Bachelor’s thesis

eafy

Automation

University of
South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Kongsberg

Acknowledgements

Thank you to Hydroplant Technologies AS for giving us the project and to the staff and fellow
students at the University of South-Eastern Norway for their help and guidance.

We would also like to thank Hivemind for supplying us with the LaTeX template as a starting
point [1].

Abstract

This project focuses on moving a lettuce from one location to another and detecting the type of
lettuce. This is a research project for Hydroplant Technologies, who wants to develop their own
in-house solution and a starting point that they can develop further. For this project, we chose
to develop an articulated robotic arm that can detect where a lettuce is in a 3 dimensional room.
It shall identify the lettuce, detect its type, and then pick it up and move it to a designated

area.

Contents

Acknowledgements L 2
Abstract 3
1 Introduction 33
1.1 Hydroplant Technologies AS 33
1.2 Project description oo 35
1.3 Budget and expenseso 36
1.4 Group members 36
2 Stakeholders 38
3 Company Visit: O. Espedal Handelsgartneri AS 39
4 Project Methodology 44
4.1 Leadership modelo 44
4.2 Structure 44
4.3 Project model 45
4.4 Work shops o 47
4.5 Office and remote work days 47
4.6 Software used 47
4.7 Other work 49

CONTENTS

Requirements 50
5.1 Introduction 50
5.2 User stories L 50
5.3 Requirements in detail L 50
Risk Management Lo 54
6.1 Risk identification and assessment 54
6.2 Risk management strategies oL 55
6.3 Risk analysis 5}
System Architecture 57
7.1 Literature review L Lo o7
7.2 Project Constraints and Architectural Drivers 58
7.3 System Objectives 60
7.4 System Overview 63
7.5 Layered Software Architecture 66
7.6 Communication model L 68
7.7 Critical technologies 73
7.8 Earlier work o 73
Physical concept 73
8.1 Comparison of robot types 73
8.2 Choice of robot type 76
8.3 Robot arm diagram o 7
8.4 Definition of working areao 80
8.5 Definition robot armo 82

CONTENTS

10

11

Mechanical 89
9.1 The base L 89
9.2 The Joints /arm 93
9.3 Gripper 102
9.4 Design Process for The Gripper 104
9.5 Structural integrity 106
Electronics L 112
10.1 0 Sensors. 112
10.2 Electric motors 112
10.3 Choosing a Motor 113
10.4 Stepper motor drivers 114
10.5 Component selection 115
10.6 MOSFET 116
10.7 Operational Amplifier circuit 117
10.8 PCB Design o . 118
10.9 Microcontroller & Computer 123
10.10 Electrical Signals & Communication 123
Software 125
11.1 Leafy Automation Central 125
11.2 0 HMI . . o 126
11.3 Database 131
11.4 Leafy Automation Core 135
11.5 Design and Implementation of Arduino Firmware 137

6

CONTENTS

11.8 Code quality and maintainability
12 Design Review oo
13 Prototype
13.1 3D printingo
13.2 The base prototype
13.3 The joints/arm
13.4 Gripper development and Testing
13.5 Specifications robot arm prototype
14 Conclusion
15 Reflection
15.1 Futureworko
Referenceso
Bibliography
Appendices

11.6 Camera s,

11.7 Artificial Intelligence (AI) and Computer Vision (CV)

A Requirements earlier work

1 Requirementso
B General
1 Group Philosophy (initial outlines)
1.1 Introduction
1.2 Flat structure o0

203

CONTENTS

1.3 Iterative process 212

2 Project Model earlier worko 213
3 Project Methodology 218
4 Architecture 219
D Design and Website Lo 228
5.1 Design 228

5.2 Website 231

5.3 Website source codeo 233

6 Scrum Presentationo 245
7 ClickUp sprints and backlog 256
7.1 Sprintso 256

7.2 Backlog 259

C mechanical 266
1 belts and pulleys 266
2 Robot Gripper Concepts 268
2.1 Soft Touch in Agricultural Robotics 270

3 3D-Printing for gripper development oL 272
D Mechanical design 274
1 Forces actingon baseo 274
2 base HPT interface 276
3 full scale model 278
4 Further work on baseo 279

CONTENTS

5 Further work on arms/jointso 283
5.1 FEAonparts 283

E Electronics 286
1 Schematic 286

2 PCB layers 290

3 PCBBOM. . . . e 296

F Code Documentation 299
1 Leafy Automation Central 299

2 Leafy Automation Core 360

G Software 445
1 Artificial Intelligence Machine Learning tasks in detail 445

1.1 Image Classification Task 445

1.2 Object Detection Task 446

1.3 Depth Estimation Task 455

2 Artificial Intelligence side notes oL 457
2.1 Performance considerations 0L 457

2.2 A simple performance improvement to model processing 457

3 Al / ML research phase 459
3.1 Al models of interest 460

3.2 Initial object tracking research 460

3.3 Image classification models testing 460

3.4 Al models - specificso 461

CONTENTS

10

11

12

13

14

In-depth AT training results (5 epochs) 461
In-depth AI training results (100 epochs) 467
Benchmarking Lo 475
HTTP / ESP32-Cam benchmarking 476
7.1 Benchmarking oo 476
7.2 Further optimizations Lo 477
7.3 HTTP load testing 478
Demo of working HTTP communication between Core and Central 479
Leafy Automation Core code restructuring 480
HMI HTTP Camera Feed 481
10.1 Fromtend 481
10.2 CameraController.js 481
10.3 Backend 482
104 api.py 482
HMI dashboard v1 482
Database side notes Lo 483
In-progress database work oL 485
13.1 Logs table (logs) 485
13.2 Image analysis table (image_analysis) 486
13.3 Bounding boxes table (bounding boxes) 487
APT JSON schema 488
14.1 APIstatuscodes 488
142 APIroutes. 488

CONTENTS

15 Specialized Computer Vision with OpenCV and PlantCV
15.1 Understanding OpenCV and PlantCV
15.2 Color segmentation
15.3 Mask Generation
15.4 Handling overlapping lettuce
15.5 Chessboard pattern for camera calibration
15.6 Generating a chessboard pattern
15.7 Using the chessboard pattern in practice
15.8 Creating a 3D representation of the scene

16 Earlier system architecture work
16.1 High-level architectural relational overview
16.2 Main System relational overview

16.3 Communications protocols / pipeline

16.4 Al stack

17 Considering development boards
17.1 Development boards supplied by Hydroplant

18 Explaining scrypt

H Calculations

1 Configuration Space Excel sheet

2 Moment calculations

3 Varied payload

I Project expenses

11

511

CONTENTS

1 Project expenses 511

J Robot Concepts 513

12

List of Figures

10

11

12

13

14

15

16

17

Hydroplant Technologies - From seed to plant 33
Hydroplant Technologies overview 34
Leafy greens in Hydroplant Technology system 34

Leafy Automation Systems position in the Hydroplant Technologies ecosystem . 35

O. Espedal Handelsgartneri AS visit 39
Lettuce study 40
Lettuce with roots 41
Lettuce ready for pick-up, with disposal bins 41
Lettuce heaven 42
Pelleted seeds 42
Crispi-smile 43
Team departments by discipline, 44
Mlustrating our kanban board. oL 45
Example of a kanban task/ product backlog item 46
List of software used in the project (common software). 48
List of software used in the project (computer engineering). 48
List of software used in the project (mechanical engineering). 49

13

LIST OF FIGURES

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

List of software used in the project (electrical engineering). 49
User Stories 50
Requirements for US-01 o1
Requirements for US-02 52
Requirements for US-03 52
Requirements for US-04 52
Requirements for US-05 53
Requirements for US-06 53
Risk management processo 54
Risk Table 56
Key Project Constraints and Architectural Drivers 59
Functional Workflow Diagram 61
Positioning of the robotic arm.00 61
Working area zone partitioning L 61
System Architecture Hardware Overview 64
Layered software architecture for Leafy Automation 66
Communication between nodes via ROS2 topics. 71
The Leafy Automation software nodes communicating via defined topics. 72

Diagram illustrating how the MQTT bridge fascilitates communication between

ROS2 control nodes and the Core Communication Manager 72
Decision matrix table oo 75
Articulated robot arm with rotational base 0oL 76
Robot Arm Diagram 78

LIST OF FIGURES

40

41

42

43

44

45

46

47

48

49

50

o1

52

23

o4

25

o6

57

o8

29

60

61

62

Configuration space and task space graphics 81
Top view working area quantification 82
Robotic arm with labelso 83
Revolute joint 84
Joint restraint angles Lo 85
Visualization joint restraint angles 0L 85
Scatter plot of configuration space 86
Equation for planar forward kinematic [2, p. 2] oL 86
Diagram for forward kinematic equation 0L 87
Different forces actingon base Lo 90
Initial design ideas V1, V2and V3o 0oL 91
MDF CAD model V4 (CAD motors from [3]) 92
MDF model of base for testing limit switch position 93
Joint VO.2 L 94
Aluminium profile 94
Joint VO.3 o 95
Joint VO.4 oo 96
Joint VO.IB Jland J3 97
Joint VO.1B J2o 98
Tensioner for belt 99
Gripper limit switches 101
Gripper V1 o 104
Gripper V2 o 104

LIST OF FIGURES

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Final Design o 105
Calculations: force on gear teeth 106
Decomposing forces 107
FBD of robot arm with moment equations 108
Payload effect on moment in joints 109
Center of gravity for each link 000 110
Equation for center of gravity [4, p. 365] 110
FBD of robot arm (V2 with belt drive)0 0L 111
Motor selection from moment calculation 111
Motor kit BOM 113
Operational Amplifier SPICE test circuit 117
OPAMP result with test signals at 40kHz 118
3D view of the PCB 119
BOM PCB 120
PCB layer view with all layers visable 121
PCB assembly 123
HMI diagram 127
HMI dashboard 128
MVC - control flow 129
HMI login page o 130
Database overview diagramo Lo 132
Real-time OS future proofing 136
Naming of joint motors, including driver and gear ratio information 137

16

LIST OF FIGURES

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Diagram showing the main software components of Leafy Automation Core,
including the MQTT-based connection to Central. 140

Sequence diagram showing the Main Loop() on Core. 141

Sequence diagram showing the execution of an example MOVE command sent

from Central to Core 145
Flow chart showing handlelncomingCommand() 146
Simple state diagram showing the state transition conditions and actions. 148
ESP32-CAM low light conditions 150

Example of unaligned camera lens in relation to imaging plane (tangential dis-

tortion) 152
Plant type pipeline 154
Grip point pipelineo 155
AT tasks directory structure 156
Python type hinting example oL 157

Section view of base assembly (CAD bearings from [5] and CAD motor from [3]) 164

Exploded view of base assembly (CAD bearings from [5]) 165
3D printed parts for the base before assembly 166
The base prototype assembly oL 166
direct drive Joint prototypes 167
Robot arm VO.1Bo 168
Gripper fingers L 171
Gripper body L 171
Gearing components 172
Support and stepper motor 173

LIST OF FIGURES

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Al

A2

A3

A4

Gripper assembly 173
Gripper prototype 1 L 174
Fin-Ray gripper e 176
Fin-Ray fingers 177
Mounting plateo 177
Support brackets 178
Fin-Ray gripper body 179
Gearing components L 179
Fin-Ray gripper, exploded view L. 180
Final Fin-Ray assembly 180
Fin-Ray gripping test L 181
Displacement measurements from practical test 182
Fin-Ray finger displacement FEM 183
Stress Analysis gear components 184
Close up, maximum stress 184
Safety Factor 185
Finished Physical Model 186
Prototype specification Lo 187
Taken from page 134 in Alberto Sols’ book will adapt. 205
Draft Requirement Matrix 206
Draft Acceptance criteria matrix L 207
Draft Verification and Validation matrix 207

18

LIST OF FIGURES

A5 Userstories L 208
A.6 User story - autonomous harvesting 208
A.7 User story - plant recognition L oL 209
A.8 User story - optimal handling 209
A.9 User story - safety and efficiency 210
B.1 Interfacing elektroog datao oL 219
B.2 Signalinterfacing elektroog datao 220
B.3 Communication and signal details from the early diagram above 222
B.4 Early architectural design L 224
B.5 Early architectural design oL oL 224
B.6 Early attempts at mapping processeso 225
B.7 Enter Caption 226
B.8 Thoughts for future work. oo 227
B.9 Our project color palette 228
B.10 Project logo 229
B.11 Name tag: Beatrix Rimestad 230
B.12 Name tag: Daniels Blomnieks 230
B.13 Name tag: Elin Gravningen 230
B.14 Name tag: Jim Christian Haukvik 230
B.15 Name tag: Vetle Myhre Nilsen 230
B.16 Name tag: Sunniva Myrvang Eineteig 230
B.17 Recruitment ado 231

LIST OF FIGURES

B.18 Website, iteration 1 232
B.19 Sprintl 256
C.1 pulley joint 3 motor side 267
C.2 Jaw gripper 268
C.3 Finger gripper e 269
C.4 Soft gripper e 269
C.5 Fin-Ray concept 270
D.1 Forces acting on base and bearings 275
D.2 Interface for base flangeo 276
D.3 Interface future possibilitieso Lo 277
D.4 Full scalemodel 278
D.5 Load applied in FEA 280
D.6 stress plot for shaft 281
D.7 The left side is hard to machine, right side with sleeve as an alternativ. 282
D.8 shaft bending forceso 283
D.9 shaft torque forces design studyo 284
D.10 shaft bending forces 285
D.11 shaft torque forces design study oL 285
G.1 Image Classification Diagram, 445
G.2 Al model input 447
G.3 Al model output (bounding boxes and labels shown visually) 448
G.4 Object Detection Benchmark: facebook/detr-resnet-50 449

20

LIST OF FIGURES

G.5 Object Detection Benchmark: YOLO11 450
G.6 Example of bounding boxo 451
G.7 AI object detection (in-training, batch 2) 452
G.8 Al training results 453
G.9 AI training results (100 epochs) 453
G.10 Depth estimation 455
G.11 Python AI processing: Before, 457
G.12 Python AI processing: After L 458
G.13 Object Detection Benchmark (before optimization) 458
G.14 Object Detection Benchmark (after optimization) 459
G.15 Initial Sam2 object tracking demo - tracking of a lettuce plant 460
G.16 Confusion matrix - normalized 461
G.17 Confusion matrix 462
G.AI8Flcurve o e 463
G.19 Labels correlogram 464
G.20Labels 465
G21Pcurve e 466
G22PRcurve. e 466
G23Rcurve 467
G.24Results L 467
G.25 Confusion matrix - normalizedo 0oL 468
G.26 Confusion matrix 469
G2TFLlcurve e 470

LIST OF FIGURES

G.28 Labels correlogram 471
G.29 Labels 472
G30P curve 473
G31PRcurve. o 473
G.32R curve 474
G.33Results 474
G.34 Python Benchmark Example o0 475
G.35 Python benchmark plot naming format 475
G.36 HTTP request latency measurements 476
G.37 Image capture latency 477
G.38 HTTP request latency measurements (trial #2) 478
G.39 Image capture latency (trial #2) 478
G.40 HTTP initial testing 479
G.41 Leafy Automation Core code restructuring - before 480
G.42 Leafy Automation Core code restructuring - after 480
G.43 HMI dashboard v1 482
G.44 Python DB connectiono o 483
G.45 SQlite database migration example00 484
G.46 DB Browser for SQLite example00 484
G.47 Database overview diagramo 485
G.48 Lettuce top-down image oL 492
G.49 Lettuce top-down image mask oL 493
G.50 Lettuce top-down image mask (fill holes and specs of noise) 494

22

LIST OF FIGURES

G.51 Lettuce top-down image mask (overlap) 495
G.52 Lettuce top-down (watershed) 495
G.53 Chessboard pattern 497
G.54 Chessboard detection 498
G.55 High-level architectural overview 500
G.56 Main System architectural diagram 501
G.57 Communications pipeline Lo 501
G.B8 Al stack 502
G.59 scrypt password hash used for system authentication 504
H.1 Excel sheet with configuration space calculation 505
H.2 Excel sheet with configuration space (portion) 506
H.3 Moment calculations screenshot V1 (picture and CAD of motors from [3]) 507
H.4 Moment calculations screenshot (portion) - (CAD motors from [3]). 508
H.5 Moment calculations screenshot V2 0oL 509
H.6 Moment calculations screenshot V2 (portion) 509
H.7 Excel sheet with moment calculations for varied payload 510
[.L1 Project expenses overviewo 512

23

List of Tables

10

11

G.1

G.2

G.3

G.4

G.5

G.6

Group members 37
Risk matrix 55
High-level system objectives. Lo 62
Critical technologies 88
Leafy Automation Central - Areas of responsibility 126
Database: Users table structure oL 133
Database: Users table example 133
Database: Access levels table structure L. 134
Database: Access levels table example L. 134
Naming conventions including key technical detail. 138
Arduino library dependencies L 139
Database: Logs table structure 486
Database: Logs table example 0oL 486
Database: Image analysis table structure 486
Database: Image analysis table example 487
Database: Bounding boxes table structure 487
Database: Bounding boxes table example 487

24

LIST OF TABLES

G.7 Leafy Automation Central - APl routes 489

25

Acronyms

AT Artificial Intelligence. 7, 9-11, 29, 43, 62, 63, 65, 68, 69, 125, 126, 149, 152154, 156, 159,
103, 445, 446, 451, 452, 455, 457, 459, 461, 467, 502

API Application Programming Interface. 10, 126, 475, 488
BOM Bill of Materials. 119

CAD Computer-Aided Design. 103, 172, 176, 270, 273
Central Raspberry Pi 5. 64, 65, 137, 140, 142, 143
Core Arduino R4 WiFi. 64, 65, 137-140, 142, 143
CSS Cascading Style Sheet. 128

CV Computer Vision. 7, 41, 43, 126, 149, 152-154, 156, 454, 490
DOF Degrees Of Freedom. 83

EMC Electromagnetic Compatibility. 122
EMI Electromagnetic Interference. 122

ESP32 Espressif32. 149

FBD Free Body Diagram. 16, 108, 109
FDM Fused Deposition Modeling. 103, 272
FEM Finite Element Method. 173, 191
FOS Factor of Safety. 281

FOV Field Of View. 151

FR4 Fire-Retardant 4. 118

GPU Graphical Processing Unit. 457

26

Acronyms

GUI Graphical User Interface. 126, 484

HMI Human Machine Interface. 6, 16, 29, 125-128, 130, 131, 193
HPT Hydroplant Technologies. 36, 38, 80, 89, 90

HSV Hue, Saturation, Value. 490

HTML Hyper Text Markup Language. 128

HTTP HyperText Transfer Protocol. 29, 125, 126, 488

HTTPS HyperText Transfer Protocol Secure. 66

IC Integrated Circuit. 122
IP Internet Protocol. 126

ISP Image Signal Processor. 64

JS JavaScript. 128

JSON JavaScript Object Notation. 10, 488
LAN Local Area Network. 29

MDF Medium-density Fiberboard. 83, 92, 165
ML Machine Learning. 9, 125, 152, 445, 459

MVC Model View Controller. 16, 128, 129

PCB Printed Circuit Board. 31, 65, 118, 119

PLA Polylactic Acid. 103, 161, 175, 191, 272
QoS Quality of Service. 69

REST Representational State Transfer. 488
RGB Red, Green, Blue. 490

ROS2 Robot Operating System 2. 64, 69, 125
RPM Revolutions per minute. 138

RTOS Real-Time Operating System. 136

SolidWorks SolidWorks®. 172, 173, 176, 179, 181, 191

27

Acronyms

STL STL. 173, 180

the University University of South-Eastern Norway. 36, 59, 189

TPU Thermoplastic Polyurethane. 102, 103, 161, 175, 176, 191, 272

WAF Web Application Framework. 29
WAN Wide Area Network. 29

WCGI Web Server Gateway Interface. 32

28

Glossary

BLDC A brushless DC motor is an electric motor that uses magnets and coils to translate

electrical energy to mechanical energy.. 113

CC BY 4.0 Open source license which stands for “Creative Commons Attribution 4.0”. It

allows you to share and adapt the material as long as attribution is provided. 451, 452

DDS The Object Management Groups Data Distribution Service is a standardised middleware
protocol for real-time, scalable publish/subscribe communication, featuring configurable

Quality of Service policies for reliability, latency, and resource management. 69

Docker An open-source platform for containerizing applications. Docker packages software
and its dependencies into lightweight, portable containers that can run consistently across

different environments, ensuring isolation and simplified deployment. 69, 72

Doxygen Software for generating code documentation. 125

ESP32 Simple and low-cost system on a chip manufactured by Espressif Systems. 149

ESP32-CAM The ESP32-CAM is a small embedded device containing the ESP32 SoC (Sys-
tem on a Chip) and an integrated camera sensor. 29, 135, 149-151, 476

Fine tuning Fine tuning is the process of taking existing AI models and improving their
accuracy within certain domains. This is achieved by using a dataset, which is a collection

of inputs and their expected outputs. 451

Finite Element Method blabla. 181

Flask Flask is a Web Application Framework (WAF) written in Python. We use it to to host
the HMI which is a web application hosted on either a Local Area Network (LAN) or
Wide Area Network (WAN), depending on the customers use case. It was also used for
some earlier iterations of the HTTP networking between ESP32-CAM and Central.. 32,
128

Google Colab Google Colab is an online service which allows you to run code on dedicated

and powerful hardware. It is especially useful for training Al models. 451

29

Glossary

HMI The user-facing part of a system that allows a human operator to monitor, control, or

interact with the system via a user interface. 63

Hugging Face An open source platform where the machine learning community collaborates

on Al models, datasets and applications. 446, 455

JQuery JavaScript library for interfacing with HTML elements in a webapp. 128

Kanban A visual workflow method for managing tasks and optimising flow. Work items, often
called tasks or in our case backlog-items, are represented on a board with columns (To Do,
In Progress, Needs Review, and Done). Teams pull new tasks only when they have capac-
ity, respecting Work-In-Progress. Kanban focuses on continuous delivery, transparency..
44-46

limit switch A limit switch is a sensor used to detect the physical limits of a motors movement.
It triggers once the maximum point of the motors movement range has been met. It then
provides a signal to stop further motion, thus preventing mechanical overrun or damage..
65, 68

Macbook Air M1 A laptop released by Apple in 2020. It has been used as a test rig for Al

model benchmarking in our project.. 457

micro-ROS micro-ROS is a lightweight version of ROS2 designed to run on microcontrollers
with limited resources. It enables small embedded devices to participate as nodes in a

ROS2 system by communicating over standard ROS2 protocols. . 65, 72

microstep A small fraction of a full step in a stepper motor (for example, dividing a 1.8t full

step into 16 equal parts), used to achieve smoother motion and finer position control. 138

MQTT MQTT (Message Queuing Telemetry Transport) is a publishsubscribe messaging pro-
tocol designed for efficient communication between devices over networks with limited
bandwidth or high latency. It uses a central broker to route messages between publishers
and subscribers based on topic names.. 65, 66, 68, 69, 72, 140, 142, 143

node An isolated ROS 2 process responsible for a specific task. Nodes communicate with one
another via topics (asynchronous publish/subscribe), services (synchronous request /re-

sponse), and actions (preemptible, longrunning goals with feedback).. 69

OpenCV Open source computer vision library. 154, 496-498

PlantCV Open source computer vision library based on OpenCV for plant specific tasks. 154

30

Glossary

Product Backlog An ordered list of all tasks needed to progress a product towards comple-
tion. The list is prioritised and reviewed regularly to ensure that the most important
work is done first. The Development Team pulls items from the backlog into each sprint.
The backlog is dynamic and evolves as new requirements and tasks emerge and priorities
change.. 45, 46

Python Python is a programming language renowned for its easy of use, and is often used for

scientific purposes like Artificial Intelligence. 29, 32, 128

Roboflow A service which hosts a collection of fine-tuned open source Al models and datasets

online. 451

ROS2 Robot Operating System 2 - An open source framework for developing and deploying
robotic applications, providing libraries and tools for building modular systems with inter-
process communication, hardware abstraction, and various high-level functionalities.. 57,

59, 68, 69, 72, 137

Rotary Encoder A rotary encoder is a device that reports the position or motion of a shaft..
65

SCRUM An agile framework for managing work in small teams. Scrum breaks projects into
short, fixed-length cycles called sprints. Key roles include a Product Owner (who sets
priorities), a Scrum Master (who helps the team follow Scrum), and the Development
Team (who build the product). Scrum uses simple artifactslike the Product Backlog
(a prioritised list of work, often called tasks or backlog items)and regular eventssuch as
Sprint Planning, Daily Scrum, Sprint Review, and Sprint Retrospectiveto plan, track,

and improve the teams work continuously.. 45

topic In publish/subscribe messaging, a topic is a named channel where the publishers their
data too, and which subscribers receive them. This decouples the senders from the
receivers, allowing for data to be sent asynchronously without being directly connected..
65, 69

UART UART (Universal Asynchronous Receiver/Transmitter) is a hardware communication
protocol used for serial data exchange between two devices. It transmits data asyn-
chronously, meaning it does not require a shared clock signal, and is commonly used for

communication between microcontrollers, sensors, and other embedded components.. 65

utf-8 Widely used character encoding format for text strings. 131

via For PCBs a via is a connection between the layers of the PCB.. 118, 122

Visual Studio Code An open-source code editor used for writing and debugging code in

multiple languages. 48

31

Glossary

WebSocket A communications protocol built for the web. Initial handshake is done over
HTTP, followed by low-level TCP. 129

Werkzeug A simple WCGI library that contains utility functions which are useful for web

server applications. is built on top of this library. 130

Zephyr Real Time Operating System made by the Linux Foundation. 136

32

1. INTRODUCTION

1 Introduction

Our bachelor’s thesis is given by Hydroplant Technologies AS. Our task is to develop a versatile
robot system that autonomously harvests and processes several types of vegetables.

Food production around the world has to increase considerably to meet the growth of pop-
ulation. Climate change needs us to rethink sustainability around how we produce eatables.

Hydroplant’s goal is to find cost effective solutions in a environment-friendly way.

1.1 Hydroplant Technologies AS DAB | SME

Hydroplant Technologies started out as a student project provided by USN, and founded AS
in may 2024.

Their goal is to innovate and automate the vertical farming setup. The company is developing
autonomous harvest solutions, from seed to fully packed goods, see figure 1 for a simplified
view of the process and figure 2 for a more detailed overview of the process. The goal with this
technology is to create systems that are cost-effective while also ensuring that the systems are

highly optimized and effective.

/" Resources
[

‘ # Seed ‘

{ \
| { Otherresources | |
. 2

Packaged
vegetables

Provide ‘
base resources

Figure 1: Hydroplant Technologies - From seed to plant

33

1. INTRODUCTION

AL I]
B

arw e Ready for delivery!
- -

Figure 3: Leafy greens in Hydroplant Technology system

This is a small test run at the USN Kongsberg campus.

34

1. INTRODUCTION

1.2 Project description SME | JCDH

Hydroplant Technologies AS wants our help to develop a versatile system for the automatic
harvesting and processing of salads. In their overall system, we will only focus on the harvesting

part. From seed to fully grown salads, they will enter our system where they will be:

1. Recognized by Al technology.
2. Handled with care and attention so that we do not harm the salad.
3. Picked up and transferred from their growing station.

4. Positioned in a specific and defined place to be ready for next step in Hydroplant’s system.

The existing autonomous solutions in today’s market are expensive, and Norwegian farmers do
not have the economy that is required to upgrade. There are also negative effects in manual
farming: it is high-cost and there are hygiene-related risks. Bacteria, viruses and parasites can
contaminate the products from poor hand hygiene by those who harvest vegetables.

Hydroplant Technologies wants to remove manual work from harvesting systems, to ensure
better hygiene and to increase the durability of vegetables. In addition, their goal is to enlarge
vegetable cultivation, and to make it more efficient. For an overview of Hydroplantfs system,

and where Leafy Automation will be operating see Figure 4.

Figure 4: Leafy Automation Systems position in the Hydroplant Technologies ecosystem

35

1. INTRODUCTION

1.3 Budget and expenses BMR | SME

Keeping the costs at a minimum is a key requirement for this bachelor project (see section 7).
The given budget is 30 000,- NOK, in addition the bachelor group has received some hardware
from HPT and has access to resources at the University. An overview of the project expenses

can be seen in appendix I.

1.4 Group members

The bachelor group is a multidisciplinary group consisting of 1 electronic, 2 software and 3
mechanical engineer students. They are all presented in tab.1. Working in several disciplines

can pose a challenge but is also a great learning possibility for the group members.

1.4.1 Authors

The author and proofreader for each section and subsection is identified by their initials to
the right of the heading (the initials can be seen in (tab. 1). The first initials belong to the
author/-s which is responsible for the main content. The other initials identify the proofreader
who has looked over the text to ensure a good flow and coherence as well as correcting spelling
mistakes. If there are more authors that have been working on a section together, their initials
will be on the left side of the line. Some sections will only have an author and no proofreader

due to time constraints.

36

1. INTRODUCTION

Name Sunniva Myrvang Eineteig

Initials SME

Discipline | Mechanical engineer - Product development

Role(s) External contact & Instagram

Name Beatrix Mgller Rimestad

Initials BMR

Discipline | Mechanical engineer - Product development

Role(s) Internal contact, time wizard & Overall structural in-
tegrity

Name Daniels Aleksandrs Blomnieks

Initials DAB

Discipline | Mechanical engineer - Product development

Role(s) Risk-analysis, interface between parts & LaTeX

Name Jim Christian Dale Haukvik

Initials JCDH

Discipline | Computer engineer - Cyber physical systems

Role(s) Artificial Intelligence / Computer Vision, Camera, Hu-
man Machine Interface, Website & ClickUp

Name Elin Gravningen

Initials EG

Discipline | Computer engineer - Cyber physical systems

Role(s) System Architecture, Robotics & Project Fascilitator

Name Vetle Myhre Nilsen

Initials VMN

Discipline | Electrical engineer - Cybernetics

Role(s) Electronics & LaTeX

Table 1: Grf,}lp members

1. INTRODUCTION

2 Stakeholders BMR |

When developing a new product, it is crucial to identify the different stakeholders. Analysing
their interest and influence towards the product will help in how they should be handled and/or

included in the development process.

For this project the main stakeholder is Hydroplant Technologies AS; as the client they both
have high interest and high influence over the product and must be consulted regularly. Their
input will help in defining the requirements needed for the product. An iterative approach in
combination with close collaboration with the client can ensure that the product evolves in the
wanted direction. A design review halfway through the project period provided useful feedback

(see section 12).

Another stakeholder to regard is the possible customer of HPT. These are the ones who will
actually use our subsystem in their production line, and will have valuable information about
what aspects around the harvesting that are important to consider. A company visit gave the

project group valuable input (see section 1.4.1).

