ 1};
00032
00033 /// @var DIR_PIN
00034 /// DIR pin mapping for joints J0...J4.
00035 static constexpr uint8_t DIR_PIN[ARM_JOINTS] = {
00036 /* J0 */ 1, // TO DO: Replace 1s with actual pin numbers
00037 /* J1 */ 1,

Generated by Doxygen

6.15 include/modules/base/main_base.h File Reference 41

00038 /* J2 */ 1,
00039 /* J3 */ 1,
00040 /* J4 */ 1};
00041
00042 /// @var MICROSTEPS
00043 /// Microsteps per full revolution
00044 static constexpr uint16_t MICROSTEPS = 200;
00045
00046 /// @var GEAR_RATIO
00047 /// Gear ratio for each joint
00048 static constexpr float GEAR_RATIO[ARM_JOINTS] = {
00049 /* J0 */ 1.0f / 10.0f,
00050 /* J1 */ 1.0f / 50.0f,
00051 /* J2 */ 1.0f / 50.0f,
00052 /* J3 */ 1.0f / 19.0f,
00053 /* J4 */ 1.0f / 16.0f};
00054
00055 /// @var MAX_OUTPUT_RPM
00056 /// Max output RPM per joint
00057 static constexpr float MAX_OUTPUT_RPM[ARM_JOINTS] = {
00058 /* J0 */ 30.0f,
00059 /* J1 */ 20.0f,
00060 /* J2 */ 20.0f,
00061 /* J3 */ 25.0f,
00062 /* J4 */ 25.0f};
00063
00064 /// @var LIMIT_LEFT_PINS
00065 /// Array of digital input pins connected to each joint’s left limit switch
00066 /// (Active LOW)
00067 /// @ingroup Configuration
00068 static constexpr uint8_t LIMIT_LEFT_PINS[ARM_JOINTS] = {
00069 xx, xx, xx, xx, xx}; // Replace with pin numbers
00070
00071 /// @var LIMIT_RIGHT_PINS
00072 /// Array of digital input pins connected to each joint’s right limit switch
00073 /// (Active LOW)
00074 /// @ingroup Configuration
00075 static constexpr uint8_t LIMIT_RIGHT_PINS[ARM_JOINTS] = {
00076 xx, xx, xx, xx, xx}; // Replace with pin numbers
00077
00078 /// @var GRIPPER_SERVO_PIN
00079 /// PWM pin for the servo controlling the gripper (End Effector, EF).
00080 static constexpr uint8_t GRIPPER_SERVO_PIN =
00081 1; // TO DO: Replace 1s with actual pin numbers
00082
00083 /// @var GRIP_MOVE_TIME_MS
00084 /// Allocated time in milliseconds for the gripper to open/close.
00085 static constexpr unsigned long GRIP_MOVE_TIME_MS = 500;
00086
00087 /// @var GRIPPER_CLOSED_ANGLE
00088 /// Open closed (degrees) for the gripper servo.
00089 static constexpr uint8_t GRIPPER_CLOSED_ANGLE = 0;
00090
00091 /// @var GRIPPER_OPEN_ANGLE
00092 /// Open angle (degrees) for the gripper servo.
00093 static constexpr uint8_t GRIPPER_OPEN_ANGLE = 90;
00094
00095 #endif // CONFIG_H
00096 /** @} */ // end of Configuration

6.15 include/modules/base/main_base.h File Reference

Functions

• void main_base_setup ()

Defines the code paths for the Arduino (base system).

• void main_base_loop ()

6.15.1 Function Documentation

6.15.1.1 main_base_loop()

void main_base_loop ()

Generated by Doxygen

42 File Documentation

6.15.1.2 main_base_setup()

void main_base_setup ()

Defines the code paths for the Arduino (base system).

6.16 main_base.h

Go to the documentation of this file.
00001 /**
00002 * @brief Defines the code paths for the Arduino (base system).
00003 */
00004
00005 #pragma once
00006
00007 void main_base_setup();
00008
00009 void main_base_loop();

6.17 include/modules/cam/esp32-cam-gpio.h File Reference

This file is based on the esp32-cam CameraWebServer example from the arduino-esp32 repository. https←↩

://github.com/espressif/arduino-esp32.

#include "esp_camera.h"

Macros

• #define PWDN_GPIO_NUM 32
• #define RESET_GPIO_NUM -1
• #define XCLK_GPIO_NUM 0
• #define SIOD_GPIO_NUM 26
• #define SIOC_GPIO_NUM 27
• #define Y9_GPIO_NUM 35
• #define Y8_GPIO_NUM 34
• #define Y7_GPIO_NUM 39
• #define Y6_GPIO_NUM 36
• #define Y5_GPIO_NUM 21
• #define Y4_GPIO_NUM 19
• #define Y3_GPIO_NUM 18
• #define Y2_GPIO_NUM 5
• #define VSYNC_GPIO_NUM 25
• #define HREF_GPIO_NUM 23
• #define PCLK_GPIO_NUM 22
• #define LED_GPIO_NUM 4

Functions

• camera_config_t setupCameraConfig ()

Generated by Doxygen

6.17 include/modules/cam/esp32-cam-gpio.h File Reference 43

6.17.1 Detailed Description

This file is based on the esp32-cam CameraWebServer example from the arduino-esp32 repository. https←↩

://github.com/espressif/arduino-esp32.

Copyright Espressif Systems (Shanghai) PTE LTD

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Definition in file esp32-cam-gpio.h.

6.17.2 Macro Definition Documentation

6.17.2.1 HREF_GPIO_NUM

#define HREF_GPIO_NUM 23

Definition at line 42 of file esp32-cam-gpio.h.

6.17.2.2 LED_GPIO_NUM

#define LED_GPIO_NUM 4

Definition at line 46 of file esp32-cam-gpio.h.

6.17.2.3 PCLK_GPIO_NUM

#define PCLK_GPIO_NUM 22

Definition at line 43 of file esp32-cam-gpio.h.

6.17.2.4 PWDN_GPIO_NUM

#define PWDN_GPIO_NUM 32

Definition at line 27 of file esp32-cam-gpio.h.

Generated by Doxygen

44 File Documentation

6.17.2.5 RESET_GPIO_NUM

#define RESET_GPIO_NUM -1

Definition at line 28 of file esp32-cam-gpio.h.

6.17.2.6 SIOC_GPIO_NUM

#define SIOC_GPIO_NUM 27

Definition at line 31 of file esp32-cam-gpio.h.

6.17.2.7 SIOD_GPIO_NUM

#define SIOD_GPIO_NUM 26

Definition at line 30 of file esp32-cam-gpio.h.

6.17.2.8 VSYNC_GPIO_NUM

#define VSYNC_GPIO_NUM 25

Definition at line 41 of file esp32-cam-gpio.h.

6.17.2.9 XCLK_GPIO_NUM

#define XCLK_GPIO_NUM 0

Definition at line 29 of file esp32-cam-gpio.h.

6.17.2.10 Y2_GPIO_NUM

#define Y2_GPIO_NUM 5

Definition at line 40 of file esp32-cam-gpio.h.

6.17.2.11 Y3_GPIO_NUM

#define Y3_GPIO_NUM 18

Definition at line 39 of file esp32-cam-gpio.h.

6.17.2.12 Y4_GPIO_NUM

#define Y4_GPIO_NUM 19

Definition at line 38 of file esp32-cam-gpio.h.

Generated by Doxygen

6.17 include/modules/cam/esp32-cam-gpio.h File Reference 45

6.17.2.13 Y5_GPIO_NUM

#define Y5_GPIO_NUM 21

Definition at line 37 of file esp32-cam-gpio.h.

6.17.2.14 Y6_GPIO_NUM

#define Y6_GPIO_NUM 36

Definition at line 36 of file esp32-cam-gpio.h.

6.17.2.15 Y7_GPIO_NUM

#define Y7_GPIO_NUM 39

Definition at line 35 of file esp32-cam-gpio.h.

6.17.2.16 Y8_GPIO_NUM

#define Y8_GPIO_NUM 34

Definition at line 34 of file esp32-cam-gpio.h.

6.17.2.17 Y9_GPIO_NUM

#define Y9_GPIO_NUM 35

Definition at line 33 of file esp32-cam-gpio.h.

6.17.3 Function Documentation

6.17.3.1 setupCameraConfig()

camera_config_t setupCameraConfig ()

Definition at line 48 of file esp32-cam-gpio.h.
00048 {
00049 camera_config_t config;
00050 config.ledc_channel = LEDC_CHANNEL_0;
00051 config.ledc_timer = LEDC_TIMER_0;
00052 config.pin_d0 = Y2_GPIO_NUM;
00053 config.pin_d1 = Y3_GPIO_NUM;
00054 config.pin_d2 = Y4_GPIO_NUM;
00055 config.pin_d3 = Y5_GPIO_NUM;
00056 config.pin_d4 = Y6_GPIO_NUM;
00057 config.pin_d5 = Y7_GPIO_NUM;
00058 config.pin_d6 = Y8_GPIO_NUM;
00059 config.pin_d7 = Y9_GPIO_NUM;
00060 config.pin_xclk = XCLK_GPIO_NUM;
00061 config.pin_pclk = PCLK_GPIO_NUM;
00062 config.pin_vsync = VSYNC_GPIO_NUM;
00063 config.pin_href = HREF_GPIO_NUM;
00064 config.pin_sccb_sda = SIOD_GPIO_NUM;
00065 config.pin_sccb_scl = SIOC_GPIO_NUM;
00066 config.pin_pwdn = PWDN_GPIO_NUM;
00067 config.pin_reset = RESET_GPIO_NUM;
00068 config.xclk_freq_hz = 20000000;
00069 config.frame_size = FRAMESIZE_VGA;
00070 config.pixel_format = PIXFORMAT_JPEG;
00071 config.grab_mode = CAMERA_GRAB_LATEST;
00072 config.fb_location = CAMERA_FB_IN_PSRAM;
00073 config.jpeg_quality = 10;
00074 config.fb_count = 2;
00075
00076 return config;
00077 }

Generated by Doxygen

46 File Documentation

6.18 esp32-cam-gpio.h

Go to the documentation of this file.
00001 /**
00002 * @file
00003 * @brief This file is based on the esp32-cam CameraWebServer example from the arduino-esp32

repository.
00004 * https://github.com/espressif/arduino-esp32
00005
00006 * Copyright Espressif Systems (Shanghai) PTE LTD
00007
00008 * This library is free software; you can redistribute it and/or
00009 * modify it under the terms of the GNU Lesser General Public
00010 * License as published by the Free Software Foundation; either
00011 * version 2.1 of the License, or (at your option) any later version.
00012
00013 * This library is distributed in the hope that it will be useful,
00014 * but WITHOUT ANY WARRANTY; without even the implied warranty of
00015 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
00016 * Lesser General Public License for more details.
00017
00018 * You should have received a copy of the GNU Lesser General Public
00019 * License along with this library; if not, write to the Free Software
00020 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00021 */
00022
00023 #pragma once
00024
00025 #include "esp_camera.h"
00026
00027 #define PWDN_GPIO_NUM 32
00028 #define RESET_GPIO_NUM -1
00029 #define XCLK_GPIO_NUM 0
00030 #define SIOD_GPIO_NUM 26
00031 #define SIOC_GPIO_NUM 27
00032
00033 #define Y9_GPIO_NUM 35
00034 #define Y8_GPIO_NUM 34
00035 #define Y7_GPIO_NUM 39
00036 #define Y6_GPIO_NUM 36
00037 #define Y5_GPIO_NUM 21
00038 #define Y4_GPIO_NUM 19
00039 #define Y3_GPIO_NUM 18
00040 #define Y2_GPIO_NUM 5
00041 #define VSYNC_GPIO_NUM 25
00042 #define HREF_GPIO_NUM 23
00043 #define PCLK_GPIO_NUM 22
00044
00045 // 4 for flash led or 33 for normal led
00046 #define LED_GPIO_NUM 4
00047
00048 camera_config_t setupCameraConfig() {
00049 camera_config_t config;
00050 config.ledc_channel = LEDC_CHANNEL_0;
00051 config.ledc_timer = LEDC_TIMER_0;
00052 config.pin_d0 = Y2_GPIO_NUM;
00053 config.pin_d1 = Y3_GPIO_NUM;
00054 config.pin_d2 = Y4_GPIO_NUM;
00055 config.pin_d3 = Y5_GPIO_NUM;
00056 config.pin_d4 = Y6_GPIO_NUM;
00057 config.pin_d5 = Y7_GPIO_NUM;
00058 config.pin_d6 = Y8_GPIO_NUM;
00059 config.pin_d7 = Y9_GPIO_NUM;
00060 config.pin_xclk = XCLK_GPIO_NUM;
00061 config.pin_pclk = PCLK_GPIO_NUM;
00062 config.pin_vsync = VSYNC_GPIO_NUM;
00063 config.pin_href = HREF_GPIO_NUM;
00064 config.pin_sccb_sda = SIOD_GPIO_NUM;
00065 config.pin_sccb_scl = SIOC_GPIO_NUM;
00066 config.pin_pwdn = PWDN_GPIO_NUM;
00067 config.pin_reset = RESET_GPIO_NUM;
00068 config.xclk_freq_hz = 20000000;
00069 config.frame_size = FRAMESIZE_VGA;
00070 config.pixel_format = PIXFORMAT_JPEG;
00071 config.grab_mode = CAMERA_GRAB_LATEST;
00072 config.fb_location = CAMERA_FB_IN_PSRAM;
00073 config.jpeg_quality = 10;
00074 config.fb_count = 2;
00075
00076 return config;
00077 }

Generated by Doxygen

6.19 include/modules/cam/main_cam.h File Reference 47

6.19 include/modules/cam/main_cam.h File Reference

Functions

• void main_cam_setup ()

Defines the code paths for the Cam (esp32-cam).

• void main_cam_loop ()

6.19.1 Function Documentation

6.19.1.1 main_cam_loop()

void main_cam_loop ()

6.19.1.2 main_cam_setup()

void main_cam_setup ()

Defines the code paths for the Cam (esp32-cam).

6.20 main_cam.h

Go to the documentation of this file.
00001 /**
00002 * @brief Defines the code paths for the Cam (esp32-cam).
00003 */
00004
00005 #pragma once
00006
00007 void main_cam_setup();
00008
00009 void main_cam_loop();

6.21 include/Utilities.h File Reference

6.22 Utilities.h

Go to the documentation of this file.
00001

6.23 src/base/main_base.cpp File Reference

#include "modules/base/main_base.h"

Generated by Doxygen

48 File Documentation

6.24 main_base.cpp

Go to the documentation of this file.
00001 #include "modules/base/main_base.h"
00002
00003 #ifdef PLATFORMIO_ENV_UNO_R4_WIFI
00004 #include "common/net/net_commander.h"
00005 #include "common/net/http.h"
00006 #include "common/api/api.h"
00007
00008 NetCommander netCommander;
00009 API api(LA_SERVER_TOKEN);
00010
00011 void main_base_setup() {
00012 Serial.begin(9600);
00013
00014 netCommander.connect(WIFI_SSID, WIFI_PASSWORD);
00015
00016 String res = HTTP(LA_SERVER_ADDR)
00017 .get("/api/v1")
00018 .fetch()
00019 .text();
00020
00021 Serial.println(res);
00022
00023 netCommander.disconnect();
00024 }
00025
00026 void main_base_loop() {
00027
00028 }
00029
00030 #endif

6.25 src/common/api/api.cpp File Reference

#include "common/api/api.h"

6.26 api.cpp

Go to the documentation of this file.
00001 #include "common/api/api.h"
00002
00003 API::API(String access_token) {
00004 this->auth_token = access_token;
00005 }
00006
00007 bool API::ping() {
00008 return HTTP(LA_SERVER_ADDR)
00009 .get("/")
00010 .fetch()
00011 .text() != "";
00012 }

6.27 src/common/net/http.cpp File Reference

#include "common/net/http.h"

Generated by Doxygen

6.28 http.cpp 49

6.28 http.cpp

Go to the documentation of this file.
00001 #include "common/net/http.h"
00002
00003 WiFiClient HTTP::client;
00004
00005 HTTP::HTTP(String host) {
00006 this->host = host;
00007 this->connected = client.connect(host.c_str(), LA_SERVER_PORT);
00008
00009 if (!this->connected) {
00010 Serial.println("HTTP request failed");
00011 }
00012 }
00013
00014 HTTP& HTTP::header(String key, String value) {
00015 if (!this->connected) {
00016 return *this;
00017 }
00018
00019 HTTP::client.println(key + ": " + value);
00020
00021 return *this;
00022 }
00023
00024 HTTP& HTTP::get(String path) {
00025 if (!this->connected) {
00026 return *this;
00027 }
00028
00029 HTTP::client.println("GET " + path + " HTTP/1.1");
00030 HTTP::client.println("Host: " + this->host);
00031 HTTP::client.println("Connection: close");
00032 client.println(); // Double crlf (carriage return line feed) to end the request.
00033
00034 return *this;
00035 }
00036
00037 HTTP& HTTP::post(String path, uint8_t* data, size_t data_length) {
00038 if (!this->connected) {
00039 return *this;
00040 }
00041
00042 HTTP::client.println("POST " + path + " HTTP/1.1");
00043 HTTP::client.println("Host: " + this->host);
00044 HTTP::client.println("Content-Type: application/octet-stream");
00045 HTTP::client.println("Content-Length: " + String(data_length));
00046 HTTP::client.println("Connection: keep-alive");
00047 client.println(); // Double crlf (carriage return line feed) to end the request.
00048
00049 HTTP::client.write(data, data_length);
00050
00051 return *this;
00052 }
00053
00054 HTTP& HTTP::fetch() {
00055 if (!this->connected) {
00056 return *this;
00057 }
00058
00059 while (client.connected()) {
00060 if (client.available()) {
00061 this->response += (char) client.read();
00062 }
00063 }
00064
00065 client.stop();
00066
00067 return *this;
00068 }
00069
00070 String HTTP::text() {
00071 return this->response;
00072 }
00073
00074 JsonDocument HTTP::json() {
00075 JsonDocument doc;
00076
00077 DeserializationError error = deserializeJson(doc, this->response);
00078
00079 if (error) {
00080 Serial.print("deserializeJson() failed: ");
00081 Serial.println(error.c_str());
00082

Generated by Doxygen

50 File Documentation

00083 doc.clear();
00084 }
00085
00086 return doc;
00087 }

6.29 src/common/net/net_commander.cpp File Reference

#include "common/net/net_commander.h"

6.30 net_commander.cpp

Go to the documentation of this file.
00001 #include "common/net/net_commander.h"
00002
00003 void NetCommander::connect(String ssid, String password) {
00004 Serial.println("Connecting to WiFi...");
00005
00006 WiFi.begin(ssid.c_str(), password.c_str());
00007
00008 while (WiFi.status() != WL_CONNECTED) {
00009 delay(1000);
00010 Serial.println(".");
00011 }
00012
00013 Serial.println("Connected to WiFi!");
00014 }
00015
00016 void NetCommander::disconnect() {
00017 WiFi.disconnect();
00018 Serial.println("Disconnected from WiFi.");
00019 }

6.31 src/communication_manager/communication_manager.cpp File
Reference

Implementation of the Communication Manager module.

#include "communication_manager.h"
#include "MQTT_client.h"
#include "gripper_driver.h"
#include "motor_driver.h"

Functions

• static void handleMoveCommand (const String &incCommand)

Handle a MOVE command by parsing it into 5 values which are then converted and sent to joint actuators via
moveJoint(). Sets movementInProgress = true to indicate motion has started. This flag is later cleared by
checkActionStatus() once all joints reach their targets.

• static void handleGripperCommand (const String &incCommand)

Handle a GRIP command: 0 = open, 1 = close. Sets gripperInProgress = true to indicate motion has started. This
flag is later cleared by checkActionStatus() once all joints reach their targets.

• static void handleCalibrationCommand (const String &incCommand)

Handle a CALIBRATE command: 0 = cancel, 1 = start calibration. Sets calibrationInProgress = true to indicate motion
has started. This flag is later cleared by checkActionStatus() once all joints reach their targets.

• void handleIncomingCommand (const String &command)

Handle an incoming command and route it to the appropriate module.
• void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

Generated by Doxygen

6.31 src/communication_manager/communication_manager.cpp File Reference 51

Variables

• static bool calibrationInProgress = false
• static bool movementInProgress = false
• static bool gripperInProgress = false

6.31.1 Detailed Description

Implementation of the Communication Manager module.

Author

Elin Gravningen

Parses and routes incoming MQTT command strings to the driver modules, and monitors action completion to
publish DONE events.

Definition in file communication_manager.cpp.

6.31.2 Function Documentation

6.31.2.1 handleCalibrationCommand()

static void handleCalibrationCommand (

const String & command) [static]

Handle a CALIBRATE command: 0 = cancel, 1 = start calibration. Sets calibrationInProgress = true to indicate
motion has started. This flag is later cleared by checkActionStatus() once all joints reach their targets.

Definition at line 50 of file communication_manager.cpp.
00050 {
00051 publishStatus(MQTT_TOPIC_STATUS_COMMAND, incCommand);
00052
00053 int state = incCommand.substring(incCommand.indexOf(’ ’) + 1).toInt();
00054 if (state == 1) {
00055 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATE RECEIVED");
00056 calibrationInProgress = true;
00057 calibrateAllJoints();
00058 calibrationInProgress = false;
00059 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00060 } else {
00061 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION,
00062 "CALIBRATE CANCELED"); // @todo: Should we implement
00063 // calibration cancellation?
00064 calibrationInProgress = false;
00065 }
00066 }

6.31.2.2 handleGripperCommand()

static void handleGripperCommand (

const String & command) [static]

Handle a GRIP command: 0 = open, 1 = close. Sets gripperInProgress = true to indicate motion has started. This
flag is later cleared by checkActionStatus() once all joints reach their targets.

Definition at line 99 of file communication_manager.cpp.
00099 {
00100 publishStatus(MQTT_TOPIC_STATUS_COMMAND, incCommand);
00101 int state = incCommand.substring(incCommand.indexOf(’ ’) + 1).toInt();
00102 moveGripper(state);
00103 gripperInProgress = true;
00104 }

Generated by Doxygen

52 File Documentation

6.31.2.3 handleMoveCommand()

static void handleMoveCommand (

const String & command) [static]

Handle a MOVE command by parsing it into 5 values which are then converted and sent to joint actuators
via moveJoint(). Sets movementInProgress = true to indicate motion has started. This flag is later cleared by
checkActionStatus() once all joints reach their targets.

Definition at line 72 of file communication_manager.cpp.
00072 {
00073 publishStatus(MQTT_TOPIC_STATUS_COMMAND, incCommand);
00074 int32_t jointValues[5];
00075 int index = 0;
00076 int argStart = incCommand.indexOf(’ ’) + 1;
00077
00078 while (index < 5) {
00079 int argEnd = incCommand.indexOf(’ ’, argStart);
00080 if (argEnd == -1)
00081 argEnd = incCommand.length();
00082 jointValues[index++] = incCommand.substring(argStart, argEnd).toInt();
00083 argStart = argEnd + 1;
00084 }
00085
00086 moveJoint(0, jointValues[0]); // J0
00087 moveJoint(1, jointValues[1]); // J1
00088 moveJoint(2, jointValues[2]); // J2
00089 moveJoint(3, jointValues[3]); // J3
00090 moveJoint(4, jointValues[4]); // J4
00091
00092 movementInProgress = true;
00093 }

6.31.3 Variable Documentation

6.31.3.1 calibrationInProgress

bool calibrationInProgress = false [static]

Definition at line 18 of file communication_manager.cpp.

6.31.3.2 gripperInProgress

bool gripperInProgress = false [static]

Definition at line 20 of file communication_manager.cpp.

6.31.3.3 movementInProgress

bool movementInProgress = false [static]

Definition at line 19 of file communication_manager.cpp.

Generated by Doxygen

6.32 communication_manager.cpp 53

6.32 communication_manager.cpp

Go to the documentation of this file.
00001 /**
00002 * @file communication_manager.cpp
00003 * @author Elin Gravningen
00004 * @brief Implementation of the Communication Manager module.
00005 * @details Parses and routes incoming MQTT command strings to the driver
00006 * modules, and monitors action completion to publish DONE events.
00007 *
00008 * @ingroup Communication_Manager
00009 */
00010
00011 #include "communication_manager.h"
00012 #include "MQTT_client.h" // for publishStatus()
00013 #include "gripper_driver.h"
00014 #include "motor_driver.h"
00015
00016 // Internal flags to track the state of calibration, movement, and gripper
00017 // actions.
00018 static bool calibrationInProgress = false;
00019 static bool movementInProgress = false;
00020 static bool gripperInProgress = false;
00021
00022 // Internal helper function declarations for parsing and handling specific
00023 // commands
00024 static void handleMoveCommand(const String &command);
00025 static void handleGripperCommand(const String &command);
00026 static void handleCalibrationCommand(const String &command);
00027
00028 /// Handle an incoming command and route it to the appropriate module.
00029 /// @ingroup Communication_Manager
00030 void handleIncomingCommand(const String &command) {
00031 String trimmed = command;
00032 trimmed.trim(); // Removing leading/trailing whitespaces
00033
00034 if (trimmed.startsWith("MOVE")) {
00035 handleMoveCommand(trimmed);
00036 } else if (trimmed.startsWith("GRIP")) {
00037 handleGripperCommand(trimmed);
00038 } else if (trimmed.startsWith("CALIBRATE")) {
00039 handleCalibrationCommand(trimmed);
00040 } else {
00041 Serial.print("[CommunicationManager] Unknown command: ");
00042 Serial.println(trimmed);
00043 }
00044 }
00045
00046 /// Handle a CALIBRATE command: 0 = cancel, 1 = start calibration.
00047 /// Sets calibrationInProgress = true to indicate motion has started.
00048 /// This flag is later cleared by checkActionStatus() once all joints reach
00049 /// their targets.
00050 static void handleCalibrationCommand(const String &incCommand) {
00051 publishStatus(MQTT_TOPIC_STATUS_COMMAND, incCommand);
00052
00053 int state = incCommand.substring(incCommand.indexOf(’ ’) + 1).toInt();
00054 if (state == 1) {
00055 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATE RECEIVED");
00056 calibrationInProgress = true;
00057 calibrateAllJoints();
00058 calibrationInProgress = false;
00059 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00060 } else {
00061 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION,
00062 "CALIBRATE CANCELED"); // @todo: Should we implement
00063 // calibration cancellation?
00064 calibrationInProgress = false;
00065 }
00066 }
00067
00068 /// Handle a MOVE command by parsing it into 5 values which are then converted
00069 /// and sent to joint actuators via moveJoint(). Sets movementInProgress = true
00070 /// to indicate motion has started. This flag is later cleared by
00071 /// checkActionStatus() once all joints reach their targets.
00072 static void handleMoveCommand(const String &incCommand) {
00073 publishStatus(MQTT_TOPIC_STATUS_COMMAND, incCommand);
00074 int32_t jointValues[5];
00075 int index = 0;
00076 int argStart = incCommand.indexOf(’ ’) + 1;
00077
00078 while (index < 5) {
00079 int argEnd = incCommand.indexOf(’ ’, argStart);
00080 if (argEnd == -1)
00081 argEnd = incCommand.length();
00082 jointValues[index++] = incCommand.substring(argStart, argEnd).toInt();

Generated by Doxygen

54 File Documentation

00083 argStart = argEnd + 1;
00084 }
00085
00086 moveJoint(0, jointValues[0]); // J0
00087 moveJoint(1, jointValues[1]); // J1
00088 moveJoint(2, jointValues[2]); // J2
00089 moveJoint(3, jointValues[3]); // J3
00090 moveJoint(4, jointValues[4]); // J4
00091
00092 movementInProgress = true;
00093 }
00094
00095 /// Handle a GRIP command: 0 = open, 1 = close.
00096 /// Sets gripperInProgress = true to indicate motion has started.
00097 /// This flag is later cleared by checkActionStatus() once all joints reach
00098 /// their targets.
00099 static void handleGripperCommand(const String &incCommand) {
00100 publishStatus(MQTT_TOPIC_STATUS_COMMAND, incCommand);
00101 int state = incCommand.substring(incCommand.indexOf(’ ’) + 1).toInt();
00102 moveGripper(state);
00103 gripperInProgress = true;
00104 }
00105
00106 /**
00107 * @brief Checks in-progress flags and publish DONE messages.
00108 * @ingroup Communication_Manager
00109 * @note Must be called each loop to detect action completion promptly.
00110 * @return void
00111 */
00112 void checkActionStatus() {
00113
00114 if (calibrationInProgress && calibrationDone()) {
00115 publishStatus(MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00116 calibrationInProgress = false;
00117 }
00118 if (movementInProgress && allJointsDone()) {
00119 publishStatus(MQTT_TOPIC_STATUS_MOTION, "MOVE DONE");
00120 movementInProgress = false;
00121 }
00122
00123 if (gripperInProgress && gripperDone()) {
00124 publishStatus(MQTT_TOPIC_STATUS_GRIPPER, "GRIPPER DONE");
00125 gripperInProgress = false;
00126 }
00127 }

6.33 src/communication_manager/communication_manager.h File
Reference

Parses incoming MQTT commands and publishes status updates.

#include <Arduino.h>

Functions

• void handleIncomingCommand (const String &command)

Handle an incoming command and route it to the appropriate module.
• void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

6.33.1 Detailed Description

Parses incoming MQTT commands and publishes status updates.