A high influence stakeholder group is the ones responsible for the national regulations and
laws that deal with machines, electricity and food safety. This project will focus mostly on
the initial development and not the final production, still the needs of these stakeholders will
be taken into consideration when making the requirements for the product. Especially in the
development of the gripper, that will have direct contact with the edibles, the regulations for
food safe materials is an crucial aspect (see section C). For future work it will be important to
consider what is required to attain different certifications necessary to put the product on the

market.

38

1. INTRODUCTION

3 Company Visit: O. Espedal Handelsgart-
neri AS

SME | JCDH

As part of our collaboration with Hydroplant AS we conducted a field visit to Osmund Espedal
Handelsgartneri AS to gain practical insights into modern horticultural practices. The visit
provided essential contextual understanding that has significantly informed the design and

functionality of our robotic system.

Osmund Espedal
DL SGARTALH AS

Figure 5: O. Espedal Handelsgartneri AS visit

O. Espedal Handelsgartneri AS is a family-owned horticultural enterprise located in Lier, Nor-
way. The company has been in continuous operation since 1914 and family-owned since 1917.
Over the past two decades, the business has specialized exclusively in the cultivation of Crispi

lettuce and cucumbers, which are supplied primarily to Bama Gruppen AS.
Relevance to Our Project

Our robotic system is designed to autonomously harvest various types of leafy greens, one of
which is Crispi lettuce. Observing the full production cycle at O. Espedal, from seed to harvest,
was both instructive and valuable. The visit offered a detailed view into the operational logistics,

technical setup, and workflow efficiency of a modern horticultural facility.

Notably, O. Espedal employs both traditional soil-based agriculture and hydroponic cultiva-
tion techniques. While Hydroplant AS currently uses only hydroponics, the exposure to both
cultivation methods helped broaden our understanding and ensured that our robot design is

flexible enough to accommodate potential future shifts in production strategy.

39

1. INTRODUCTION

Figure 6: Lettuce study

Key Observations and Design Implications

During the visit, we closely studied the harvesting process, which remains fully manual at O.
Espedal. The growing beds automatically advance the plants to the end of a working table,
where human workers harvest each lettuce head by hand. Workers remove roots and damaged

leaves before placing the products into packaging crates.
This process revealed several critical insights:

o Plant Tilting During Movement: As the growing beds advanced, the lettuce heads
were observed to tilt due to a lack of structural support. This informed our decision to
incorporate a rotational capability into our robotic gripper, enabling it to adapt to tilted

or irregularly oriented lettuces during harvesting.

40

1. INTRODUCTION

Figure 7: Lettuce with roots

o Manual Removal of Damaged Leaves: Damaged or unmarketable leaves were man-
ually discarded into separate bins. Based on this, we decided to include a disposal zone

within the robot’s working area for damaged plants and waste material.

Figure 8: Lettuce ready for pick-up, with disposal bins

e Overlapping Foliage: In many cases, lettuce leaves overlapped, making it difficult
to distinguish between individual heads. To address this, we drafted a plan for the
implementation of a Computer Vision (CV) system to identify and separate individual

lettuce heads, as well as to distinguish between healthy and damaged foliage.

41

1. INTRODUCTION

#.

Figure 9: Lettuce heaven

+ Need for Interchangeable Grippers: Another important takeaway from the visit was
the necessity for the robotic gripper to be interchangeable. While the current focus is on
harvesting lettuce, future applications may involve other vegetables or entirely different
tasks, such as sowing seeds. Since seeds are much smaller and require a different handling
mechanism, the ability to swap out the end-effector will enable the robot to be used for

a wider range of agricultural operations.

Figure 10: Pelleted seeds

o Plant Fragility and Transportation: The farmer informed us that the plants are very
fragile and do not tolerate movement or handling well. Their grow bed transportation
system is slow and gentle, and works well primarily because the individual plants are

supported and held in place by the surrounding plants, which helps keep them stable

42

1. INTRODUCTION

until they reach the harvesting line. Even so, many are damaged to the point where they
need to be discarded. For this reason, the farmer advised that it would be much safer
to retain the plant transportation system as it is and instead position multiple robots
alongside it. This would cause significantly less stress and damage to the plants than, for
example, removing the grow beds from the growing area and transporting them to the

robot on a conveyor belt.

Conclusion

The visit to O. Espedal Handelsgartneri AS provided real-world context that has greatly in-
fluenced the development of our harvesting robot. The insights gained have translated into
specific design decisions, including a gripper with rotational flexibility, a designated disposal
area, an Al/Computer Vision-based sorting and detection system, and a modular, interchange-

able gripper interface that allows for adaptability to future agricultural tasks.

il

Figure 11: Crispi-smile

43

4. PROJECT METHODOLOGY

4 Project Methodology

In this chapter, we describe how our multidisciplinary team structured our work, the processes

and tools we used.

4.1 Leadership model EG |

We adopted a flat leadership model in which all six team members shared equal responsibility
for planning, decision-making, and deliverables. Overseeing tasks such as leading meetings,
taking minutes, supervising interfacing, and contributing to the risk analysis were considered
shared responsibilities among all the group members. The goal of this approach is to encourage

creativity, collaboration and shared ownership.

4.2 Structure EG |

Team Maskin Team Elektro Team Data

Figure 12: Team departments by discipline

We created three departments to reflect each of the three disciplines of the group, where the
electronics department is supported by the other two disciplines. See Figure 12. Under this
flat leadership structure, the group as a whole were in charge of overseeing project development
and ensuring that deadlines are met. We used a Kanban board to keep track of workflow, but
internally, each department were encouraged to use their own preferred methods to ensure.
In practice this meant that design and development decisions, and tasks, were defined on the
group level, but how the the methods in which the tasks were completed was at the departments’

prerogative.

44

4. PROJECT METHODOLOGY

4.3 Project model EG |

Toso woogess | Newsmevew [o

Task 1 Task 2 Task 3

Tasic4 Task5 Task 6

Sprint1

Figure 13: lustrating our kanban board.

The group’s aim from the start was to use agile project development principles. Though we
started with the intention of basing delopment on SCRUM methodology, this did not prove to be
a good fit. We therefore moved over to Kanban, yet kept some of the key features from SCRUM
that worked well and aided our work. We found that developing a product Product Backlog,

doing weekly sprint planning sessions, daily stand-ups, and sprint retrospectives worked well.

Our task items followed a set structure, as seen in Figure 14:

A short and easy to understand title

A short description.

Acceptance criteria and verification/validation testing.

An owner, once claimed during a sprint.

45

4. PROJECT METHODOLOGY

® Task © 8698kx09 # AskAl X O %

ROS2 Utvikle FSM (task planner)

%8¢ Ask Brain to create a summary - generate subtasks - find similar tasks - or ask about this tas
© Status Topo » £4 Assignees Empty
) Dates &2 Start = €2 Due © Track Time Add time

Definere opp statesm f.eks: IDLE — WAIT_FOR_POSE — PLAN — MOVE — GRASP — PLACE — RETURN
Done When:
* FSMen kommer videre til alle states ved simulerte imputs.

* FSMen printer ut transitions.

Figure 14: Example of a kanban task/ product backlog item

Our Kanban summaries can be found in Appendix B.7.

Other key features we used in our work flow:

o Stand-up meetings. Short, max 15 minute where we inform everyone about what we’re
planning to do that day, along with any hindrances we're facing or support we need from

other members of the group.

o Sprint Planning Once a week we look at the product and pull items from it and place
it onto our sprint plan. The sprint plan consists of the work we’re planning to get done

the coming week. Product Backlog

e Supervisor meetings. We held regular meetings with our supervisors where we received

constructive feedback and discussed ideas based on our progress the past week.

o Sprint Retrospectives. These were held following sprint completions to evaluate our

process and optimise our workflow.

46

4. PROJECT METHODOLOGY

4.4 Work shops EG |

A number of workshops and educational excursions were held:

o SCRUM workshop before project commencement.5
» Workshop with Hydroplant Technologies 31/01/2025

o A visit to Espedal Gartneri where we learned about aggricultural farming from a farmer’s

perspective.1.4.1

4.5 Office and remote work days EG |

Before Easter Exams we held regular office days Wednesdays through Friday. The team main-
tained core working hours from 9.00-15.00, except for one member who attended office office
hours 9.00-12.00, with some flexibility. After this point and through to completion, we all
worked core hours 09.00-15.00 including a regular home office day on Tuesdays each week.

Tuesdays were considered "writing days".
Out project method resources can be found in the appendix in Section 3

Please refer to Appendix B.2 for earlier work written on project model.

4.6 Software used JCDH | SME

Below is a list of software used in the development of our project.

4.6.1 Shared software JCDH, EG |

The following table outlines the software used by all members of our team. These are important

pieces which facilitate communication and project management.

Artificial Intelligence
Some group members have used Al tools to support our workflow. This includes Al-assisted

text formatting to improve readability, without altering technical content. Copilot has been

47

4. PROJECT METHODOLOGY

used in Visual Studio Code for auto-completion and to explore different code strategies.

Software | Description Version | Href
ClickUp Project and task tracking system | Latest https://clickup.com
Clocklify | Time tracking software Latest https://clockify.me
Overleat | Software for editing LaTeX docu- | Latest https://overleaf.com
ments (used for the thesis itself)
Office 365 | Microsoft software such as Word, | Latest https://office.com
Excel, Powerpoint, OneDrive and
Teams

Figure 15: List of software used in the project (common software).

4.6.2 Computer engineering

JCDH | SME

Software Description Version | Href

Python Programming language used for | Latest https://www.python.org
development.

Poetry Dependency management and | Latest https://python-poetry.org
packaging tool for Python.

Doxygen Tool for generating documenta- | Latest https://www.doxygen.nl
tion from source code.

VSCode Source code editor with exten- | Latest https://code.visualstudio.com
sive support for development.

draw.io Diagram creation software. Latest https://draw.io

Postman HTTP APT testing software. Latest https://postman.com

Platform.IO | The use of PlatformlO allows | Latest https://platformio.org
us to prototype quickly and
change the development board
in the future without changing
software.

Google Colab | Jupyter notebook service used | Latest https://colab.google
for training Al models.

48

Figure 16: List of software used in the project (computer engineering).

https://clickup.org
https://clockify.me
https://overleaf.com
https://office.com
https://www.python.org
https://python-poetry.org
https://www.doxygen.nl
https://code.visualstudio.com
https://draw.io
https://postman.com
https://platformio.org
https://colab.google

4. PROJECT METHODOLOGY

4.6.3 Mechanical engineering

JCDH | SME

Software

Description

Version

Href

SolidWorks

CAD modelling software for 2D
and 3D workflows. Also used for
analysis.

Latest

https://solidworks.com

Figure 17: List of software used in the project (mechanical engineering).

4.6.4 Electrical engineering

JCDH | SME

Software

Description

Version

Href

Altium Designer | PCB design software.

Latest

Altium Designer

LTspice

Software for creating and sim-
ulation electronic circuits.

Latest

Analog Devices LTSpice

Figure 18: List of software used in the project (electrical engineering).

4.7 Other work

JCDH | SME

Please refer to Appendix B.1 for earlier project work, and Appendix B.5 for work on design

and website.

49

https://solidworks.com
https://www.altium.com/altium-designer
https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator.html

5. REQUIREMENTS

5 Requirements

5.1 Introduction JCDH | SME

Requirements are an important part of any project. They must be well defined, which means
that they are quantifiable using methods such as testing, validation and verification. As part
of the development of the requirements, stakeholders naturally provide input. It has been our
intention to follow the general recommendations defined in the ISO 29148 standard when devel-

oping these requirements [6]. Please refer to Appendix A for earlier work done on requirements.

5.2 User stories JCDH | SME

Before defining each requirement in detail, it is useful to create user stories to get an idea of
how a user will actually use the system. Figure 19 outlines the user stories we have defined,
which is divided into an “User story ID”, a “Short title” and the “User Story” itself.

User story ID Short title User Sto
As a farmer, | want the harvesting system to harvest plants autonomously so that | can reduce the need for
US-01 Autonomous harvesting manual labor.

As a farmer, | want the harvesting system to analyse plants so that it can optimise harvesting for different
US-02 Plant recognition plant types and handling needs.

As a farmer, | want the system to optimise handling of each plant, so that | can deliver produce meeting the
US-03 Optimal handling uniformity and quality expectations of my customers.

As a farmer, | want the harvesting system to operate efficiently, and safely to minimise risk of damages to
US-04 Safety and efficiency personnel, equipment or plants.
As a future developer, | want the system to be easy to expand or modify, so | can add new features or
update existing parts without disrupting the rest of the system.

US-05 Modularity and expansion
US-06 Scalability As a farmer, | want the system able to scale up to larger or more complex growing areas.
Figure 19: User Stories
5.3 Requirements in detail JCDH | SME

Our requirements follow these defined guidelines:

o All requirements shall reside within a specific US (User Story) ID, which is related to

context of the user story.
o All principal requirements shall have a Use Case ID.

o All principal requirements will have a named Use Case.

50

5. REQUIREMENTS

o All requirements shall have a Requirement ID defined in the format REQ-zyz-abcd.

o All requirements shall have a Requirement description.

o All requirements are given a priority of either A, B or C in order of importance.

Figure 20, 21, 22, 23, 24 and 25 outlines all requirements.

User Story ID: US-01
User story short title: Autonomous harvesting

Use Case ID Use Case Requirement ID Requirement Priori
The system shall be able to move the combined weight of the
UC-001 System requirements REQ-001-0001 arm, gripper and payload. A
REQ-001-0002 Cable management - avoid damage to cables in operation A

The project shall keep monetary costs as low as possible by
relying primarily on respources provided by Hydroplant
REQ-001-0003 Technologies and the University of South-Eastern Norway. A
The Leafy Automation system shall have a Human Machine
Interface that gives access to operational functionality: capture
images from the live video feed, see system status and Al
REQ-001-0004 results. A

The mounting of the base to a fixed horizontal surface shall be
UC-002 System integration REQ-001-0005 fascilitated through 4 x M8 bolt holes in the base. A

The system shall be be able to connect to an external 24 V DC
REQ-001-0006 power supply. A

All system operations shall take place in a circular area of @1200
UC-003 The working area specifications REQ-001-0007 mm with the robot arm base in the middle.

The work area shall be divided into 4 zones: pick Up zone,
REQ-001-0008 Placement zone, processing zone and robot base zone.

The base shall be able to rotate 300 degrees in the horizontal
REQ-001-0009 plane.

The robotic arm shall grip plants that are delivered to the pick up
UC-004 Moving plants using robotic arm REQ-001-0010 zone.

Once the robotic arm has gripped the plant, the robot shall move
REQ-001-0011 it to the next area as instructed by the control unit.

The root cutting mechanism shall perform a clean root cutting on
UC-005 Root cutting REQ-001-0012 first attempt at least 95% of the time.

REQ-001-0013 The system shall verify that roots have been cut off correctly. C

The system shall perform 3 attempts to cut roots off a plant
REQ-001-0014 successfully before discarding the plant.

The system shall stop the cutting process if >x N resistance is
REQ-001-0015 detected.

Figure 20: Requirements for US-01

o1

5. REQUIREMENTS

User Story ID: US-02
User story short title: Plant recognition

Use Case ID Use Case Requirement ID

UC-006 Capture an individual plant in the pickup area REQ-002-0001
REQ-002-0002
REQ-002-0003

UC-007 Classify plants REQ-002-0004

REQ-002-0005

REQ-002-0006

REQ-002-0007

REQ-002-0008

Requirement

The sensors shall detect an individual plant from the scanning
area with at least 95% accuracy.

The system shall calculate pick-up coordinates in X, Y, Z
dimensions with sufficient accuracy to pick up plant with a
success rate of 90 %.

The vision system shall isolate a plant from other overlapping
plants with an accuracy of at least 90%.

The system shall use Al technology to classify the plant types:
Crispi, Multiblond and Ruccola

The system shall use Al technology to estimate plant health
based on colour of leaves.

The system shall use Al technology to estimate if plant growth
stage based on size.

If plant classification confidence falls below 80 %, the system
shall attempt again 3 more times before requesting human
verification.

The Al classification algorithms shall run with at least 95%
success rate over 100 test samples.

Figure 21: Requirements for US-02

User Story ID: US-03
User story short title: Optimal handling

quirement ID

Determine if plant should be harvested with or

UC-008 without roots REQ-003-0001
UC-009 Determine the best way to grip the plant. REQ-003-0002
UC-010 Determine optimal and efficient handling. REQ-003-0003

REQ-003-0004

REQ-003-0005

REQ-003-0006

Requirement

The system shall determine whether the plant should be
harvested with or without roots, based on type.

The system shall decide the best method for the grabber to grip
the plant for pickup.

The system shall support soft touch gripping to avoid damaging
the plant.

The gripper needs to handle the salad in a effective and gentle
way. Without sensors (soft touch).

The gripper needs to be able to grip, carry and release leafy
greens, with weight up to 1 kg (gripper force).

The gripper needs to rotate around the end effector. <180
degrees (torque).

Figure 22: Requirements for US-03

User Story ID: US-04
User story short title: Safety and efficiency

quirement ID

Use Case

Detecting failures REQ-004-0001

REQ-004-0002

REQ-004-0003

REQ-004-0004

uUcC-012 Safety Factors REQ-004-0005

REQ-004-0006

REQ-004-0007

UC-013 Notify users REQ-004-0008
REQ-004-0009

REQ-004-0010

Requirement

Each joint shall have it's own defined movement boundary that is

enforced by limit switches

Each joint shall have calibration functionality integrated based
on limit switches.

The system shall use rotary encoders to report back on stepper
motor position to help detect missed steps.

Current sensing (StallGuard) - The system shall use motor
current sensors to detect overloads or out of bounds resistance.

Motors shall work within safe limits.
Mechanical elements (shafts etc) should handle expected
stressors.

Electronics (connectors, Mosfets, Tracewidth, powerplane,
resistor ratings) shall operate safely within expected
environmental conditions.

The system shall log gripping errors.
The system shall log cutting errors
The system shall log success.

Figure 23: Requirements for US-04

92

Priori

>

5. REQUIREMENTS

User Story ID: US-05
User story short title: Modularity and expansion

Use Case quirement ID equirement
The architecture shall allow new hardware and software
functions, such as root cutting, to be integrated as independent
modules, provided they follow defined communication interfaces.

uc-014 Modularity and expansion REQ-005-0001 A
The software architecture shall support modifiability by allowing

components to be changed or extended with minimal impact on
REQ-005-0002 system-wide behaviour.

Figure 24: Requirements for US-05

User Story ID: US-06
User story short title: System scalability

Use Case ID Use Case Requirement ID Requirement Priori

The system architecture shall be designed for scalability, such as
uc-015 System scalability REQ-006-0001 for introducing multiple robots.

Figure 25: Requirements for US-06

33

6. RISK MANAGEMENT

6 Risk Management

We will identify, assess, prioritize current and potential risk, and implementation of mitigation
strategies. The book used for reference is systems engineering Theory and practice [7, P. 83-
100]

For a bachelors thesis it is not required to have a fully complete risk management, we need
to show that we have a good understanding of what it is and how to deal with it and not
overcomplicate it.

Risks can be poor decision making or oversight of the system. This can lead to a temporary

stop of development or even backtracking to fix and mitigate risks in the system.

6.1 Risk identification and assessment DAB | VMN

Identify - assess — implement mitigation strat-
egy. Identification of current and potential)

Identify risks

risks that can disrupt the project and affect

) . \ J
the achievement of the goal set. Identifica-

. . . . —
tion must be an ongoing activity throughout

Assess risks (as pe.r \ik.e\ihood

the project to ensure continuous progress with | g "

-

minimal problems. All team members must
contribute and participate in the discussion of ¢ \

Prioritize risks (as per risk level

identifying risks in their respective disciplines from table)
-
and roles.
/—'ﬁ

. . select and implement a
After that is done, we assess each risk and | mitieationstrategy for eacn

risk

rank them in the figure 27. In the table, “~———

we group them into the categories Technical,

Group, Financial, and Human error. With

Document actions taken and
results achived

does the risk still
exist?

the category’s set we give them a unique id
to them like RT1-risk technical 1. This sim-
plifies the process of looking through the risk

NO

table Document actions taken and

results achived

The identified and categorized risks we assign

a number of what is the effect/consequence]]
o i . Figure 26: Risk management process
and likelihood of occurrence by looking at risk

matrix table:2. The risk matrix is 5x5 to have 1he figure has been modified to our needs from

book systems engineering theory and practice [7,
P. 92]

good accuracy.
We have set up an excel sheet that automat-

ically calculates risk factors based on the in-

o4

6. RISK MANAGEMENT

putted values. if needed, we can write a description in the risk table if required.

6.2 Risk management strategies DAB | VMN

Finding the best action to reduce or eliminate the likelihood or consequence of the risk. There
are several ways to deal with risks, such as acceptance, contingency, reduction, transference,
and prevention, discussed in the book.

Our risk table includes a mitigation strategy tab; there we write a short action as of how to
deal with the risk and to avoid overcomplicating, and also at the same time show that it has

been under consideration.

6.3 Risk analysis DAB |
1 Low/Med Low/Med Low/Med
2 Low/Med | Low/Med Medium Medium
likelihood 3 | Low/Med | Low/Med | Medium Medium Medium /high
4 | Low/Med | Medium | Medium Medium /high
5 | Low/Med | Medium | Medium/high
1 2 3 4
Effect/ consequence

Table 2: Risk matrix

95

9¢

Technical:
Maintenace of robot arm bad saefty mesures RT1 4 3{Medium stop button, maintnace program that shuts everything off for maintenance.
Power supply loss off power to the system RT2 3 2|Low/Med buying higher quality psu
Signal integrity signal issues RT3 4] 2|Medium better shielding of the electronics
Corrosion RT4 2 3|Low/Med paint, or elektroplating
Contamination of food RT5 5 3|Medium/high rutinely check for damage of gripper At end of week
in tandem with RT7. need to not overload, and soft correctly reads encoders. Tolorance stacking
Motor mising steps wrong position in space RT6 4 4|Medium/high in parts. Need acceleration curve for stepper motors to avoid lost steps
Motor overload motor cant move due to exiiding holding torque RT7 5 5|High when designing neeed to be under holding torque of the motor with some saefty margin.
Gripper squishing the salad RT8 3 4|Medium calibrating properly of the force requiared,
Communication error RT9 3 3|Medium ensuring fail safe, when message not recived after amount of tries safe shutdown
Camera placement bad positioning=bad data in, lens geats dirty, or broken RT10 3 3|Medium
Printing bachelor thesis having printing problems RT11 5 3|Medium/high planing in advance when to print,having backup method where to print
Groupe:
Sick-1 person RG1 3 1|{Low/Med home office, or a ersen overtakes work
Conflict Delayd development,bad groupe dynamics RG2 5 3|Medium/high kontrakt, mgte med karoline
Drops out of group RG3 5 2|Medium kontrakt
Sickness most of the groupe 2-3 peaple sick at the same time RG4 4] 3|Medium digital teams meeting to maximize performane while at home.
Financial:
Over budget passer ikke p ugifter ut RF1 b 4|High holde kontinuerlig logging av utgifter
Price of parts gking pa pris av deler RF2 5 4|High finne billigs leverandér og printe innhouse deler
Human error:
Breaking a 3d print part RH5 1 4|Low/Med 3d print a new part
Breaking a electronics part RHE6 2 5|Medium need to order new if time allows it, have backup or have a alternative replacpent
Breaking a motor driving motors in the arm RH3 5 5|High justdon't
Ordering wrong parts pulley,belt, PCB and more RH4 4 3{Medium Try to adjust/modify the parts to fit if possible. If time alloows order new parts if needed
RH5
RHB6

Figure 27: Risk Table

9

LINHINHOVNVIN MSTH

7. SYSTEM ARCHITECTURE

7 System Architecture

This chapter gives an overview of the system architecture that supports the Leafy Automation
robotic harvesting system. It will begin by presenting the academic literature which has greatly
inspired and influenced the Leafy Automation architectural design. The design drivers and
constraints will then be presented, followed by the architectural objectives that have steered
design choices in the right direction. From this foundation, we will present how the hardware
and software components of Leafy Automation are structured and interact together to enable
sensing, planning and execution of motor control. The systems layered architecture approach
combined with the communication methods by Robotic Operating System 2 (ROS2) will be

presented in detail, along with an overview of the software components themselves.

7.1 Literature review EG |

Our aim is to base our System Architecture decisions on established research and best practices.
For each source reviewed, we provide a summary of main points, gaps relevant to this thesis,

and an evaluation of how this source can support our upcoming architecture.
Software Architecture in Practice, Clements, and Kazman (2021)[8]

This textbook by Bass, Clements, and Kazman presents foundational principles and tactics
for designing software architectures. Early in the book, the authors discuss quality attributes
associated with software architecture, why they are highly important, how to identify the most
relevant attributes, and how to design for them. Most relevant to this thesis are the quality
attributes of modifiability, scalability, and testability. The book presents several tactics that
promote each attribute, providing an honest balance between benefits and trade-offs. A key
tactic presented in this book is the layered software architecture pattern. The authors define
layers as vertical groupings of related modules with strictly controlled interfaces, arguing that
changes confined to one layer do not affect the others. Benefits include easier extension by
inserting modules at the correct layer, focused testing scoped per layer, and clearer separation

of concerns to ease understanding and enable isolated development.

While this book has proven to be a valuable resource, it offers relatively few domain-specific
examples relating to embedded robotic applications. The authors focus primarily on large-scale

businesses.

We evaluate that this work provides good framework from which to identify the most important
quality attributes for the Leafy Automation architecture. It also provides a strong theoretical

foundation for our layered ROS 2 architecture and justifies the strict layer boundaries and

o7

7. SYSTEM ARCHITECTURE

interfaces between them.

Robot Operating System 2 (ROS2)Based Frameworks for Increasing Robot Auton-
omy: A Survey by Bonci et al. (2023).

Bonci and co-authors survey the state of the art in using ROS2 as a middleware to facilitate
perception, planning, and control modules, particularly in fixed-base robots. The paper reviews
existing ROS 2 features and tools, and proposes a high-level modular architecture for a pick-

and-place proof-of-concept. The main points we draw from this source:

Middleware The authors propose ROS2 as the glue that brings together sensors, algorithms,
and robot controllers. They contrast it with other frameworks (such as YARP, OROCOS,
MOOS) and highlight ROS2s extensive ecosystem of libraries, including Movelt2 for planning
and the ROS-OpenCV bridge for vision.

Layered, task-based architecture They decompose autonomy into seven core tasks: Per-
ception, Recognition, Behavior Planning, Trajectory Planning, Trajectory Re-planning, Motion
Control, and Manipulation. These are grouped into three layers (Perception 4+ Recognition,

Planning, Control) to enforce clear interfaces and facilitate modularity.

Planning and control Implementation Their proof-of-concept uses Movelt2 to generate
and adapt pick-and-place trajectories, and two ROS 2 nodes (Cobot Driver and End-Effector

Driver) to send commands to a commercial cobot and its gripper.

However, while ROS2s micro-ROS project is mentioned, the paper acknowledges that many
embedded platforms still lack robust ROS2 clients, leaving a gap for lightweight protocols or

custom bridges.

This source offers a practical, robotics-centered blueprint for structuring a ROS2based au-
tonomy stack, proving valuable for teams aiming to assemble perception-to-control pipelines
quickly. Their task-layer mapping directly tells us how to group our own nodes and define
clear topic or service interfaces between them. The overview of Movelt2 integration and case-
study citations also serve as guides for our proof-of-concept work. However, to address our

embedded-hardware constraints call for further research, particularly on protocol bridging.

7.2 Project Constraints and Architectural Drivers EG | BMR

Developing a system architecture should begin with a prioritised list of quality attribute re-
quirements. These form the basis for design decisions and guide trade-offs throughout the

development process. [8, p. 7-20] This section presents an expanded list of priorities, covering

28

7. SYSTEM ARCHITECTURE

both key project constraints and the most relevant architectural quality drivers. It reflects the
strict limitations on time and resources, as well as the central architectural quality goals of

modifiability and scalability.

Key Project Constraint and Architectural Drivers

1. Time 2. Budget and Resources
Submission date is Minimise spending
absolute. by utilising
provided
hardware.
Constraints
and
I Drivers -
3. Modifiability 4, Scalability
Design to Design for
fascilitate future industrial
development. deployment
scalability.

Figure 28: Key Project Constraints and Architectural Drivers

Time constraints

The bachelors thesis in engineering at the University of South-Eastern Norway (the University)
spans one semester and includes a number of mandatory events and deliverables. The final
submission deadline is fixed and non-negotiable, meaning the project must be completed within

this timeframe.

Budget and Resources Requirement REQ-001-0003 (see section 5) states that development
must keep expenditure to a minimum by primarily using resources provided by Hydroplant
Technologies and the University. This constraint has led to choices such as utilising supplied
hardware, opting for open-source software (such as ROS2, which is further explained in section

7), and avoiding third-party or proprietary solutions where possible.
Modifiability

The Leafy Automation harvesting system is an early-stage, proof-of-concept research project
that extends beyond the scope and timeline of this bachelors thesis. Therefore, a key objective is
to develop a software architecture that is both modifiable [8, p. 117-130] and flexible, enabling

further development and adaptation after the initial prototype phase.

To support this goal, modifiability was identified as an essential quality attribute from the
start. A modular architecture provides clear separation of concerns and well-defined interfaces
between components, allowing team members to design, implement, and test their contributions
independently.[9] This is also an advantage for a team working in parallel and under a tight

deadline.

29

7. SYSTEM ARCHITECTURE

Modularity also plays a critical role in the long-term modifiability and scalability of the system.
Well-encapsulated modules are easier to understand, replace, or upgrade without requiring
significant changes to the rest of the system.[9] This is especially relevant in a research and
development setting where future changes, improvements or extensions, such as new sensors,
gripper designs, or additional subsystems like plant pot or root removal, may be added to the
system. With a modular foundation, such additions can be integrated with minimal disruption

to the system at large.
Scalability

Scalability is an important goal for the Leafy Automation harvesting system. Although this
project delivers a proof-of-concept, the system is intended to grow over time, both in complexity

and scale.

A scalable design allows the same architecture to support higher output rates, additional func-
tionality such as root cutting or plant health checks, or the ability to operate multiple robotic
arms along the same production line. To make this possible, the software needs to be designed
around reusable components with clearly defined interfaces, so that software components can

be extended or duplicated without major structural changes or significant rewrites.