Author

Elin Gravningen

This module is responsible for interpreting command strings received via MQTT and dispatches the messages to
the appropriate actuator logic. It also sends status updates back to the Central Leafy Automation ROS2 system.

Definition in file communication_manager.h.

Generated by Doxygen

6.34 communication_manager.h 55

6.34 communication_manager.h

Go to the documentation of this file.
00001 #ifndef COMMUNICATION_MANAGER_H
00002 #define COMMUNICATION_MANAGER_H
00003
00004 #include <Arduino.h>
00005
00006 /**
00007 * @file communication_manager.h
00008 * @author Elin Gravningen
00009 * @brief Parses incoming MQTT commands and publishes status updates.
00010 * @details This module is responsible for interpreting command strings received
00011 * via MQTT and dispatches the messages to the appropriate actuator logic. It
00012 * also sends status updates back to the Central Leafy Automation ROS2 system.
00013 *
00014 * @defgroup Communication_Manager Communication Manager
00015 * @{
00016 */
00017
00018 /**
00019 * @brief Decode and route a received command string.
00020 * @param command Text like "MOVE 100 200 300 400 500" or "GRIP 1".
00021 * @return void
00022 * @ingroup Communication_Manager
00023 * @note Is called from the MQTT Client’s callback.
00024 */
00025 void handleIncomingCommand(const String &command);
00026
00027 /**
00028 * @brief Checks in-progress flags and publishes DONE messages.
00029 * @details Checks the movementInProgress, gripperInProgress, and
00030 * calibrationInProgress flags. For each flag that is set, it calls the
00031 * corresponding completion test:
00032 * - allJointsDone() for MOVE
00033 * - gripperDone() for GRIP
00034 * - calibrationDone() for CALIBRATE
00035 * If the test returns true, it publishes the respective “DONE” status
00036 * via publishStatus() and clears the in-progress flag.
00037 * @return void
00038 * @ingroup Communication_Manager
00039 * @note Must be called in every main loop to catch completions promptly.
00040 */
00041 void checkActionStatus();
00042
00043 #endif // COMMUNICATION_MANAGER_H
00044
00045 /** @} */ // end of Communication_Manager

6.35 src/gripper_driver/gripper_driver.cpp File Reference

Controls the gripper servo (End Effector EF).

#include "gripper_driver.h"
#include "config.h"
#include <Servo.h>

Functions

• void initGripper ()

Initialise the gripper servo on its PWM pin and open it.

• void moveGripper (int state)

Command the gripper to open (state=0) or close (state=1).

• void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.

• bool gripperDone ()

Returns true if the gripper has completed its movement.

Generated by Doxygen

56 File Documentation

Variables

• static Servo gripperServo
• static bool moving = false
• static unsigned long moveStartTime = 0

6.35.1 Detailed Description

Controls the gripper servo (End Effector EF).

Author

Elin Gravningen

Definition in file gripper_driver.cpp.

6.36 gripper_driver.cpp

Go to the documentation of this file.
00001 /**
00002 * @file gripper_driver.cpp
00003 * @author Elin Gravningen
00004 * @brief Controls the gripper servo (End Effector EF).
00005 * @defgroup Gripper_Driver Gripper Driver
00006 * @{
00007 */
00008
00009 #include "gripper_driver.h"
00010 #include "config.h"
00011 #include <Servo.h>
00012
00013 // Servo object for gripper
00014 static Servo gripperServo;
00015
00016 // Movement state
00017 static bool moving = false;
00018 static unsigned long moveStartTime = 0;
00019
00020 /// @ingroup Gripper_Driver
00021 /// Initialise the gripper servo on its PWM pin and open it.
00022 void initGripper() {
00023 gripperServo.attach(GRIPPER_SERVO_PIN);
00024 gripperServo.write(GRIPPER_OPEN_ANGLE);
00025 moving = false;
00026 }
00027
00028 /// @ingroup Gripper_Driver
00029 /// Command the gripper to open (state=0) or close (state=1).
00030 void moveGripper(int state) {
00031 uint8_t angle;
00032 if (state) {
00033 angle = GRIPPER_CLOSED_ANGLE;
00034 } else {
00035 angle = GRIPPER_OPEN_ANGLE;
00036 }
00037 gripperServo.write(angle);
00038 moveStartTime = millis();
00039 moving = true;
00040 }
00041
00042 /// @ingroup Gripper_Driver
00043 /// Update the gripper; clear the moving flag after the configured move time.
00044 void updateGripper() {
00045 if (moving && (millis() - moveStartTime >= GRIP_MOVE_TIME_MS)) {
00046 moving = false;
00047 }
00048 }
00049
00050 /// @ingroup Gripper_Driver
00051 /// Returns true if the gripper has completed its movement.
00052 bool gripperDone() { return !moving; }
00053
00054 /** @} */ // end of Gripper_Driver

Generated by Doxygen

6.37 src/gripper_driver/gripper_driver.h File Reference 57

6.37 src/gripper_driver/gripper_driver.h File Reference

Controls the gripper servo (End Effector EF).

#include <Arduino.h>

Functions

• void initGripper ()

Initialise the gripper servo on its PWM pin and open it.

• void moveGripper (int state)

Command the gripper to open (state=0) or close (state=1).

• void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.

• bool gripperDone ()

Returns true if the gripper has completed its movement.

6.37.1 Detailed Description

Controls the gripper servo (End Effector EF).

Author

Elin Gravningen

Provides initialisation, open/close commands, and status checking for the gripper mechanism using the Servo
library.

Definition in file gripper_driver.h.

6.38 gripper_driver.h

Go to the documentation of this file.
00001 /**
00002 * @file gripper_driver.h
00003 * @author Elin Gravningen
00004 * @brief Controls the gripper servo (End Effector EF).
00005 * @details Provides initialisation, open/close commands, and status checking
00006 * for the gripper mechanism using the Servo library.
00007 * @defgroup Gripper_Driver Gripper Driver
00008 * @{
00009 */
00010 #ifndef GRIPPER_DRIVER_H
00011 #define GRIPPER_DRIVER_H
00012
00013 #include <Arduino.h>
00014
00015 /**
00016 * @brief Initialise the gripper servo and set to open position.
00017 * @pre GRIPPER_SERVO_PIN must be defined in config.h.
00018 * @post Servo is attached and moved to open angle.
00019 * @ingroup Gripper_Driver
00020 * @return void
00021 */
00022 void initGripper();
00023
00024 /**

Generated by Doxygen

58 File Documentation

00025 * @brief Command the gripper to open or close.
00026 * @param state 0 = open, 1 = close.
00027 * @ingroup Gripper_Driver
00028 * @return void
00029 */
00030 void moveGripper(int state);
00031
00032 /**
00033 * @brief Must be called frequently to update the gripper motion state.
00034 * @ingroup Gripper_Driver
00035 * @return void
00036 */
00037 void updateGripper();
00038
00039 /**
00040 * @brief Check whether the gripper has completed its action.
00041 * @ingroup Gripper_Driver
00042 * @return true if no gripper motion is in progress.
00043 */
00044 bool gripperDone();
00045
00046 #endif // GRIPPER_DRIVER_H

6.39 src/main.cpp File Reference

Entry point for the Arduino Uno R4 Wifi, responsible for low level motor control. Coordinates hardware and MQTT
handling.

#include "common/secrets.h"
#include "communication_manager.h"
#include "gripper_driver.h"
#include "motor_driver.h"
#include "mqtt_client.h"
#include <Arduino.h>

Functions

• void setup ()

Arduino setup() — runs once on power-up or reset.

• void loop ()

Arduino loop() — runs continuously after setup().

6.39.1 Detailed Description

Entry point for the Arduino Uno R4 Wifi, responsible for low level motor control. Coordinates hardware and MQTT
handling.

Author

Elin Gravningen

Initialises serial, network, motor and gripper drivers, and enters the main control loop to service MQTT, motion
updates, status checks, and heartbeat.

Definition in file main.cpp.

Generated by Doxygen

6.39 src/main.cpp File Reference 59

6.39.2 Function Documentation

6.39.2.1 loop()

void loop ()

Arduino loop() — runs continuously after setup().

Note

Each iteration services MQTT traffic, steps motors and gripper, publishes completion events, and sends a
periodic heartbeat.

Definition at line 48 of file main.cpp.
00048 {
00049 mqttLoop(); // Handle MQTT messages & reconnect logic
00050 updateMotors(); // Advance each stepper motor toward its target
00051 updateGripper(); // Update gripper movement timing
00052 checkActionStatus(); // Check if any actions are in progress (e.g., move,
00053 // gripper, calibration) and publish status
00054 sendHeartbeat(); // Send regular "alive" status
00055 }

6.39.2.2 setup()

void setup ()

Arduino setup() — runs once on power-up or reset.

Note

Initialises Serial, WiFi, MQTT client, and hardware drivers, then registers the command callback for incoming
MQTT messages.

Definition at line 23 of file main.cpp.
00023 {
00024 Serial.begin(115200);
00025 while (!Serial) {
00026 delay(10);
00027 }
00028
00029 // Networking
00030 initWiFi(); // Connect to WiFi
00031 initMQTT(); // Connect to broker
00032 setMessageHandler(handleIncomingCommand); // Setting up the message handler
00033 // for incoming commands
00034
00035 // Hardware subsystems
00036 initMotors(); // Initialise stepper drivers (phase 1 drivers)
00037 initGripper(); // Initialise gripper
00038
00039 Serial.println("[System] Leafy Automation Core is ready");
00040 }

Generated by Doxygen

60 File Documentation

6.40 main.cpp

Go to the documentation of this file.
00001 /**
00002 * @file main.cpp
00003 * @author Elin Gravningen
00004 * @brief Entry point for the Arduino Uno R4 Wifi, responsible for low level
00005 * motor control. Coordinates hardware and MQTT handling.
00006 * @details Initialises serial, network, motor and gripper drivers, and enters
00007 * the main control loop to service MQTT, motion updates, status checks, and
00008 * heartbeat.
00009 */
00010
00011 #include "common/secrets.h"
00012 #include "communication_manager.h"
00013 #include "gripper_driver.h"
00014 #include "motor_driver.h"
00015 #include "mqtt_client.h"
00016 #include <Arduino.h>
00017
00018 /**
00019 * @brief Arduino setup() -- runs once on power-up or reset.
00020 * @note Initialises Serial, WiFi, MQTT client, and hardware drivers, then
00021 * registers the command callback for incoming MQTT messages.
00022 */
00023 void setup() {
00024 Serial.begin(115200);
00025 while (!Serial) {
00026 delay(10);
00027 }
00028
00029 // Networking
00030 initWiFi(); // Connect to WiFi
00031 initMQTT(); // Connect to broker
00032 setMessageHandler(handleIncomingCommand); // Setting up the message handler
00033 // for incoming commands
00034
00035 // Hardware subsystems
00036 initMotors(); // Initialise stepper drivers (phase 1 drivers)
00037 initGripper(); // Initialise gripper
00038
00039 Serial.println("[System] Leafy Automation Core is ready");
00040 }
00041
00042 /**
00043 * @brief Arduino loop() -- runs continuously after setup().
00044 * @note Each iteration services MQTT traffic, steps motors and gripper,
00045 * publishes completion events, and sends a periodic heartbeat.
00046 */
00047
00048 void loop() {
00049 mqttLoop(); // Handle MQTT messages & reconnect logic
00050 updateMotors(); // Advance each stepper motor toward its target
00051 updateGripper(); // Update gripper movement timing
00052 checkActionStatus(); // Check if any actions are in progress (e.g., move,
00053 // gripper, calibration) and publish status
00054 sendHeartbeat(); // Send regular "alive" status
00055 }

6.41 src/motor_driver/motor_driver.cpp File Reference

Implementation of the Motor Driver for joints J0–J4.

#include "motor_driver.h"
#include "config.h"
#include <AccelStepper.h>

Functions

• void initMotors ()

Generated by Doxygen

6.41 src/motor_driver/motor_driver.cpp File Reference 61

Initialise all stepper drivers’ speed & acceleration per config.h settings.

• void moveJoint (uint8_t jointIndex, int32_t stepCount)

Queue a relative microstep move for a specific joint.

• void updateMotors ()

Must be called every loop in order to advance the stepper motors.

• void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.

• bool calibrationDone ()

Check if calibration has completed.

• bool allJointsDone ()

Check if all steppers have reached their targets.

• int32_t getJointPosition (uint8_t jointIndex)

Get the current microstep position of a joint.

• void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

Variables

• static AccelStepper stepperMotors [ARM_JOINTS]
• static bool homed = false

true once homing has completed

• static bool homing = false

true while homing is in progress

6.41.1 Detailed Description

Implementation of the Motor Driver for joints J0–J4.

Author

Elin Gravningen

Uses the AccelStepper library to drive step/dir drivers, perform blocking homing via limit switches, and report motion
status.

Definition in file motor_driver.cpp.

6.41.2 Variable Documentation

6.41.2.1 homed

bool homed = false [static]

true once homing has completed

Definition at line 24 of file motor_driver.cpp.

Generated by Doxygen

62 File Documentation

6.41.2.2 homing

bool homing = false [static]

true while homing is in progress

Definition at line 25 of file motor_driver.cpp.

6.41.2.3 stepperMotors

AccelStepper stepperMotors[ARM_JOINTS] [static]

Initial value:
= {

AccelStepper(AccelStepper::DRIVER, STEP_PIN[0], DIR_PIN[0]),
AccelStepper(AccelStepper::DRIVER, STEP_PIN[1], DIR_PIN[1]),
AccelStepper(AccelStepper::DRIVER, STEP_PIN[2], DIR_PIN[2]),
AccelStepper(AccelStepper::DRIVER, STEP_PIN[3], DIR_PIN[3]),
AccelStepper(AccelStepper::DRIVER, STEP_PIN[4], DIR_PIN[4])}

Definition at line 16 of file motor_driver.cpp.
00016 {
00017 AccelStepper(AccelStepper::DRIVER, STEP_PIN[0], DIR_PIN[0]),
00018 AccelStepper(AccelStepper::DRIVER, STEP_PIN[1], DIR_PIN[1]),
00019 AccelStepper(AccelStepper::DRIVER, STEP_PIN[2], DIR_PIN[2]),
00020 AccelStepper(AccelStepper::DRIVER, STEP_PIN[3], DIR_PIN[3]),
00021 AccelStepper(AccelStepper::DRIVER, STEP_PIN[4], DIR_PIN[4])};

6.42 motor_driver.cpp

Go to the documentation of this file.
00001 /**
00002 * @file motor_driver.cpp
00003 * @author Elin Gravningen
00004 * @brief Implementation of the Motor Driver for joints J0-J4.
00005 * @details Uses the AccelStepper library to drive step/dir drivers, perform
00006 * blocking homing via limit switches, and report motion status.
00007 *
00008 * @ingroup Motor_Driver
00009 */
00010
00011 #include "motor_driver.h"
00012 #include "config.h"
00013 #include <AccelStepper.h>
00014
00015 // One AccelStepper instance per joint (J0...J4), using the DRIVER interface.
00016 static AccelStepper stepperMotors[ARM_JOINTS] = {
00017 AccelStepper(AccelStepper::DRIVER, STEP_PIN[0], DIR_PIN[0]),
00018 AccelStepper(AccelStepper::DRIVER, STEP_PIN[1], DIR_PIN[1]),
00019 AccelStepper(AccelStepper::DRIVER, STEP_PIN[2], DIR_PIN[2]),
00020 AccelStepper(AccelStepper::DRIVER, STEP_PIN[3], DIR_PIN[3]),
00021 AccelStepper(AccelStepper::DRIVER, STEP_PIN[4], DIR_PIN[4])};
00022
00023 // Homing state flag
00024 static bool homed = false; ///< true once homing has completed
00025 static bool homing = false; ///< true while homing is in progress
00026
00027 /// @ingroup Motor_Driver
00028 /// Initialise all stepper drivers’ speed & acceleration per config.h settings.
00029 void initMotors() {
00030 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00031 // compute max step rate: (RPM/60) * (microsteps/gear_ratio)
00032 float stepsPerSec =
00033 (MAX_OUTPUT_RPM[j] / 60.0f) * (MICROSTEPS / GEAR_RATIO[j]);
00034 stepperMotors[j].setMaxSpeed(stepsPerSec);
00035 stepperMotors[j].setAcceleration(stepsPerSec * 2.0f);
00036 }
00037 homed = false;
00038 }

Generated by Doxygen

6.42 motor_driver.cpp 63

00039
00040 /// @ingroup Motor_Driver
00041 void moveJoint(uint8_t jointIndex, int32_t stepCount) {
00042 stepperMotors[jointIndex].move(stepCount);
00043 }
00044
00045 /// @ingroup Motor_Driver
00046 void updateMotors() {
00047 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00048 stepperMotors[j].run();
00049 }
00050 }
00051
00052 /// @ingroup Motor_Driver
00053 /// Perform a blocking homing routine (the calibration routine) of all joints with timeout and
00054 /// debounce.
00055 void calibrateAllJoints() {
00056 const unsigned long timeoutMs = 5000; // max time per switch
00057 const unsigned int debounceMs = 50; // debounce delay
00058 homing = true;
00059 homed = false;
00060
00061 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00062 unsigned long startTime;
00063 bool switchState;
00064
00065 // Drive toward left switch
00066 stepperMotors[j].setMaxSpeed(MICROSTEPS * 100.0f);
00067 stepperMotors[j].moveTo(-1000000);
00068 startTime = millis();
00069 while (true) {
00070 stepperMotors[j].run();
00071 switchState = digitalRead(LIMIT_LEFT_PINS[j]) == LOW; // active low
00072 if (switchState) {
00073 delay(debounceMs);
00074 if (digitalRead(LIMIT_LEFT_PINS[j]) == LOW)
00075 break;
00076 }
00077 if (millis() - startTime > timeoutMs)
00078 break;
00079 }
00080 stepperMotors[j].setCurrentPosition(0);
00081
00082 // Drive toward right switch
00083 stepperMotors[j].moveTo(1000000);
00084 startTime = millis();
00085 while (true) {
00086 stepperMotors[j].run();
00087 switchState = digitalRead(LIMIT_RIGHT_PINS[j]) == LOW;
00088 if (switchState) {
00089 delay(debounceMs);
00090 if (digitalRead(LIMIT_RIGHT_PINS[j]) == LOW)
00091 break;
00092 }
00093 if (millis() - startTime > timeoutMs)
00094 break;
00095 }
00096 long maxSteps = stepperMotors[j].currentPosition();
00097
00098 // Return to midpoint
00099 long mid = maxSteps / 2;
00100 stepperMotors[j].setCurrentPosition(0);
00101 stepperMotors[j].moveTo(mid);
00102 while (stepperMotors[j].distanceToGo() != 0) {
00103 stepperMotors[j].run();
00104 }
00105 stepperMotors[j].setCurrentPosition(0);
00106 }
00107
00108 homed = true;
00109 homing = false;
00110 }
00111
00112 /// @ingroup Motor_Driver
00113 bool calibrationDone() { return homed; }
00114
00115 /// @ingroup Motor_Driver
00116 bool allJointsDone() {
00117 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00118 if (stepperMotors[j].distanceToGo() != 0)
00119 return false;
00120 }
00121 return true;
00122 }
00123
00124 /// @ingroup Motor_Driver
00125 int32_t getJointPosition(uint8_t jointIndex) {

Generated by Doxygen

64 File Documentation

00126 return stepperMotors[jointIndex].currentPosition();
00127 }
00128
00129 /// @ingroup Motor_Driver
00130 void stopAllJoints() {
00131 for (uint8_t j = 0; j < ARM_JOINTS; ++j) {
00132 stepperMotors[j].stop();
00133 }
00134 }

6.43 src/motor_driver/motor_driver.h File Reference

Driver for stepper motors J0–J4 (DM332T/DM320T step/dir drivers).

#include <Arduino.h>

Functions

• void initMotors ()

Initialise all stepper drivers’ speed & acceleration per config.h settings.
• void moveJoint (uint8_t jointIndex, int32_t stepCount)

Queue a relative microstep move for a specific joint.
• void updateMotors ()

Must be called every loop in order to advance the stepper motors.
• void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.
• bool calibrationDone ()

Check if calibration has completed.
• bool allJointsDone ()

Check if all steppers have reached their targets.
• int32_t getJointPosition (uint8_t jointIndex)

Get the current microstep position of a joint.
• void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

6.43.1 Detailed Description

Driver for stepper motors J0–J4 (DM332T/DM320T step/dir drivers).

Author

Elin Gravningen

This module provides initialisation, movement commands, and status checks for each joint motor. Each motor is
mapped to a joint index:

• 0 = base (J0)

• 1 = shoulder (J1)

• 2 = elbow (J2)

• 3 = wrist bend (J3)

• 4 = wrist rotation (J4)

Definition in file motor_driver.h.

Generated by Doxygen

6.44 motor_driver.h 65

6.44 motor_driver.h

Go to the documentation of this file.
00001 /**
00002 * @file motor_driver.h
00003 * @author Elin Gravningen
00004 * @brief Driver for stepper motors J0-J4 (DM332T/DM320T step/dir drivers).
00005 * @details This module provides initialisation, movement commands, and status
00006 * checks for each joint motor. Each motor is mapped to a joint index:
00007 * - 0 = base (J0)
00008 * - 1 = shoulder (J1)
00009 * - 2 = elbow (J2)
00010 * - 3 = wrist bend (J3)
00011 * - 4 = wrist rotation (J4)
00012 *
00013 * @defgroup Motor_Driver Motor Driver
00014 * @{
00015 */
00016
00017 #ifndef MOTOR_DRIVER_H
00018 #define MOTOR_DRIVER_H
00019
00020 #include <Arduino.h>
00021
00022 /**
00023 * @brief Initialise stepper parameters(max speed & acceleration).
00024 * @pre STEP_PIN[], DIR_PIN[], MICROSTEPS, GEAR_RATIO[] and MAX_OUTPUT_RPM[]
00025 * must be configured via config.h.
00026 * @post Each steppers[j] has its maxSpeed and acceleration set.
00027 * @ingroup Motor_Driver
00028 * @return void
00029 */
00030 void initMotors();
00031
00032 /**
00033 * @brief Queue a relative microstep move for a specific joint.
00034 * @param jointIndex Index of the joint (0...4, i.e. J0...J4).
00035 * @param steps Signed microstep delta (positive=forward, negative=backward).
00036 * @ingroup Motor_Driver
00037 * @return void
00038 */
00039 void moveJoint(uint8_t jointIndex, int32_t stepCount);
00040
00041 /**
00042 * @brief Must be called every loop in order to advance the stepper motors.
00043 * @ingroup Motor_Driver
00044 * @return void
00045 */
00046 void updateMotors();
00047
00048 /**
00049 * @brief Run a blocking homing (calibration) sequence on all stepper joints.
00050 *
00051 * @pre LIMIT_LEFT_PINS[] and LIMIT_RIGHT_PINS[] must be defined in
00052 * /include/config.h.
00053 * @post After return, currentPosition()==0 for each motor.
00054 * @ingroup Motor_Driver
00055 * @return void
00056 * @note This routine blocks until all limit switches have been found.
00057 */
00058 void calibrateAllJoints();
00059
00060 /**
00061 * @brief Check if calibration has completed.
00062 * @ingroup Motor_Driver
00063 * @return true if the last call to calibrateAllJoints() completed.
00064 */
00065 bool calibrationDone();
00066
00067 /**
00068 * @brief Check if all steppers have reached their targets.
00069 * @ingroup Motor_Driver
00070 * @return true if every joint’s distanceToGo()==0.
00071 */
00072 bool allJointsDone();
00073
00074 /**
00075 * @brief Get the current microstep position of a joint.
00076 * @param jointIndex Index of the joint (0...4).
00077 * @ingroup Motor_Driver
00078 * @return Current position in microsteps (zeroed at last calibration).
00079 */
00080 int32_t getJointPosition(uint8_t jointIndex);
00081
00082 /**

Generated by Doxygen

66 File Documentation

00083 * @brief Stop all motor motion immediately by clearing queued moves.
00084 * @ingroup Motor_Driver
00085 * @return void
00086 */
00087 void stopAllJoints();
00088
00089 #endif // MOTOR_DRIVER_H
00090 /** @} */ // end of Motor_Driver

6.45 src/mqtt_client/mqtt_client.cpp File Reference

#include "mqtt_client.h"
#include "common/secrets.h"
#include <PubSubClient.h>
#include <WiFiS3.h>

Functions

• static PubSubClient mqttClient (wifiClient)
• static void subscribeTopics ()
• static void mqttCallback (char ∗topic, byte ∗payload, unsigned int length)

Callback from PubSubClient for incoming MQTT messages. Receives the MQTT payload and reserves the required
space, and then converts it to a String. It then checks if a user defined handler has been set, and if it has, calls it for
the converted message.

• void initMQTT ()

Initialise MQTT server and set callback.

• bool publishStatus (const char ∗topic, const String &message)

Publish a status message and report failure.

• void sendHeartbeat ()

Register the handler for incoming MQTT messages.

• void setMessageHandler (void(∗handler)(const String &msg))

Registers a callback to handle incoming parsed MQTT messages.

• static unsigned long backoffInterval (uint8_t retries)

Calculate backoff interval (ms) for reconnection attempts.

• void mqttLoop ()

Process incoming messages and reconnect with exponential backoff.

Variables

• static unsigned long LAST_ATTEMPT = 0
• static uint8_t RETRIES = 0
• static constexpr unsigned int BASE_INTERVAL_MS = 2000

Minimum interval between connection attempts (in ms)

• static constexpr unsigned int MAX_BACKOFF_MS = 60000

Maximum backoff interval (in ms)

• static WiFiClient wifiClient
• static void(∗ incomingMessageHandler)(const String &msg) = nullptr

Message handler - used when payload is received. This user-defined function pointer is set to handle incoming
messages.

Generated by Doxygen

6.45 src/mqtt_client/mqtt_client.cpp File Reference 67

6.45.1 Function Documentation

6.45.1.1 backoffInterval()

static unsigned long backoffInterval (

uint8_t retries) [static]

Calculate backoff interval (ms) for reconnection attempts.

Parameters

retries Number of attempts made so far.

Returns

Interval in milliseconds, capped at MAX_BACKOFF_MS.

Definition at line 121 of file mqtt_client.cpp.
00121 {
00122 unsigned long interval = BASE_INTERVAL_MS « min<uint8_t>(retries, 5);
00123 return min(interval, MAX_BACKOFF_MS);
00124 }

6.45.1.2 mqttCallback()

static void mqttCallback (

char ∗ topic,

byte ∗ payload,

unsigned int length) [static]

Callback from PubSubClient for incoming MQTT messages. Receives the MQTT payload and reserves the required
space, and then converts it to a String. It then checks if a user defined handler has been set, and if it has, calls it for
the converted message.

Definition at line 44 of file mqtt_client.cpp.
00044 {
00045 String msg;
00046 msg.reserve(length);
00047 for (unsigned int i = 0; i < length; ++i) {
00048 msg += static_cast<char>(payload[i]);
00049 }
00050 if (incomingMessageHandler)
00051 incomingMessageHandler(msg);
00052 }

6.45.1.3 mqttClient()

static PubSubClient mqttClient (

wifiClient) [static]

6.45.1.4 subscribeTopics()

static void subscribeTopics () [static]

Definition at line 30 of file mqtt_client.cpp.
00030 {
00031 mqttClient.subscribe(MQTT_TOPIC_MOTION);
00032 mqttClient.subscribe(MQTT_TOPIC_GRIPPER);
00033 mqttClient.subscribe(MQTT_TOPIC_CALIBRATE);
00034 }

Generated by Doxygen

68 File Documentation

6.45.2 Variable Documentation

6.45.2.1 BASE_INTERVAL_MS

unsigned int BASE_INTERVAL_MS = 2000 [static], [constexpr]

Minimum interval between connection attempts (in ms)

Definition at line 21 of file mqtt_client.cpp.

6.45.2.2 incomingMessageHandler

void(∗ incomingMessageHandler) (const String &msg) (

const String & msg) = nullptr [static]

Message handler - used when payload is received. This user-defined function pointer is set to handle incoming
messages.

Definition at line 38 of file mqtt_client.cpp.

6.45.2.3 LAST_ATTEMPT

unsigned long LAST_ATTEMPT = 0 [static]

Definition at line 18 of file mqtt_client.cpp.

6.45.2.4 MAX_BACKOFF_MS

unsigned int MAX_BACKOFF_MS = 60000 [static], [constexpr]

Maximum backoff interval (in ms)

Definition at line 23 of file mqtt_client.cpp.

6.45.2.5 RETRIES

uint8_t RETRIES = 0 [static]

Definition at line 19 of file mqtt_client.cpp.

6.45.2.6 wifiClient

WiFiClient wifiClient [static]

Definition at line 26 of file mqtt_client.cpp.