In line with REQ-006-001 (see section 5), the system is built from modular and abstracted
components that can be tested, updated, or replaced independently. This fits well with ag-
ile development principles and recommendations from modular software architecture research,
highlighting that well-separated, low-dependency components are essential for scalable and

maintainable systems.|9]

7.3 System Objectives EG | BMR

The Leafy Automation system is a project that aims to fully automate the harvesting of leafy
green vegetables in an industrial, agricultural environment. At this early proof-of-concept stage,
the robot is required to carry out a defined sequence of basic tasks: detecting and classifying a
plant, picking it up, transporting it, and finally placing it in a designated placement zone. This
functional sequence forms the backbone of the harvesting process and is illustrated in Figure 29.
The sequence is executed by a robotic arm, which is the main focus of this bachelors thesis.
The arm is positioned in the center of the working area, as shown in Figure 30, with further

detail provided in the zone layout shown in Figure 31. For a more thorough explanation of the

60

7. SYSTEM ARCHITECTURE

Functional Workflow Diagram

Capture plant Recognise plant Pick up plant Move plant Place plant

Figure 29: Functional Workflow Diagram

working area layout, see Section 8.4 Definition of Working Area.

Figure 30: Positioning of the robotic arm.

Grow
box with
plants
in

Top view

Grow box
out

(empty)

Figure 31: Working area zone partitioning

The workflow shown in Figure 29 has been derived from the project requirements defined in

61

7. SYSTEM ARCHITECTURE

section (see section 5). These requirements specify the functions that the robot must perform.
Based on this workflow, a set of high-level system objectives has been identified. These ob-
jectives describe the main capabilities that the system must perform and serve as a basis for
guiding key design decisions. Table 3 provides an overview of the architecture objectives and

their corresponding requirement references.

1D System Objective Corresponding Requirement
REQ-002-001
REQ-002-002
REQ-002-003
REQ-002-004
REQ-002-005
REQ-002-006
REQ-002-007
REQ-002-008
REQ-001-008
REQ-001-009
REQ-001-0008
REQ-001-0009
REQ-003-0001
REQ-003-0002
SO-04 | Motor control REQ-001-0009
SO-05 | Human interface REQ-001-0004

SO-01 | Capture and analyse plants

SO-02 | Motion planning

SO-03 | Task planning

Table 3: High-level system objectives.

System Objective SO-01: Capture and Analyse Plants The workflow begins when the
camera captures the image of one or more plants in the Pickup-zone. The image must then be
processed using Al-based image analysis to identify the type of plant and to estimate the best

gripping coordinates for the pickup operation.

62

7. SYSTEM ARCHITECTURE

System Objective SO-02: Motion planning Motion planning is an essential component
responsible for generating safe movement paths for the robotic arm based on input from the
Al-based recognition system. It should calculate trajectories that guide the end-effector, for
example, from its current position to the plant pickup coordinates, coordinating all five joints

to ensure smooth and precise motion.

System Objective SO-03: Task planning The system should support a coordinated se-
quence of harvesting operations, including plant detection, pickup, placement, and state han-
dling. This functionality must be organized and structured to allow for adaptations or new

tasks to be added over time.

System Objective SO-04: Motor control The system shall translate planned motion paths
into joint and gripper movements, enabling the robotic arm to carry out its tasks correctly and

in the correct sequence.

System Objective SO-05: Human Machine Interface The Human-Machine Interface
(HMI) should allow users to start and stop operations, monitor system status, and view error

messages. This is valuable in testing, debugging, demonstrations, and production.

7.4 System Overview EG | BMR

A layered architectural approach has been chosen, which separates the system into functional
blocks: perception, recognition, planning, high-level, and low-level motor control. The software
modules of each layer communicate through well-defined interfaces, allowing components to be
developed and tested independently. Further details of the software layers are provided in later

subsections.

Below is a summary of the main system components.

63

7. SYSTEM ARCHITECTURE

System Architecture Hardware Overview
Version 1: DM332T/DM320T Motor Drivers

Human Machine
Interface

Gripper mechanism Robotic arm

Servo motor driving the ;
gripper includes positional Motor drivers
feedback. 4 DM332T/DM320T

Drivers that operate the the
PPM/Feedback motors in the robotic arm.

PUL/DIR

|a—<0| 1>—— Limit Switches

Q‘ Central MQTT over WiFi "Core" Limit switches connected to
Raspberry PI5 | o Arduino Uno R4 WiFi each motor in the robotic arm.
c Sends signal when movement
amera limit is reached.
:SP32-CAM
Figure 32: System Architecture Hardware Overview
7.4.1 RaspberryPi 5 (Central) for high level computations EG | BMR

The development team was provided with one Raspberry Pi 5 and two Arduino Uno R4 WiFi
boards for use in the Leafy Automation project. The Raspberry Pi 5, referred to as Central
throughout the project, was selected to serve as the central processing unit. It is responsible
for receiving camera input, performing Al-related computations, executing motion and task

planning, and handling high-level motor control.

These tasks are computationally intensive and require a platform capable of multitasking and
multithreading. The Raspberry Pi 5 is equipped with a quad-core Arm Cortex-A76 CPU cluster
[10], making it significantly more powerful than the Arduinos. It also offers better memory,
native support for multitasking and the ability to run ROS2 [11]. ROS2 and its place in the
Leafy Automation system is explained in Section: Robot Operating System 2 7.

In addition to general-purpose processing, the Raspberry Pi 5 includes a dedicated Image Signal
Processor (ISP) and a hardware video scaler, which provide strong support for camera input and
image processing. This further supports selecting the Raspberry Pi 5 (Central) for perception

tasks and Al-based recognition models.

7.4.2 Arduino Uno R4 Wifi for low level motor control EG | BMR

The Arduino Uno R4 WiFi, referred to as Core is responsible for low-level motor control and
direct communication with the stepper motor drivers powering the robotic arm, and the servo
motor driving the gripper. It was selected due to its real-time capabilities [12] and suitability
for handling precise motor signals, as well as being one of the boards provided to the group by

Hydroplant Technologies.

64

7. SYSTEM ARCHITECTURE

During early development, we considered using Micro-ROS, however the Arduino Uno R4 lacks
stable support for this integration. Although community-driven support was released late
2024, implementing into the system architecture was considered too high a risk given the short
development timeframe. Instead, communication between Central and Core is implemented
using MQTT, with the broker hosted on the Raspberry Pi. This setup enables communication
between the high-level planning software and low-level motor control, while maintaining modu-

larity and allowing development to continue within the project’s hardware and time constraints.

Although less integrated than a full micro-ROS solution, the Arduino is a sound choice for

low-level motor control and supports the systems layered architecture.

7.4.3 Motor drivers EG | BMR

As is explored in Section Stepper Motor Drivers 10, motor control is initially handled using
DM332T and DM320T stepper drivers. These drivers came with the motor kit and are con-
trolled using simple pulse and direction signals. The only motor feedback the Arduino receives
is from limit switches, which detect end stop conditions to avoid over-traveling. A transition
to a more sophisticated TMC5160 driver is underway, providing additional features such as
Rotary Encoder feedback for motor position status, and UART-based communication. This
upgrade will take place once the custom PCB and supporting hardware are completed inter-
nally, and delivered from the external fabricator. For full details about the stepper motor driver

development and setup, see section ?7?.

7.4.4 Camera and Al JCDH | SME

The camera gives us the vision of our system. This provides us with knowledge of where the
robotic arm is placed in relation to the plant. A picture may be worth a thousand words, but
we need more concrete data points. This is where Al models come in, as they give us a way
to synthesize the picture into concrete data points which will be useful to the robotics. More
information about the camera can be found in Section 11.6 and information about how Al is

used in this project, is provided in Section 11.7.

7.4.5 Communication EG | BMR

The Leafy Automation system combines a layered architecture with publish/subscribe mes-
saging to achieve modular, distributed control. Within the ROS2 domain, discussed more
extensively in Section Robot Operating System 2 7, the layered software components, often
referred to as nodes, exchange data via Topics. This communication approach maintains loose

coupling between components while supporting scalability and fault isolation. [8, p. 117-130]

Between Central and the Core, we use MQTT, which is a lightweight publish /subscribe protocol

65

7. SYSTEM ARCHITECTURE

with the broker running on the Raspberry Pi. In early development we used HTTPS for
communication testing, but since switched to MQTT to reduce coupling and maintain faster,
more direct communication. More on this can be read in Section MQTT set-up between Central
and Core 7.

7.5 Layered Software Architecture EG | BMR

The software for the Leafy Automation system is structured based on the layered architectural
pattern, which is described in Software Architecture in Practice (Bass, Clements, Kazman,
2012)[8, p. 128-129] as an advised tactic for achieving modifiability:

Layered Software Architecture

Requests

Perception Layer

Al module

gripping
coordinates

Al module

Recognition Layer ™ Type of plant

Planning Layer Motion planning Task planning

Robotic arm .
Control Layer Gripper control
) control

ey

Hardware Low level motor
Abstraction Layer control

Services

. Planning Module . Core

Colour codes

. Perception Module

Figure 33: Layered software architecture for Leafy Automation

66

7. SYSTEM ARCHITECTURE

In a layered architecture, the software is divided into a hierarchy of vertical layers. Each layer
brings together modules that share common concerns. [13] An example of this might be two
control modules, one focused on operating the robotic arm and one for the gripper. As seen in

Figure 33 these two modules are grouped together in the Control Layer.

Communication between the layers is strictly controlled. An architectural layer may only
use the services provided by the layer immediately below it and may equally so only provide
services to the layer directly above it through a well-defined public interface. This grouping

and separation of concerns has several key benefits to the robotic application:

Modifiability is improved as logic within one layer can be modified without affecting layers
above, as long as the interfaces remain the same. This separation also supports multiple

developers to work on different layers concurrently, without facing integration issues.

Extendability A layered architecture makes it easy to extend functionality by introducing

new modules at the appropriate layer, without affecting the existing layers.

Easier to understand Well-defined interfaces between the layers simplify understanding and
debugging. A developer can focus on the single layer without having to understand the whole

system.

Easier to test Limiting complexity supports testability [8, p. 190-191]. A layered approach
reduces complexity by encapsulating concerns. This makes it much easier to define test cases

as they can be scoped down to a single layer, thus reducing the number of test scenarios.

7.5.1 Layered module-based design EG | BMR

The software components of the Leafy Automation system are organised into five layers, each
with a clearly defined functional responsibility: Perception, Recognition, Planning, Control,
and Hardware Abstraction. Each layer relies on the services provided by the layer directly
below it and exposes a well-defined interface to the layer above. The hierarchy maintains strict
boundaries where for example high-level decision logic never interferes with low-level motor

control, and hardware-specific code remains hidden from the vision and planning layers.

The Leafy Automation architecture is greatly inspired by and adapted from the work done by
Bonci, Gaudeni, Giannini and Longhi for their article Robot Operating System 2 (ROS2)-Based

Frameworks for Increasing Robot Autonomy: A Survey [14].

As seen in Figure 33, the Leafy Automation software is organised into five. Each layer is

responsible for a distinct aspect of the pick-and-place pipeline:

Perception Layer The purpose of this layer is to receive and, when applicable, preprocess

67

7. SYSTEM ARCHITECTURE

sensory data. For the scope of this thesis, this layer only contains a single camera node that

captures images of the plants in the pickup zone and sends them downstream for processing.

Recognition Layer The purpose of this layer is to process the information received from the
Perception layer and turn it into actionable data. This layer contains two Al-modules. One
module is to estimate plant type, and the other module estimates the most optimal object
gripping coordinates for the pickup sequence. This information is sent down to the Planning
Layer. The plant-type estimation node is not used further in this project due to time constraints.

It was meant to adjust handling parameters according to plant type to optimise plant handling.

Planning Layer The Planning layer is responsible for the pick-and-place workflow by turning
pose estimates into a sequenced series of actions. It includes two tightly coupled software
modules: the Task Planner, which decides the next operation (e.g. move to pre-grip, close
gripper, transport, open gripper, return home), manages calibration and error-recovery logic,
and publishes each step as a task goal. The Motion Planner, which is one recipient of these

task goals, calculates joint trajectories within the robot’s physical constraints.

Control Layer The Control layer sits between Planning and the Hardware Abstraction layer.
Its purpose is to translate abstract trajectories and grip actions into motor instructions. It for-
mats and dispatches MOVE and GRIP commands to the firmware, monitors acknowledgments
(e.g., message receipts and motioncomplete signals). As the Control Layer is responsible for
sending firmware instructions and enforcing timing and safety checks, the Planning Layer can
remain focused on strategy. This layer contains two software modules; one for arm control and

one for gripper control.

Hardware Abstraction Layer The Hardware Abstraction Layer handles low-level motor
control. Unlike the other layers that all reside on the ROS2 -based Raspberry Pi Central, this
layer is located in its entirety on the Arduino. This layer is responsible for translating control
messages received from the Control Layer into exact pulse and direction signals for the stepper
motors and PWM signal for the servo motor in the gripper. It monitors sensor signals from the
connected Limit switches and maintains communication with the Control Layer by sending a
heartbeat and status updates. By isolating these tasks, the upper layers in the structure can
remain hardware agnostic. This facilitates future upgrades for example to a different motor

driver with minimal changes, which is an important aim for this project.

7.6 Communication model EG | BMR

Effective messaging is vital for any autonomous robot system. In Leafy Automation, we use
the ROS2 publish/subscribe system for internal communication and a MQTT bridge to link

the ROS2 Control Layer to the Arduino firmware, handling low-level motor control. Figure

68

7. SYSTEM ARCHITECTURE

On the Raspberry Pi, ROS2 nodes share AI results, motion plans and task instructions over
well-defined topics. This decouples data producers from consumers and lets each layer evolve
independently. When it comes to real-time motor control, the Control nodes send MOVE and

GRIP commands over MQTT to the Arduino client. The MQTT broker is hosted in a Docker

container on the Pi to keep the setup portable and isolated.

This section first outlines the current ROS2 topic -based implementation. It then details the
MQTT bridge configuration between the Control layer and Arduino firmware. Finally, it of-
fers recommendations for future development such as services and actions implementation and

Quality of Service (QoS) tuning.

7.6.1 Robot Operating System 2 EG | BMR

Robot Operating System 2 (ROS2) Jazzy Jalisco (the most recent long term supported version,
at time of writing) is an open-source software platform specifically designed for developing
robotic applications. [15] It is distributed under the Apache 2.0 License [16], which grants
users a significant freedom to modify, apply and redistribute the software, without obligations
to contribute back. [17]. ROS2 provides an extensive suite of tools and libraries, encompassing
drivers, commonly used algorithms (such as perception, simultaneous localisation, mapping)
and various development utilities. [17]. There is also a strong development community sup-
porting ROS2, with a plethora of open-source packages available on the ROS Index and active

discussion forums with active contributors from both industry and academia.

At its core, ROS 2 is built around software nodes which are independent, encapsulated processes.
And with the ROS2 nodes being language-agnostic, they let developers choose the most suitable

programming language for each task at hand.

ROS2s communication is based on DDS, Data Distribution Service protocol from the Object
Management Group. DDS provides peer-to-peer publish/subscribe middleware with config-
urable Quality of Service policies, which is valuable for robotic applications that are often

resource constrained. [15] The three communication methods are:

Topcis provide an asynchronous, many to many messaging channel using standard or custom
made message types (for example, sensor_msgs/Image [18]). Any node can publish data, and
any number of nodes can subscribe. In Leafy Automation, the camera_node in the Perception
layer publishes raw images on the topic /leafy_automation/images. Downstream perception
nodes subscribe to this topic, perform image analysis, and then publish their outputs to topics
consumed by the Planning layer. ROS2’s many message types can be explored extensively at
the ROS Index [19]. [20]

Services offer a synchronous request /response pattern where a client node sends a request and

blocks until it receives a reply. This works well for oneoff operations, such as motor calibration.

69

7. SYSTEM ARCHITECTURE

In Leafy Automation, the Task Planner calls the /leafy_automation/calibrate_motors ser-
vice using std_srvs/SetBool[21] to calibrate all joints before a new pickandplace cycle. By

using a ROS 2 service, no other actions proceed until the calibration has completed. [22][20]

Actions Actions extend services to support longrunning tasks with progress feedback and can-
cellation. For example, the motion_planner_node sends a trajectory goal via the control_msgs/FollowJo
action to the arm_control_node. The action server returns periodic updates (e.g., percentage
complete) and allows the goal to be canceled in case of an emergency stop. This pattern is

ideal for pick-and-place operations that require real-time monitoring and safe abort capability.
[24][20]

7.6.2 ROS2 communication proposal for proof-of-concept devel-

EG | BMR
opment

Figure 34 shows the proof-of-concept proposal designed for this thesis. This overview is further
elaborated in Table 35, where more detail is added. This design is based exclusively on the
use of topics. This more simplistic design gives us fast access to testing and prototyping. A
more robust communication model, better suited for an operational environment, that also is

presented in the Future Works chapter 15.1.

70

7. SYSTEM ARCHITECTURE

Robot Operating System 2 Architecture

/leafy_afimages

|

|

[leafy_a/plant_type

[/leafy_a/grip_pose

I r

A

[leafy_a/trajectories

leafy_a/motion

leafy_a/calibrate

/leafy_aftask_goals

/leafy_a/gripper_commands

|

leafy_a/gripper

leafy_a/status/command_received

leafy_a/status/motion

leafy_a/status/gripper

leafy_a/status/calibration

leafy_a/status/heartbeat

Symbol explanation

| subscribes to
y topics

Name of node

topics this node
publishes to

71

Figure 34: Communication between nodes via ROS2 topics.

7.

SYSTEM ARCHITECTURE

Node

Subscribes

Publishes

Message Type

cmnemiuode

/lealy a/images

sensor _msgs/Image

plant_ type node

/leafy__a/images

Jleafy__a/plant_ type

custom_ msgs/PlantID]]

grip_pose node

/leafy _a/images

/leafy _a/erip_pose

geometry _msgs/PoseStamped]]

task_planner_node

/leafy__a/plant_ type
/leafy__a/erip_ pose

Jleafy__a/task_goals
/leafy__a/gripper_commands

custom__msgs/TaskGoal
custom_ msgs/GripperCommand

motion planner node

/lealy a/task goals

/lealy a/trajectories

trajectory msgs/JointTrajectory

arm control node

/leafy__a/task_goals

leafy__a/motion

std__msgs/String (MOVE J0 J1 J2 J3 J4)

/lealy a/trajectories leafy a/calibrate std msgs/Bool (calibrate)

std_msgs/String (GRIP 1 / GRIP 0)

gripper__control_node | /leafy a/gripper commands | leafy a/gripper

leafy a/status/command received
leafy a/status/motion

leaty a/status/gripper

leaty _a/status/calibration

leafy _a/status/heartbeat

leafy a/motion
leaty _a/gripper
leaty _a/calibrate

Arduino via MQTT

Figure 35: The Leafy Automation software nodes communicating via defined topics.

Remember to elaborate on the custom messages!

7.6.3 MQTT set-up between Central and Core EG | BMR

The Arduino Uno R4 WiFi lacks micro-ROS support and therefore cannot run as a native
ROS2 node. Given our architectural constraints and drivers (see Section: Project constraints

and architectural drivers T), this architecture avoids adding extra hardware and instead bridges
the Raspberry Pi and Arduino via MQTT over Wi-Fi, as seen in Figure 36.

MQTT Bridge between Raspberry Pi and the Arduino

Hardware: Raspberry Pi Hardware: Arduino

-
| Docker Container

\

Communication
Manager

MQTT
Client

A

Broker -

|
|
|
MQTT T >
|
|
|

Figure 36: Diagram illustrating how the MQTT bridge fascilitates communication between
ROS2 control nodes and the Core Communication Manager

The MQTT broker runs in a Docker container on the Raspberry Pi, which encapsulates all
of its dependencies, configuration, and runtime environment. This isolation ensures that the
broker can be updated, replaced, or rolled back without affecting the rest of the ROS2 system,
simplifies deployment on fresh Raspberry Pi images, and keeps the overall easier to set up and

reproduce.

72

8. PHYSICAL CONCEPT

The specific messages being sent over MQTT are listed along the "Arduino via MQTT" row in
Table 35.

7.7 Critical technologies JCDH | SME

Based on what has been defined in requirements and the risk analysis, critical technologies
defines the list of technologies which are required for optimal system functionality. This sub-
section outlines the critical technologies, along with brief descriptions of each technology. You
may read more about the details of these systems in following sections. When it comes to
defining these technologies it is helpful to visualize the requirements and risks to our system,
and then to build from there.

Table 4 shows a high-level overview of our systems critical technologies.

7.8 Earlier work JCDH | SME

Please refer to Appendix 4 & G.16 for initial work on architecture.

8 Physical concept

This section contains information about some of the initial work done to establish a set of
frames/boundaries around the physical concept of this bachelor project. This includes choice

and definition of robot type, outline of working area and reach of the robot.

8.1 Comparison of robot types SME | JCDH

To determine the most suitable pick-and-place robot type for our system, we did a compre-
hensive analysis of five different robotic arm types. Each type was evaluated based on key
performance criteria that align with our specific project requirements. By comparing these
options, we aimed to identify the most efficient and effective robotic arm for our application.

See appendix J for table of robot types evaluated.

To facilitate this evaluation, we used a Decision Matrix, which is a structured analytical tool

designed to compare multiple alternatives based on predefined criteria. This matrix provides

73

8. PHYSICAL CONCEPT

a clear framework for assessing the advantages and disadvantages of each robot type while

prioritizing the factors most critical to our projects success.

The Decision Matrix method enables a systematic ranking of the selected robotic concepts by
assigning weighted scores to essential evaluation criteria. By calculating the total score for
each robot type, we can directly compare their suitability and select the one that best meets
our performance requirements. The evaluation criteria were weighted on a scale from 1 to 5,
where 1 represents the lowest level of importance and 5 the highest. Since some factors are
more critical than others (particularly those that affect flexibility, scalability, and cost), this
weighting system helps reflect their relative significance. Similarly, each type of robotic arm
was assigned a general performance score within the same 1 to 5 scale to facilitate a direct

comparison.

The Decision Matrix is structured into columns that represent the evaluation criteria, weight,
the different robot types, and the total score assigned to each type. This structured approach
allows an overview of the selection process to identify the most suitable robot type for our
project. For a detailed breakdown of the evaluation and results, refer to the Decision Matrix
table.

74

8. PHYSICAL CONCEPT

8.1.1 Decision Matrix

Decision Matrix

Ratings 3 — 2 — 1
Criteria Articulated robot Delta robot Gantry & cartesian robot Scara & cylindrical robot
g | M | Ve e
Workspace range 3 4 12 2 6 12 3
Complexity 3 4 12 2 6 12 9
Scalability 4 4 16 5 20 20 16
Flexibility 5 5 25 2 10 15 20
Cost 4 4 16 3 12 16 12
Speed 2 4 8 5 10 8 10
Load capacity 1 3 3 2 2 5 4
74

Figure 37: Decision matrix table

5

8. PHYSICAL CONCEPT

8.2 Choice of robot type SME | BMR

In modern automation, various types of robots can be employed for pick-and-place operations,
each with distinct advantages depending on the task requirements. The choice of robot type
is influenced by several factors, including the nature of the load, environmental constraints,
precision and the overall system flexibility. For this project, we have chosen to design and
implement an articulated robotic arm, which closely resembles the movement and functionality

of a human arm.

Shoulder

effector

Base

Figure 38: Articulated robot arm with rotational base

Agriculture remains as one of the industries where manual labor is dominantly used, particularly
in tasks as harvesting plants. Despite technological advancements, the automation of plant
harvesting is still in its early stages. Our objective is to develop a robotic solution that can

efficiently handle plants with precision while offering adaptability for different scenarios.

An articulated robotic arm is characterized by multiple joints and a rotational base - see figure
38, which provides the necessary flexibility to achieve these goals. Several key factors influenced

our decision to select this type of robot:

« Flexibility in the orientation of the end effector/gripper. A critical requirement
for our project is the ability to manipulate plants from various angles and positions. Unlike
other robotic configurations, such as Cartesian or SCARA robots, an articulated robot
arm allows for greater range of motion, enabling precise handling of plants regardless of
their orientation. Additionally, as the position and the orientation of the plants may vary
within the working environment, having a highly maneuverable robotic system ensures

consistent performance.

o« Compact volume and reduced footprint for increased adaptability. The rela-
tively small volume of an articulated robotic arm provides greater flexibility regarding its
replacement within the working environment. Agricultural settings, particularly indoor

farming or greenhouse operations, often contain spatial constraints or physical obstacles

76

8. PHYSICAL CONCEPT

that limit the placement of automation systems. A compact design ensures that the
robot can be integrated seamlessly into various working environments without significant

modifications to the infrastructure.

o Interchangeable end effectors for diverse applications. While the primary focus of
this project is on harvesting leafy green salads, the system should be adaptable to handle
different types of plants. By designing an interchangeable gripper mechanism, the robotic
arm can be easily modified to perform various agricultural tasks, such as re-potting tomato
plants, sowing seeds, or handling different crop species. This modularity enhances the

robot‘s versatility and extends its applicability across the multiple agricultural processes.

o Ability to grip and lift plants from multiple angles. In practical agricultural
applications, plants may not always grow in a perfectly upright position. Leafy green
salads, in particular, can become tilted or positioned irregularly due to natural growth
patterns or environmental factors. Therefore, our robotic gripper must have the capability
to approach and lift plants from different angles, mimicking the complexity of a human
hand. This ensures efficient handling of plants in real-world scenarios where variations in

plant positioning are common.

o Integration with a mobile platform or rack system to expand the working
range. To further enchance the flexibility of our robotic system, we aim to design it so
it can be mounted on a mobile unit or a rack. This allows for an extended operational
range, making the robot suitable for larger-scale agricultural operations. By incorporating
mobility into the system, the robot can be deployed dynamically within different areas of

a farm og greenhouse, increasing its overall efficiency and productivity.

By selecting an articulated robotic arm for this project, we ensure that the system is not
only capable of precise plant handling but also adaptable to varying environmental conditions
and future agricultural automation applications. The combination of flexibility, compact de-
sign, modularity, and mobility makes this robotic configuration an ideal choice for advancing

automation in agriculture.

8.3 Robot arm diagram SME | JCDH

77

8. PHYSICAL CONCEPT

Robot arm \

Base

End effector/

Joints/ arm)
gripper

Management Strength/weight

Figure 39: Robot Arm Diagram

This is an overview of the implementations for our robot arm system. The robotic arm devel-

oped for this project is structurally divided into three primary subsystems: the base, the joints

and links (arms), and the end effector (gripper). Each of these plays a distinct role in ensuring

that the robot can operate efficiently and precisely within the defined work area.

Base

The base forms the foundation of the robotic arm and is responsible for anchoring the system

to the ground or mounting surface. As illustrated in Figure 42, the base is positioned centrally

to provide a stable platform for the arms operation.

78

8. PHYSICAL CONCEPT

A critical function of the base is to allow for rotation, enabling the robotic arm to access the full
work area as discussed in Section 8.4. This rotational capability is achieved by incorporating a

motor within the base that facilitates smooth and controlled movement around the vertical axis.

In addition to rotational mobility, stability is of great importance. A stable base ensures the
accuracy and repeatability of the robotic movements, which is especially crucial during precise
tasks such as harvesting delicate plants. The physical placement of the base is determined
by the layout and constraints of the target work area, and must be carefully planned during

installation.

Joints and Links

The robotic arm consists of multiple joints, connected by links, which collectively determine the
arm’s overall reach and degrees of freedom. For a detailed overview of the joints and linkages,

refer to Figure 42.

Each joint is equipped with a dedicated motor, which provides actuation for rotation or angular
displacement. These motors are responsible for driving the movement of the links, allowing the

arm to perform complex and positional adjustments during operation.

Between the joints, rigid links are used to maintain the structural integrity of the arm and
to define its length and range of motion. The configuration and dimensioning of these links

directly influence the robot’s accessibility to the objects it interacts with.

Cable management

An often overlooked but essential aspect of joint design is cable management. Proper routing
and securing of electrical cables is necessary to prevent damage during dynamic movements,
reduce mechanical wear, and enhance operational safety. The design should ensure that cables

do not interfere with the robots workspace or limit its motion.

End Effector (Gripper)

The end effector, commonly referred to as the gripper, is attached to the distal end of the
robotic arm. It is the primary interface between the robot and its environment, and is respon-

sible for handling the plants during pick-and-place tasks.

79

8. PHYSICAL CONCEPT

To accommodate various agricultural applications, the end effector must be modular and inter-
changeable. For instance, while the current gripper is designed to handle Crispi lettuce, future
use cases may include tasks such as seed sowing, which require a more delicate and precise
gripping tool. Therefore, designing the gripper as a swappable module enables flexibility and

scalability for additional agricultural tasks or new crop types.

Moreover, the gripper must offer a high degree of compliance and flexibility, allowing it to adjust
to variations in plant size, orientation, and shape. Plants may not always be uniformly aligned,
and the gripper should be able to grasp them from multiple angles without compromising grip
stability.

A soft-touch interface is also essential to avoid bruising or damaging the produce. This can be
achieved through the use of soft materialssuch as siliconeon the gripping surfaces, which help

to cushion contact with delicate plant tissue.

In terms of load requirements, the end effector must be capable of handling a maximum pay-
load of 1 kg, which is a design constraint established based on the heaviest anticipated plant
or product. This must be factored into both the mechanical and motor selection processes to

ensure reliable operation.

A dedicated motor is integrated into the end effector to control the gripping mechanism, pro-

viding the force necessary to securely hold or release objects as needed.

8.4 Definition of working area BMR | EG

To identify the optimal robotic concept, we first defined the robots working area and surround-
ing environment. The placement and range of the robot have not been part of the requirements
given by the contractor beforehand, so it has been important to specify and quantify these
together with Hydroplant Technologies (see Section 1 for details on integrating the robot into
the HPT system).

The working area, also referred to as the task space, is where the designated task of the robot
shall take place. For this project it has been defined as a horizontal plane where the leafy green

in its planter appears and is ready to be picked up (they might arrive via conveyor belt, but

80

8. PHYSICAL CONCEPT

the method of transportation lies outside the scope of this thesis). The robots type and design
will define its configuration space, which is all the coordinates which the end effector can reach.

The configuration space should fully encompass the task space, see fig. 40.

Q)

Figure 40: Configuration space and task space graphics

8.4.1 Working area quantification BMR | EG

o The horizontal working area will be a circle of 1200 mm diameter at table height, except

for a 200 x 200 mm square in the center where the robot is mounted.

o The reach of the robot arm will be half a globe of radius 600 mm, with some limitations

directly above and around the the robot’s mounting point.

e The robot arm will be mounted on the same plane and height as the table which receives

the plant trays.

A visualization of the quantified working area can be seen in fig. 41, including an example

division of task-specific zones.

81

8. PHYSICAL CONCEPT

200mm

200x500

Disposal

Zone

Outer segment of a Outer segment of a
semicircle with semicircle with
radius of 600mm, radius of 600mm,
segment cut 100mm segment cut 100mm
from center from center
Placement zone Pick up zone

Processing
Zone

200x500

1200mm

Figure 41: Top view working area quantification

8.5 Definition robot arm BMR | EG

Working on the robotic arm development as a group has made it important to use consistent
names and definitions for the distinct parts of the robot. This common vocabulary made it
easier for us to adopt design changes across disciplines and prevent interface conflicts. Each

link, joint and motor has it’s own name and abbreviation, see fig. 42.