Generated by Doxygen

6.46 mqtt_client.cpp 69

6.46 mqtt_client.cpp

Go to the documentation of this file.
00001 /**
00002 * @file MQTTClient.cpp
00003 * @author Elin Gravningen
00004 * @brief MQTT Client for Leafy Automation Arduino R4 WiFi.
00005 *
00006 * Connects to WiFi and EMQX broker. Subscribes to motion, gripper, and
00007 * calibration topics, and publishes status and heartbeat updates. Allows the
00008 * user to set a custom callback function that will be invoked whenever an MQTT
00009 * message is received.
00010 */
00011
00012 #include "mqtt_client.h"
00013 #include "common/secrets.h" // Defines network credentials and MQTT broker address
00014 #include <PubSubClient.h>
00015 #include <WiFiS3.h>
00016
00017 // Connection attempt settings (for reconnects)
00018 static unsigned long LAST_ATTEMPT = 0;
00019 static uint8_t RETRIES = 0;
00020 /// Minimum interval between connection attempts (in ms)
00021 static constexpr unsigned int BASE_INTERVAL_MS = 2000;
00022 /// Maximum backoff interval (in ms)
00023 static constexpr unsigned int MAX_BACKOFF_MS = 60000;
00024
00025 // MQTT Client settings
00026 static WiFiClient wifiClient;
00027 static PubSubClient mqttClient(wifiClient);
00028
00029 // Helper function to subscribe to MQTT Control topics from ROS2.
00030 static void subscribeTopics() {
00031 mqttClient.subscribe(MQTT_TOPIC_MOTION);
00032 mqttClient.subscribe(MQTT_TOPIC_GRIPPER);
00033 mqttClient.subscribe(MQTT_TOPIC_CALIBRATE);
00034 }
00035
00036 /// Message handler - used when payload is received. This user-defined function
00037 /// pointer is set to handle incoming messages.
00038 static void (*incomingMessageHandler)(const String &msg) = nullptr;
00039
00040 /// Callback from PubSubClient for incoming MQTT messages. Receives the MQTT
00041 /// payload and reserves the required space, and then converts it to a String.
00042 /// It then checks if a user defined handler has been set, and if it has, calls
00043 /// it for the converted message.
00044 static void mqttCallback(char *topic, byte *payload, unsigned int length) {
00045 String msg;
00046 msg.reserve(length);
00047 for (unsigned int i = 0; i < length; ++i) {
00048 msg += static_cast<char>(payload[i]);
00049 }
00050 if (incomingMessageHandler)
00051 incomingMessageHandler(msg);
00052 }
00053
00054 /**
00055 * @ingroup MQTT_Client
00056 * @brief Initialise MQTT server and set callback.
00057 * @pre WiFi is connected via initWiFi().
00058 * @post Single connect attempt. Further reconnects in mqttLoop().
00059 * @return void
00060 */
00061
00062 void initMQTT() {
00063 mqttClient.setServer(MQTT_SERVER, MQTT_PORT);
00064 mqttClient.setCallback(mqttCallback);
00065
00066 // Establish connection attempt
00067 if (mqttClient.connect(MQTT_CLIENT_ID)) {
00068 subscribeTopics();
00069 Serial.println("MQTT connected.");
00070 } else {
00071 Serial.print("MQTT connect failed, rc=");
00072 Serial.println(mqttClient.state());
00073 }
00074 }
00075
00076 /**
00077 * @ingroup MQTT_Client
00078 * @brief Publish a status message and report failure.
00079 * @param topic MQTT topic string.
00080 * @param message Payload to publish.
00081 * @return true if publish was accepted; false otherwise.
00082 */

Generated by Doxygen

70 File Documentation

00083 bool publishStatus(const char *topic, const String &message) {
00084 bool ok = mqttClient.publish(topic, message.c_str());
00085 if (!ok) {
00086 Serial.print("Publish failed to topic: ");
00087 Serial.println(topic);
00088 }
00089 return ok;
00090 }
00091
00092 /**
00093 * @ingroup MQTT_Client
00094 * @brief Register the handler for incoming MQTT messages.
00095 * @param handler Function invoked when message is received.
00096 * @return void
00097 */
00098 void sendHeartbeat() {
00099 static unsigned long lastPing = 0;
00100 if (millis() - lastPing >= 1000) {
00101 publishStatus(MQTT_TOPIC_STATUS_HEARTBEAT, "alive");
00102 lastPing = millis();
00103 }
00104 }
00105
00106 /**
00107 * @ingroup MQTT_Client
00108 * @brief Registers a callback to handle incoming parsed MQTT messages.
00109 * @param handler Function to call with message string.
00110 * @return void
00111 */
00112 void setMessageHandler(void (*handler)(const String &msg)) {
00113 incomingMessageHandler = handler;
00114 }
00115
00116 /**
00117 * @brief Calculate backoff interval (ms) for reconnection attempts.
00118 * @param retries Number of attempts made so far.
00119 * @return Interval in milliseconds, capped at MAX_BACKOFF_MS.
00120 */
00121 static unsigned long backoffInterval(uint8_t retries) {
00122 unsigned long interval = BASE_INTERVAL_MS « min<uint8_t>(retries, 5);
00123 return min(interval, MAX_BACKOFF_MS);
00124 }
00125
00126 /**
00127 * @ingroup MQTT_Client
00128 * @brief Process incoming messages and reconnect with exponential backoff.
00129 * @note Must be called frequently in loop() to maintain connection.
00130 * @return void
00131 */
00132 void mqttLoop() {
00133 unsigned long now = millis();
00134
00135 if (!mqttClient.connected() &&
00136 (now - LAST_ATTEMPT >= backoffInterval(RETRIES))) {
00137 if (mqttClient.connect(MQTT_CLIENT_ID)) {
00138 Serial.println("MQTT reconnected");
00139 subscribeTopics();
00140 RETRIES = 0;
00141 } else {
00142 RETRIES++;
00143 Serial.println("MQTT reconnect failed, will retry");
00144 }
00145 LAST_ATTEMPT = now;
00146 }
00147 mqttClient.loop();
00148 }

6.47 src/mqtt_client/mqtt_client.h File Reference

Handles MQTT setup, subscriptions, publishing, and heartbeat.

#include <Arduino.h>

Functions

• void initMQTT ()

Generated by Doxygen

6.48 mqtt_client.h 71

Initialise MQTT server and set callback.

• void mqttLoop ()

Process incoming messages and reconnect with exponential backoff.

• void setMessageHandler (void(∗handler)(const String &msg))

Registers a callback to handle incoming parsed MQTT messages.

• bool publishStatus (const char ∗topic, const String &message)

Publish a status message and report failure.

• void sendHeartbeat ()

Register the handler for incoming MQTT messages.

Variables

• constexpr char MQTT_TOPIC_MOTION [] = "leafy_automation/motion"
• constexpr char MQTT_TOPIC_GRIPPER [] = "leafy_automation/gripper"
• constexpr char MQTT_TOPIC_CALIBRATE [] = "leafy_automation/calibrate"
• constexpr char MQTT_TOPIC_STATUS_COMMAND []
• constexpr char MQTT_TOPIC_STATUS_MOTION []
• constexpr char MQTT_TOPIC_STATUS_GRIPPER []
• constexpr char MQTT_TOPIC_STATUS_CALIBRATION []
• constexpr char MQTT_TOPIC_STATUS_HEARTBEAT []

6.47.1 Detailed Description

Handles MQTT setup, subscriptions, publishing, and heartbeat.

Author

Elin Gravningen

Connects the Arduino R4 WiFi to the EMQX broker, subscribes to control topics (motion, gripper, calibrate), and
publishes status updates and periodic heartbeats back to the ROS2 system.

Definition in file mqtt_client.h.

6.48 mqtt_client.h

Go to the documentation of this file.
00001 /**
00002 * @file mqtt_client.h
00003 * @author Elin Gravningen
00004 * @brief Handles MQTT setup, subscriptions, publishing, and heartbeat.
00005 * @details Connects the Arduino R4 WiFi to the EMQX broker, subscribes to
00006 * control topics (motion, gripper, calibrate), and publishes status
00007 * updates and periodic heartbeats back to the ROS2 system.
00008 *
00009 * @defgroup MQTT_Client MQTT Client Module
00010 * @ingroup LeafyAutomationFirmware
00011 * @{
00012 */
00013
00014 #ifndef MQTT_CLIENT_H
00015 #define MQTT_CLIENT_H
00016
00017 #include <Arduino.h>
00018
00019 // Incoming command topics (from ROS2 to Arduino)

Generated by Doxygen

72 File Documentation

00020 inline constexpr char MQTT_TOPIC_MOTION[] = "leafy_automation/motion";
00021 inline constexpr char MQTT_TOPIC_GRIPPER[] = "leafy_automation/gripper";
00022 inline constexpr char MQTT_TOPIC_CALIBRATE[] = "leafy_automation/calibrate";
00023
00024 // Outgoing status topics (from Arduino to ROS2)
00025 inline constexpr char MQTT_TOPIC_STATUS_COMMAND[] =
00026 "leafy_automation/status/command_received";
00027 inline constexpr char MQTT_TOPIC_STATUS_MOTION[] =
00028 "leafy_automation/status/motion";
00029 inline constexpr char MQTT_TOPIC_STATUS_GRIPPER[] =
00030 "leafy_automation/status/gripper";
00031 inline constexpr char MQTT_TOPIC_STATUS_CALIBRATION[] =
00032 "leafy_automation/status/calibration";
00033 inline constexpr char MQTT_TOPIC_STATUS_HEARTBEAT[] =
00034 "leafy_automation/status/heartbeat";
00035
00036 /**
00037 * @brief Initialises MQTT connection and subscribes to control topics.
00038 * @ingroup MQTT_Client
00039 * @pre WiFi must already be connected via initWiFi().
00040 * @post Control topics are subscribed and the incoming message callback is set.
00041 */
00042 void initMQTT();
00043
00044 /**
00045 * @brief Process incoming MQTT traffic and attempt reconnects if needed.
00046 * @ingroup MQTT_Client
00047 * Must be called frequently in loop() to maintain the connection.
00048 * @note Must be called frequently in loop() to maintain the connection.
00049 * @return void
00050 */
00051 void mqttLoop();
00052
00053 /**
00054 * @brief To set user defined callback to handle parsed MQTT messages.
00055 * @ingroup MQTT_Client
00056 * @param handler Function to call when a new message arrives.
00057 * @note This function should be called after initMQTT() to set the callback
00058 */
00059 void setMessageHandler(void (*handler)(const String &msg));
00060
00061 /**
00062 * @brief Publishes a status message to a given MQTT topic.
00063 * @ingroup MQTT_Client
00064 * @param topic The MQTT topic to publish to.
00065 * @param msg The payload string.
00066 * @return true if the message was successfully handed off to the network,
00067 * otherwise returns false.
00068 */
00069 bool publishStatus(const char *topic, const String &msg);
00070
00071 /**
00072 * @brief Sends a periodic "alive" signal to the status/heartbeat topic.
00073 * @ingroup MQTT_Client
00074 * @return void
00075 */
00076 void sendHeartbeat();
00077
00078 #endif // MQTT_CLIENT_H
00079
00080 /** @} */ // end of MQTT_Client

Generated by Doxygen

Index

access_token
API, 26

allJointsDone
Motor Driver, 15

API, 25
access_token, 26
API, 25
auth_token, 26
ping, 26

ARM_JOINTS
Configuration, 7

auth_token
API, 26

backoffInterval
mqtt_client.cpp, 67

BASE_INTERVAL_MS
mqtt_client.cpp, 68

calibrateAllJoints
Motor Driver, 15

calibrationDone
Motor Driver, 16

calibrationInProgress
communication_manager.cpp, 52

checkActionStatus
Communication Manager, 11

client
HTTP, 30

Communication Manager, 11
checkActionStatus, 11
handleIncomingCommand, 11

communication_manager.cpp
calibrationInProgress, 52
gripperInProgress, 52
handleCalibrationCommand, 51
handleGripperCommand, 51
handleMoveCommand, 51
movementInProgress, 52

Configuration, 7
ARM_JOINTS, 7
DIR_PIN, 7
GEAR_RATIO, 8
GRIP_MOVE_TIME_MS, 8
GRIPPER_CLOSED_ANGLE, 8
GRIPPER_OPEN_ANGLE, 8
GRIPPER_SERVO_PIN, 9
LIMIT_LEFT_PINS, 9
LIMIT_RIGHT_PINS, 9
MAX_OUTPUT_RPM, 9

MICROSTEPS, 10
STEP_PIN, 10

connect
NetCommander, 31

connected
HTTP, 30

DIR_PIN
Configuration, 7

disconnect
NetCommander, 32

esp32-cam-gpio.h
HREF_GPIO_NUM, 43
LED_GPIO_NUM, 43
PCLK_GPIO_NUM, 43
PWDN_GPIO_NUM, 43
RESET_GPIO_NUM, 43
setupCameraConfig, 45
SIOC_GPIO_NUM, 44
SIOD_GPIO_NUM, 44
VSYNC_GPIO_NUM, 44
XCLK_GPIO_NUM, 44
Y2_GPIO_NUM, 44
Y3_GPIO_NUM, 44
Y4_GPIO_NUM, 44
Y5_GPIO_NUM, 44
Y6_GPIO_NUM, 45
Y7_GPIO_NUM, 45
Y8_GPIO_NUM, 45
Y9_GPIO_NUM, 45

fetch
HTTP, 28

GEAR_RATIO
Configuration, 8

get
HTTP, 28

getJointPosition
Motor Driver, 17

GRIP_MOVE_TIME_MS
Configuration, 8

Gripper Driver, 12
gripperDone, 13
gripperServo, 14
initGripper, 13
moveGripper, 13
moveStartTime, 14
moving, 14

Generated by Doxygen

74 INDEX

updateGripper, 14
GRIPPER_CLOSED_ANGLE

Configuration, 8
GRIPPER_OPEN_ANGLE

Configuration, 8
GRIPPER_SERVO_PIN

Configuration, 9
gripperDone

Gripper Driver, 13
gripperInProgress

communication_manager.cpp, 52
gripperServo

Gripper Driver, 14

handleCalibrationCommand
communication_manager.cpp, 51

handleGripperCommand
communication_manager.cpp, 51

handleIncomingCommand
Communication Manager, 11

handleMoveCommand
communication_manager.cpp, 51

header
HTTP, 29

homed
motor_driver.cpp, 61

homing
motor_driver.cpp, 61

host
HTTP, 31

HREF_GPIO_NUM
esp32-cam-gpio.h, 43

HTTP, 27
client, 30
connected, 30
fetch, 28
get, 28
header, 29
host, 31
HTTP, 28
json, 29
post, 29
response, 31
text, 30

include/common/api/api.h, 33
include/common/net/http.h, 34
include/common/net/net_commander.h, 35
include/common/secrets.h, 36, 37
include/common/secrets.sample.h, 37, 38
include/common/util/logger.h, 38, 39
include/config.h, 39, 40
include/modules/base/main_base.h, 41, 42
include/modules/cam/esp32-cam-gpio.h, 42, 46
include/modules/cam/main_cam.h, 47
include/Utilities.h, 47
incomingMessageHandler

mqtt_client.cpp, 68
initGripper

Gripper Driver, 13
initMotors

Motor Driver, 17
initMQTT

MQTT Client Module, 19

json
HTTP, 29

LA_SERVER_ADDR
secrets.sample.h, 37

LA_SERVER_PORT
secrets.sample.h, 37

LA_SERVER_TOKEN
secrets.sample.h, 37

LAST_ATTEMPT
mqtt_client.cpp, 68

LED_GPIO_NUM
esp32-cam-gpio.h, 43

LIMIT_LEFT_PINS
Configuration, 9

LIMIT_RIGHT_PINS
Configuration, 9

logger.h
logger_print_line, 38

logger_print_line
logger.h, 38

loop
main.cpp, 59

main.cpp
loop, 59
setup, 59

main_base.h
main_base_loop, 41
main_base_setup, 41

main_base_loop
main_base.h, 41

main_base_setup
main_base.h, 41

main_cam.h
main_cam_loop, 47
main_cam_setup, 47

main_cam_loop
main_cam.h, 47

main_cam_setup
main_cam.h, 47

MAX_BACKOFF_MS
mqtt_client.cpp, 68

MAX_OUTPUT_RPM
Configuration, 9

MICROSTEPS
Configuration, 10

Motor Driver, 15
allJointsDone, 15
calibrateAllJoints, 15
calibrationDone, 16
getJointPosition, 17
initMotors, 17