82

8. PHYSICAL CONCEPT

Motor Base [M0] = 17HS15-1684D-EG10-AR4. Elbow
Motor joint 1 [M1] 2 23HS22-2804D-YGS50-AR4 2]
Motor joint 2 [M2] 2 17HS15-1684D-EG50-AR4

Motor joint 3 [M3] 2 14HS11-1004D-PG193-AR4
Motor joint 4 [M4] = 11HS20-0674D-EGS16-AR4
Motor end effector [MEF] 2 DSS-M15S 270 (servo)

Shoulder g

Wrist
3]
Base Wrist
Joint rotation
rotation [J4]

JO

End effector
[EF]

Figure 42: Robotic arm with labels

Alongside the digital model, we built a full-scale MDF model (see appendix D). This physical
prototype has been valuable for presentations and for discussing design ideas and challenges

within the team.

8.5.1 Degrees of Freedom BMR | EG

The robotic arm consists of rigid bodies (links) connected by joints. Attached to ground at the
base and ending in an end effector, this is also called a serial kinematic chain. The Degrees of
Freedom (DOF) of a robotic arm refers to the different possibilities of movement of the arm as
a whole, and is dependent on the amount and type of links and joints. DOF is an important
aspect when planning to build a robotic arm, since it directly effects its suitability for the given

task and the designated workspace.

Higher DOF offers more flexibility and precision, while lower DOF brings more constraints
on the robotic arm. Despite this, during development we should strive for the minimum DOF
needed to meet the task specifications. Adding more DOF’s requires additional actuators, which
in turn increases the complexity (both the physical build and the computational path-planning.

It also makes the robot arm heavier and more expensive to produce.

83

8. PHYSICAL CONCEPT

Degrees of Freedom for the Leafy Automation robotic arm

For the robotic arm we have chosen to have 5 joints to ensure good flexibility also for future
applications. The joints are of the type revolute joints where one link can rotate relative to
another around the same axis (this type of joint has one DOF, see fig. 43), and so the robotic

arm will have 5 degrees of freedom. The end effector will have it’s own DOF depending on type.

Joint axis

Figure 43: Revolute joint

8.5.2 Joint angle restraints BMR | EG

After determining how many DOF’s the robot arm shall have and how they will be arranged
to create the desired configuration space, some restrictions can be added to the rotation of the
separate joints. Since all joints are revolute, the maximum angle they can move is 360 degrees.
Only the base joint needs up to a full revolution to cover the desired work space, the other
joints will all have limited rotation. The range will be defined in the code and will have a direct
effect on the solution space for the inverse kinematic calculations. The angle limits will also
affect the design of the joints and the wire lengths required. The joint restraint angles can be
seen in table 44 and fig. 45.

84

8. PHYSICAL CONCEPT

Joint: | Name: Around axis: | Angle: Range:
JO Base Zin Qo 0-300°
n Shoulder Zy Oy 0-90°
J2 Elbow Lo S]7 0-150"°
J3 Wrist Zia O 0-180"°
J4 Wrist Zya Oya 0-180"°
J5 End Effector | 45 Q5

8.5.3 Configuration space

Shoulder

Figure 44: Joint restraint angles

Wrist pitch

Wrist roll

Figure 45: Visualization joint restraint angles

BMR | EG

The configuration space, meaning every point within the end effectors reach, is generated by

using link lengths and joint-angle restraints. This is best done using a robot simulation tool

(like MATLAB) for ease of calculation, but to get an initial understanding we have made a

2D scatter plot in Excel. Figure 46 shows a side-view of the configuration space alongside

working-area boundaries and sample lettuce placements for reference.

85

8. PHYSICAL CONCEPT

120

Working area def.
600 mm.
horizontal reach

A snann

Crispi lettuce for
reference

Vertical direction (in cm)

Area reserved for
robot base and
arm

80

Horizontal direction (in cm)

Figure 46: Scatter plot of configuration space

The scatter plot was made using a straightforward equation for planar forward kinematics that
use trigonometry (see fig. 47). When using this equation it is important to put in the values
for the restrained joint angles measured counterclockwise as seen in fig. 48. To get the right
values for the y- coordinates of our robot arm, we added the height from the bottom of the

robot base to the first axis to the equation to shift all the points up.

P. =1, *cos(By) + l» * cos(By + 85) + 15 * cos(B, + 8 + 83)
B, =1, *sin(8;) + I, * sin(@; + 6;) + 15 * sin(6, + 6, + 65)

Figure 47: Equation for planar forward kinematic [2, p. 2]

86

8. PHYSICAL CONCEPT

L2 -----------------

2

..

LO
A AL TAF X

Figure 48: Diagram for forward kinematic equation

This type of plot can help with figuring out where the dead zones are and where the robot
must be restrained to avoid colliding with, for example, the base or the table. The plot only
shows the outer reach of the 3. link, since the end effector will be exchangeable and so have its
own unique length. The excel sheet is made dynamic and could be used to test how different
link lengths or restriction angles will effect the reach of the robotic arm, for example for future

applications (see appendix H).

87

8. PHYSICAL CONCEPT

Table 4: Critical technologies

Technology Purpose Key Challenges | Considerations
AT recognition Identifies and classifies | Wrong High-quality

the plant classification, training data,

accuracy real-world testing

Robotic handling Picks up and moves Mechanical Durable

plant failure, precision components,

precise handling

Root cutting Cuts the roots of the Mechanical Durable
mechanism plants failure, precision components,

precise handling

Water proofing and
environmental
protection

Protects electronic
components from
water and humidity in
the hydroponic
environment

Ensuring full
water resistance,
preventing
corrosion

Use water proof
enclosures,

IP-rated

components

Human Machine
Interface (HMI)

Provides a user
friendly interface for
monitoring and
controlling the system

Designing a user
friendly UI,
ensuring
responsiveness,
accessibility

Web dashboard,
mobile app,
status indicators

Power management

Manages the power
delivery to robotics,
sensors and micro

Correct voltages
and amperage to
all components

General electrical
safety, safety in
case of water

controllers spills
Failure detection and | Detects failures and Sensor reliability, | Redundant
recovery ensures system software Sensors,
continuity robustness error-handling
algorithms

Leafy Automation
Core (embedded
devices)

Responsible for
handling processing
and sensor 10

Processing speed

Safety in case of
water spills

Leafy Automation
Central

Central hub which
does Al processing
and a web server

Security and
complexity

Simple and easy
to connect to the
embedded system

Communication Facilitates the Choosing the Transmission
protocols communication right protocol speed
between the embedded | based on current
systems, the Leafy knowledge
Automation Central
and the HMI
Motors Movement, facilitates | Budget Torque, speed

robotics

88

9. MECHANICAL

9 Mechanical

This chapter outlines the mechanical development process of the robotic gripper, detailing the
design, prototyping, and evaluation of its key components, namely the base, joints, and gripper.
Together, these parts form the structural and functional core of the robotic arm. As seen in
figure 39

The design evolution of each mechanical subsystem is presented, from initial CAD modelling
and material selection to 3D-printing, assembly, and testing. Particular emphasis is placed on
the iterative nature of the design process, including the rationale for structural modifications

and the technical considerations that informed each decision.

The chapter also compares prototypes, highlighting improvements in mechanical robustness,

manufacturability, and functional performance based on empirical testing and user feedback.

9.1 The base BMR |

The base is a revolute joint with a vertical axis, and the motor shaft is the connection point
between the stationary part attached to the table, and the rotating part attached to the rest
of the arm (see fig. 49). The base is subjected to both axial load from the combined weight
of the arm with payload and moment load from off center mass (to read more about this see
appendix D). For rotation of the base we selected a Nema 17 motor with a 10:1 gear ratio for

direct drive. For the base interface to the HPT system, see appendix D.

89

9. MECHANICAL

Moment load

N

Axial load

Rotating base

Figure 49: Different forces acting on base

9.1.1 Material choice BMR |

Important for the base material is that it is rigid, long lasting and strong. Weight restriction is
not critical, as is the case for the rest of the robotic arm. Low carbon steels (AISI 1020-1050)
are a good choice for shafts ([25, p 375]. The base consist mainly of an installation flange,
bearings, a housing and a shaft, so a low carbon steel will be the preferred material. This
material will also combine well with the motor shaft and bearing, since these are also made of
steel. The robotic arm will possibly operate in an environment with high humidity, so an AISI

1035 stainless steel would be a good choice to avoid corrosion.

Since the material for most of the robotic arm is aluminium, it is important to take account of

possibilities for galvanic corrosion in the interfaces between the materials.

9.1.2 Design process for the base BMR |

Since this project uses an agile workflow, the design has undergone many changes along the
way (see fig. 50). The changes are brought on by feedback from our client (HPT), or the other

team members, mostly due to interfacing challenges and possibilities.

90

9. MECHANICAL

Figure 50: Initial design ideas V1, V2 and V3

Base V1

In the first design, the base was built as a simple container for the motor with a rotational top.
An advantage with this design was that the motor wires were kept away from rotation, and the

flat top surface gave a very adaptable interface to the arm.

Base V2

The second design idea came from realization that even though the motor wires for the base
would be kept away from rotation, the rest of the wiring from the arm would not. All these
wires needed connection to the same control units, so it seemed a good idea to gather them at
a single point on the base. The motor was flipped upside down so the shaft was going down to
the stationary plate and the motor rotating itself and the arm on top. This way all the wiring

coming from the arm itself could combine with the wires from the base motor.

Base V3

Building on this idea, the base plate could extend to hold a box with all the control units and
all connections for the wiring could be assembled on top of the rotating base. This way there
would only be one cable, the main power supply, that needed to follow the rotation of the arm.
This design would not only keep the wires organized and free from rotational drag, but would

also make the whole robot more easily portable.

The control unit box would contain the motor drivers, the arduino and the Rasberry Pi. To

help with heat dissipation a small fan could be implemented together with a perforated wall.

Base V4

To avoid conflict between the required working area and the elongated base plate under rota-
tion, it was decided to attach the control unit box to parts of the base link (L0) with brackets
and to design it to build in height to keep the base footprint as small as possible (see fig. 51).

The configuration plot (section 8.1.1) could be used here as an insight to were the dead zones

91

9. MECHANICAL

of the end effector were, so the control unit box could be placed intersecting that area.

Limit switches are used to stop unwanted rotation outside the limits of the operating area
and is also used as a positioning reference (see section 10). Two limit switches were positioned
beneath the rotating base plate, and a removable block was implemented to the stationary base
part as a trigger, see fig. 51. The limit switches would take away some of the possible 360
degree rotation, and we decided to make a model of the base in MDF to test how the limit
switches would work and how much internal distance was necessary, see fig. 52. The trigger

block could be removed for the initial testing, to not damage the limit switches.

Control
unit box
brackets

Limit

switches \\

Removable

Figure 51: MDF CAD model V4 (CAD motors from [3])

92

9. MECHANICAL

Figure 52: MDF model of base for testing limit switch position

For the finished design for the prototype see section 13, and for thoughts about future work on

the base see section 15.1.

9.2 The Joints / arm DAB | VMN

In this section we talk about joint designs, design decisions and designing process. Need to
choose material for the parts. Material choices are based on weight reduction, ease of assembly
and cnc machinability including the price. The joints and links should handle the moment and
bending forces of its own weight including whit a set gripper weight that can be up to lkg and
a payload of 850-1000g

9.2.1 Material Choice DAB | VMN

Joints

Aluminium 6061-T6 was chosen due to being most common and popular alloy grade to use and
the website JLCCNC [26]uses specifically 6061-T6 alloy. The alloy is available in SolidWorks
material library so we don’t have to find and input it manually to the library

Link/arm

The links are made from aluminium profile V-slot type V2020 which is extruded from 6063-T5.
2020 stands for the profile dimension 20mmx20mm. It was chose due to being supplied by our
employer, witch means we don’t have to use our budget on this. But the extruded profiles are
really affordable to buy per meter.

the employer orders from website zeptobit[27], there we can find what type of aluminium its

93

9. MECHANICAL

extruded from. It is also in the standard solidworks material library

9.2.2 Direct drive joints DAB | VMN

Consideration of direct drive was to simplify and ease the assembly process. With a direct drive
you need to consider bending forces acting on the gearbox shaft, which will impact the lifetime
of the gearbox and bearings, since the weight of the assembly will be resting on the shaft.
Because of this we need to add a second bearing to counter act/minimize the moment forces
acting on the gear box bearing. The second bearing will be integrated in the joint and is gonna
be removable to ease servicing of the robot arm.

A positive thing with direct drive is that it can rotate full 360°.

V0.2

(a) normal view (b) Exploded view

Figure 53: Joint V0.2

The joint interface between aluminium profile and the joint are four extruded pegs that are

able to slide inside the aluminium profile

Figure 54: Aluminium profile

The aluminium profile can be seen in figure 54.

Why didn’t we also create a small extrusion around the profile for more stability. It was a

94

9. MECHANICAL

aesthetic choice to have the design flush fit against the link.

since we want a flush fit the aluminium profile dictates the dimension of the raw part material
at the interface point to be 20mm x 20mm of profile or 20mm x 40mm of two profiles.

Look at the surface where the motor mount interface in figure 53 (b), it is located at the part
with the bearing mount. Motor used in this joint is a NEMA 17 it uses 4 x M4 screws for
mounting.

The thickness of the motor mount location on the part is reduced to allow for the shaft to
protrude enough for the opposite part to interface with the shaft key.

The Bearing mount surface is machined directly in the joint, this causes the part to be higher
than 20mm in thickness. the bearing surface is machined to be a interference fit, so that it
can be pressed on, and a ring with evenly spaced five m4 holes is pressed on the outside of the
bearing. this ring is for ease of assembly and so that the whole arm dosnet need to be dissembled
just to press out a bearing. the bearing used i a ID 20mm, OD 27mm, and thickness is 4mm
I speculate that problems with this iteration is that the pressed on ring may slide because of
bending moments without no backing. Also the thickness of the part needs to thin enough to

withstand the forces while maintaining good shaft protrusion to opposite part.

V0.3
This iteration is with adjustment and modifications to try resolve issues and address possible

issues.

(a) normal view (b) Exploded view

Figure 55: Joint V0.3

Differences from last iteration is where the bearing presses on. A removable bearing adapter
part was made see figure 55 (b) so that the part is 20mm when machine and can be easily
removed with the bearing. The bearing adapter is screwed trough the back side of the motor
mount. bolts used for bearing adapter are 4 x m4 screws. So you screw together the arm first
and then mount the motor. There are indents in the bearing side piece so that you can screw
in the motor screws.

A useful unintentional design is that when you want to separate the bearing and bearing adapter

95

9. MECHANICAL

you can screw in longer screws to push the bearing off.

Interface between aluminium profile and joint added extra height in middle 6mm wide to be
flush with the alu profile se figure 55. Also added screw holes two M4 crews to tighten against
alu profile to prevent moment and slip. while also removed to legs to alu profile interface so
that the parts are more easily machinable, since now there is good space for the end mill to get
in-between and machine properly. the piece just need to be flipped to machine the other side.
since the tight small gaps in-between the legs are almost impossible to machine or requires fine
machining which costs allot. this design is limited only to 180°angle. this can be easily adjusted

by just moving the bearing interface face forward to increase movement angle.

V0.4

this is the last iteration created of direct drive joint before moving on to belt driven joint design.

(a) normal view (b) Exploded view

Figure 56: Joint V0.4

This iteration have small changes. moved away from two aluminium profiles used to one instead
for weight reduction, also moved the bearing forward for greater angle of rotation mentioned
in the last iteration to be done, and a circular extrusion to keep the motor surface covered for
a nice aesthetic look.

figure 56 shown is for joint 2 to joint 3. but joint 3 will be the same just adjust the design for
use of one aluminium profile and a nema 14 motor instead of nema 17.

joint 1 v0.4 has not been create before moving to belt design.

9.2.3 Belt drive joints DAB | SME

The experience and knowledge we gained from designing the direct drive, we brought with us
in the process of designing the belt version.

The choice to use belt drive mechanisms, was to offset the weight more towards the centre of

96

9. MECHANICAL

the robot so there would be less strain on the motor, which will improve lifting capabilities.
With the addition of pulleys we can adjust the gear ratio, by increasing or decreasing it. This
helps if limitation on torque would occur on some of the motors. The site used to find pulleys
and belts that would be suitable for our robot arm, you can find here [28], which was introduced

to us by our employer.

The pulleys we found for our shaft sizes.

J1 J2 J3
« 162230K14 . 162216K08 . 162214K05
— 30Teeth, T4mm — 16T, 8mm — 14T, 5mm
bore
. 162230K20 o 162222K12 o 162228K08
— 30T, 20mm — 22T, 12mm — 28T, 8mm
o Gear ratio of 1:1 o Gear ratio of 1.375:1 o Gear ratio of 2:1

These pulleys use a belt type T5 with a width of 10mm. The pulleys are made from Aluminium

similar to EN AW2017A stated on their website. You can see more detailed explanation for

belts and pulleys in Appendix C.

(a) normal view (b) Normal view

Figure 57: Joint V0.1B J1 and J3

We can start with the part that interact with the base (a) in figure 57. These two plates sup-
ports the NEMA 23 motor that has a offset from the centre at the same plane as the arm so

97

9. MECHANICAL

that some of the weight of the motor acts as a counter balance for the arm, and is mounted so
that the main body of the motor is in the middle to minimize bending forces on the mounting

plates. The plates have also dowels underneath to have correct alignment with the base.

The joint uses 2 bearings for a 20mm shaft size, the bearings are pressed in to each plate for

good stability.

The transmission of rotational and moment forces to the robotic arm was inspired by the
method used to fasten connecting rods to a crankshaft. One piece is the main part going to
the rest of the arm with a mounted NEMA 17 for joint 2, and the end cap that is bolted on.
Both surfaces, and shaft are equipped with ®4mm holes to use a shaft-pin instead of the usual
shaft key. It is easier to assemble this way, since you can disassemble the whole arm without

disassembling joint 1.

Joint 3 (b) in figure 57 is almost identical to J2, but one difference is that it goes from single
profile to single profile, 2 bearing to support a 8mm shaft and stabilize moment loads. We also
have a small motor for rotation of the gripper. One small problem that occurred is that the
motor is quite long when attached to the gearbox. So because of that, the bracket around it
goes up to the motor and clamps around it for a good snug fit. One adjustment to help with

this, could be adding two brackets for good stability from moment forces.

(a) normal view (b) Exploded view

Figure 58: Joint V0.1B J2

J2 in figure 58 is connected to the motor for joint 3, and the bearing that is used is a thin
section bearing to support a shaft of 12mm. The part where a NEMA 14 motor is mounted
needs to be long enough from the shaft to motor shaft so that we have adequate range of motion

before motor touches the frame.

98

9. MECHANICAL

9.2.4 Belt tensioner design DAB | SME

We tried making a simple belt tensioner that fits in the aluminium profile and is fastened in
place by a M4 screw. It is made so that you do not have to disassemble the arm to put in the
aluminium profile, just put in place and twist it so that the legs move under the aluminium
profile (See figure 59).

An M4 screw is threaded into the component, which causes the legs to expand since the hole
is smaller. This makes it a better and more snug fit, and once the screw reaches the bottom of

the hole, it also pushes it up and presses it more against the aluminium profile.

Also the design has a Imm thin 14mm spanner that holds it in place, so that it is easier to

insert the screw.

Figure 59: Tensioner for belt

The tensioner for joint one is more tricky to design, since we need to create a small rail where

it can slide in and be set in place by a screw.

Bearings used for the tensioners are the same used in joint 3 since we had quite a few of those

bearings.

99

9. MECHANICAL

Generally these tensioners were designed to be 3D-printed and not to be made in any other

specific material.

If we would like to have better tensioner we would go for a off the shelf tensioner pulley, and

only manufacture the interface between aluminium profile and tensioner pulley.

9.2.5 Limit switch placement DAB | SME

There must be 2 limit switches per joint and for gripper rotation to define end stops. Read
more about limit switch in later section 10. And for correct working angles required, refer to
section 8.1.1 figure 44.

For joints 2 and 3

We were thinking that the easiest placement would be on the Aluminium profile since we can
easily change its position along the profile and also add a joint to adjust the angle of the switch

for fine tuning. It gives us plenty of flexibility for testing.

Joint 1

Need to make holes in the side plates in joint 1 so that we can create limit switch brackets to
get the correct angle we desire.

For the Gripper

Made small extension from the motor mount bracket. It extends almost to the edge of the gear
box and the switches are stacked to reduce used space and ease of installation using only 2 x

M2 screws to hold the switches in place.

100

9. MECHANICAL

Figure 60: Gripper limit switches

9.2.6 Single(mono) design vs multi part design DAB | SME

We have created a multi part design, in this section we will discuss and compare it to a single

piece design.

Modularity

With multi part design each piece can be modified, upgraded, or replaced without redesigning
the whole product. It gives greater flexibility for future adjustments, and customizations re-

quested by the employer.

But with a mono piece you need to make a whole new part which leads to more expensive

development, repair, and future development.

Cost

Multi parts can be more easily produced using standard manufacturing processes to potentially
reduce overall costs. However, it requires more precision in assembly to maintain quality and
performance. With a mono piece it is the cost of machining the whole thing that can get ex-

pensive fast if the parts are large, and if it is not possible to use standard production techniques.

101

9. MECHANICAL

Maintenance and repair

Multi parts allow for easier repair since a malfunctioning part can be replaced independently,
while with a mono piece you have to dissemble everything which introduces a longer down
time and increased repair costs. Individual component failure can be harder to detect and fix

compared to an assembly.

Design challenges

One challenge with multi parts is that we need to ensure a proper fit between parts and have
good structural integrity in junction points, like joints, aluminium profile to end parts, and

more.

While mono parts eliminate a lot of connection points reducing misalignment and give better
structural integrity through out the part, it demands high control over manufacturing tolerances

since there is no opportunity to correct errors during assembly stage.

9.3 Gripper SME | JCDH

In the process of selecting an appropriate gripper for our robot arm, we did a comprehensive
review of existing robotic gripper technologies. This included conventional designs such as jaw
and finger grippers, as well as more advanced soft robotic solutions like pneumatic soft grippers
and Fin-Ray grippers. Each concept was evaluated on the basis of its adaptability, mechanical

complexity, and suitability to handle fragile produce such as lettuce.

Of particular importance was the integration of soft-touch technology, which is essential in
agricultural applications to avoid bruising or damaging delicate plants during harvesting. Ma-
terials such as silicone and Thermoplastic Polyurethane (TPU) were identified as favorable due
to their flexibility, cushioning properties, and compliance with food-contact safety standards.
Techniques like silicone molding offer customizable and biocompatible gripper surfaces that

enhance both precision and gentleness during operation.

The Fin-Ray gripper emerged as a strong candidate due to its simplicity, compliance, and
natural ability to conform around irregular shapes without the need for complex sensors. This,
combined with the ability to 3D-print the design using food safe materials, makes it a cost

effective and scalable solution for controlled environments like hydroponic facilities.

102

9. MECHANICAL

A more in-depth technical overview of each gripper type, along with discussions on material

selection and soft-touch design principles, is included in Appendix C.C.
Materials and Techniques

The gripper components in this project were manufactured using Fused Deposition Modeling
(FDM), which is one of the most accessible and widely used 3D-printing methods. This technol-
ogy melts thermoplastic filaments and extrudes them layer by layer to form the final geometry.

To read more about 3D-printing, go to Section 13.
Two primary materials were used for the gripper:

» Polylactic Acid (PLA): Chosen for its ease of printing, rigidity, and availability. PLA
was used for all structural components where stiffness and dimensional accuracy were

required.

o TPU: Selected for the Fin-Ray fingers in Prototype 2 and final design, TPU offers the
flexibility and elasticity necessary for soft-touch gripping. It allows the fingers to deform
around the object being handled, reducing the need for sensors while enhancing adapt-
ability. We used TPU 75A, which is very soft and flexible. We also tested TPU 95A,
that is much harder and more rigid. For the purpose of the Fin-Ray gripper it was most

suitable with the 7T5A since we wanted a more stretchier TPU that had higher elongation.

Moreover, modularity was prioritized to facilitate reprinting and replacement of individual com-
ponents without the need to manufacture the entire assembly again. This modular approach
was especially valuable for testing and educational environments with limited budgets and ac-

cess to industrial manufacturing tools.

Benefits and Limitations

The primary advantage of using 3D-printing in this context was the ability to rapidly iterate
on the design at minimal cost. Changes could be made in Computer-Aided Design (CAD) and
quickly verified with a physical prototype. However, 3D-printing is not ideal for all application
components that experience high mechanical loads or require long term durability, and may
eventually need to be replaced with machined metal versions. These considerations are explored

in more detail in chapter 15.1.

103

9. MECHANICAL

9.4 Design Process for The Gripper

Gripper

The first prototype focused on developing a
jaw-style gripper, primarily intended for ini-
tial testing, data collection, and integration
with electronic components. This version was
not designed to serve as the final gripper de-
sign for the robotic arm but rather as a pre-
liminary functional model to support early-

stage development.

The design was intentionally kept simple
to ensure the ease of manufacturing, cost-
effectiveness, and rapid iteration. An impor-
tant consideration from this design was modu-
larity since the gripper needed to be easily re-
placeable to allow for quick upgrades in later
prototypes. At this stage, we also evaluated
whether to implement soft-touch technology

or to postpone this feature until a later ver-

SME | JCDH

V1

Figure 61: Gripper V1

sion more aligned with the final design goals. For prototype process and development of V1,

read more in Section 13.
Gripper V2

The second prototype shifted focus toward
developing a more advanced gripper capable
of imitating the flexibility and functionality
of a human hand. This iteration introduced
finger-based gripping mechanisms inspired by
the Fin-Ray principle, which is a form of soft-
touch technology that allows for passive adap-

tive grasping.

This design enhancement significantly im-
proved the grippers ability to conform to ob-
jects with complex geometries and fragile sur-

faces. Such adaptability is crucial when han-

104

Figure 62: Gripper V2

9. MECHANICAL

dling delicate produce, such as leafy greens, in
agricultural automation settings. By apply-
ing an iterative design approach, the V2 prototype demonstrated a promising balance between
flexibility, precision, and gentleness which are key attributes for robotic harvesting applications.

For prototype process and development of V2, read more in Section 13.
Final Gripper Design

The final gripper design is almost identical to the V2 prototype, with only minor modifications.
The most notable change was the addition of two brackets mounted on the sides of the gripper
body. These brackets were introduced to enable the integration of limit switches on the end
effector, ensuring reliable contact during rotational movements of the gripper. This addition

supports position feedback and enhances overall control of the system.

Following the successful testing of the V2 prototype, the design proved to be functional and
well suited for proof-of-concept validation. Given that all components were 3D-printed, and no
parts were machined, the Fin-Ray inspired gripper was selected as the final concept. Its soft
touch, adaptive nature, combined with the practicality of additive manufacturing, made it the

most viable solution for the intended agricultural use case.

Figure 63: Final Design

9.4.1 Calculations SME | JCDH

Gear calculations

105

9. MECHANICAL

Sources for maximum torque and force/ torque formula you can find here. [29].
Servo max torque = 18kg
Convert to Nm > Torque (Nm) = kg x cm x 0.09807 (1 kg cm = 0.09807 Nm)
T=18x0.09807 =1.76526 Nm = 1.77Nm (worst case scenario)

Formula for force:

F=I

-
F =Force (N)
T =Torque (Nm) =1.77 Nm
r=Radius (m) =12 mm (distance centre hole to surface)
Fol770m _ a0y

0.012m
F per tooth = 175N — 73.75

Figure 64: Calculations: force on gear teeth
9.5 Structural integrity BMR | EG

Once the robot type is selected, we must identify all the forces acting on its structure. These
force calculations provide the foundation for the design process, guiding motor selection and

placement.

Initially, we focus on static equilibrium moment calculations at each joint. These initial calcu-
lations are valuable as they help us to develop an intuition into force magnitudes. For example,
we can determine the minimum holding torque required for each actuator in its corresponding
joint. These results can then be compared against motor specifications and gearing ratios.
Because this arm is not intended for high-speed applications, we disregard inertial and acceler-

ation effects in this thesis.

9.5.1 Static moment calculations BMR | EG

Since the robot operates under conditions with normal gravitational acceleration, the forces

106

9. MECHANICAL

from both the load and the arm itself will always point vertically downward. The robotic arm

is situated indoors and is therefore not subjected to horizontal forces from, for example wind.

Moment calculation and the effect of robotic arm configuration

A moment is defined as a force acting at a distance (M = F * d), the moment acts around a
point and the distance is the perpendicular distance from the force vector to this point. The
aim of the calculations is to find the minimum values needed to counteract the moment in each
joint and achieve a static equilibrium. For this reason, it is imperative to calculate from the arm
configuration that gives the highest moment values. Figure 65 shows how the positioning of a
link at different angles will affect the moment created by vertical loads. The conclusion will also
be valid for when the link is pointing downwards. The calculations show that the moment will

always be at it’s maximum when the robotic arm is fully outstretched horizontally. Therefore,

this configuration is the one used in the static calculations as a "worst case scenario”.

1=0.5m (=0.5m 1=05m v

1=0.5m F=7N F=7N F=7N F
F=7N a=45° a=20° a=0°
a=70° p=45° B=70° B=90°
p=20° > (90°-70°)
Fx=F* cos(45) = 4.9 N Fx=F *cos(70)=2.4N Fx=F* cos(90)=0N
Decompose original Force Fy=F*Sin(45)=49N Fy=F*Sin(70)=6.6 N Fy=F*Sin(90)=7N
in direction of link (x) and
perpendicular to link (y) M =Fy*l = 2.5 Nm M=Fy*1=3.3Nm M= Fy*l=3.5Nm

Fx=F * cos(20) =6.6 N
Fy=F*Sin(20)=2.4N

M=Fy*l=1.2Nm

Figure 65: Decomposing forces

Static moment calculation V1

The moment in each joint is created by the different loads, in this case the weight from the
payload, the weight of each joint and the weight of each link, see fig: 66. These calculations are
best done iteratively, since the weights of the joints and links are not preset. For this an excel
sheet was created with input parameters for the different masses and link lengths (see appendix
H). Fixed constants like the gravitational constant g is used to convert the masses to forces
(in newtons), and the moment equations are defined. The gravitational center of each link is

in this setup 1/2 of the link length and where the equivalent force is situated. The equivalent

107

9. MECHANICAL

force is a force that acts at a single point and replaces the forces that are distributed along an

object.

L
Ml:(éwm)Jr(Ll« o)+

L
(L, + 72) *Fip) + ((Ly + Lp) * 'F}B)+

L
(L + Lo+ * Fra) + (Ly + Lo + L) + Fy)

L
My = () Fi) + (L2 * Fs) +

L
(L, +§) * Fg) + ((Ly + L)+ Fy)

L
My =((3)* Fis) + s+ F)

Figure 66: FBD of robot arm with moment equations

As seen by the moment equations and Free Body Diagram (FBD) in fig. 66, the moments at
each joint is only affected by the forces acting to the right (towards the end effector). Beginning
with finding the moment at joint 3, choosing a suitable motor and plotting in its corresponding
weight and then working the way inwards to joint 1 gives all the values needed for the moment

calculation.

To illustrate how the payload weight affects these moments, we plotted each joints moment
against payload mass in Fig. 67. The relationship is linear, and it is evident that joint 1 sees

the largest increase in moment as payload weight grows.

108

9. MECHANICAL

Payload effect on moment calculations
50
45
40
25
30
25 —— M1
20 —— M2

Moment in joints [Nm]

15 M3
10

0.0 0.5 1.0 1:5 2.0 25 3.0 35 4.0

Weight of payload [kg]

Figure 67: Payload effect on moment in joints

Static moment calculation V2

After some changes in the design where the motors were moved closer to the base and away
from the joints (direct drive to belt drive, see section 9), the need for more specific calculations
appeared. As the motors contribute with a substantial part of the total weight, the center of
gravity was no longer in the middle of the links, and needed to be found to adjust the distance
between the equivalent force and the joint, see fig. 68. The center of gravity was found using the
equation seen in fig. 69. New moment values could be calculated using the updated distances

and a FBD seen in fig. 70. The excel sheet can be seen in appendix H.

109

9. MECHANICAL

|
1 0.295 i
| 3 -
-~ -
1 I
L1] 0177 I 1
. e T > '
X1 X2] X4 (L1) 1 D06 1 1 [
0.03 0.06 0177 0.295[m] I I
10.03) I 1 I
e I i
mil m2 m3 1 [1 [
0.155 0727 0.173 [ke] |- ! ok
I () 1 Ly
X[cg) : E
0.07478 [m] ; l l
1
|
1
|
= < 0.255 >
X1 X2 X3 x4(L2) — 0.172 > 1
0.045 0.09 0.172] 0.255[m] u:%——). : :
1L:045, 1
1 1 : 1
ml ma m3 - - 4] " 1
0.066 0.313 0.06 [k : 1 :
I . 1
X[cg) 1 I
0.09444 | [m] : :
I _ 1
]
s 0.14 it
L3 I‘\ I.
X1 X2(L3) J ' !
0.07 0.14 |[m] : :
I 1
ml ! !
0.443 [kel - :
]]
X[cg) I 1
0.07 ' !
Figure 68: Center of gravity for each link
my *X; +My ¥ X + Mg ¥ X3+ ;M X;
Xpg' = =

m1+m2+m3+”' N Zimi
Figure 69: Equation for center of gravity [4, p. 365

110

9. MECHANICAL

b~
-

FLl[FJ’Q 1

Figure 70: FBD of robot arm (V2 with belt drive)

Conclusion moment calculations

The calculated moments were compared to the maximum holding torque specifications on the

motors selected (see section 10). Figure 71 shows which motors were chosen for joint 1-3 and

their respective safety factors.

V2 - belt drive design

M1

M2

M3

M1’

M2'

M3’

M3"

Max holding
Torque at joint: torque (w. gear):
[Nm] Nema 23 (1:50) 47.94
19.913 Nema 17 (1:50) 18.33
9.913 Nema 14 (1:19) 1.92
3.051 Nema 17 (1:10) 3.74
Torque at motor: Pulley ratio: SF
19.913 1 2.41
7.2098 1:315 2.54
125255 2 1.26
1.5255 2 2.45

Motor:

Nema23(1:50)
Nema17(1:50)
Nema14(1:19)

Nema17(1:10) (alternative motor)

Figure 71: Motor selection from moment calculation

111

10. ELECTRONICS

10 Electronics

Electronics is a crucial aspect of a robotic arm. It is needed to control it and get feedback to

the control unit. To achieve this, motors, drivers, and sensors are needed.

10.1 Sensors VMN | DAB

Sensors are used to measure a change in the environment, as a example one of the most common
sensor is a temperature sensor that measure the ambient temperature and then reports it to a

microcontroller which then displays the temperature on a display.

Incremental Rotary Encoder
An incremental rotary encoder is used to know the speed and direction of rotation. It has
two phases, called A and B, and an optional phase Z. A and B are used to calculate the
speed and direction, and Z is used to know the centre position of the encoder. To know
the exact location a reference position is required, and the easiest solution is to add limit

switches.

Absolute Rotary Encoder
The absolute encoder is very similar to an incremental rotary encoder, but it has more
phases so it can determine the exact position instead of only speed and direction. For a
robotic arm, this can be used to determine the exact angle between the links on power up.
There are two commonly used absolute encoders, magnetic or optical. Optical absolute
encoders are the easiest to interpret since they often use Gray code, so for every pulse,

the binary code only changes by one bit.

Limit switch
A limit switch is a switch that gives a signal when it has reached the limit of the operating
area. This is often used with open-loop stepper motors to signal when it has reached an
reference position. It can be useful in a robotic arm to stop the movement of an axis

when it has reached the limit of the defined working angle it should operate in.

Camera
A Camera (image sensor) is a collection of light sensors (pixels) that measure the light
level of specific colors. The gathered values are then combined into an image using signal

processing.

10.2 Electric motors VMN | DAB

An electric motor is an actuator that converts electrical energy to mechanical energy. A motor

112

10. ELECTRONICS

is required to move the robotic arm to interface the mechanical parts with the electronics and

software.

Stepper motor
A stepper motor is a BLDC motor that uses steps and moves incrementally and is usually
an open-loop motor. Most stepper motors have a step angle at 1.8°, so the shaft will rotate
in increments of 1.8°. An open-loop stepper motor does not have logic, so it requires a
stepper motor driver, which can have varying functionality. Stepper motor drivers can
detect missing steps, detect if it is stalling, and change the running or idle current in

software.

Closed-loop stepper motor
A closed-loop stepper motor is a stepper motor with an added encoder to have a feedback

system. This makes it work similar to a servomotor.

Servomotor
A servomotor is a form of closed-loop motor that has a feedback loop that includes a
position encoder. This is useful in robotics because you want to know the position and
correct errors if they occur. Servomotors can consist of an absolute encoder, a BLDC

motor, a reduction drive, and a motor driver.

10.3 Choosing a Motor VMN |

All of the motors listed in the previous section can be used for a robotic arm, but it depends on
the requirements. One of the most common motors used for robotics is servomotors. Since the
project focuses on costs, servomotors have been ruled out because they cost a lot more than a

stepper motor and are more readily available.

Motor kit Motor Size Holding Torque wio gearbox (Nm) Gear Ratio
17HS515-1684D-EG10-AR4 MEMALT 0.39 10
23H522-2804D-YG550-AR4 |NEMAZ3 1.02 50
17HS515-1684D-EG50-AR4 MEMALT 0.39 50
11H520-0674D-EG516-AR4 |NEMAL1 0.14 16
17E1951684MB4-200RS-AR4 |NEMALY 0.44 1
14HS511-1004D-PG19-AR4 NEMAL4 0.125 19
Stepper motor drivers RMS current |Inputvoltage
DM332T 2.29A 10-30vDC
DM320T 1.56A 10-30VDC
Power Supply Current Input voltage Output Voltage
LYD2408000 9A 100-240VAC 24VDC

Total price before VAT and Shipping: |$657.43

Figure 72: Motor kit BOM

113

10. ELECTRONICS

For the project, the kit from stepperonline in Fig. 72 has been chosen. This kit consists of
six stepper motors, whereas five are being used. These motors come in a few different sizes
with different gear ratios. All the motors are fitted with incremental rotary encoders. This kit
contains stepper motor drivers for each motor with different current ratings. It also includes a
216W (24V, 9A) power supply.

The gripper uses a DSS-M15S servomotor that can rotate a total of 270° and has an analog
feedback to know the current position. This servomotor has a holding torque of up to 12kg-cm

depending on the supply voltage. It can pull up to 1.76A at 7V.

10.4 Stepper motor drivers VMN | DAB

DM320T/DM332T are the stepper motor drivers that are provided with purchased kit,
which have settings for microstep resolution and current. They are controlled using two signals
called pulse and direction. The direction signal chooses the direction it should move and the
pulse signal determines how many steps it should move. It does not have an input for the
included encoder, so missed steps have to be compensated in software by having the encoder
directly connected to the microcontroller. These stepper motor drivers have limited function-
ality and are not really suited for a robotic arm. It can not detect whether it is stalling or it is

missing steps itself. This can be solved by changing to another stepper motor driver.

Trinamic TMC5160 has a lot of features that are useful for robotics. It has features like
CoolStep, StealthChop, and StallGuard. StallGuard is a feature to detect when the motor is
stalling, and it has to be configured for a specific load, it measures the current going through
the coil to determine if the motor is stalling. CoolStep is a feature that can be used if the
StallGuard has been tuned and adjusts the current flowing through the coil depending on the
load applied to the motor. This feature is useful to reduce power consumption and the heat
generated by the motor and driver. StealthChop is a proprietary chopper mode created by
Trinamic, this feature has a reduced noise level compared to a regular chopper mode. Chopper
mode is just a way to regulate the current going through a coil by turning an H bridge on and

off repeatedly and varying the time it is turned on.

The interfaces available to use with the TMC5160 are Step / Dir, UART, SPI, or RS485.
Step/Dir gives almost no control in standalone mode, and the features have to be enabled at
hardware level instead of in software, so it is not an interface that is applicable to this usage.
SPI can be used to configure the stepper motor driver when using the STEP/DIR interface,
but it can also be used to control the driver. UART can be used to configure and control
the stepper motor driver. UART also allows for the control of multiple drivers with one wire.

RS485 is almost the same as UART except that it uses two wires to have a differential signal.

114

10. ELECTRONICS

For this project, the RS485 protocol has been chosen, since it requires less wires than SPI, but
it has a slower data rate which is not a concern for this application. UART could have been
chosen over RS485, as it is the exact same signal and requires one less wire than RS485. UART
only requires two wires, the signal wire and a ground wire. RS485 requires three wires, which

are the two differential signal wires and a ground wire.

10.5 Component selection VMN |

NTD3055L104T4G has been chosen as the MOSFET used in the external H bridge that
is required for the TMC5160 to operate. The NTD3055L104T4G was chosen because it meets
the requirements specified in the TMC5160 datasheet. This MOSFET can conduct 10A 100°C
continuously and 12A 25°C. This MOSFET also has a low miller charge of 4nC' which is used
to select the gate resistor and choose the drive strength in software. With the specified miller
charge, the TMC5160 datasheet recommends that the drive strength be set to 0 and the gate
resistor be < 15(2. The switching characteristics of this MOSFET are slower than the AO4882
used for the TMC5160-BOB board and the BSCO72NO8NS5 used for the TMC5160-EVAL
board. This can be compensated for in software by tuning changing two parameters, called the

parameters for break-before-make time parameters.

EBQA-04-C-C is a terminal block connector that was chosen to connect the stepper motors
to the driver. This is because it is a standard connector with a 5.08mm pitch. This connector
is rated for up to 15A which gives a 1.5 safery factor with a load of 10A, which is the most the
TMC5160 can handle. This is the minimum safety factor for this stepper motor driver. The
stepper motor with the highest current rating is the NEMA23 motor at 2.8A, this gives a 5.35

safety factor.

TBPO02R1-381-06B is a terminal block with a pitch of 3.81mm and is used for connecting
the encoder. It is a vertical 6 position connector that mates with a TBP02P1-381-06BE, it was

chosen since it supports the wire gauge of the rotary encoders.

TLV9101IDBVR is a general purpose operational amplifier. It has a bandwidth of 1.1MHz,
this is needed since the maximum output frequency of the rotary encoder is 400kHz, so it is
well within the bandwidth of the operational amplifier. The TLV9101IDBVR works on a 16V
single supply, or with dual supply +/- 8V. It is used with a 5V single supply. This operational
amplifier was compared with other operational amplifiers from Texas Instruments and Analog
Devices in SPICE, and had the best results. It had no overshoot and had a fast enough response

to work on the absolute maximum frequency the incremental rotary encoders can output. The

115

10. ELECTRONICS

MAX40079 was one of the other alternatives that were tested in SPICE, but it had problems

with overshoot if the supply voltage was 5.5V before it would go to the correct value.

Sense resistors are used to measure the current passing through the motor coils. Since the
current rating for each motor is different, multiple resistor values are needed. For the resistor
values and power ratings required for this project, the 2512 imperial footprint has been chosen.
The resistor values that are used are 75m$2, 120mS2, 150mS2, and 220m$2 which are taken from
the table under "Selecting Sense Resistors" in the TMC5160 datasheet, .

Voltage regulator was considered to supply the encoder and the operational amplifiers,
but is not required since the TMC5160’s internal 5V voltage regulator can supply 30mA. The
operational amplifiers and the incremental rotary encoders requires a total of 20.25mA, so it
should be sufficient. Adding a 5V voltage regulator could be something to consider in a future

revision.

10.6 MOSFET VMN |

Metal-oxide-semiconductor field-effect transistor (MOSFET) is used to amplify or switch sig-
nals. The TMC5160 controls the motor using MOSFETSs instead of doing it directly, this is to

allow for higher current and voltage.

The TMC5160 uses a chopper mode to regulate the current flow through the stepper motor.
This is done by switching the MOSFETs on and off fast, and with different duty cycles to

regulate the current going throught the coils.

116

10. ELECTRONICS

10.7 Operational Amplifier circuit VMN |
10.7.1 Simulation of OPAMP VMN |
R3
R1 10Kk
A-\/\—— TLV9102
ouT Output >
1 IN-
VEE
IN+
10k VCC
Llo U1
-
N >

PULSE(0 5 {1/80000} 50n 50n {1/80000} {2/80000})

AV
<

&

V2
PULSE(0 5 0 50n 50n {1/800003} {2/80000})

.tran 0.2m

Figure 73: Operational Amplifier SPICE test circuit

The operational amplifier that was chosen was tested with spice simulation. With test signals
at 400kHz which is the maximum frequency that the magnetic incremental rotary encoders can
output. With the circuit shown in Fig. 73 it can handle the signal, but it is not perfect. This
is not a problem, since the motor will never reach speeds that will cause it to output a signal
of 400 kHz. Since the motor will only spin at 1000 RPM or less. 1000 RPM can be used to
determine a more realistic frequency. The rotary encoder outputs 1000 pulses per revolution,
which at 1000 RPM would give a frequency of W - 1000PPR = 16666.67H z, but to have
some headroom it can be increased to 40kHz which is % of the maximum output frequency.
This gives us the results in Fig. 74, and we can see that it does not overshoot and that it can

handle the frequency.

117

10. ELECTRONICS

1(V1)

V(a+)

V(a-)

V(output)

T T T T T
Ops 20ps 40pus 60ps 80us 100ps

T
120ps

T
140ps

T
160ps

T
180ps

Figure 74: OPAMP result with test signals at 40kHz

10.8 PCB Design

200

us

VMN |

A Printed Circuit Board (PCB) consists of copper and dielectric layers, the most common

dielectric material is Fire-Retardant 4 (FR4). PCBs are used to connect components together.

The copper layers are etched to provide the traces that connect the components together. vias

are used to connect traces or planes together that are located on different layers.

118

10. ELECTRONICS

Figure 75: 3D view of the PCB

10.8.1 Schematic VMN |

A schematic diagram is needed to create a PCB, this is used to know all of the components
that are in the circuit and how they are connected. The schematic is also used to create the
Bill of Materials (BOM). The program that has been used to create the schematic and pcb

layout is Altium Designer, this is because it has a lot of features and is free for students.

The current schematic for the stepper motor drivers can be seen in Fig. E in Appendix E. This
is based on the datasheet[30] and the evaluation board TMC5160-BOB[31]. Originally, the
MOSFETSs used was the AO4882 taken from the TMC5160-BOB, but it was swapped out with
the NTD3055L.104 in the final design. This was done so the current limit could be increased in
the future. This MOSFET also uses a DPAK footprint so it could be replaced by other DPAK
MOSFETs. The NTD3055L104 has a drain current of 10A at 100°C, compared to the drain
current of the AO4882 of 3A at 70°C.

119

0ct

10.8.2

Index

BOM

DigiKey Part #
1 490-3291-1-ND
2 311-1140-1-ND
3 399-C0B05C224K1RACTUCT-ND
4 NTD3055L104T4GOSCT-ND
5 A129727CT-ND
6 541-1.00AAFCT-ND
7 175-TMC5160A-TA-TCT-ND
8 399-15437-1-ND
9 2057-EBQA-04-C-C-ND
10 311-10.0KFRCT-ND
11 296-TLV9101IDBVRCT-ND
12 478-KGM21NR71H102KTCT-ND
13 738-C3NL2512FT75L0CT-ND
14 541-10.0KCCT-ND
15 PCE5211-ND
16 490-3326-1-ND
17 13-RT0805FRE0722KLCT-ND
18 445-1420-1-ND
19 399-C0805C222K5RACTUCT-ND
20 478-KGM21AR72A223KUCT-ND
21 51012EC-03-ND
22 102-6484-ND
23 541-2.2TACT-ND
24 P47.0CCT-ND
25 A126336CT-ND
26 102-6408-ND
27 408-KRL3264E-C-R220-F-T1CT-ND
28 283-MFHA2512R1200FECT-ND
29 13-PE2512FKF7WOR15LCT-ND
30 10129379-902001BLF-ND
31 102-6472-ND
32 2057-EBHA-04-C-ND
33 2057-EBHA-04-D-ND

Figure 76:

Manufacturer Part Mumber Manufacturer

GRM1B8R71E474KA12D
CC0805KRX7RIBB104
C0B05C224K1RACTU
NTD3055L104T4G
CRGCQOB05F15R
CRCW25121R0O0FKEG
TMC5160A-TA-T
C0B05C111J1GACTU
EBQA-04-C-C
RC1206FR-0710KL
TLV9101IDBVR
KGM21NR71H102KT
CSNL2512FT75L0
CRCWO080510K0FKEA
EEU-FS51K221
GRM21BR72A474KAT3L
RT0805FRED722KL
C2012X7R1C225K125AB
C0B05C222K5RACTU
KGMZ21AR72A223KU
PRECO035AAN-RC
TBP02R1-381-06BE
CRCW08052R20JNEAHP
ERJ-GENF47ROV
CRGOB0O5F120R
TBP01R1-508-04BE
KRL3264E-C-R220-F-T1
MFHA2512R1200FE
PE2512FKF/WOR15L
10129379-902001BLF
TBP02P1-381-06BE
EBHA-04-C

EBHA-04-D

Murata Electronics

YAGED

KEMET

onsemi

TE Connectivity Passive Product
Vishay Dale

Analog Devices Inc./Maxim Integrated
KEMET

Adam Tech

YAGED

Texas Instruments

KYOCERA AVX

Stackpole Electronics Inc
Vishay Dale

Panasonic Electronic Components
Murata Electronics

YAGED

TDK Corporation

KEMET

KYOCERA AVX

Sullins Connector Solutions
Same Sky (Formerly CUl Devices)
Vishay Dale

Panasonic Electronic Components
TE Connectivity Passive Product
Same Sky (Formerly CUl Devices)
Susumu

Eaton - Electronics Division
YAGED

Amphenol ICC (FCI)

Same Sky (Formerly CUl Devices)
Adam Tech

Adam Tech

BOM PCB

Description

CAP CER 0.47UF 25V X7R 0603

CAP CER 0.1UF 50V X7R 0805

CAP CER 0.22UF 100V X7R 0805
MOSFET N-CH 60V 12A DPAK

RES 15 OHM 1% 1/8W 0805

RES SMD 1 OHM 1% 1W 2512

IC MTR DRVR BIPOLAR 8-60V 48TQFP
CAP CER 110PF 100V COG/NPO 0805
TERM BLOCK HDR 4POS 5MM

RES 10K OHM 1% 1/4W 1206

IC OPAMP GP 1 CIRCUIT 50T23-5
CAP CER 1000PF 50V X7R 0805

RES SHUNT

RES SMD 10K OHM 1% 1/8W 0805
CAP ALUM 220UF 20% 80V RADIALTH
CAP CER 0.47UF 100V X7R 0805
RES SMD 22K OHM 1% 1/8W 0805
CAP CER 2.2UF 16V X7R 0805

CAP CER 2200PF 50V X7R 0805

CAP CER 0.022UF 100V X7R 0805
CONN HEADER VERT 3POS 2.54MM
TERM BLOCK HDR6POS 3.81MM
RES SMD 2.2 OHM 5% 1/2W 0805
RES SMD 47 OHM 1% 1/8W 0805
RES SMD 120 OHM 1% 1/8W 0805
TERM BLOCK HDR 4POS 5.08MM
CURRENT SENSE RESISTORS, 2512, 2
RES0.12 OHM 1% 2W 2512
RE50.15 OHM 1% 2W 2512

CONN HEADER R/A 2POS 2.54MM
TERM BLOCK PLUG 6POS 3.81MM
TERM BLOCK PLUG 4POS 5MM
TERM BLOCK PLUG 4P0OS3 5.08MM

Quantity

Module price w/o VAT
Module price w/ VAT

2
10
10
16
16

=
(=1]

=R = RN R =R

Total (3 modules) w/o VAT
Total (3 modules) w/ VAT

Backorder UnitPrice

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.787
0.28
1.792
6.9008
0.1906
1.865
66.48
1.792
4.621
0.186
4.434
0.518
4.755
0.435
8.982
2.683
0.228
1.097
0.394
0.87
3.21
6.84
1.285
0.539
0.373
4.97
7.87
3.118
2.618
0.477
13.99
11.085
15.33

Extended Price
NOK 1.57
NOK 2.80
NOK 17.92
NOK 110.41
NOK 3.05
NOK 3.73
MNOK 132.96
NOK7.17
NOK9.24
NOK 2.98
NOK 17.74
NOK 2.07
NOK 19.02
NOK 4.35
MNOK 35.93
NOK 10.73
NOK 2.28
NOK 4.23
NOK 3.94
NOK 1.74
NOK 3.21
NOK 6.84
NOK 2.57
MNOK 5.39
NOK 0.75
NOK 4.97
MNOK 7.87
NOK6.24
MNOK 5.64
NOK 0.95
NOK 13.99
NOK 22.17
MNOK 15.33
MNOK 489.77
NOK 612.21
MNOK 1,959.08
MNOK 2,448.85

VMN |

‘0T

SOINOYHLOHTH

10. ELECTRONICS

Fig. 76 is a list of all the components for the PCB and the connector that are used. This list
includes the total component price for one board and three board. The exported BOM from

Altium Designer can be viewed in Appendix E.E

10.8.3 PCB layout VMN |

R46 R44 R45 R43

_ 4
3MB1

StepperDrliver]

| NAI

Q|UART-
O|UART+
O|UART-

O|UART +

Figure 77: PCB layer view with all layers visable

In Fig. 77, we can see the PCB layers of the PCB with designators and outlines of all the
components. I assigned the schematic sheets to rooms to restrain where the components can be
placed and to help move the components to the correct room. Rooms also has other function-

alities like copying the layout of another room if the components are the same, this function

121

10. ELECTRONICS

was not used since I used a flat design for the schematic instead of a hierarchical design. To
connect the MOSFETSs together and to the connector, polygon pours have been used instead
of traces to help with heat dissipation. The top and bottom layers are connected with a lot of

small vias to help with heat dissipation.

The decoupling capacitors that are used for the IC are placed close to the pins that require

them. This is done for EMC concerns.

10.8.4 Electromagnetic Compatibility VMN |

Electromagnetic Compatibility (EMC) is one of the most important aspects to consider when
designing a PCB and circuit. EMC concerns the generation of Electromagnetic Interference
(EMI) and how EMI affects the circuit. This affects the functionality of the circuit and/or

whether it will affect other circuits/systems.

One mitigation for EMI is decoupling capacitors close to an IC’s pins. This is done to keep the
pin voltage stable and avoid EMI from external and /or internal sources. Decoupling capacitors

are also used to avoid creating EMI.

The layer stackup of a PCB is also important to consider since it can help mitigate EMI. The
layer stackup used for this PCB is signal4+-pwr/gnd/gnd/signal+pwr. The outer layers are used
for signals and power, while the inner layers are used for ground. This is to have ground close
to the signal and also to be able to use vias where ground is needed. Another layout that
could have been used is signal/gnd /pwr/signal. The internal ground layers are used to prevent

interference between the top and bottom layers.

The main concern for this PCB and EMC is the switching of the MOSFETs, and how much

EMI it would create. EMC is a very complex subject and can be difficult to design around.

10.8.5 PCB Assembly VMN |

The first revision that was ordered were assembled at the university using the pick-and-place

machine, and reflow oven as seen in Fig. 78

122

10. ELECTRONICS

(a) Pick-and-Place machine (b) Reflow Oven

Figure 78: PCB assembly

After being soldered, the PCB was tested by connecting it to the power, but it ended up being
shorted. This was caused by a mishap when generating the drill file. Some of the silkscreen was
also missing. To remedy this, some troublesome areas were drilled and cut to remove direct
shorts from the power rails to the ground. This was a success, but there was still something
wrong with it. New PCBs were ordered the next day with the correct files, but will not arrive
before the deadline for this report. It may arrive before the USN Expo or the day after. At

least it will be assembled and tested before the final presentation.

10.9 Microcontroller & Computer VMN |

To control the stepper motors we are using an Arduino UNO R4 WiFi provided to us by Hy-
droplant Technologies. This has just enough pins for the stepper motor drivers, the servomotor,
and the limit switches. With the DM320T and DM332T the Arduino does not have enough
pins for the rotary encoders, to add this functionality Arduino UNO R4 WiFi could be swapped

out for another microcontroller or use port expanders to add additional 1/O ports.

10.10 Electrical Signals & Communication VMN |

10.10.1 DM320T/DM332T Stepper Motor Driver VMN |

123

10. ELECTRONICS

Direction & Pulse
Direction and pulse are the two most common ways to control a stepper motor driver.
The direction signal has two states, high or low. This will simply choose between spinning
clockwise or counterclockwise. The pulse signal also has two states, high or low. When
the pulse goes high, it signals to the stepper motor driver to go one step. The logic level
for this setup is +5V.

Rotary Encoder Signals
The rotary encoder has 6 signals, which are A+, A-, B+, B-, Z+, and Z-. The rotary
encoder has two signals for each phase, as it is a differential signal. This is done to
minimize noise. For this application, the only signals that will be used are A4+ and B+.
This could be changed in the future by implementing an differential operational amplifier

before the input

Enable Pin
The Enable pin is used to enable the stepper motor driver when the pin is set to high
(+5V), and disable it when set to low (0V/GND).

10.10.2 TMC5160 Stepper Motor Driver VMN |

UART/RS485
UART is used to control all of the stepper motors, with the configuration of the TMC5160
it is used in a differential signal mode. This is almost the same as the RS485 standard.
The TMC5160 operates on half-duplex so it will send data or receive data, but it cannot
do both at the same time. Most of the configuration is done by setting parameters
in software, except for the maximum current limit, which is set on a hardware level.
The UART interface is also used to send movement controls and receive data from the
TMC5160. It is a two-wire interface and addresses are used to control multiple drivers

with the same two wires.

NAI / NAO Next Address In and Next Address Out are used to connect the drivers

together and increment the address of the drivers that have been connected.

124

11. SOFTWARE

11 Software

This section outlines the various software components required for the whole system to work

as required. Please refer to Appendix F for detailed Doxygen-generated code documentation.

11.1 Leafy Automation Central JCDH | SME

The Leafy Automation Central provides a HTTP server which hosts the Human Machine
Interface (HMI), Robot Operating System 2 (ROS2), Al models, ML algorithms and other

utilities critical to system functionality.

Leafy Automation Central is an essential piece of software. It is where a lot of the heavy lifting
and data processing happens. Microcontrollers are often very limited in available resources
(often only kilobytes of ram), which is why a piece of software running on dedicated hardware
is necessary. Leafy Automation Central is intended to run on the Raspberry Pi 5, although
there is no functional limitation on which type of device it can run on (provided sufficient

processing power).

In order to facilitate communication between all devices of the Leafy Automation system, a
local network must be setup. Initial testing began using a hotspot on a computer running
Microsoft Windows 10, but the intention will be to host a hotspot on the Raspberry Pi 5, thus
removing the need for a standalone networking device. As the Leafy Automation system will
be deployed to many different types of networks, testing on a wide area of possible network

configurations gives us valuable evidence to verify system general stability.

11.1.1 Areas of responsibility JCDH | SME

The Leafy Automation Central is divided up into the following main areas of responsibility:

125

11. SOFTWARE

Table 5: Leafy Automation Central - Areas of responsibility

System Purpose

AT and CV processing Identifies and classifies the lettuce using var-
ious Al models and algorithms.

Robotic conversions Converts the data points compiled by the Al
recognition to concrete real-world coordinates
usable by the robotics (grip point).

Web server Allows the Leafy Automation Core to com-
municate with the Leafy Automation Central
Human Machine Interface (HMI) A Graphical User Interface (GUI) which let’s

you interface with the system, give com-
mands and see information

Please refer to Appendix G.14 for the HT'TP based API implementation of Central.

11.2 HMI JCDH | SME

The Human Machine Interface (HMI) is the part of our system which interfaces with a human.
A Graphical User Interface (GUI) is presented to the user where they can view useful informa-
tion like system status and camera feeds. This interface also allows for initiating / stopping

system functions. !

Although our system is autonomous, human oversight is still required, especially for initial
testing and for taking spot checks or quality control. The HMI is accessible from the Leafy
Automation Central IP address. Figure 79 shows how the user interfaces with the HMI, and in

turn how the HMI interfaces with the rest of the system.

!The HMI is part of the Leafy Automation Central codebase, but contained in its own module.

126

11. SOFTWARE

‘_|—> HMI 4—|_’

User Leafy Automation Central

®

Data flows
through the Leafy
Automation
Central

Leafy Automation Leafy Automation
Core (Arduina) Core (Camera)

Figure 79: HMI diagram

The following are the aims for the HMI:

o User friendly

* Snappy

e Accessible

11.2.1 Dashboard JCDH | SME

Figure 80 shows the HMI dashboard in action. It includes a camera feed, system modules state,
controls for starting / stopping the system, a log panel and login information. Please refer to

Appendix G.11 for an earlier iteration the dashboard.

127

11. SOFTWARE

ﬂw Leafy Automation Logged in as Jim

Camera feed System modules
Image classification: crispy_lettuce
Leafy Automation Core @ Camera Module #1 @
Green percentage: 4.84 % The core of Leafy Automation The camera module (esp32-cam).

(Arduino) controls motors.