Generated by Doxygen

INDEX 75

moveJoint, 17
stopAllJoints, 18
updateMotors, 18

motor_driver.cpp
homed, 61
homing, 61
stepperMotors, 62

moveGripper
Gripper Driver, 13

moveJoint
Motor Driver, 17

movementInProgress
communication_manager.cpp, 52

moveStartTime
Gripper Driver, 14

moving
Gripper Driver, 14

MQTT Client Module, 19
initMQTT, 19
MQTT_TOPIC_CALIBRATE, 22
MQTT_TOPIC_GRIPPER, 22
MQTT_TOPIC_MOTION, 22
MQTT_TOPIC_STATUS_CALIBRATION, 22
MQTT_TOPIC_STATUS_COMMAND, 23
MQTT_TOPIC_STATUS_GRIPPER, 23
MQTT_TOPIC_STATUS_HEARTBEAT, 23
MQTT_TOPIC_STATUS_MOTION, 23
mqttLoop, 20
publishStatus, 20
sendHeartbeat, 21
setMessageHandler, 21

mqtt_client.cpp
backoffInterval, 67
BASE_INTERVAL_MS, 68
incomingMessageHandler, 68
LAST_ATTEMPT, 68
MAX_BACKOFF_MS, 68
mqttCallback, 67
mqttClient, 67
RETRIES, 68
subscribeTopics, 67
wifiClient, 68

MQTT_CLIENT_ID
secrets.h, 36

MQTT_PORT
secrets.h, 36

MQTT_SERVER
secrets.h, 36

MQTT_TOPIC_CALIBRATE
MQTT Client Module, 22

MQTT_TOPIC_GRIPPER
MQTT Client Module, 22

MQTT_TOPIC_MOTION
MQTT Client Module, 22

MQTT_TOPIC_STATUS_CALIBRATION
MQTT Client Module, 22

MQTT_TOPIC_STATUS_COMMAND
MQTT Client Module, 23

MQTT_TOPIC_STATUS_GRIPPER
MQTT Client Module, 23

MQTT_TOPIC_STATUS_HEARTBEAT
MQTT Client Module, 23

MQTT_TOPIC_STATUS_MOTION
MQTT Client Module, 23

mqttCallback
mqtt_client.cpp, 67

mqttClient
mqtt_client.cpp, 67

mqttLoop
MQTT Client Module, 20

NetCommander, 31
connect, 31
disconnect, 32

PCLK_GPIO_NUM
esp32-cam-gpio.h, 43

ping
API, 26

post
HTTP, 29

publishStatus
MQTT Client Module, 20

PWDN_GPIO_NUM
esp32-cam-gpio.h, 43

RESET_GPIO_NUM
esp32-cam-gpio.h, 43

response
HTTP, 31

RETRIES
mqtt_client.cpp, 68

secrets.h
MQTT_CLIENT_ID, 36
MQTT_PORT, 36
MQTT_SERVER, 36
WIFI_PASSWORD, 36
WIFI_SSID, 36

secrets.sample.h
LA_SERVER_ADDR, 37
LA_SERVER_PORT, 37
LA_SERVER_TOKEN, 37
WIFI_PASSWORD, 38
WIFI_SSID, 38

sendHeartbeat
MQTT Client Module, 21

setMessageHandler
MQTT Client Module, 21

setup
main.cpp, 59

setupCameraConfig
esp32-cam-gpio.h, 45

SIOC_GPIO_NUM
esp32-cam-gpio.h, 44

SIOD_GPIO_NUM
esp32-cam-gpio.h, 44

Generated by Doxygen

76 INDEX

src/base/main_base.cpp, 47, 48
src/common/api/api.cpp, 48
src/common/net/http.cpp, 48, 49
src/common/net/net_commander.cpp, 50
src/communication_manager/communication_manager.cpp,

50, 53
src/communication_manager/communication_manager.h,

54, 55
src/gripper_driver/gripper_driver.cpp, 55, 56
src/gripper_driver/gripper_driver.h, 57
src/main.cpp, 58, 60
src/motor_driver/motor_driver.cpp, 60, 62
src/motor_driver/motor_driver.h, 64, 65
src/mqtt_client/mqtt_client.cpp, 66, 69
src/mqtt_client/mqtt_client.h, 70, 71
STEP_PIN

Configuration, 10
stepperMotors

motor_driver.cpp, 62
stopAllJoints

Motor Driver, 18
subscribeTopics

mqtt_client.cpp, 67

text
HTTP, 30

updateGripper
Gripper Driver, 14

updateMotors
Motor Driver, 18

VSYNC_GPIO_NUM
esp32-cam-gpio.h, 44

WIFI_PASSWORD
secrets.h, 36
secrets.sample.h, 38

WIFI_SSID
secrets.h, 36
secrets.sample.h, 38

wifiClient
mqtt_client.cpp, 68

XCLK_GPIO_NUM
esp32-cam-gpio.h, 44

Y2_GPIO_NUM
esp32-cam-gpio.h, 44

Y3_GPIO_NUM
esp32-cam-gpio.h, 44

Y4_GPIO_NUM
esp32-cam-gpio.h, 44

Y5_GPIO_NUM
esp32-cam-gpio.h, 44

Y6_GPIO_NUM
esp32-cam-gpio.h, 45

Y7_GPIO_NUM
esp32-cam-gpio.h, 45

Y8_GPIO_NUM

esp32-cam-gpio.h, 45
Y9_GPIO_NUM

esp32-cam-gpio.h, 45

Generated by Doxygen

Appendix G

Software

1 Artificial Intelligence Machine Learning
tasks in detail JCDH | -

1.1 Image Classification Task JCDH | -

“Image classification is the task of assigning a label or class to an entire image. Images are
expected to have only one class for each image. Image classification models take an image as
input and return a prediction about which class the image belongs to.” [70].

In our system, image classification lets us get information about what type of plant we are
dealing with. Initial testing showed that current image classification models must be “fine
tuned” to give accurate outputs. Figure G.1 shows the general flow of the image classification
process.

Figure G.1: Image Classification Diagram

445

1.2 Object Detection Task JCDH | -

A useful definition of object detection from Hugging Face is the following: “Object Detection
models allow users to identify objects of certain defined classes. Object detection models receive
an image as input and output the images with bounding boxes and labels on detected objects
[71].”

There are a great number of object detection AI models to choose from, so before further
work could commence, a comparison of the two most used models in this category had to be
compared.

1.2.1 Comparing facebook/detr-resnet-50 and Ultralytics/Y-
OLO11 JCDH | -

Benchmarking was done with the image in Figure G.2, because these models are not yet able
to accurately identify salads. This is to be expected as these AI models are made for general
use cases like identifying people and objects like cars, and our use-case is highly specific. The
image is VGA resolution (640x480).

446

Figure G.2: AI model input

Image by Bhong Bahala on Unsplash [72]

Once the AI model processes the input, we draw bounding boxes and labels on the image (as
seen in Figure G.3).

447

https://unsplash.com/@bhongbahala10
https://unsplash.com

Figure G.3: AI model output (bounding boxes and labels shown visually)

Image by Bhong Bahala on Unsplash [72]

448

https://unsplash.com/@bhongbahala10
https://unsplash.com

Figure G.4: Object Detection Benchmark: facebook/detr-resnet-50
Average execution time (approx): 0.34 seconds. Standard deviation (approx):

0.06 seconds

facebook/detr-resnet-50: Benchmark average time: 0.33638124000048264 seconds.
Standard deviation: 0.0647590208927982 seconds.

449

Figure G.5: Object Detection Benchmark: YOLO11
Average execution time (approx): 0.06 seconds. Standard deviation (approx):

0.012 seconds

YOLO11: Benchmark average time: 0.06007338625029661 seconds.
Standard deviation: 0.011615161145226758 seconds.

The Ultralytics/YOLO11 is a promising model for the following reasons: 1

1. Great performance characteristics.

2. Trained on a smaller and more specific dataset.

3. Easy to use API for training with new datasets.

1.2.2 Bounding boxes and how they work JCDH | -

1The current version of the ultralytics library (v8.3.108) which gives access to the YOLO model requires
numpy v2.1.1 or earlier. Therefore a downgrade had to be made to the numpy library (>=2.2.3,<3.0.0 to
>=1.23.0,<=2.1.1).

450

Object detection AI models generate a bounding box around the object(s) of interest, which is
a set of points (top left, top right, bottom left, and bottom right) which indicates where in the
image the object(s) of interest occurs, as seen in Figure G.6.

Figure G.6: Example of bounding box

1.2.3 Fine tuning of the object detection model with a open-
source dataset JCDH | -

Fine tuning refers to the process of taking existing AI models and adding additional training
data in order to improve its functioning in new areas. An example in our case would be the
act of taking an image classification model and adding additional images of lettuces, and its
respective labels in order for the model to more accurately recognize sub types of lettuces.

Fine tuning of the object detection model took place using the Roboflow100/lettuce-pallets
dataset [73], which is hosted on Roboflow and is licensed under “CC BY 4.0” [74]. 2 This dataset
is a collection of images of lettuce pallets together with their respective bounding boxes and
labels. 3

Categories in this dataset can be of the following types: [Ready, empty_pod, germination,
pod, young].

Fine tuning of the AI model was performed using Google Colab because of resource and time
2Fine tuning is also known as training an AI model on a custom dataset.
3The dataset is part of an Intel sponsored initiative called RF100 which aims to create a new generalized

object detection benchmark [75]

451

constraints. Normal consumer hardware lacks the necessary resources to fine tune the AI model
in a timely fashion.

Data augmentation

When training AI models, you expand your initial dataset by using methods like data augmen-
tation, which means applying augmentation methods to the images. Methods include (but are
not limited to) image flipping, cropping, changing contrast and blurring the image. YOLO11
employs these methods by default when using their system to fine-tune their models [76].

Fine tuning results

In this specific fine tuning of the YOLO11 model with the Roboflow100/lettuce-pallets
dataset [73], training was run for 5 epochs to assess the results of the process within a reasonable
time-frame. Fine-tuning of AI models often runs for more than 100 epochs, but for initial
testing, letting the AI model train on the dataset for around 1 hour creates a fine baseline. If
results are not satisfactory to our accuracy requirements, fine-tuning can always be continued
at a later time.

Please refer to Appendix G.4 for in-depth training results (5 epoch) and Appendix G.5 for 100
epoch results.

Figure G.7: AI object detection (in-training, batch 2)

Images used for training by Roboflow100/lettuce-pallets are licensed under CC BY 4.0 [73].

452

https://universe.roboflow.com/roboflow-100/lettuce-pallets

5 epoch training results

Taking a look at the results in Figure G.8, we see various metrics pertaining to the training
results. Here, the x-axis corresponds to the specific training epoch, while the y-axis relates to
the specific value of the metric.

Figure G.8: AI training results

100 epoch training results

Figure G.9: AI training results (100 epochs)

453

1.2.4 Evaluating Roboflow100/lettuce-pallets JCDH | -

The dataset from Roboflow100/lettuce-pallets proved to be insufficient in identifying the types
of lettuce we use, and therefore Computer Vision (CV) was explored.

454

1.3 Depth Estimation Task JCDH | -

As stated by the Hugging Face documentation: “Depth estimation is the task of predicting
depth of the objects present in an image.” [77].

Figure G.10 shows an example of depth estimation on an image. The information we receive
from the depth estimation AI model is the distance (in meters) of each pixel in the the image, or
the camera sensor in practice. This data can be translated to a vector responding to a specific
point, or points, which gives a real-world representation of distance.

Figure G.10: Depth estimation

Depth Anything delivers three models within the indoor (metric) category (in order of model
size) [78]:

• depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf

455

• depth-anything/Depth-Anything-V2-Metric-Indoor-Base-hf

• depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf

Larger models should in practice offer more accuracy as they are trained on a larger and
more diverse dataset, but larger models have greater processing times. For our system we
use the “depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf” model for visualization
purposes, and the “depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf” for the actual
grab point calculations.

456

2 Artificial Intelligence side notes JCDH | -

2.1 Performance considerations JCDH | -

A quick realization which was made was on the topic of the performance issues related to
running AI models and ML algorithms. Especially when running on resource constrained
hardware like the Raspberry PI or other consumer grade hardware. Thankfully, there exists
simpler AI models which are more targeted to our specific use case, as opposed to very general
purpose models that meet every conceivable use case. These simpler AI models usually have
much lower resource requirements [79]. 4

2.2 A simple performance improvement to model pro-
cessing JCDH | -

While reviewing the code for model processing, it was discovered that the pipeline function
of the Hugging Face Transformers library would load the whole model every time a new image
frame was processed (as seen in Figure G.11) 5.

def object_detection (image_bytes):
image = Image .open(io. BytesIO (image_bytes)). convert ("RGB")

model = pipeline ("object - detection ", model=" facebook /detr -resnet -50")

return model (image)

Figure G.11: Python AI processing: Before

A simple solution was to move the initial model loading pipeline function outside of the image
frame processing function (as seen in Figure G.12) 6.

4It was discovered that not all AI models run well on the Macbook Air M1 because Graphical Processing
Unit (GPU) support has not yet been implemented.

5The aim of this section is to show the performance improvement by improving model loading, and not
specifying which model was chosen.

6In recent version of Hugging Face Transformers, use_fast is set to true, which enables a faster Rust-based
tokenizer, if available for the chosen model. Some older models used a slower pure Python implementation [80].

457

model = pipeline ("object - detection ", model=" facebook /detr -resnet -50")

def object_detection (image_bytes):
image = Image .open(io. BytesIO (image_bytes)). convert ("RGB")

return model (image)

Figure G.12: Python AI processing: After

In order to measure the gained performance benefits, benchmarking was employed. This was
done using the Python time.perf_counter() method, and checking the before / after times
between the model processing an image [81]. These values where stored in a list, which stored
the last 100 frames. An average of these times where then calculated. These benchmarks where
done using an image of an iceberg lettuce on a neutral background. The image size was 640 x
480 px, which is comparable to VGA quality 7.