Refresh status Begin harvest | Stop harvest

Log:

Figure 80: HMI dashboard

Underlying HMI architecture

The HMI itself is written in HTML, CSS and JS, utilizing Bootstrap for the layout and main
styling, which is a common web-app configuration. The reason for this configuration is because

it makes quick prototyping / development easy. On the backend Python Flask is used.

JQuery is used to connect the pieces of the webapp. The HMI utilizes a Model View Controller

(MVC) architecture for optimal code organization [32], as seen in Figure 81.

128

11. SOFTWARE

Backend

<
[}
2
v

Controller User Interface

Camera feed

A

\

Model

Figure 81:

MVC - control flow

The initial iteration of the camera feed started with a HTTP-based endpoint to stream the

camera feed. This was later extended with a WebSocket implementation, which enabled low

latency communication. Please refer to Appendix G.10 for more info on earlier iterations.

2

11.2.2 Login, authentication and session handling JCDH | SME

The user is greeted with a login page before gaining access to the Dashboard as seen in Figure

82.

2Research was done on using a ROS2 compatible JavaScript library for complete integration with the ROS2
ecosystem, but this work was set aside due to time constraints [33].

129

11. SOFTWARE

Leafy Automation HMI - Login
Please login

Username

Password

Figure 82: HMI login page

Authentication and password hashing

Authentication and password hashing is implemented using functionality from Werkzeug [34].
The reason we hash passwords is that in case of a data leak, or hacking attempt, the users
password will not actually be known as there will never be stored a clear text version of the
users password, and only a hashed version of the password which for all practical purposes will
be impossible to decipher. The hashed password which is stored in the users table (Table 7),

is stored in the scrypt format, which you can read more about in Appendix G.10.4.

Session cookie

A session cookie implements a way for the Human Machine Interface (HMI) to remember the
user after they have logged in, so that the next time they visit the HMI they do not have to

login again.

130

11. SOFTWARE

11.3 Database JCDH | SME

Every system of moderate complexity needs a database to organize persistent data in a struc-
tured way. Leafy Automation Central keeps this data in a database which is called SQLite. A

small, fast and self-contained SQL database engine. 3

Currently, the main responsibility of the database is to store which users have access to the

system. The user authentication and authorization is implemented in the HMI.

Here is a list of the primary data types in SQLite (the list is short, which shows the
simplicity of database, as opposed to other larger database software like MySQL) [36].

NULL - No value.

INTEGER - Signed integer (only positive values).

REAL - Floating point value (decimal number).

TEXT - Text string (utf-8).

BLOB - Binary data, stored exactly “as is”.

11.3.1 The need for a database JCDH | SME

Data needs to be persisted between reboots of the server and, whereas storing data in variables

would be fine for some use cases, the data would be lost upon the next restart of the server. *

Why we use SQLite over other databases

We believe that using SQLite is the correct approach for our system for the following reasons:

3SQLite is actually the most used database in the world, being used in everything from mobile apps to
embedded devices. According to the SQLite website there are over 1 trillion active SQLite database instances
in use today [35].

4While visiting a dry-cleaner which made use of AI models and robotics for folding laundry, they emphasized
the importance of keeping historic data from the folding process in order to fine tune the AI models. In order
to achieve this a database had to be deployed to facilitate the storage.

131

11. SOFTWARE

1. SQLite implements a much smaller subset of functionality, which is similar to MySQL,

which reduces complexity.

2. Upgrading to MySQL would require minimal refactoring of existing SQL queries due to

their similarities in syntax.

11.3.2 Database tables in use JCDH | SME

Figure 83 shows an overview of database tables and their relationships. Please refer to Appendix

G.13 for in-progress work on the database.

users

id

created at

username

password access levels

email —id

first_name name

last_name
access_level id p——

Figure 83: Database overview diagram

Note: Arrows indicate foreign key relationships, and the crows foot indicate a one-to-many relation-
ship.

11.3.3 Users and Access levels tables JCDH | SME

In this context AUTO INCREMENT means that the column (which in most cases will be
id) will automatically count +1 for each new row in the table [37], PRIMARY KEY uniquely

132

11. SOFTWARE

identifies each row in the tabley, CURRENT__TIMESTAMP stores the current UTC (Co-
ordinated Universal Time) time in the format YYYY-MM-DD HH:MM:SS and UNIQUE

ensures that no duplicate values will be used [38].

Users table (users)

Name Description Datatype | Metadata
id The unique id of the user INTEGER | AUTO INCREMENT, PRI-
MARY KEY

created at The timestamp for when this TEXT CURRENT TIMESTAMP
user was created

username The unique username of the TEXT NOT NULL, UNIQUE

user
password The hashed password of the TEXT NOT NULL
user
email Users email TEXT NOT NULL
first name The first name of the user TEXT NOT NULL
last name The last name of the user TEXT NOT NULL
access_level id | The access level of the user, | INTEGER | FOREIGN KEY to ac-
which is a foreign key to the cess_ levels.id

specific access level in the
access_ levels table

Table 6: Database: Users table structure

id | created__at | username | password email first_ name | last_ name | access_ level id
1 2025-04-07 admin [hashed- admin@example.com John Green 1
11:20:05 password]
2 2025-04-08 spectator [hashed- spectator@example.com | Leafy Green 2
09:39:29 password]

Table 7: Database: Users table example

Access levels table (access__levels)

133

11. SOFTWARE

Name Description Datatype Metadata
id The unique id of the | INTEGER AUTO INCRE-
access level MENT, PRIMARY
KEY
name The name of the spe- | TEXT NOT NULL,
cific access level UNIQUE

Table 8: Database: Access levels table structure

Each user gets one of two access levels:

¢ admin

e spectator

Where admin corresponds to a user who has access to both managing and viewing the system,

and spectator which only has the ability to view system info.

id name
1 admin
2 spectator

Table 9: Database: Access levels table example

11.3.4 Side notes JCDH | SME

Appendix G.12 outlines additional research and notes on the database.

134

11. SOFTWARE

11.4 Leafy Automation Core JCDH | SME

The Leafy Automation Core has multiple important responsibilities. This is the software which
runs on the embedded devices within the Main System. It is the codebase which runs on the
ESP32-CAM module and the Arduino (which handles direct signaling between robotics). This
codebase is divided up into the two above mentioned parts, and the code to compile is decided

based on the target devices.

This codebase communicates directly with the Leafy Automation Central which serves as a
“base of operations” keeping track of the current state of the overall system and deciding which

state the system is in.

Please see Appendix G.7 for more details about Leafy Automation Core (initial HT'TP iteration

and benchmarking), and Appendix G.17 for earlier research.

11.4.1 Why WiFi was chosen over a wired connection JCDH | SME

Networking is a central piece of the system as a whole. Without networking, the individual
components would fail to communicate with each other. It is of course possible to communicate
across devices and modules using a wired connection, but we believe connection over network
protocols like TCP / UDP as in our case creates a much more modular and easy to work with

system. Also, this approach allows for easy integration with other IoT devices in the future. °

6

11.4.2 Code reuse JCDH | SME

Both the esp32-cam and Arduino share the same codebase. This might seem strange at first,
but there is a simple reason for it, which is code reuse. Most of the network stack is identical
between these devices, therefore it simplifies the codebase greatly by removing the need for
duplicate code. Which part of the codebase will be used (ESP32-CAM or Arduino robotics) is

decided using compile time switches, as seen in Listing 1.

SProtocols like MQTT, HTTP and ROS2 all make use of TCP / UDP as the underlying protocol.

5The goal when it came to the first iteration of networking was to get something up and running as soon
as possible. Based on earlier experience, and availability of documentation it was decided to just build this
iteration on HTTP, which builds on top of the TCP protocol.

135

11. SOFTWARE

void setup() {
#ifdef PLATFORMIO_ENV_UNO_R4 WIFI
main_base_setup () ;
#elif PLATFORMIO_ENV_ESP32CAM
main_cam_setup () ;
#endif

Listing 1: Leafy Automation Core codebase compile time switches

11.4.3 Real-Time Operating System (RTOS) future proofing JCDH | SME

The code in Leafy Automation Core is organized in a way where there are intermediate abstrac-
tions between the system drivers and “user space” code. This allows for a smooth transition in

the future if a switch to a RTOS like Zephyr is to be made, our code can be mostly reused.

At this stage of proof-of-concept development, our code is running on an Arduino. Because the
Arduino has simple abstractions around the underlying driver, these abstractions lend them-

selves to be easily ported to other microcontrollers.

The diagrams in Figure 84 outlines how a future transition to an RTOS could look like.

Zephyr RTOS R
F Y
QOur code
L4
Simple wrapper |)
around Arduino API S
libraries

Figure 84: Real-time OS future proofing

136

11. SOFTWARE

11.5 Design and Implementation of Arduino

] EG |
Firmware

In this chapter, we present the design and implementation of the low-level firmware that runs
on the Arduino R4 WiFi (Core) and serves as the real-time controller for the Leafy Automation
robotic arm. This firmware is responsible for interfacing with the systems wireless network (as
described earlier in this chapter 11), decoding high-level commands issued by the Raspberry
Pi 5 (Central) ROS2 Control Layer nodes (as described in the Layered module-based design,
section 7), driving stepper and servo motors to execute pick-and-place motions, and reporting

status updates back to Central.

11.5.1 Hardware components and their identifiers EG |

Before delving into the firmware logic, it is important to understand the physical hardware
that is controlled by Leafy Automation Core, along with the naming conventions that we use.
For the purpose of this chapter, Figure 85 shows a simplified naming overview which is further
elaborated witha more technical detail in Table 10. More information about the project naming
conventions can be seen in section 10.4 Definition robot arm 8.1.1, and further technical detail

about the motors in section 13.4 Stepper motor driver 77

Joint names
Each motor is referred to by joint index as seen below

Elbow
[12]

Shoulder
(1]

End effector

Wrist [EF]

rotation
[J4]

Base Joint
rotation
I o]

Figure 85: Naming of joint motors, including driver and gear ratio information

137

11. SOFTWARE

Table 10: Naming conventions including key technical detail.

Joint Joint ID Motor driver Gear ratio
Base rotation JO DM332T 1/10
Shoulder J1 DM332T 1/50
Elbow J2 DM332T 1/50
Wrist J3 DM320T 1/19
Wrist rotation J4 DM320T 1/16
End effector (gripper) EF Servo N/A

Each joint is assigned a short identifier (JO ... J4 for the five stepperdriven axes, and EF for the
servo driven end-effector controlling the gripper). These IDs appear in our code (for example

movelJoint(J2, <number of steps>) and in code documentation.

A brief mention about gear ratios

Gear ratio, such as for example 1/50 for the motor running J1, means the motor must turn 50
times to produce one full joint revolution. In the Core firmware, this gear ratio setting is used
to convert the desired joint speed (in RPM) into the correct motor pulse rate. This means that
a higher gear reduction lets us run the motor faster while the joint moves at a slower, more
controllable speed. More information about this can be read in SECTION VETLE?

Centralised configuration in config.h

Hardwarespecific constants and operating constraints relating to Core are defined centrally in
the /include/config.h file. Examples include Arduino pin assignments, microstep settings, gear
ratios, and maximum RPM values. Keeping these parameters in one place allows developers
to quickly and easily retune the system for different mechanical configurations, without having

to modify the control logic directly.

138

11. SOFTWARE

11.5.2 Overview of Library dependencies EG |

The Core firmware relies on several, well established Arduino libraries. Table 11 gives a short

overview, and the sections that follow we will explain how they are used in the various software

modules.
Table 11: Arduino library dependencies
Library Version Purpose
AccelStepper [39] v1.64 Non-blocking stepper motor control.
PubSubClient [40] Hydroplantno fork MQTT client for publish/subscribe messaging.
WiFiS3 [41] Arduino SA Wi-Fi connectivity.
Servo [42] Arduino SA PWDM-based control for the gripper servo.
11.5.3 The Software build on Leafy Automation Core EG |

Priority when designing the software for Core has been on building for simplicity to facilitate
rapid testing and modularity to make the code easy to understand and modify. These priorities
align with the architectural drivers detailed in section 10.1 Project Constraints and Architectural

Drivers 7.

139

11. SOFTWARE

Diagram showing the Core based software modules

Leafy Automation Core

Leafy Automation Central

Colour Codes

. Main Loop . Motor Driver module
Core
mmunication
co catio . Gripper Driver module
Manager module —)
() marTBriage Central

Figure 86: Diagram showing the main software components of Leafy Automation Core, includ-
ing the MQTT-based connection to Central.

As discussed in Section 7?7, communication between Central and Core is achieved by using a
MQTT bridge. In this setup, the MQTT broker resides on Central side, with Central publishing
high-level commands (for example MOVE or GRIP) to specific topics that Core subscribes to.
On the other side, by utilising the PubSubClient library [40], Core publishes status updates
and heartbeats back to Central via dedicated topics, ensuring a clear, decoupled exchange of

control and feedback.

The Leafy Automation firmware is built based on a cooperative super-loop scheduling pattern.

In this pattern, all tasks are placed sequentially inside a single, never-ending main loop, where

140

11. SOFTWARE

cach task runs to completion until the next one begins.[43]

This solution was selected because it minimises code and memory overhead, provides predictable
timing which is important for real-time control, and because it facilitates rapid development
and debugging, thus paving the way for fast proto-typing. This makes it an efficient solution

in line with the project constraints as detailed in section 7. [43]

It is important to note that with this setup, all software modules must use only non-blocking
operations to keep timing consistent and predictable. In practice, this means advancing mo-
tors in small increments (using AccelStepper::run()) and basing state-machine transitions on

elapsed-time checks (millis()), rather than any blocking calls like delay().

We shall explore how all the software components fit together, and how each pass of the Main
Loop services MQTT traffic, advances the robotic-arm movements, updates the gripper, and

sends status updates in a non-blocking cycle.

11.5.4 Main Loop() EG |

Building on the cooperative super-loop model described above, the Main Loop implements a
fixed sequence that drives every aspect of Cores operation. During each iteration, the following

five routines see in Table 87 are invoked in the following order:

High level sequence diagram for the Core Main Loop()

Communication
Manager

Maintains connection
Handles incomming
messages

mqttLoop()

Advances motors one
microstep per call.

|

|

|

|

|

| Checks gripper

operation completion

k| status.

|

|

|

|

|

|

updat'FMotors()

Clears moving flag
when gripping
operation is complete.

updateGripper()

Checks each
in-progress flag.
When an action is
complete, publish its
“DONE" message and
clear the flag.

checkActionStatus()

|
f
|
|
|
l
|
|
|
l
|
|
[

|
|
|
|
|
|
|
|
|
|
f
|

Figure 87: Sequence diagram showing the Main Loop() on Core.

141

11. SOFTWARE

mqttLoop() Maintains the MQTT connection to Centrals broker, performing reconnection
attempts with exponential back-off [44] and dispatching any received messages to the Commu-

nication Manager.

updateMotors() Cycles through each stepper joint and invokes AccelStepper::run() [39].
When a motors internal timing states that a microstep is due, it executes exactly one step.
By invoking run() on every joint each run of the main loop, all axes advance in parallel in a

non-blocking fashion.

updateGripper() Executes a timed state-machine check (see Figure: XXX). If the elapsed
time since the last moveGripper() call exceeds the configured travel duration (defined in /in-
clude/config.h), the internal moving flag is cleared. (This strategy inspired from Arduino

documentation [45]).

checkActionStatus() Each loop, it checks if any ongoing action (move, grip, or calibrate) has

finished. If so, it sends the corresponding DONE message and resets that actions flag.

sendHeartbeat() Publishes a periodic alive signal to inform Central that Core remains oper-

ational.

11.5.5 MQTT Client Module EG |

The objective of this module is to bridge high-level Central commands and the low level Core
motor control together, using MQTT. Thereby, minimising coupling while ensuring reliable
message delivery. By isolating all networking logic in this module, the higher-level control code

remains agnostic of transport details. [40]
Key interfaces:

initMQTT() Configures PubSubClient with the broker address and callback function, then

attempts an initial connection and subscribes to the control topics (motion, gripper, calibrate).

mqttLoop() Periodically invoked to sustain the network link. Unsuccessful connection at-
tempts employ an exponential back-off strategy (2's, 4 s, , 60 s) to prevent network congestion
[44].

publishStatus(const char*, const String) Publishes status strings (e.g. MOVE DONE) to

designated topics, logging any transmission failures to the serial console.

setMessageHandler(void (*)(const String)) Tells the MQTT Client which function to run

whenever a new message arrives. In our code, we pass handleIncomingCommand, so every time

142

11. SOFTWARE

Core receives an MQTT payload, it automatically calls that function with the message text.

Inspired by code example [46].

11.5.6 Communication Manager EG |

The objective of the Command Manager is to interpret the textual commands received over
MQTT and translate them into motor instructions, while maintaining reliable message received
and instruction complete handshakes. Figure 88 demonstrates how Core processes a MOVE
command, based on the Command Manager’s functionality. Here, Central publishes a MOVE
message to the MQTT broker, which Core receives in mqttLoop(). Cores Communication
Manager dispatches the motion, the drivers execute until completion, and checkActionStatus()

publishes MOVE DONE back through MQTT to Central.

This decoupling of parsing, dispatch, and status logic promotes modifiability as new commands

can be added by extending this module alone, without altering networking or driver code.
Main functions in the Command Manager:

Command parsing with handleIncomingCommand() This function, inspired by code
example [46], starts by trimming off white spaces. It then separates the message based on
the command keyword (MOVE, GRIP, CALIBRATE), and publishes the raw command to
topic status/command_ received to acknowledge receipt. Then, the following actions happen,

depending on which command has been received:

A MOVE command: Parses five integer positions, invokes moveJoint() for joints JO J4,
and sets movementInProgress = true. A GRIP command: Calls moveGripper(state) and sets

gripperInProgress = true.

A GRIP command: On a GRIP message, the function publishes the incoming command,
parses a single integer argument (0 or 1), and passes it to moveGripper(state). It then sets

gripperInProgress = true so that the next status poll can detect completion.

A CALIBRATE command: When a CALIBRATE command is received, this function
publishes the payload, parses the integer argument (0 = cancel, 1 = start), and immediately
acknowledges with CALIBRATE RECEIVED. If starting, it calls calibrateAllJoints(), waits for
the homing sequence to complete, then publishes CALIBRATION DONE. On cancel, it clears
the flag and publishes CALIBRATE CANCELED.

The process is illustrated in Figure 89

143

11. SOFTWARE

Completion monitoring with checkActionStatus() Periodically checks whether each in-
progress action has completed its task, and publishes the corresponding DONE message exactly

once.

144

Sl

Sequence Diagram showing the execution of an example command sent from Central to Core

Central (ROS

2)

PUBLISH "MOVE 100 0 50 0 0" to
topic " /leafy_a/motion’

v

DELIVER message\n via ~mqttLoop()”

handlelncomingCommand("MOVE 100 0 50 0 0")

moveJoint(0,100), ...,\n moveJoint(4,0)

v

set movementinProgress = true

updateMotors() [repeated]

v

o
allJointsDone() == true

i ecccnnanacicttcienaasantanaatsttttetesaasastanattcntsassannanastasssnantfecttenaetettttttttaetestenaanenttttttananastanannnnannaan o

checkActionStatus()
5] >

PUBLISH “MOVE DONE™n to " /leafy_a/status/motion’

A
©

DELIVER “MOVE DONE™

Central (ROS

2)

Figure 88: Sequence diagram showing the execution of an example MOVE command sent from Central to Core

HHVMILAOS °TT

11. SOFTWARE

Flow chart showing handlelncomingCommand() in Communication Manager

Identify
command

cmd.startsWith("MOVE") J'GRIP" or "CALIBRATE"?
IF MOVE: IF CALIBRATE: ELSE:
IF GRIP
/ \ \i Y
Publish receipt Publish receipt Publish receipt Print
JblishStatus(status/command_rgceived, publishStatus(status/command_rgceived, publishStatus(status/command_rgceived, Serial.printin("Unknown
cmd) cmd) cmd) command")
Y } iF NO: l
Publish status
ublishStatus(status/calibration
"CANCELED")
s N
Flowchart key
(O Terminator
- Process
D Data v
<> Decision Complete Return '\ _
_ J start -

Figure 89: Flow chart showing handleIncomingCommand()

146

11. SOFTWARE

11.5.7 Motor Driver EG |

The role of the Motor Driver is to provide precise, concurrent control of five stepper-driven

joints with non-blocking motion and a homing routine for calibration.[39] [47]
Key functions:

initMotors()
Reads per-joint constants (MICROSTEPS, GEAR_RATIO[], MAX_OUTPUT_RPM[], pin mappings)

from config.h, computes the required step-rate via the following formula:

MAX OUTPUT_RPM " MICROSTEPS
60 GEAR_RATIO

steps/s =
and then configures each AccelStepper instances maximum speed and acceleration.
moveJoint(index, stepCount) Queues a relative microstep move for the specified joint.
updateMotors() Calls run() on each stepper once per loop pass, ensuring concurrent stepping. [47]

calibrateAllJoints() Performs a blocking routine to locate left and right limit switches, mea-

sure travel range, return to the midpoint, and zero the position for each joint. [48]

allJointsDone() / calibrationDone() Reports whether queued motions or the homing se-
quence have completed. By using the AccelStepper librarys [39] non-blocking API, the module
performs multi-joint motion within the super-loop. Homing is the only blocking operation. We
considered this to be justified by it being a critical safety feature, given that the initial motor

drivers provide no other means for step position feedback.

147

11. SOFTWARE

11.5.8 Gripper Driver EG |

Simple state machine for the gripper

3
Event:

moveGripper(state)

Entry actions:

sets moveStartTime = millis()
moving = true

Gripper in motion
moving = true

Gripper is still
moving = false

Condition:

millis() - moveStartTime =
GRIP_MOVE_TIME_MS
Action:

moving = false

Figure 90: Simple state diagram showing the state transition conditions and actions.

The Gripper Driver module controls the gripper endeffector (EF) servo via a simple, nonblock-
ing, timebased state machine (See Figure 90). When a moveGripper (state) command is
called, the function records the current time in moveStartTime and sets an internal moving

flag. On each pass of the main loop, updateGripper () computes:
At =millis() —moveStartTime

this is then compare to the predefined duration GRIP_MOVE_TIME_MS. The moving flag is cleared
when At > GRIP_MOVE_TIME MS, showing that the gripper EF has reached it’s target position.

Two advantages to this strategy:

1. By avoiding any blocking calls, the Main Loop is free to service motor updates and MQTT
traffic at high frequency.

148

11. SOFTWARE

2. The elapsed-time check ensures the gripper completes its motion in a fixed, known inter-

val, without creating slowdown elsewhere in the system.

This strategy is inspired by the following sources: [42] [49]

11.6 Camera JCDH | SME

The ESP32-CAM is a low-cost camera development board intended for various IoT and indus-
trial applications, including smart agriculture. It integrates the ESP32 chip directly on the
same board, which makes it function as its own computer [50].” Our particular board uses the
OV2640 camera module, which has a max resolution of 1600x1200 pixels [51].

11.6.1 ESP32-CAM supported resolutions JCDH | SME

The ESP32-CAM supports the following resolutions (lower resolutions takes less time for the
ESP32, network, Al models and Computer Vision (CV) to process) [52]:

« FRAMESIZE 96X96, // 96x96

« FRAMESIZE QQVGA, // 160x120
« FRAMESIZE QCIF, // 176x144

« FRAMESIZE HQVGA, // 240x176
« FRAMESIZE 240X240, // 240x240
« FRAMESIZE QVGA, // 320x240
« FRAMESIZE CIF, // 400x296

« FRAMESIZE HVGA, // 480x320
« FRAMESIZE VGA, // 640x480

« FRAMESIZE SVGA, // 800x600

« FRAMESIZE XGA, // 1024x768

“The original intent was to connect the camera module to the Arduino, but because it was later found
that this camera module has its own ESP32 chip it proved easier to just stream the data directly from the
ESP32-CAM to the Leafy Automation Central.

149

11. SOFTWARE

« FRAMESIZE HD, // 1280x720
« FRAMESIZE SXGA, // 1280x1024

« FRAMESIZE UXGA, // 1600x1200

11.6.2 Handling low light conditions JCDH | SME

The testing indicated that the camera quality suffered greatly in low light conditions. Figure
91 shows an image of the printed chessboard from Figure G.53 on a neutral background. This
image taken by the ESP32-CAM indicates how important targeted lighting or direct daylight

is for the handling area. 8

Figure 91: ESP32-CAM low light conditions

8Note that viewing the content of the image in Figure 91 is difficult, but it emphasises the importance of a
brightly lit scene.

150

11. SOFTWARE

11.6.3 Verifying feasibility of detecting lettuce at a distance of

0.3 meters JCDH | SME

This distance was chosen because it is well within the reach of the robot arm. The lens of the
particular ESP32-CAM we use has a Field Of View (FOV) of 65 ° [53].

Using the formula for calculating the viewer distance from the Valve Developer Community
[54], we can input known values and rearrange them to deduce the screenwidth (how much of

the scene width is visible in the image):

screenwidth

viewer distance = ——~—-—
2 tan(%)

V 65
= screenwidth = viewer distance x 2 tan()=10.3x2 tan(?)

= (.382242156 meters ~ 0.38 meters

Measurements indicate that a normal-sized Norwegian crispy salad is roughly 20 cm in width,
which proves that the camera captures the salad within the image when located on the robot

arm. ?

11.6.4 Calibration and handling camera distortion JCDH | SME

Cameras can introduce distortion to images like radial distortion, which makes straight lines
appear curved, and tangential distortion which means that the camera lens is not perfectly
aligned with the imaging plane [55]. Figure 92 shows an example of tangential distortion,
where the camera sensor is not parallel with the imaging plane. Image calibration using a
chessboard aims to solve this issue, although if intrinsic camera values are known beforehand,

or manually fine-tuned, this step can be skipped.

9Manual testing with the esp32-cam and a measuring tape was done to double check results.

151

11. SOFTWARE

Camera ﬁ Camera
SEnsor [lens

|| AV,
Imaging
plane

Figure 92: Example of unaligned camera lens in relation to imaging plane (tangential distortion)

11.7 Artificial Intelligence (AI) and Computer Vision
(CV) JCDH | SME

Artificial Intelligence (AI) and Machine Learning (ML) are important technologies and critical
parts of image recognition. This section outlines the underlying technology of modern Al mod-

els and ML algorithms, and how they are used in our system. °

These days, a lot of fuzz is made about AI. Why do we need it, and what does it do? Well,
because of today’s environment around Al technology, we have to be careful in validating if a

technology is actually useful and adds real value to our system goals.

11.7.1 What is Artificial Intelligence? JCDH | SME

Artificial Intelligence (AI) refers to computer software which mimics the intelligence of biolog-

ical life. ' Appendix G.1 outlines Al concepts, technical analysis, training and benchmarking
in great detail.

10Machine Learning (ML) is actually a sub-category of Artificial Intelligence (AI), but the terms are used
interchangeably in many cases.

11 Artificial Intelligence was actually an integral part of developing the COVID-19 vaccine as quickly and
efficiently as was done. As a part of this process millions of people contributed collectively trough projects like
Folding@home which allowed people to run protein folding AI models locally on their computers, providing
valuable insights into viral mechanisms and potential treatments. [56]

152

11. SOFTWARE

Overall, Al models have showed to be a valuable resource for achieving the requirements of
Hydroplant Technologies, especially depth estimation. Fine-tuning object detection models to
a satisfactory point has proven to be time-consuming and resource intensive, and although
further work must be done for this type of model to become useful, the research we have done
will be a good baseline to work on in the future. It is believed that object detection Al models

are superior for diverse sets of plants, based on testing.

For more info on the initial Al testing, please refer to Appendix G.3.

11.7.2 What is Computer Vision (CV)? JCDH | SME

Computer Vision generates useful data points from a visual source, like an image. 2 Appendix

10.4 outlines Computer Vision concepts, technical analysis and development in detail.

11.7.3 Combining multiple different AI and CV technologies JCDH | SME

The consensus is that combining different technologies can give improved accuracy for the robot
arm, and each technology is a tradeoff between performance and complexity. The goal of each
technology is to create an abstraction of the real world, whether this abstraction actually is close
enough is something that must be tested and considered thoroughly, but it is our belief that the

plethora of Al and CV technologies explored creates a useful baseline for further development.

11.7.4 Classifying a plant and creating a “plant_ type” JCDH | SME

Figure 93 shows the process of predicting a plant type. The model is fed a list of possible
values, which are called “candidate labels”. From on the image supplied, a score for each
candidate label is generated which indicates how confident the AI model is in its prediction.
The AT model used for this task is called “openai/clip-vit-base-patch32”. This is a unique kind
of image classification model which hasn’t been specifically trained on the source images [57]
[58].

12In many cases, Computer Vision tries to mimic how vision works in biology.

153

11. SOFTWARE

Candidate labels:
[crispy_lettuce, arugula]

Source image Zero-shot image classifier > Prediction

label: "crispy_lettuce", score: 0.91

label: "arugula", score: 0.09

Figure 93: Plant type pipeline

11.7.5 Creating a “grip point” JCDH | SME

In order to facilitate the proper movement of the robot arm, a grip point has to be generated.
This is done using a combination of Al models and custom developed CV algorithms. Figure

94 shows the process of generating a gripping point from a source image. 3

Depth estimation is done using the “depth-anything/Depth-Anything-V2-Metric-Indoor-Large-
hf” [59] [60] Al model, while mask and geometry generation is done using custom developed
algorithms which rely on PlantCV and OpenCV.

13The chessboard seen in Figure 94 is used for image calibration and testing purposes.

154

qqr1

Source image

Mask generation (CV)

Source image

Generate geometry (CV)

Combine and calculate
datapoints

Estimate depth (Al)

&

Figure 94: Grip point pipeline

Calculate grip point

Grip Point: [-0.22450447 -
0.79480385 0.93386095]

T

HIVMLAOS

11. SOFTWARE

11.7.6 Al models and CV algorithms used in Leafy Automation JCDH | SME

The following is a list of all AT models and CV algorithms used in the system (more on these

in Appendix 1):

» Image Classification - Classifies what objects are within an image. In our case, which

type of lettuce.

e Depth Estimation - Estimates a distance in meters from the camera sensor for each

pixel in an image.

« Mask Generation - Separates an object of interest from the rest of the image but giving

it a white color, while everything else is a black color.

The different AT and CV codebases are divided up into tasks, which can be seen in Figure 95.
The reason for using the tasks concept is that its a well established term within the Hugging
Face documentation, and extending it to mean any AI or CV related task makes sense

from an application organization perspective [61].

v central
v oai

v tasks
@ depth_estimation.py
@ green_percentage.py
@ image_classification.py
@ mask_generation.py
@ object_detection.py

Figure 95: Al tasks directory structure

4 Testing indicated that using a custom developed Computer Vision algorithm for mask generation gave
quicker and more accurate results than using an Al model. This due to the process of identifying lettuce being
highly specialized, and not general purpose which most Al models are optimized for.