Figure G.13: Object Detection Benchmark (before optimization)
Average execution time (approx): 1.26 seconds. Standard deviation (approx):

0.89 seconds

7Benchmarks where done on a MacBook Air M1.

458

From Figure G.13, we see a very sporadic curve. This is bad because it creates less predictability
around how long the processing times for the model will take 8.

Figure G.14: Object Detection Benchmark (after optimization)
Average execution time (approx): 0.31 seconds. Standard deviation (approx):

0.05 seconds

From the benchmark in Figure G.14, we can see a much smoother curve after the optimizations.
We also observe some initial loading times, but after that, the curve looks relatively smooth
and stable 9.

These benchmarks where done using a custom developed Benchmark class, which you can read
more about in Section 6.

3 AI / ML research phase JCDH |

8Avg. execution time: 1.2581327729400074 seconds. Standard deviation: 0.8867701786412608 seconds.
9Avg. execution time: 0.30796559668000556 seconds. Standard deviation: 0.04867672829155695 seconds

459

Artificial Intelligence (AI) and Machine Learning (ML) are important technologies and critical
parts of our system.

3.1 AI models of interest JCDH |

Research into AI models are still ongoing, but so far the following models seems to be especially
useful for our system.

• Image classification

• Mask generation

• Object tracking

3.2 Initial object tracking research JCDH | -

Initial research began with the Sam2 model by Meta. Based on our workshop meeting with
Hydroplant we where recommended this AI object tracking model in particular.

Based on testing using their online demo interface it seemed to work well.

Figure G.15: Initial Sam2 object tracking demo - tracking of a lettuce plant

3.3 Image classification models testing JCDH | -

460

Initial testing started with the google/vit-base-patch16-224 model, but further testing of run-
ning the model using Hugging Face transformers with python showed that the model performed
slowly on a Macbook Air M1. Because of the fact that we would optimally have the model run
on a raspberry PI 5th gen, further research into more performant models must be done.

3.4 AI models - specifics JCDH |

The following is a list of the AI models which our system may need:

• Image classification: one possible model is google/vit-base-patch16-224 which is a
Vision Transformer (VT) model which was trained on ImageNet-21k that contains 14
million images [82]

4 In-depth AI training results (5 epochs) JCDH | -

Figure G.16: Confusion matrix - normalized

461

Figure G.17: Confusion matrix

462

Figure G.18: F1 curve

463

Figure G.19: Labels correlogram

464

Figure G.20: Labels

465

Figure G.21: P curve

Figure G.22: PR curve

466

Figure G.23: R curve

Figure G.24: Results

5 In-depth AI training results (100 epochs) JCDH | -

467

Figure G.25: Confusion matrix - normalized

468

Figure G.26: Confusion matrix

469

Figure G.27: F1 curve

470

Figure G.28: Labels correlogram

471

Figure G.29: Labels

472

Figure G.30: P curve

Figure G.31: PR curve

473

Figure G.32: R curve

Figure G.33: Results

474

6 Benchmarking JCDH | -

Benchmarking is an important concept in software development. We use it to check the time
that a task takes, and then use this as a baseline for further improvements to the execution
time of the task.

A custom Benchmark class was developed for the Python code, which has a simple Application
Programming Interface (API). A simple usage example can be seen in Figure G.34.

from util. benchmark import Benchmark

benchmark = Benchmark (" Object Detection Benchmark ", 100)

benchmark . start_lap ()
The code to benchmark .
benchmark . end_lap ()

Figure G.34: Python Benchmark Example

Once the requested amounts of iterations (laps) has been achieved, the Benchmark class prints
the average execution time of all iterations and stores a MatplotLib plot as an image in the
project repo with the format seen in Figure G.35 10.

[normalized title]-[epoch time].png

Figure G.35: Python benchmark plot naming format

The average execution time and standard deviation (which gives us an idea of the volatility
between each iteration of the benchmark) is calculated using standard formulas.

10normalized title means replacing spaces with underscores in this case. epoch time means seconds since
1. jan. 1970, which is a common way to track time and to ensure an unique filename

475

7 HTTP / ESP32-Cam benchmarking JCDH | -

7.1 Benchmarking JCDH | -

Initial testing shows HTTP image transfer (POST request from the ESP32-CAM) latency to
be acceptable, but its incapable of providing a video feed. Although having a video feed is not a
hard requirement (as per our requirements in Section ??), it gives the users of the HMI instant
feedback, which could improve the user experience. The following two benchmarks where done
using frame size UXGA (1600 x 1200 px), and HTTP Connection: close.

1 2 3 4 5 6 7 8 9 10
0

1,000

2,000

3,000

Request number

La
te

nc
y

(m
s)

Figure G.36: HTTP request latency measurements

From what can be gathered, the time it takes to send a picture over HTTP can vary greatly.
This seems to be related to many different variables like CPU usage, memory allocation etc. The
HTTP request latency measurement diagram above shows 10 measurements done in succession
with a 10 second delay between each request (this was done to make sure the previous request
had time to finish, as this is not a load test. Load testing comes in a later section). If we take
the average of these measurements we find that avg. request latency was 1290.2 ms, or 1.2902
seconds.

476

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Capture number

La
te

nc
y

(m
s)

Figure G.37: Image capture latency

The image capture latency diagram above shows us time it takes for the esp32-cam sensor to
capture a picture. Assumptions can be made that time it takes will depend upon variables like
lighting conditions, etc. This sample of 10 measurements was taken in dim lighting conditions
in a normal living room, with a 10 second delay between each measurement. If we take the
average of these measurements we find that avg. image capture latency was 94.6 ms, or 0.0946
seconds.

7.2 Further optimizations JCDH | -

Further optimizations using was done, which included setting HTTP Connection to keep-alive,
waiting 100 ms (instead of 10 seconds) between each sent image and framesize to VGA
(640x480) which gave more promising numbers (although image quality and system stability
suffered):

477

1 2 3 4 5 6 7 8 9 10

120

140

160

180

200

Request number

La
te

nc
y

(m
s)

Figure G.38: HTTP request latency measurements (trial #2)

Average latency here was 156.3 ms or 0.1563 seconds.

1 2 3 4 5 6 7 8 9 10

10

20

30

Capture number

La
te

nc
y

(m
s)

Figure G.39: Image capture latency (trial #2)

Average capture time here was 21.1 ms or 0.0211 seconds.

These averages gives us a baseline to work from when doing further optimizations.

7.3 HTTP load testing JCDH | -

Initial testing shows no major concerns with the amount of requests being sent over the network.
In other words this is not a bottle neck in our system the way its meant to be used.

478

8 Demo of working HTTP communication
between Core and Central JCDH | -

Further work with Leafy Automation Core was done. A custom “network stack” was created
and tested. This communicates with Leafy Automation Central over the network (port 5000
for now) as illustrated in Figure G.40.

Figure G.40: HTTP initial testing

479

9 Leafy Automation Core code restructuring
JCDH | -

A change was made to the code structure to more easily facilitate for a modular approach to
development. Figure G.41 shows the code structure before, and Figure G.42 shows the code
structure after. 11

Figure G.41: Leafy Automation Core code restructuring - before

Figure G.42: Leafy Automation Core code restructuring - after

11Changes made on 20.03.2025

480

10 HMI HTTP Camera Feed JCDH | -

The old HMI HTTP camera feed captures a new frame using a polling technique that runs every
2 seconds. It’s a simple, yet effective method to transmit data, but struggles with real-time use
cases.

10.1 Frontend

10.2 CameraController.js

export class CameraController {
constructor (model , view) {

this.model = model;
this.view = view;

this. updateFeed ();

setInterval (() => this. updateFeed (), 2000);
}

updateFeed () {
this.view. render (this.model. getFeed ());

}
}

Listing G.1: Old HMI HTTP CameraController.js

10.2.1 CameraModel.js

export class CameraModel {
getFeed () {

return `/api/v1/camera -feed?seed=${new Date (). getTime ()}`;
}

}

Listing G.2: Old HMI HTTP CameraModel.js

10.2.2 CameraView.js

export class CameraView {
constructor () {

481

this. cameraFeed = $("#camera -feed");
}

render (data) {
this. cameraFeed .attr("src", data);

}
}

Listing G.3: Old HMI HTTP CameraView.js

10.3 Backend

10.4 api.py

...
@routes .route ("/camera -feed", methods =["GET"])
def camera_feed ():

return send_from_directory (" cache ", " camera01 .jpg")
...

Listing G.4: Old HMI HTTP api

11 HMI dashboard v1 JCDH | -

Figure G.43: HMI dashboard v1

482

12 Database side notes JCDH | -

How we connect to the database

SQLite stores the database as a file on the file system. This stands in contrast to more complex
database application such as MySQL, which runs as a separate server instance and manage
databases through traditional client-server communication [83].

As shown in Figure G.44, a connection is established to a specific file on the file system, which
represents the database.

import sqlite3

class DB:
"""!
@brief Class for managing SQLite database connection .
"""

@staticmethod
def get_connection ():

"""
Get a new database connection .
@return : SQLite connection object .
"""

connection = sqlite3 . connect (" central .db")
...

return connection
...

Figure G.44: Python DB connection

Migrations

The database migrations are specific queries that run the first time the application starts,
or after upgrades to the codebase. They often do tasks like creating new tables or adding /
removing columns from existing tables. In the case of Leafy Automation Central, migrations
are created for the users table and access_levels table. Figure G.45 shows how the migration
for the “users” table looks like.

483

CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT ,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ,
username TEXT NOT NULL UNIQUE ,
password TEXT NOT NULL ,
email TEXT NOT NULL UNIQUE ,
first_name TEXT NOT NULL ,
last_name TEXT NOT NULL ,
access_level_id INTEGER NOT NULL ,
FOREIGN KEY (access_level_id) REFERENCES access_levels (id)

)

Figure G.45: SQlite database migration example

Debugging the database

Debugging the SQLite database is easy with the tool we use, which is called DB Browser
for SQLite. This tools allows you to view all data corresponding to the database tables in a
Graphical User Interface (GUI), as seen in Figure G.46 [84].

Figure G.46: DB Browser for SQLite example

A note on thread safety

Each request in Python Flask creates a new thread. An earlier iteration of the DB class used
the singleton pattern for the database, but because of the fact that a new thread is created for

484

each request, a single database connection between threads was deemed not to be thread safe
(deadlocks, race conditions, and data integrity issues could occur). Therefore, each thread has
its own connection to the database.

For high-traffic applications, creating a new database connection on each request could intro-
duce performance issues, but this is a non-issue until specific evidence points to the contrary.
It could also be argued that creating a new thread for each request, like how Python Flask is
architectured would make it hard to scale for high-traffic applications, but for our use case it
has been deemed perfectly fine.

13 In-progress database work JCDH | -

Figure G.47: Database overview diagram

Note: Arrows indicate foreign key relationships.

13.1 Logs table (logs) JCDH | -

485

The logs table is responsible for storing system logs and messages. Devices like the Arduino
and ESP32-CAM report on their current status which is then sent to and stored in the logs
table.

It contains information like the timestamp of the message and the message itself.

Name Description Datatype Metadata

id The unique id of the specific log
entry

INTEGER AUTO INCREMENT, PRI-
MARY KEY

created_at The time at which the log entry
was created.

TEXT CURRENT_TIMESTAMP

message The log message TEXT NOT NULL

Table G.1: Database: Logs table structure

id created_at message

1 1743357828 picture_taken

Table G.2: Database: Logs table example

13.2 Image analysis table (image_analysis) JCDH | -

Name Description Datatype Metadata

id unique id INTEGER AUTO INCREMENT, PRIMARY KEY

created_at The timestamp
for when this
was stored

TEXT CURRENT_TIMESTAMP

classification The image clas-
sification

TEXT NOT NULL

green_percentage Amount of
green hue in
the image

REAL NOT NULL

label The label from
the object de-
tection

TEXT NOT NULL

score Confidence
score for the
object detec-
tion

REAL NOT NULL

Table G.3: Database: Image analysis table structure

486

id timestamp classification green_percentage label score

1 1743357828 lettuce 47.2 broccoli 0.83

Table G.4: Database: Image analysis table example

13.3 Bounding boxes table (bounding_boxes) JCDH | -

Name Description Datatype Metadata

id unique id INTEGER AUTO INCRE-
MENT, PRIMARY
KEY

xmin Boundingbox xmin INTEGER NOT NULL

ymin Boundingbox ymin INTEGER NOT NULL

xmax Boundingbox xmax INTEGER NOT NULL

ymax Boundingbox ymax INTEGER NOT NULL

image_analysis_id connects the bound-
ing box to the spe-
cific image_analysis
row

INTEGER FOREIGN KEY to
image_analysis.id,
NOT NULL

Table G.5: Database: Bounding boxes table structure

id image_analysis_id xmin ymin xmax ymax

1 1 10 8 150 100

Table G.6: Database: Bounding boxes table example

487

14 API JSON schema JCDH | -

The Leafy Automation Central API communicates using the JSON format for request and
response payloads. This format was chosen because of its easy of use, group experience, sim-
plicity, compatibility and availability of coding libraries.

{
"img -capture -time": 22,
"img -capture -req -time": 243,
"image - classification ": "green lettuce ",
"green - percentage ": 0.43 ,
"log": [" System connected to WiFi", " Picture taken "]

}

Listing G.5: JSON response example

14.1 API status codes JCDH | -

The Leafy Automation Central API makes use of HTTP status code. HTTP status codes are
a collection of codes which tells you something about the success / failure of a response. As an
example response code 200 indicates success, while other codes like 404 or 500 indicates that
something was not found, or an internal server error occurred, respectively.

14.2 API routes JCDH | -

API routes defines the routes used for the web server, which the Leafy Automation Core
communicates with. This API architecture is written in a REST API style.

488

Route Method Description Arguments Returns

/api/v1 GET Index route,
used for pinging
the system to
check connec-
tion status

{} {}

/api/v1/status GET Returns current
status of the sys-
tem

{} {"img-capture-
time": ...,
"img-capture-
req-time":
..., "image-
classification":
..., "green-
percentage": ...,
"log": ...}

/api/v1/log-
stats

GET Log information
related to Core
latency

image-
capture-time
(Time it took
to capture an
image), image-
capture-req-
time (Time it
took to send the
image to the
Central)

{"msg": "Data
captured"}

/api/v1/log GET Stores the sup-
plied message in
a log datastruc-
ture

msg (The mes-
sage to log)

{}

/api/v1/camera-
feed

GET Gets the latest
image in the
buffer as a jpg

{} [binary-data]

/api/v1/capture-
image

POST Stores the sup-
plied image in
the buffer as jpg

[binary-data] {"msg": "Im-
age saved"} |
{"msg": "No
image data
provided"}, 400

/api/v1/classify-
image

POST Classifies an
image using AI
model

[binary-data] {"class": ...}

Table G.7: Leafy Automation Central - API routes

489

15 Specialized Computer Vision with
OpenCV and PlantCV JCDH | -

15.1 Understanding OpenCV and PlantCV JCDH | -

OpenCV and PlantCV are widely used Computer Vision (CV) libraries for analyzing images.
They have good documentation, and interface with most programming languages [85]. PlantCV
is built on top of Computer Vision (CV), but contains a more specialized set of functions for
plant specific tasks [86].

15.2 Color segmentation JCDH | -

Another interesting technology, which has been explored (partly because of its simplicity) is
color segmentation. This allows us for our use case to figure out the percentage of green
color in an image. Our theory is that this information can be used as a data point which tells
us how close the camera (if placed on a robot arm) is to the plant.

Application in robotic proximity detection

By analyzing the proportion of green pixels detected in an image, we hypothesize that the
relative distance between the camera and the plant can be inferred. As the robot arm moves
closer to the plant, the percentage of green pixels should increase (green percentage). This
provides us with a simple, yet effective data point.

Conversion from RGB to HSV color space

Images are normally coded in the Red, Green, Blue (RGB) color space. Because Hue, Satura-
tion, Value (HSV) provides a better format for color extraction, and natural light conditions,
it is converted [87].

Color thresholding

490

Color thresholding is used to only extract the colors within a specified range (in this case green
colors), so that anything in the image not of interest is ignored.

Normalization and scaling

Finally, in order to calculate the percentage of “green” pixels in relation to other colors, the
formula defined in Equation G.1 is used.

Pgreen_percentage = Ngreen

Ntotal

× 100

Ntotal = H × W

(G.1)

where H is the height and W is the width of the image, both in pixels.

15.3 Mask Generation JCDH | -

Figure G.48, G.49 and G.51 shows the steps involved in generating clean masks without any
noise.

491

Figure G.48: Lettuce top-down image

492

Figure G.49: Lettuce top-down image mask

493

Figure G.50: Lettuce top-down image mask (fill holes and specs of noise)

15.4 Handling overlapping lettuce JCDH | -

Once masks have been generated, you may encounter overlap, as seen in Figure G.51. 12 This
is solved using watershed segmentation [88]. Watershed segmentation treats the image like a
landscape with peaks and valleys, where low intensity are valleys, and high intensity parts of
the image are peaks. This information can then be used to detect edges (where two peaks
meet) [89]. This information gives us a close approximation to the correct boundaries for each
lettuce. Figure G.52 shows the drawn on contours based on the results from the watershed
algorithm, and looking at the intersecting point between the two lettuce plants, it is clear that
an approximation is being done.

12An important area of research for Hydroplant Technologies was how to handle overlapping lettuce.

494

Figure G.51: Lettuce top-down image mask (overlap)

Figure G.52: Lettuce top-down (watershed)

15.5 Chessboard pattern for camera calibration JCDH | -

A chessboard pattern allows the system to deduce the camera rotation and location in space,
camera parameters and the chessboard location in the scene. This information could be useful
to make more accurate approximations of the lettuce location. To generate a chessboard pat-
tern, the script supplied by OpenCV for this purpose was used [90].

15.6 Generating a chessboard pattern JCDH | -

Listing G.6 shows the command that was used to generate a chessboard pattern. This “gen_pattern.py”

495

script receives parameters like number of rows and columns in the chessboard, and the square
size in millimeters 13.

poetry run python scripts / opencv / gen_pattern .py -o chessboard .svg --rows 9
--columns 6 --type checkerboard --square_size 20

Listing G.6: OpenCV checkerboard / chessboard pattern generation command

The generated chessboard pattern is sized in the dimensions of an A4 paper as seen in Figure
G.53. Measurements indicated that each square was 19 mm in size, which is a small difference
from the prompted size of 20 mm. This difference indicates a small error in the print configu-
ration or printer hardware, but as long as one is aware of this deviation (and enter the deviated
values into the algorithms), it does not pose an issue.

13Note that the word “chessboard” and “checkerboard” is being used interchangeably here, which is something
the official OpenCV documentation also does.

496

Figure G.53: Chessboard pattern

15.7 Using the chessboard pattern in practice JCDH | -

Figure G.54 shows the OpenCV “findChessboardCorners” algorithm, and “drawChessboard-
Corners” in action [91]. The algorithm defines the points in the supplied image corresponding
to the corners of the chessboard squares, which is useful for deducing real-world scale of objects

497

and camera orientation.

Figure G.54: Chessboard detection

According to the OpenCV documentation, at least a collection of 10 images of the chessboard
from different angles are required to get accurate calibration data [55].

15.8 Creating a 3D representation of the scene JCDH | -

A scene is made up of the following objects:

• Lettuce

• Camera

• Robot arm

The aim of the scene is to represent the position of the lettuce in three dimensions, so that the
robotics can pick up the lettuce.

The pinhole camera model is used to estimate real-world lettuce coordinates from a two-
dimensional image, and the depth estimation Z coordinate [91]. This coordinate is from the
perspective of the camera, so the distance vector between the camera center and robot arm

498

center must then be subtracted to give correct gripping points from the perspective of the robot
arm.

499

16 Earlier system architecture work JCDH | -

16.1 High-level architectural relational overview JCDH | -

Figure G.55: High-level architectural overview

500

16.2 Main System relational overview JCDH | -

A simple summary of the Main System would be the structural components, robotics and micro
controllers.

Figure G.56: Main System architectural diagram

16.3 Communications protocols / pipeline JCDH | -

The following diagram tells us something interesting. It shows in simple terms how communi-
cation throughout our system works. The Arduino serves as an important intermediary binding
both Networking and Signals together.

Figure G.57: Communications pipeline

501

16.4 AI stack JCDH | -

Figure G.58: AI stack

502

17 Considering development boards JCDH | -

The following microcontrollers are of interest:

• ESP32

• STM32

Considering development boards:

• Arduino

• Raspberry Pi

• BBC Micro:bit

• Any ESP32 board

17.1 Development boards supplied by Hydroplant JCDH | -

• Arduino UNO R4 Wifi

• Raspberry Pi 5

503

18 Explaining scrypt JCDH | -

Scrypt is a password-based key derivation function. Although, many such password-based key
derivation functions exist (like bcrypt), scrypt aims to make the algorithm more secure against
a common weakness in most alternatives; the ability to use custom-designed circuits to brute
force the password-based key derivation functions [92].

Figure G.59 shows an example of a scrypt password hash. It’s made up of the following
components [92]:

• [scrypt] - Password hashing algorithm name.

• [32768] - Amount of memory and computing power available.

• [8] - Block size.

• [1] - The amount of parallelization.

• [$Ym0gtO...] - The hash of the password itself.

scrypt:32768:8:
1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a

7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140

Figure G.59: scrypt password hash used for system authentication

504

scrypt:32768:8:1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140
scrypt:32768:8:1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140
scrypt:32768:8:1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140

Appendix H

Calculations

1 Configuration Space Excel sheet BMR | —

Figure H.1: Excel sheet with configuration space calculation

505

Figure H.2: Excel sheet with configuration space (portion)

506

2 Moment calculations BMR | -

The 2 first excel sheets show the moment calculations for direct drive, the last two show the
moment calculations with belt drive.

Figure H.3: Moment calculations screenshot V1 (picture and CAD of motors from [3])

507

Figure H.4: Moment calculations screenshot (portion) - (CAD motors from [3])

508

Figure H.5: Moment calculations screenshot V2

Figure H.6: Moment calculations screenshot V2 (portion)

509

3 Varied payload BMR | -

Figure H.7: Excel sheet with moment calculations for varied payload

510

Appendix I

Project expenses

1 Project expenses BMR | —

This is an overview of all bought and given components for the bachelor project "Leafy Au-
tomation", see fig. I.1

511

Figure I.1: Project expenses overview

512

Appendix J

Robot Concepts

513

Robot concepts

For our robot arm, we researched di2erent pick and place types to ensure that we chose
one that would fit with our project. The table below describes the five types we looked
into.
Some are more like each other than others, and some types we could rule out from an
early stage. We needed to focus on our requirements to help choosing the most suitable
robot type. Factors like work area, type/ weight of load, precision, speed requirements
and others, needed to be put in consideration when choosing a concept to move
forward with.

Robot type Description

Articulated robot arm

- This robot type
resembles the human
hand and allows
mechanical
movement and
configurations.

- One of the most
common types of
robotic arms for
industrial
automation.

- Single arm attached
to a base with a
twisting joint.

Cartesian robot arm - These are linear/
gantry robots. They
work on three linear
axis (up and down, in
and out, side to side).

- Popular in the
industry and for
manufactures who
want high flexibility in
their configurations.

Cylindrical robot arm - This type of robotic
arm is designed
around a single arm
that is capable of
moving up and down
vertically.

- They have a rotary
joint at the base and
prismatic joint to
connect the links.

- Very compact and
cover small and
simple tasks

Delta robot arm - This robot type is also
referred as parallel
robot arms, because
they facilitate three
arms connected to a
single base mounted
over a workspace.

- They have high speed
options and are
therefore used for
automation.

SCARA robot arm - Selective compliance
assembly robot arm

- These types are
designed with a
horizontal arm that
moves in two
directions

- Known for high speed
and precision

- Limited range of
motion in the vertical
place, designed to
move primary in the
horizontal plane.

From valuation, research and the Pugh matrix, we decided to use an articulated robot
arm. The robots we did not choose was because of several di2erent reasons. Many of
the industrial robot types are built on large frames in which the end defector (gripper)
moves along the di2erent axis (Gantry-and cartesian robots). These could be suitable for
the purpose of this project and are quite simple in their overall construction but also
have some drawbacks.

While being very scalable they take up a lot of space since their frame needs to cover the
whole working area. For our project we want to put most weight on the flexibility and
design of the end e2ector, therefore we wanted to make an articulated robot arm. The
other robot arms have more limitations in the end e2ector and makes it more di2icult to
pick plants from di2erent angles.
The delta robot arm is also used in pick and place applications and has good
applications, precision and speed. The reason we discharged this type is because it is
not able to lift a product from the side, which can be needed in our project.
For the SCARA and cylindrical robot arm, they are types of robots that is fast and have
high precision, while taking up little space. The downside is that it has limited flexibility
that again makes it hard to pick plants from di2erent angles.

Sources robot pictures:

• Articulated robot arm

• Cartesian robot arm

• Cylindrical robot arm

• Delta robot arm

• SCARA robot arm

517

https://robotsdoneright.com/Articles/what-is-an-articulated-robot.html?srsltid=AfmBOoqwi49xl_c36MwuGjLUOIMzpKG0hU8zEm7bDSX4jKj5Bmz0D74J
https://www.machinedesign.com/mechanical-motion-systems/article/21831692/the-difference-between-cartesian-six-axis-and-scara-robots
https://www.alibaba.com/product-detail/HITBOT-industrial-robot-arm-handling-manipulator_1600658229190.html
https://www.igus.eu/product/20433?artNr=DLE-DR-0001
https://epson.ca/scara-robots

	Acknowledgements
	Abstract
	Introduction
	Hydroplant Technologies AS
	Project description
	Budget and expenses
	Group members

	Stakeholders
	Company Visit: O. Espedal Handelsgartneri AS
	Project Methodology
	Leadership model
	Structure
	Project model
	Work shops
	Office and remote work days
	Software used
	Other work

	Requirements
	Introduction
	User stories
	Requirements in detail

	Risk Management
	Risk identification and assessment
	Risk management strategies
	Risk analysis

	System Architecture
	Literature review
	Project Constraints and Architectural Drivers
	System Objectives
	System Overview
	Layered Software Architecture
	Communication model
	Critical technologies
	Earlier work

	Physical concept
	Comparison of robot types
	Choice of robot type
	Robot arm diagram
	Definition of working area
	Definition robot arm

	Mechanical
	The base
	The Joints / arm
	Gripper
	Design Process for The Gripper
	Structural integrity

	Electronics
	Sensors
	Electric motors
	Choosing a Motor
	Stepper motor drivers
	Component selection
	MOSFET
	Operational Amplifier circuit
	PCB Design
	Microcontroller & Computer
	Electrical Signals & Communication

	Software
	Leafy Automation Central
	hmia
	Database
	Leafy Automation Core
	Design and Implementation of Arduino Firmware
	Camera
	aia and cva
	Code quality and maintainability

	Design Review
	Prototype
	3D printing
	The base prototype
	The joints/arm
	Gripper development and Testing
	Specifications robot arm prototype

	Conclusion
	Reflection
	Future work

	References
	Bibliography
	Appendices
	Requirements earlier work
	Requirements

	General
	Group Philosophy (initial outlines)
	Introduction
	Flat structure
	Iterative process

	Project Model earlier work
	Project Methodology
	Architecture
	Design and Website
	Design
	Website
	Website source code

	Scrum Presentation
	ClickUp sprints and backlog
	Sprints
	Backlog

	mechanical
	belts and pulleys
	Robot Gripper Concepts
	Soft Touch in Agricultural Robotics

	3D-Printing for gripper development

	Mechanical design
	Forces acting on base
	base HPT interface
	full scale model
	Further work on base
	Further work on arms/joints
	FEA on parts

	Electronics
	Schematic
	PCB layers
	PCB BOM

	Code Documentation
	Leafy Automation Central
	Leafy Automation Core

	Software
	aia mla tasks in detail
	Image Classification Task
	Object Detection Task
	Depth Estimation Task

	aia side notes
	Performance considerations
	A simple performance improvement to model processing

	aia / mla research phase
	AI models of interest
	Initial object tracking research
	Image classification models testing
	AI models - specifics

	In-depth aia training results (5 epochs)
	In-depth aia training results (100 epochs)
	Benchmarking
	HTTP / ESP32-Cam benchmarking
	Benchmarking
	Further optimizations
	HTTP load testing

	Demo of working HTTP communication between Core and Central
	Leafy Automation Core code restructuring
	HMI HTTP Camera Feed
	Frontend
	CameraController.js
	Backend
	api.py

	HMI dashboard v1
	Database side notes
	In-progress database work
	Logs table (logs)
	Image analysis table (image_analysis)
	Bounding boxes table (bounding_boxes)

	apia jsona schema
	apia status codes
	apia routes

	Specialized Computer Vision with OpenCV and PlantCV
	Understanding OpenCV and PlantCV
	Color segmentation
	Mask Generation
	Handling overlapping lettuce
	Chessboard pattern for camera calibration
	Generating a chessboard pattern
	Using the chessboard pattern in practice
	Creating a 3D representation of the scene

	Earlier system architecture work
	High-level architectural relational overview
	Main System relational overview
	Communications protocols / pipeline
	aia stack

	Considering development boards
	Development boards supplied by Hydroplant

	Explaining scrypt

	Calculations
	Configuration Space Excel sheet
	Moment calculations
	Varied payload

	Project expenses
	Project expenses

	Robot Concepts