156

11. SOFTWARE

11.8 Code quality and maintainability JCDH | SME

This subsection outlines different approaches we use for writing high quality and maintainable

code.

11.8.1 Type hinting JCDH | SME

Python is a dynamically typed language which means that variables does not require you to
define variable types, this stands in contrast to languages like C++ which do enforce types
(statically typed languages). Statically typed languages offers many benefits like improved
code readability and reduction in bugs related to wrong assumptions about variable types
(e.g. passing a string such as '2" instead of the integer 2, which is a common mistake in
programming). We make use of both Python and C++ in our codebase, and altough Python
is not a statically typed language it supports "type hinting" (meaning labeling a variable as a

specific type) which we make extensive use of.

def auth(username: str, password: str) -> bool:

Figure 96: Python type hinting example

As seen in Figure 96 the “auth” function defines that it requires two arguments (username,

password) of type str (string), and returns a bool.

11.8.2 Unit testing JCDH | SME

We need a way to confirm that our system works as expected after implementing new features
in our codebase. Therefore unit testing is certainly one of the key methods to measure system
stability by. Unit testing is the practice of testing small units of code (e.g. functions), and

asserting that these units of code actually return the expected values.

11.8.3 Benchmarking class JCDH | SME

In order to deduce the performance of an arbitrary block of code, benchmarking must be done.

157

11. SOFTWARE

This was achieved by using a custom developed class which allows you to measure the time it
takes to execute a piece of code and export the data as a diagram. Please refer to Appendix

G.G for details on using this script.

11.8.4 Environment variables JCDH | SME

Environment variables are used to store variables which should not be in the source code, and
which are only loaded at runtime. Examples are passwords and access tokens. A file called
“env” is used to achieve this for the Leafy Automation Central, and a file called “secrets.h” in

Leafy Automation Core, which is separated from the commited codebase by using a “.gitignore”
file.

158

12. DESIGN REVIEW

12 Design Review

A formal design review was conducted with both our internal and external supervisors to
present the current status of our robotic arm project and receive valuable feedback for the
remaining project period. This review served as a checkpoint for assessing progress across all

departmentsmechanical, electrical, and softwareand to identify critical tasks for completion.

Mechanical Department

The mechanical team presented the fabricated components and demonstrated their functionality
with attached and programmed motors. A prototype of the gripper was showcased, successfully
demonstrating its gripping force. However, the rotational torque could not be tested during the
review due to a loose connection between the stepper motor and the gripper body. Additionally,
we presented printed components for the joints and arms, as well as a prototype of the base
that successfully demonstrated rotational motion.

Software Department

The software team provided an overview of the system architecture, including the Arduino mi-
crocontrollers, Al and the central control unit based on a Raspberry Pi. The feedback regarding
our approach to system architecture was positive. We received valuable advice concerning mo-
tion planning and were encouraged to explore integration with ROS2 for improved modularity
and scalability. Another point of discussion was the importance of demonstrating some level of
motion in the final prototype, to visually showcase the robotic arm’s capabilities. Furthermore,
the camera system was reviewed, including considerations for optimal placement, the number of
cameras (single vs. dual), and appropriate angles for maximizing visual coverage and accuracy

during plant recognition and harvesting.

Electrical Department

The electrical team was tasked with connecting all electrical components while ensuring effi-
cient and safe cable management. Proper cable routing and space claim are critical to prevent
interference between moving parts and electrical lines. One essential improvement highlighted
during the review was the need to integrate limit switches for the stepper motors responsible for
rotational movement. Without these, the system risks mechanical failure due to over-rotation.
Additionally, if time permits, it was advised that we implement safety mechanisms to handle
potential failuressuch as broken limit switches or misaligned componentsto protect both the

hardware and users.

159

12. DESIGN REVIEW

Summary and Reflection

The feedback from our supervisors was both insightful and constructive. One key takeaway is
the importance of time management in the final project phase. With limited time remaining, we
must focus on completing the most critical features. Any components, functions, or improve-
ments that cannot be implemented within this timeframe will be documented in a dedicated
chapter titled Future Work ?7?. This ensures continuity and provides a clear foundation for
Hydroplant Technologies AS to continue development if desired. It is important to emphasize
that this project is a proof-of-concept. While functional components have been developed, and
preliminary integrations have been made, the current system is not yet suitable for commercial
or industrial use. Further refinement, testing, and validation will be required to achieve full

operational readiness.

160

13. PROTOTYPE

13 Prototype

We will look at the latest iterations of parts to be chosen as the prototype to be built. The
robot arm parts are continuously developed to meet the requirements to move effectively in the
designated area. We will also introduce the process of 3D-printing, since almost all parts are

printed.

13.1 3D printing |

We will shortly describe how 3D-print is used in the industry. Also what materials we used
and the techniques we used to improve and reinforce prints.
Group member DAB has his own printer at home that we can use, and we can also request

parts printed by teacher Richard at USN Kongsberg.

13.1.1 Rapid prototyping DAB | SME

Rapid Prototyping is widely incorporated in many different project models because it is an
iterative process. It also helps to reduce time used in development, increases the end prod-
ucts quality, makes it easier to visualize concepts, has low cost and fast production time of

prototypes.

13.1.2 Materials used DAB | SME

PLA-Polylactic acid

PETG—Polyethylene terephthalate glycol

TPU-Thermoplastic polyurethane

The most commonly available plastics for 3D-printing is PLA and PETG. PLA has more tensile
strength but is more brittle, and more sensitive to moisture.

PETG is not as durable as PLA. It is a lot more flexible, has higher UV resistance and is more
resistant to heat and chemicals.

TPU is a flexible filament which is hard to print because it can slip in the extruder gears. Low

speed and high temp printing is required.

13.1.3 Printing DAB | SME

This section will discuss a bit about general printing and some things you need to think about.

161

13. PROTOTYPE

There are plenty of articles and videos online going in full detail for each topic.
Bed Adhesion

It is critical to have good bed adhesion so that the parts that are printed does not loosen from
the print bed wile printing, or the print lifting in some areas which will lead to warping or

worst case the extruder hits the print and knocks it off while printing.

To improve adhesion, you can use tape, glue sticks and hair spray. It is most common to use
hair spray, since it has good effect. You can also upgrade the printer bed by applying steel
PEI sheet. PEI is a Polyetherimide, which is a a thermoplastic coating with good adhesion
properties that requires little to no surface prep for many different types of filament. Some
of the PEI sheets come with two sides, one smooth and one textured surface, for better grip.
Another benefit is that it is made out of steel, which makes it easier to remove parts from the

steel plate since it loosens more effortlessly.
Print temperature, print speed and cooling

These three thing are related to each other. Printing temperature is critical to attain good flow
of material at the speed range you want to print, without overheating the filament and having
correct fan speed to cool the layer at a correct speed to achieve good adhesion of the layers and

minimal stringing of material.

Part print orientation/layer direction

Knowing which direction to print the parts, is also critical, especially if it is bearing some kind
of load in a specific direction. Since you can adjust the part orientation to achieve desirable

layer direction to bear load, instead of splitting the layers as easily.

Infill and wall line count

Infill describes how much the inside of the printed part is filled in (%) and what type of structure
the infill has. The infill at full, alternates layers 90°line pattern.

It is also possible to choose the defined amount of wall lines you want, this is calculated auto-
matically, but sometimes it is better to have thicker walls for strength overall, or if you want

to have heat inserts or drive screws directly.

Layer height

162

13. PROTOTYPE

With a finer layer height, you can have a more detailed part, but it will not be as strong as
thick layer lines since you reduce number of layers required. If you have a large nozzle with a

high layer height, it will produce stronger parts but will not be visually appealing.

13.1.4 Printing arm part DAB | SME

We designed the parts in Solid Works in the material it is supposed to be in the industrial
context, so no adjustments were made just for a 3D-printed version. The only change was that
we used PETG since it is more flexible and it increases the layer lines so that the screws have

good amount of space to screw in and form treads nicely in the plastic.

We had some problems with the print. It split up in the layer lines because of the force from
screws being tightened, and the screw was tapping its own threads. Unfortunately, we could
not change the direction of layer lines since the load acting on the arm would not allow me to

print it.

163

13. PROTOTYPE

13.2 The base prototype BMR |

This version was designed mainly for additive manufacturing (3D-print) for the prototype of
the robot arm. A section view of the assembly can be seen in fig. 97, the green and blue hues
are part of the rotating part of the base attached to the arm, while the pink and orange hues
are stationary and secured to the shaft and the table. An exploded view showing the assembly

can be seen in fig. 98.

C

Figure 97: Section view of base assembly (CAD bearings from [5] and CAD motor from [3])

164

13. PROTOTYPE

:

Figure 98: Exploded view of base assembly (CAD bearings from [5])

The inner shaft is reinforced with 6 x (¥2.5 mm steel rods to counteract the weakness of the
layer lines in the 3D print (as discussed in section 13). The outer housing polymer parts are

sandwiched between two disks of MDF that are laser cut for better tolerance in the interface

165

13. PROTOTYPE

to the arm, and also provides a more even load distribution. A hole going through the outer
housing from the limit switches to the top allows for the wires to connect to the control units

at top. All parts can be seen in fig. 99, and assembled in fig. 100.

The bearings used are two deep groove ball bearings (SKF 6006-2RS1), that can take both

radial and axial loads. These are supported between the shaft and outer housing.

Figure 100: The base prototype assembly

166

13. PROTOTYPE

13.3 The joints/arm DAB | SME

In this section we will look at the printed iterations and discuss problems discovered or tweaks

needed.

13.3.1 Direct drive joints DAB | SME

We printed several variations/iteration to check how it looks physically and to check fitment.
This method of printing and testing, or visual check is called rapid prototyping which is
widely used and implemented in various production models across the world. More about

rapid prototyping/3D-printing you can find at the beginning of this section. 13.

(a) iterations (b) latest test fit

Figure 101: direct drive Joint prototypes

167

13. PROTOTYPE

13.3.2 Belt drive DAB | SME

Figure 102: Robot arm V0.1B

We chose to go with a belt driven version for the ability to adjust the gear ratio after gear
boxes of the motors (See section 10 for more information about motors). This will allow us to
fine tune the torque to our requirements. Another benefit is that we offset the motors closer to

the base, which in turn helps with weight management of the robot arm.

The biggest motor in joint one is offset off centre to work as a counter balance weight. NEMA
23 motor gross weight is 1.67kg which works well for us, since the arm itself without motors
is around 950 grams with parts in aluminium and not 3D-print. With motors included it is

around 2251 grams.

The robot arm meets our requirement for angle of rotation, and flexibility of the design. This
implies that the design can be easily adjusted for future modifications or adaptation for other

task because of multi assembly design.

Design can bee realistically developed with the available resources, and budget supplied by our

employer, but because of our time constraint, we can only manage to 3D-print a prototype.

168

13. PROTOTYPE

The durability should be adequate by looking in what working conditions the robot arm is
in. Aluminium does not rust like steel, this is important since the robot is placed in 23°Chigh

humidity environment.

Aluminium has a good protective oxide layer, and is used widely across the world as food safe
material in food production and more. You can also get antibacterial anodizing coating which
is comprised of quaternary ammonium compounds, used in high contact areas. By looking on

research papers, it kills 99.9% in 5 min [62].

Compared to AR4-MK2 kit [63]

The total reach of our arm is 60cm but working range is 50cm. Payload 850-1kg, do not have
weight requirements, but try to get as low as possible.

The DIY kit has a total reach of 62.9cm. Payload 1.9kg, total weight 12.25Kg

Quick moment calculation

We did some rough hand calculations to check if we exceed the holding torque of the motors
after gearing. Since our arm has to have a payload of 1kg, and also consider the gripper to
have a maximum load of 1kg, we need to ensure that we have no problems down the road.

Joint one has a small margin of holding torque, joint 2 is with a wide margin and joint 1 is

overkill we have more than we need.

Price

Price per meter for aluminum profile is 110kr in zeptobit store [27] where our employer buys it.
Aluminium profile length used in our prototype is 190mm link 1 double row, but link 2 length
is 120mm single row.

Total length of alu profile needed is 500mm. 110kr/1000mm=0.11 price per mm. so total price
for aluminium profile for robot is 500*0.11=>55kr.

Also looking up the cost of CNC machining for joints and shafts in JLCCNC if we chose to
order. The total price with shipping is 184.23 without 25%mva, With mva 230.29.

169

13. PROTOTYPE

13.4 Gripper development and Testing SME | JCDH

The first prototype design focused on a jaw-style gripper, designed to facilitate initial testing,
data collection, and integration with electronic components. This prototype was not intended
to serve as the final end-effector for the robotic arm but rather as a preliminary functional
model to streamline early-stage testing and optimize the development process. Given its pur-
pose, the jaw gripper will be kept relatively simple, ensuring that it remains an efficient and
cost-effective starting point. Additionally, a key design consideration will be the modularity
and replaceability of the gripper, which must be accounted for from the early development
stages. Furthermore, whether to incorporate soft touch technology in this prototype or delay
its implementation to a later iteration that more closely aligns with the final design must be

evaluated.

For the subsequent prototypes, the focus will shift toward developing a more advanced grip-
per that better replicates the flexibility and functionality of a human hand. These iterations
will incorporate finger-based gripping mechanisms along with soft touch technology, such as
the Fin-Ray gripper principle, to enhance adaptability when handling objects with complex
geometries. The incorporation of soft touch elements is essential to prevent damage to deli-
cate produce, such as salad greens, during pick-and-place operations. By refining the design
through an iterative prototyping process, the final gripper will achieve an optimal balance of

flexibility, precision, and delicacy, meeting the specific requirements of agricultural automation.

13.4.1 Gripper V1 SME | JCDH

This initial prototype was developed with the objective of creating a simple, quick-to-assemble
design that could be efficiently modelled in SolidWorks, and easily 3D printed and assembled.
It serves primarily as a test model to validate the fundamental design and assembly process
and does not represent the final product. The design process began with the gripper’s fingers,
which are shaped somewhat like spatulas. The prototype features two fingers designed to work

in unison to gently lift a salad plant and place it into a designated area.

170

13. PROTOTYPE

/

a) Finger gripper (b) Finger grip-
per front

Figure 103: Gripper fingers

To integrate the gripper with the NEMA 11 stepper motor (See section 10 for more information
about motors) and the rest of the robotic arm, a structural base was designed. An indent was
added on the underside to securely place the servo motor, along with holes for fastening the
screws. A central hole was also incorporated to allow the motor shaft to connect to the internal

gearing mechanism responsible for actuating the fingers.

1

a) Gripper body (b) Gripper body, underneath

Figure 104: Gripper body

Subsequent modifications included the addition of screw holes to mount the gear components
and structural supports. The body was further extruded to accommodate the stepper motor,
and a through-hole was created for the Z-screw, enabling rotational movement of the gripper.

This extruded section also partially encloses the stepper motor to protect it from dust and

171

13. PROTOTYPE

mechanical interference.

Following this, the gearing components were designed. Two nearly identical gear holders were
created, differing only in that one interfaces directly with the servo motor and includes mount-
ing holes for attachment to the motor fan. These gear holders are mechanically linked to the

gripper fingers.

(a) Gear part 1, connec- (b) Gear part 2
tion to servo motor

Figure 105: Gearing components

To enhance structural integrity and minimize the risk of mechanical failure, two additional
support components were developed to link the gripper fingers to the main body. Due to the
unavailability of an accurate NEMA 11 stepper motor model in the CAD library, a simplified
version was modelled based on real-world measurements. This enabled accurate dimensional
validation and ensured a proper fit during the assembly process. All components were sub-
sequently assembled in a SolidWorks® (SolidWorks) environment. As emphasized, this is an

early-stage prototype intended for testing and design validation, not the finalized product.

172

13. PROTOTYPE

(a) NEMA 11 (b) Support compo-
nents

Figure 106: Support and stepper motor

Throughout development, several iterations were made to the body design. Ultimately, the
enclosing section around the stepper motor was removed to reduce material usage and decrease
the overall weight of the gripper. Since the motor is securely fastened using a Z-screw, the
enclosure was deemed unnecessary at this stage. However, a secondary fastener may be added
near the motor tip in future versions to provide additional stability. This decision will be made

following further structural evaluation, including Finite Element Method (FEM)

(a) Gripper assembly front (b) Gripper assembly back

Figure 107: Gripper assembly

The final version of Prototype 1 appears as shown. Upon completion of the design, the Solid-
Works models were exported as STL (STL) files and sent to a 3D printer. Printing began with
the support structures and the components interfacing with the stepper motor, followed by the
gripper body and the two fingers. The first print attempt of the body and fingers failed due to

poor bed adhesion, necessitating a restart. The second attempt was successful.

173

13. PROTOTYPE

After printing, all components were assembled using screws. The servo motor (See section 10 for
more information about motors) was then connected to the gear-driven component responsible
for actuating the gripper. However, the motors side sliders interfered with full insertion into the
designated cavity, requiring light sanding with sandpaper to ensure a snug fit. Once all parts

were in place, the screws were tightened, and the prototype was prepared for initial testing.

Figure 108: Gripper prototype 1

13.4.2 V1 - Assembly and Initial Testing SME | JCDH

Upon completion of the 3D printing process for all components of Prototype 1, the assembly
phase was initiated. The parts were mechanically fastened using appropriate screws, and the
assembly tolerances were sufficient to allow all components to fit together as intended. Follow-
ing mechanical integration, the servo motor was mounted and coupled with the internal gear

mechanism to assess the functionality of the gripper.

Once all electrical systems were connected and verified, a control script was uploaded to the
microcontroller to test the actuation of the gripping mechanism. The servo-driven gripper
successfully executed basic open-and-close motions, confirming that the mechanism was func-

tionally operational in its initial configuration.

During this test phase, one observation was that the gear engagement could have been opti-

mized. Specifically, the mating gears did not achieve full rotational contactlimiting the overall

174

13. PROTOTYPE

range of motion slightly. Although this did not hinder basic gripping functionality, the lim-
ited contact area reduced potential grip span and torque efficiency. This shortcoming was
documented and directly informed improvements implemented in Prototype 2, where the gear

profiles and tolerances were refined for better performance.

In terms of rotational capability, the stepper motor was mounted through a central bore in the
gripper body and secured using a ¥4 mm Z-screw. While the Z-screw initially fit, the tolerances
between the printed hole and the screw shaft were too close, resulting in material wear during
repeated threading. This caused the hole to widen over time, and during the design review
demonstration, the Z-screw failed to maintain its positionrendering the rotation functionality
inoperable during that phase. As a result, while gripping force was demonstrably successful,

the rotational movement of the gripper could not be showcased.

This issue highlighted the need for reinforced mounting solutions for the stepper motor. In
the subsequent iteration, additional structural support and fastening mechanisms were incor-
porated to ensure the motor remained securely attached during repeated use and under applied

torque.

These lessons from Prototype 1 provided critical feedback for mechanical robustness, modular-

ity, and motion fidelity, which were all addressed in the next design iteration.

13.4.3 Gripper V2 SME | JCDH

Building upon the insights gained from the first prototype, the second gripper iteration was
designed to improve both functionality and structural integrity while maintaining a modular
and cost-effective approach. Since the final prototype will not undergo industrial deployment
at this stage, and given the limited project budget, it was decided to not use machined compo-
nents in favour of 3D-printed parts using PLA which was used for the structural components
due to its rigidity and ease of printing, while TPU which was chosen for the Fin-Ray fingers
thanks to its elasticity.

Although machined steel parts would undoubtedly offer greater mechanical robustness, par-
ticularly relevant for agricultural applications, these will be discussed in section 15.1. The
exclusive use of 3D-printed components enables rapid iteration and low-cost manufacturing.
Moreover, 3D printing is easily accessible and aligns well with the proof-of-concept nature of

the project. Given the initial success of Prototype 1, Prototype 2 was designed as an improved

175

13. PROTOTYPE

and functionally enhanced version with a focus on soft-touch handling.

Fin-Ray Concept for Soft Gripping

Figure 109: Fin-Ray gripper

To meet the requirements for handling delicate agricultural produce, such as leafy greens, the
Fin-Ray gripping principle was selected for this prototype. This bio-inspired design allows the
gripper fingers to adapt passively to the shape of objects, ensuring a gentle grip without the
need for integrated sensors. Increased force causes the Fin-Ray fingers to wrap more completely

around the object, thereby minimizing the risk of damage to sensitive plant matter.

Design and Material Considerations

As with the initial prototype, SolidWorks was used as the CAD platform for designing all
components. The development process began with the most critical elements: the Fin-Ray
fingers. These components were designed to be printed in TPU, allowing for the necessary
flexibility and deformation properties. The design was inspired by existing Fin-Ray concepts
found in literature and online resources, but was scaled and adapted to fit the dimensions of the
robotic arm. The finger geometry draws inspiration from human hand proportions to enhance

ergonomic compatibility.

The initial finger design featured an internal triangular structure with wall segments to facilitate
controlled deformation. To improve flexibility, the wall thickness was reduced near the edges.
Two M4 mounting holes were included at the base of each finger to secure them to a connecting

plate.

176

13. PROTOTYPE

(a) Finger, front (b) Finger, side

Figure 110: Fin-Ray fingers

Structural and Mechanical Integration

Following the development of the fingers, a solid intermediate mounting plate was designed to
connect the fingers to the main body. This plate includes cutouts to reduce weight and material
usage while maintaining mechanical strength. The plate is affixed to both the fingers and the

body using M4 screws.

Figure 111: Mounting plate

To secure the mounting plate to the gripper body, support brackets were developed. These sym-
metrical components extend from the front to the underside of the gripper, providing structural
rigidity and minimizing flex during operation. Like the plate, they are fastened using M4 hard-

ware.

177

13. PROTOTYPE

(a) Support bracket, front (b) Support bracket

Figure 112: Support brackets

Gripper Body and Motor Housing

The central body of the gripper serves as the interface for all mechanical and motor components.
On the left side of the body, a ¥19.3 mm hole was dimensioned to accommodate the shaft of
a servo motor responsible for actuating the fingers. This aperture was precisely sized to allow
the motor shaft to pass through and be secured from the front side. On the right, a ¥3 mm

hole was included for an auxiliary support shaft, which will be fixed using an M4 screw.

An indent was added on the underside of the gripper body to seat the servo motor, with 3.5
mm holes for M4 screws to secure it in place. Additional side holes allow for attachment of the

support brackets mentioned earlier.

To integrate the NEMA 11 stepper motor at the base of the gripper, a ()6 mm hole was included.
The hole was shaped to match the motor shaft profile for improved fit and stability. Two 3
mm holes were also added from the top to allow screws to secure the shaft directly, providing

greater rigidity compared to Prototype 1, which relied solely on a Z-screw.

178

13. PROTOTYPE

T ®

a) Gripper body b) Gripper body, underside

Figure 113: Fin-Ray gripper body

Gear Mechanism

The gear components responsible for transferring torque from the servo motor to the gripper
fingers were subsequently developed. These gears feature teeth modeled using a freehand ap-
proach and will be tested for fit and performance. One gear interfaces directly with the servo
motor via one center hole of @4mm and two @¥1.5 mm holes that align with a fan mount. Due
to a 2 mm offset created by this mounting interface, a corresponding 2 mm extruded base was

added to the opposing gear to ensure collinearity. Both gear components are secured with M4

FrEN

a) Gearing, motor b) Gearing part with- (c¢) Gearing underside
out motor

SCrews.

Figure 114: Gearing components

Final Assembly and Validation

All components were assembled in SolidWorks to assess fit and functional alignment. This
assembly phase revealed the need for minor adjustments to part lengths and hole placements
to ensure proper alignment and fastening. Also, we needed to add two brackets on the sides of

the gripper body, as seen in Figure 115, to make sure the gripper will interface with the limit

179

13. PROTOTYPE

switches that is connected to the end effector. The final assembly emphasizes modularity, ease

of maintenance, and material efficiency.

Although the design closely resembles Prototype 1 in form, significant improvements were
made in structural robustness and finger actuation. The current design remains optimized for
3D printing, but could be further refined for metal machining as discussed in later sections
15.1.

Once the design was finalized, STL files were generated, and the 3D printing of individual

components began.

&
‘91

Figure 115: Fin-Ray gripper, exploded view

Figure 116: Final Fin-Ray assembly

13.4.4 V2 - Assembly and Initial Testing SME | JCDH

180

13. PROTOTYPE

Once the SolidWorks model of the second gripper prototype was completed, the components
were 3D printed and subsequently assembled using standard screws. The components fit to-

gether well, and the Fin-Ray-inspired gripper was ready for initial testing.

The gripper was mounted onto the end-effector using two Z-screws, which securely fastened it
to the shaft of the stepper motor. Functional tests were then conducted using various objects
to evaluate the grippers adaptability and performance. One important observation was that
the surface of the gripper fingers, printed in TPU, was very smooth. This caused the gripper
to slide on smooth objects, reducing its gripping effectiveness. This limitation is addressed
further in the Future Work section 15.1, where improvements such as textured or coated finger

surfaces are discussed.

Since the robotic system is primarily intended for harvesting lettuce, a practical test was con-
ducted using a Crispi lettuce head. The aim was to evaluate how well the Fin-Ray fingers
conform to the organic shape of the lettuce and whether it could be lifted securely. The gripper
performed successfully in this test, easily picking up the lettuce. During this experiment, dis-
placement measurements of the gripper fingers were recorded by a caliper (Figure 118) and later
used as input for a Finite Element Method analysis, visualizing deformation when gripping a

crispi salad. (see Figure 119).

Figure 117: Fin-Ray gripping test

181

13. PROTOTYPE

041:4mm

0{1’—1,}mm
015 =24 mm
01q =%, mm
045 = A mm

Figure 118: Displacement measurements from practical test

It is worth noting that the TPU material used for the fingers was not included in the default
SolidWorks materials library. Therefore, to conduct the FEM study, we relied on empirical data
obtained from the physical tests. For accurate stress and deformation analysis, especially in
industrial applications, precise material properties should be implemented in FEM simulations.

This is crucial to determine a reliable Factor of Safety (FOS), which cannot be fully trusted
without correct input data.

182

13. PROTOTYPE

Figure 119: Fin-Ray finger displacement FEM

In addition to the soft gripper analysis, a separate FEM study was carried out on the gear
components that actuate the gripper. Before initiating the simulation, hand calculations were
performed to determine the forces acting on the gear teeth 64. SolidWorks contact analysis
revealed that only two teeth are engaged at any given time. Although the gear consists of a total
of eight teeth, the load is shared by just two. The total tangential force was therefore distributed
evenly across these two engaged teeth. A detailed breakdown of the force calculations can be

found in Figure 64.

These calculated forces were then used as input in SolidWorks for the FEM study. The resulting
simulation (Figure 120) highlights the areas of maximum and minimum stress on the gear.
Given that the gears are 3D printed in PLA, the FOS (Factor Of Safety) is relatively low and
is not suitable for demanding industrial environments. For real-world implementation, these
components should ideally be manufactured using machined materials. This point is further

discussed in chapter 15.1.

183

13. PROTOTYPE

Model name: Festedel med tannhjul
Study name: Static 1(-Default-)
Plot type: Static nodal stress Stress1
Deformation scale: 1

41 618720

wvon Mises (N/m~2)
41618 720
. 37 456 872
- 33295028
~ 29133182
L 24971334
20809488
- 16647 641
| 12485794
8323947
4162 100
254

—P Vield strength: 60 000 000

Figure 120: Stress Analysis gear components

o Man: |41 618 720

Figure 121: Close up, maximum stress

184

von Mises (N/m*2)
41618720
.~ 37 458 872
_ 332095028
_ 29133182
_ 24971 334
L 2001809 488
L 16 647 641
_ 12485794
83234947
4162 100
254

— vield strength: 60 000 000

13. PROTOTYPE

Model name: Festedel med tannhjul HEHAm-WY TR
Stucly name: Static 1(-Default-}

Plot type: Factor of Safety Factor of Safety1
Criterion : Automatic

Factor of safety distribution: Min FOS = 1,4

FOS

2e+05

g

L 2e+05

el }

L 2e+05
_ 1e+05
L le+05
L 9e+04
- Te+04

_ Se+04

I 2e+04
1

Figure 122: Safety Factor

Since PLA was also not available in the SolidWorks materials library by default, it was manually

added. The material properties were sourced online and entered into the software [64].
Conclusion of Initial Testing

The initial tests demonstrate that the second gripper prototype functions effectively as a proof
of concept. The Fin-Ray fingers adapt well to organic shapes and successfully pick and place
lettuce heads without causing damage. While some improvements are needed to enhance grip
stability and material accuracy in FEM simulations, the prototype serves as a solid foundation

for further development.

13.4.5 Physical model DAB |

Pictures of physical model

185

13. PROTOTYPE

(a) Robot Arm (b) Close up Gripper

Figure 123: Finished Physical Model

186

13. PROTOTYPE

13.5 Specifications robot arm prototype

BMR |

The configuration space quantified (built on calculations from section 8.1.1).

Model Robot arm prototype - Leafy Automation
Bachelor
Articulated robot with rotational base
Type
5
Degrees of freedom {excl. end effectar)
Operating axis Max angle range
Axis spec.
Base roll (JO) 0" ~300°
Shoulder pitch (J1) 0°~90°
Elbow pitch (12) 0°~150"°
Wrist pitch {J3} -90 "~080 °
Wrist roll (J4) -90 "~90 °
Tkg
Payload max.
20 RPM
Max speed
Brushless Stepper motors
Driving motors
690 mm max. reach (See figures B & C)
Working range
7kg
Mass
Horizontal mounting (see figure A)
Installation
Exchangeable
End effector

A) Installation
interface

14em

13cm

C) Side view

Figure 124: Prototype specification

187

14. CONCLUSION

14 Conclusion

This Bachelor thesis, carried out in collaboration with Hydroplant Technologies AS, aimed
to develop a autonomous and versatile robotic system for harvesting leafy greens in farming
environments. As a proof-of-concept project, we focused on the design and integration of a
robotic arm capable of gentle harvesting and relocating produce such as lettuce. The system is
intended to play a vital role within Hydroplant‘s future goal of creating an automated pipeline

from seeds to packaged product, contributing to more sustainable and efficient food production.

Throughout the project, our multidisciplinary teams effort was applied across mechanical de-
sign, electronics and software systems. Several prototypes were developed and evaluated. Me-
chanically, a modular robotic arm and multiple gripper designs were implemented and iterated
by using assembly techniques and 3D-printed components to allow rapid prototyping and test-
ing. As far as electronics goes, custom PCBs were created to control motors and sensors. While
on the software side, the system was partially integrated with ROS2, forming the foundation for
future autonomous behaviour. Additionally, initial efforts were made in developing Al-based

object recognition and a database for logging plant interactions.

The final prototype demonstrates that the system is viable and can be developed further into a
innovative solution for the agricultural automation domain. However, significant work needs to
be done to transition the prototype into a fully deployable product. This includes redesigning
parts for machining, improving mechanical tolerances and component durability, enhancing
software architecture, and verifying system behaviour through comprehensive simulations and

field testing. A more detailed roadmap for these improvements is described in the 15.1 Chapter.

This project has not only served as a technical challenge, but also highlighted the potential
impact of robotics in future food systems. By reducing manual labour, increasing hygiene
and optimizing autonomous harvesters like the one prototyped in this project, could play a
central role in transforming the agricultural industry towards more sustainable and scalable
practices. The insights, designs, ans experience gained through this proof-of-concept form a
strong foundation for Hydroplant Technologies to further develop and refine the system into a

production ready solution.

188

15. REFLECTION

15 Reflection

Throughout the project period the group has had a steep learning curve, both when it comes
to the technical aspects of the project and the more administrative sides. Nobody in the group
had prior knowledge with robotics, so there was many new concepts and expressions to get

familiarized with.

Group collaboration

We had some initial ideas about how we wanted to structure the project work and the collab-
oration between the different engineering disciplines in our group. Despite different ways of

working, we managed to find a good way to collaborate and communicate.

We had some challenges working with a set project model (scrum), and ended up working
around a hybrid solution where we choose to adapt some of the elements that worked well
for the group, like daily stand up meetings. The expectations from the University, that each
student had his/her own work description, sometimes conflicted with the idea of collaborating

towards a main goal.

Time planning

The group got the project assignment 6 weeks into the bachelor period and had some startup
challenges. As a result of the delayment, many key planning and decision making meetings
occurred relatively late in the process, which introduced time management difficulties and
increased the pressure on both development and integration phases. We also faced some chal-
lenges with task planning and time estimations, mainly due to lack of experience around how
much time was needed for the specific tasks. Having a better overview and more milestones

could maybe have improved the work flow and integration process.

Group structure

At the onset of this thesis, we decided to arrange ourselves in a flat leadership structure believ-
ing that this would encourage creativity and a strong sense of shared ownership. As we now
near the end of this experience, we acknowledge that there are mixed feelings about this deci-
sion as it did not come without cost. Examples of this are more and longer meetings than we
might have needed. Lack of individual accountability also led to tasks being left unattended. It

is therefore believed by some members of our team that the flat leadership structure took a toll

189

15. REFLECTION

on our overall efficiency. Retrospectively, it is considered that splitting areas of responsibilities

into clearly defined roles with attached accountability could have been a better hybrid solution.

Hydroplant partnership

For the partnership with our employer Hydroplant Technologies, we have had a really good
communication and relationship with them.
The employer was very engaged in the progression of the project, very responsive, and always

tried to meet our requests.

15.1 Future work

This chapter will outline the recommendations for future development of our project, and the
robotic system. Covering mechanical design, electrical integration and data-related improve-
ments. While the current prototype demonstrates a proof-of-concept, additional development
is required to enhance the performance, durability and application range. We will go through
proposed directions that will guide this project from a proof-of-concept prototype, to a fully

operational and scalable solution for agricultural automation.

15.1.1 Future work - Base BR |

Future work for the base includes:

« adjusting the design for machining in the actual material (for example AIST 1035 stainless
steel).

o Test the parts and assembly with FEA.

o Choose suitable bearings and bearing arrangements.

fine-tune the shaft and housing design to fit the chosen bearings.

To see some of the initiating thoughts around these topics, see appendix D

15.1.2 Future work - Joints DAB | SME

Creating hollow shafts for wire to pass through. This will eliminate wire bending and will only

twist the pairs of wires together which lessens the strain.

190

15. REFLECTION

Tensioner mechanism between CNC part and aluminium profile. It is quite crucial since it
will eliminate play between the parts which will lead to reduced tolerance stacking and in turn

increase accuracy of the robot overall.

Further FEA testing of parts. see appendix further work in appendix D

After these improvements, it would be nice to see and test actual CNC parts.

Casing for the arm is more for the aesthetic purposes, and also so that the belts and frame
parts are protected against gunk, dust and more depending on the environment it will be used

inn.

15.1.3 Future work - Gripper SME | JCDH

Transitioning from Prototyping to Production

Although the current gripper prototypes serve as effective proof-of-concept models, additional
work is necessary to transition the system into a production-ready state suitable for real-world

agricultural automation. The following areas have been identified for future improvement:

« Machined Components for Strength

While 3D printed PLA and TPU parts are sufficient for testing and demonstration, they are
not ideal for the strict demands of agricultural environments. Components such as the gripper
body, gear assemblies, and support structures would benefit from being machined in aluminum
or stainless steel to enhance durability, precision, and resistance to environmental factors like

humidity, temperature, and mechanical shock.

e Improved Gear Mechanisms

The current gearing system was created manually and may not provide optimal efficiency or
alignment. Future iterations should include precision-designed gear profiles and potentially
integrate bearings or bushings to reduce friction and wear. Simulation tools like the Finite
Element Method FEM and motion studies in SolidWorks can also be used to improve the

testing and verification of stress distribution and torque transmission.

191

15. REFLECTION

e Sensor Integration

Although the Fin-Ray fingers provide passive compliance, future versions could integrate tactile
or force sensors to enable active feedback and adaptive control. This would enhance the robots
ability to handle a wider variety of crops with varying fragility and shapes, improving reliability

in dynamic environments.

e Surface texture enhancement for Fin-Ray fingers

During testing of the Fin-Ray fingers, it was observed that the TPU print has a very smooth
surface finish, which limits the gripping ability on smooth objects. While the current surface
works for soft and deformable objects like lettuce, it lacks sufficient friction for handling a wider
range of agricultural produce. Future iterations should explore the integration of textured
coatings, surface patterns, or friction-enhancing materials such as silicone overlays or rubber
based inserts. These modifications would broaden the gripperfs applicability beyond lettuce

and improve overall grip reliability.

o Integration of bearing support

In the current gripper design, the gear component that is not directly connected to the servo
motor is secured only with a screw, which may be sufficient for short-term prototyping and
testing, but lacks the mechanical stability required for long-term use. To reduce wear, friction
and axial play during rotation, it is recommended that future iterations incorporate a bearing
system for this passive gear. Proper bearing support would significantly improve durability, en-
sure smoother operations under load, and enhance the overall reliability of the gear mechanism

in further gripper development.

¢ Calculations and simulations

Future work should also include detailed calculations of gripping force and torque requirements
to ensure the gripper can reliably handle various payloads. These calculations should be per-
formed both analytically and by using Finite Element Method (FEM) simulations to verify

stress distribution and structural integrity under different loading conditions.

Particular attention should be given to the potential for bending in the stepper motor shaft,
as this could impact precision and long-term durability. Incorporating these analyses will
contribute to the optimization of component sizing, material selection, and overall gripper

performance.

192

15. REFLECTION

o Environmental Testing

The prototypes have yet to undergo field testing under realistic agricultural conditions. Evalu-
ating performance in outdoor settingsexposed to dust, moisture, and temperature variationwill
be essential to validate long-term stability and identify any points of mechanical or electronic

failure.

15.1.4 Future work - Electronics VMN |

« PCB redesign

— EMC
— Dual package MOSFETs for smaller PCB

— Smaller component packages (resistors, capacitors)

PCB Assembly

PCB Testing

Add option for UART or SPI

Tune the driver for each motor

15.1.5 Future work - Software JCDH | SME

Complete Al object detection model with custom dataset.

Complete Database work for logging plant identification logs.

Connect up HMI to robotics.

Transition to a Real Time Operating System.

15.1.6 Future work - Architecture and robotics EG |

Upgrading the ROS2 Architecture. Once initial proof-of-concept testing is complete, the ar-
chitecture ought to be upgraded with ROS2 services and actions. We suggest the following

adaptations:

193

15. REFLECTION

Synchronous Task Negotiation via Service We propose that instead of publishing the next
task on a topic, that a service is called with a custom leafy msgs/TaskGoal. This way, the
Task Planner sends out a request and waits until the service provider confirms it received and
accepted the goal. This handshake prevents loss or out-of-order tasks and lets reject invalid

requests before starting execution.

Motion via Action We propose that the Motion Planner node is set up as an action server.
This would replace the one-way /planned_ trajectory topic as the client instead sends a trajec-
tory_msgs/JointTrajectory goal and receive periodic progress feedback, as well as a final result
indicating success or failure. This upgrade would also support action cancellation in response
to events such as obstacle detection. This upgrade would improve safety and flexibility for the

system.

Benefits Introducing services for important exchanges and actions for long-running tasks aligns
well with ROS2 design guidelines. It introduces some added setup (service and action servers/-
clients) but pays dividends in robustness, explicit error handling, and future extensibility (e.g.,

dynamic replanning or conditional preemption).

These upgrades would naturally call for some adaptations on the Arduino Core. Our initial

thoughts suggest the following:
New MQTT Topics: Add the following subscriptions to initMQTT():

o /leafy a/execute_trajectory/goal

» /leafy a/execute_trajectory/cancel alongside existing command topics.

Cancel Handling: handleTrajectoryGoal() or handleTrajectoryCancel() should be intro-

duced to the Communication Manager message dispatching.
Stop motors stopAllMotors() should be introduced to the Motor Driver module.

Feedback updateMotors() needs to be adapted to provide /leafy a/execute_ trajectory/feedback
via (publishStatus()).

Software libraries to consider:

Movelt 2 This library is the used as an industry-standard for motion planning, kinematics,

collision

194

REFERENCES

References

[1] “Hivemind — itfag.usn.no,” https://itfag.usn.no/grupper/D01-23/, [Accessed 29-03-2025].

[2] V. Kumar, “Robot geometry and kinematics,” accessed: 2024-05-08. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&doi=d875497e3d8e2f31311
2d6d20426ba9986b90dc9

[3] Stepperonline, “Nema 17 stepper motor,” accessed: 2024-05-02. [Online]. Available:
https://www.ome-stepperonline.com /nema-17-stepper-motor-1-39mm-gear-ratio- 10- 1-hig

h-precision-planetary-gearbox-17hs15-1684s-hg10

[4] H. D. Young, “Sears and zemansky’s university physics.” Place of publication not identified,
2016.

[5] SKF, “6006-2rs1,” accessed: 2024-05-02. [Online]. Available: https://www.skf.com/group/
products/rolling-bearings/ball-bearings/deep-groove-ball-bearings /productid-6006-2RS1

[6] “ISO/IEC/IEEE 29148:2018 — iso.org,” https://www.iso.org/standard/72089.html,
[Accessed 18-05-2025].

(7] A. Sols, Systems engineering: theory and practice. Madrid Universidad Pontificia Comillas
2014, 2014, oCLC: 892528234.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, fourth edition. ed.,

ser. The SEI series in software engineering. Boston: Addison-Wesley, 2022.

[9] S. Mbugua, J. Korongo, and S. Mbuguah, “On software modular architecture: Concepts,
metrics and trends,” International Journal of Computer & Organization Trends, vol. 10,
pp. 3-10, 03 2022.

[10] Raspberry Pi Ltd, “Raspberry pi 5 raspberry pi,” 2023, accessed: 2024-05-02. [Online].
Available: https://www.raspberrypi.com/products/raspberry-pi-5/

[11] Open Source Robotics Foundation, “Installing ros 2 on raspberry pi ros 2
documentation: Jazzy,” 2024, accessed: 2024-05-02. [Online]. Available: https:
//docs.ros.org/en/jazzy /How-To-Guides/Installing-on-Raspberry-Pi.html

[12] Arduino AG, “Arduino uno r4 wifi,” 2023, accessed: 2024-05-02. [Online]. Available:

https://store.arduino.cc/products/uno-r4-wifi

[13] S. T. Mbugua, J. Korongo, and S. Mbuguah, “On software modular architecture:
Concepts, metrics and trends,” International Journal of Computer & Organization Trends,
vol. 12, no. 1, pp. 3-10, 2022. [Online|. Available: https://www.researchgate.net/publicati
on /360726289 On_ Software Modular_ Architecture Concepts_ Metrics. and_Trends

195

https://itfag.usn.no/grupper/D01-23/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d875497e3d8e2f313112d6d20426ba9986b90dc9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d875497e3d8e2f313112d6d20426ba9986b90dc9
https://www.omc-stepperonline.com/nema-17-stepper-motor-l-39mm-gear-ratio-10-1-high-precision-planetary-gearbox-17hs15-1684s-hg10
https://www.omc-stepperonline.com/nema-17-stepper-motor-l-39mm-gear-ratio-10-1-high-precision-planetary-gearbox-17hs15-1684s-hg10
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://www.iso.org/standard/72089.html
https://www.raspberrypi.com/products/raspberry-pi-5/
https://docs.ros.org/en/jazzy/How-To-Guides/Installing-on-Raspberry-Pi.html
https://docs.ros.org/en/jazzy/How-To-Guides/Installing-on-Raspberry-Pi.html
https://store.arduino.cc/products/uno-r4-wifi
https://www.researchgate.net/publication/360726289_On_Software_Modular_Architecture_Concepts_Metrics_and_Trends
https://www.researchgate.net/publication/360726289_On_Software_Modular_Architecture_Concepts_Metrics_and_Trends

REFERENCES

[14] A. Bonci, F. Gaudeni, M. C. Giannini, and S. Longhi, “Robot operating system 2 (ros2)-
based frameworks for increasing robot autonomy: A survey,” Applied sciences, vol. 13,
no. 23, p. 12796, 2023.

[15] Open Robotics. (2025) ROS 2 documentation (jazzy). Accessed: 2025-05-14. [Online].
Available: https://docs.ros.org/en/jazzy/

[16] The Apache Software Foundation. (2004) Apache license, version 2.0. Accessed:
2025-05-14. [Online]. Available: https://www.apache.org/licenses/ LICENSE-2.0.html

[17] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating
system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, p.
eabm6074, 2022. [Online|. Available: https://www.science.org/doi/abs/10.1126/scirobotic
s.abm6074

[18] Open Robotics. (2020) Ros noetic api: sensor_msgs/Image message. Accessed:
2025-05-15. [Online|. Available: https://docs.ros.org/en/noetic/api/sensor _msgs/html/ms
g/Image.html

[19] ——. (2025) Ros index. Accessed: 2025-05-15. [Online]. Available: https://index.ros.org/

?search packages=true

[20] Udemy. (2025) ROS2 for Beginners [online course]. Accessed: 2025-05-15. [Online].
Available: https://www.udemy.com/course/ros2-for-beginners/learn/lecture/202604 76+

overview

[21] Open Robotics. (2018) Ros melodic api: std_srvs/SetBool service. Accessed: 2025-05-15.
[Online|. Available: https://docs.ros.org/en/melodic/api/std__srvs/html/srv/SetBool.html

[22] ——. (2025) Understanding ros 2 services. Accessed: 2025-05-15. [Online]. Available:
https://docs.ros.org/en/jazzy / Tutorials/Beginner- CLI-Tools/Understanding-ROS2-Servi
ces/Understanding-ROS2-Services.html

[23] ——. (2020) Ros noetic api: control_msgs/FollowJointTrajectory action. Accessed:
2025-05-15. [Online]. Available: https://docs.ros.org/en/noetic/api/control _msgs/html/a
ction/FollowJointTrajectory.html

[24] ——. (2020) Understanding ros 2 actions. Accessed: 2025-05-15. [Online]. Available:
https://docs.ros.org/en/jazzy /Tutorials/Beginner- CLI-Tools/Understanding-ROS2- Actio
ns/Understanding-ROS2- Actions.html

[25] R. G. Budynas, “Shigley’s mechanical engineering design,” USA, 2021.
[26] “Online CNC Machining Service - JLCCNC.” [Online]. Available: https://jlccnc.com/
[27] “ZeptoBit AS.” [Online]. Available: https://www.zeptobit.com/index.php?product=10

196

https://docs.ros.org/en/jazzy/
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html
https://index.ros.org/?search_packages=true
https://index.ros.org/?search_packages=true
https://www.udemy.com/course/ros2-for-beginners/learn/lecture/20260476#overview
https://www.udemy.com/course/ros2-for-beginners/learn/lecture/20260476#overview
https://docs.ros.org/en/melodic/api/std_srvs/html/srv/SetBool.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/noetic/api/control_msgs/html/action/FollowJointTrajectory.html
https://docs.ros.org/en/noetic/api/control_msgs/html/action/FollowJointTrajectory.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/jazzy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://jlccnc.com/
https://www.zeptobit.com/index.php?product=10

REFERENCES

[28] [Online]. Available: https://www.maedler.de/

[29] Core Electronics. (2025) Df metal geared 15kg standard servo 2707 (dss-m15s). Accessed:
2025-05-18. [Online]. Available: https://core-electronics.com.au/df-metal-geared-15kg-sta
ndard-servo-270-dss-m15s.html

[30] TMC5160A Stepper Motor Driver, Analog Devices, 2023, available at https://www.anal
og.com/media/en/technical-documentation/data-sheets/ TMC5160A__datasheet_rev1.18
.pdf, Revision V1.18.

[31] TMC5160-BOB Ewvaluation board, Analog Devices, 2021, available at https://www.analog
.com/media/en/technical-documentation/data-sheets/TMC5160-BOB__datasheet_revl.
10.pdf, Revision V1.10.

[32] ardalis, “Overview of ASP.NET Core MVC — learn.microsoft.com,” https://learn.micros
oft.com/nb-no/aspnet/core/mvc/overview, [Accessed 14-05-2025].

[33] “GitHub - RobotWebTools/roslibjs: The Standard ROS JavaScript Library —
github.com,” https://github.com/RobotWebTools/roslibjs, [Accessed 15-05-2025].

[34] “Werkzeug - Werkzeug Documentation (3.1.x) — werkzeug.palletsprojects.com,” https:
/ /werkzeug.palletsprojects.com/en/stable/, [Accessed 06-04-2025].

[35] “SQLite Home Page — sqlite.org,” https://www.sqlite.org, [Accessed 30-03-2025].

[36] “Datatypes In SQLite — sqlite.org,” https://www.sqlite.org/datatype3.html, [Accessed
30-03-2025).

[37] “SQLite Autoincrement — sqlite.org,” https://www.sqlite.org/autoinc.html, [Accessed
30-03-2025].

[38] “CREATE TABLE — sqlite.org,” https://www.sqlite.org/lang_ createtable.html, [Ac-
cessed 30-03-2025].

[39] M. McCauley, “AccelStepper: Flexible stepper motor control library for arduino,” https:
//www.airspayce.com/mikem /arduino/AccelStepper/, 2025, accessed: 2025-05-17.

[40] hydroplantno, “PubSubClient: Arduino mqtt client library (fork),” https://github.com/h
ydroplantno/pubsubclient, 2025, accessed: 2025-05-17.

[41] A. SA, “WiFiS3: Arduino wi-fi library for the uno r4 wifi,” https://github.com/arduino
/ArduinoCore-renesas/tree/main /libraries/ WiFiS3, 2025, accessed: 2025-05-17.

[42] ——, “Servo: Arduino library for hobby servo control,” https://docs.arduino.cc/libraries/
servo/, 2025, accessed: 2025-05-17.

197

https://www.maedler.de/
https://core-electronics.com.au/df-metal-geared-15kg-standard-servo-270-dss-m15s.html
https://core-electronics.com.au/df-metal-geared-15kg-standard-servo-270-dss-m15s.html
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160A_datasheet_rev1.18.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.10.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.10.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMC5160-BOB_datasheet_rev1.10.pdf
https://learn.microsoft.com/nb-no/aspnet/core/mvc/overview
https://learn.microsoft.com/nb-no/aspnet/core/mvc/overview
https://github.com/RobotWebTools/roslibjs
https://werkzeug.palletsprojects.com/en/stable/
https://werkzeug.palletsprojects.com/en/stable/
https://www.sqlite.org
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/autoinc.html
https://www.sqlite.org/lang_createtable.html
https://www.airspayce.com/mikem/arduino/AccelStepper/
https://www.airspayce.com/mikem/arduino/AccelStepper/
https://github.com/hydroplantno/pubsubclient
https://github.com/hydroplantno/pubsubclient
https://github.com/arduino/ArduinoCore-renesas/tree/main/libraries/WiFiS3
https://github.com/arduino/ArduinoCore-renesas/tree/main/libraries/WiFiS3
https://docs.arduino.cc/libraries/servo/
https://docs.arduino.cc/libraries/servo/

REFERENCES

[43] Y. H. Hee, M. K. Ishak, M. S. M. Asaari, and M. T. A. Seman, “Embedded
operating system and industrial applications: a review,” Bulletin of Electrical Engineering
and Informatics, vol. 10, no. 3, pp. 1687-1700, June 2021. [Online]. Available:
https://beei.org/index.php/EEI/article/view /2526

[44] E. Team, “Ensuring reliable iot device connectivity: Best practices for mqtt client auto-
reconnection,” https://www.emqx.com/en/blog/mqtt-client-auto-reconnect-best-practic
es, Sep. 12 2024, accessed: 2025-05-17.

[45] Arduino, “BlinkWithoutDelay: Arduino tutorial on non-blocking timing,” https://www.
arduino.cc/en/Tutorial /BlinkWithoutDelay, 2025, accessed: 2025-05-17.

[46] D. McAulay, “SerialCommandExample: Arduino serial command parsing library exam-
ple,” https://github.com/kroimon/Arduino-Serial Command /blob/master /examples/Serial
CommandExample/SerialCommandExample.pde, 2025, accessed: 2025-05-17.

[47] M. McCauley, “AccelStepper multistepper example,” https://www.airspayce.com/mike
m/arduino/AccelStepper /MultiStepper 8pde-example.html, 2025, accessed: 2025-05-17.

[48] Y. . Brainy-Bits, “Homing stepper motors using the accelstepper library,” https://www.br
ainy-bits.com/post/homing-stepper-motors-using-the-accelstepper-library, 2020, accessed:
2025-05-17.

[49] J. Rullan, “StateMachine arduino example,” https://github.com/jrullan/StateMachine/

tree/master /examples/arduino_ state__machine, 2025, accessed: 2025-05-18.

[50] “ESP32-CAM camera development board | 安& #x4FE1;可科技);
— docs.ai-thinker.com,” https://docs.ai-thinker.com/en/esp32-cam, [Accessed 11-05-2025].

[51] “GitHub - espressif/esp32-camera — github.com,” https://github.com /espressif /esp32-c
amera, [Accessed 11-05-2025].

[52] E. Systems, “arduino-esp32: Arduino core for the esp32,” https://github.com/espressif /a
rduino-esp32, 2025, accessed: 17.03.2025.

[53] “ESP32-CAM: The Complete Machine Vision Guide — blog.arducam.com,” https://blog

.arducam.com/esp32-machine-vision-learning-guide/, [Accessed 14-05-2025].

[54] V. D. Community, “Field of View - Valve Developer Community — devel-
oper.valvesoftware.com,” https://developer.valvesoftware.com/wiki/Field of View,
[Accessed 28-04-2025].

[55] “OpenCV: Camera Calibration — docs.opencv.org,” https://docs.opencv.org/4.x/dc/dbb
/tutorial _py_ calibration.html, [Accessed 11-05-2025].

[56] “Folding@home - Fighting disease with a world wide distributed super computer. — foldin-
gathome.org,” https://foldingathome.org, [Accessed 29-03-2025].

198

https://beei.org/index.php/EEI/article/view/2526
https://www.emqx.com/en/blog/mqtt-client-auto-reconnect-best-practices
https://www.emqx.com/en/blog/mqtt-client-auto-reconnect-best-practices
https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay
https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay
https://github.com/kroimon/Arduino-SerialCommand/blob/master/examples/SerialCommandExample/SerialCommandExample.pde
https://github.com/kroimon/Arduino-SerialCommand/blob/master/examples/SerialCommandExample/SerialCommandExample.pde
https://www.airspayce.com/mikem/arduino/AccelStepper/MultiStepper_8pde-example.html
https://www.airspayce.com/mikem/arduino/AccelStepper/MultiStepper_8pde-example.html
https://www.brainy-bits.com/post/homing-stepper-motors-using-the-accelstepper-library
https://www.brainy-bits.com/post/homing-stepper-motors-using-the-accelstepper-library
https://github.com/jrullan/StateMachine/tree/master/examples/arduino_state_machine
https://github.com/jrullan/StateMachine/tree/master/examples/arduino_state_machine
https://docs.ai-thinker.com/en/esp32-cam
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://blog.arducam.com/esp32-machine-vision-learning-guide/
https://blog.arducam.com/esp32-machine-vision-learning-guide/
https://developer.valvesoftware.com/wiki/Field_of_View
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://foldingathome.org

REFERENCES

[57] “openai/clip-vit-base-patch32 Hugging Face — huggingface.co,” https://huggingface.co/o
penai/clip-vit-base-patch32, [Accessed 13-05-2025].

[58] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” 2021. [Online]. Available:
https://arxiv.org/abs/2103.00020

[59] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao, “Depth anything v2,”
arXiv:2406.09414, 2024.

[60] “depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf Hugging Face — hugging-
face.co,” https://huggingface.co/depth-anything/Depth- Anything-V2-Metric-Indoor-Lar
ge-hf, [Accessed 13-05-2025].

[61] “Tasks - Hugging Face — huggingface.co,” https://huggingface.co/tasks, [Accessed 07-
05-2025].

[62] J. Jann, O. Drevelle, X. G. Chen, M. Auclair-Gilbert, G. Soucy, N. Faucheux, and L.-C.
Fortier, “Rapid antibacterial activity of anodized aluminum-based materials impregnated
with quaternary ammonium compounds for high-touch surfaces to limit transmission of
pathogenic bacteria,” RSC Advances, vol. 11, no. 60, pp. 38 172-38 188. [Online|. Available:
https://www.ncbi.nlm.nih.gov/pmec/articles/PMC9044312/

[63] “Annin Robotics.” [Online|. Available: https://www.anninrobotics.com

[64] National Library of Medicine. (2025) Mechanical properties of 3d-printing polylactic acid
parts subjected to bending stress and fatigue testing. Accessed: 2025-05-18. [Online].
Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC6926899/

[65] DornaRobotics, “Types of robot grippers and their applications,” 13. october, 2023.
[Online]. Available: https://dorna.ai/blog/types-of-grippers-for-robots/

[66] Alan Brown, “Seven big advances in soft robotic grippers,” 22. April, 2020. [Online].
Available: https://www.asme.org/topics-resources/content /seven-big-advances-in-soft-r

obotic-grippers

[67] Lucia Beccai, “A deep learning method for vision based force prediction of a soft
fin ray gripper using simulation data,” 25. May, 2021. [Online]. Available: https:
//www frontiersin.org/journals/robotics-and-ai/articles/10.3389 /frobt.2021.631371 /full

[68] Source Robotics, “Soft robotic grippers - fin ray effect,” 11. December, 2024. [Online].
Available: https://source-robotics.com/blogs/blog/soft-robotic-grippers-fin-ray-effect

[69] Yahia A. AboZaid, Mahmoud T. Aboelrayat, Irene S. Fahim, Ahmed G. Radwan, “Soft

robotic grippers: A review on technologies, materials, and applications,” 17.April 2024.

199

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://arxiv.org/abs/2103.00020
https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf
https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf
https://huggingface.co/tasks
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044312/
https://www.anninrobotics.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC6926899/
https://dorna.ai/blog/types-of-grippers-for-robots/
https://www.asme.org/topics-resources/content/seven-big-advances-in-soft-robotic-grippers
https://www.asme.org/topics-resources/content/seven-big-advances-in-soft-robotic-grippers
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.631371/full
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.631371/full
https://source-robotics.com/blogs/blog/soft-robotic-grippers-fin-ray-effect

REFERENCES

[Online|. Available: https://www.sciencedirect.com/science/article/abs/pii/S09244247240
03741

[70] H. Face, “Image classification,” 2025, accessed: 29.03.2025. [Online]. Available:
https://huggingface.co/tasks/image-classification

[71] “What is Object Detection? - Hugging Face — huggingface.co,” https://huggingface.co/t
asks/object-detection, [Accessed 15-04-2025].

[72] Unsplash, “Photo by Bhong Bahala on Unsplash — unsplash.com,” https://unsplash.c
om/photos/a-couple-of-people-that-are-walking-down-a-street-npv1LcdKOqY, [Accessed
16-04-2025).

[73] R. 100, “lettuce pallets dataset,” https://universe.roboflow.com/roboflow-100
/lettuce-pallets , may 2023, visited on 2025-05-18. [Online]. Available: https:

//universe.roboflow.com/roboflow-100/lettuce-pallets

[74] “Deed - Attribution 4.0 International - Creative Commons — creativecommons.org,” https:
//creativecommons.org/licenses /by /4.0/, [Accessed 18-04-2025].

[75] F. Ciaglia, F. S. Zuppichini, P. Guerrie, M. McQuade, and J. Solawetz, “Roboflow 100: A

rich, multi-domain object detection benchmark,” 2022.

[76] Ultralytics, “YOLO Data Augmentation — docs.ultralytics.com,” https://docs.ultralytics
.com/guides/yolo-data-augmentation/, [Accessed 11-05-2025].

[77) H. Face, “Depth estimation,” 2025, accessed: 29.03.2025. [Online|. Available:
https://huggingface.co/tasks/depth-estimation

[78] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth anything:
Unleashing the power of large-scale unlabeled data,” 2024. [Online]. Available:
https://arxiv.org/abs/2401.10891

[79] R. P. Ltd, “Raspberry Pi 5,” https://datasheets.raspberrypi.com /rpi5/raspberry-pi-5-pro
duct-brief.pdf, [Accessed 01-04-2025].

[80] “Tokenizer — huggingface.co,” https://huggingface.co/docs/transformers/en/main_ cla
sses/tokenizer, [Accessed 11-04-2025].

[81] “time Time access and conversions — docs.python.org,” https://docs.python.org/3/libr
ary/time.html, [Accessed 13-04-2025].

[82] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka, J. Gonzalez, K. Keutzer,
and P. Vajda, “Visual transformers: Token-based image representation and processing for

computer vision,” 2020.

200

https://www.sciencedirect.com/science/article/abs/pii/S0924424724003741
https://www.sciencedirect.com/science/article/abs/pii/S0924424724003741
https://huggingface.co/tasks/image-classification
https://huggingface.co/tasks/object-detection
https://huggingface.co/tasks/object-detection
https://unsplash.com/photos/a-couple-of-people-that-are-walking-down-a-street-npv1LcdKOqY
https://unsplash.com/photos/a-couple-of-people-that-are-walking-down-a-street-npv1LcdKOqY
 https://universe.roboflow.com/roboflow-100/lettuce-pallets
 https://universe.roboflow.com/roboflow-100/lettuce-pallets
https://universe.roboflow.com/roboflow-100/lettuce-pallets
https://universe.roboflow.com/roboflow-100/lettuce-pallets
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://docs.ultralytics.com/guides/yolo-data-augmentation/
https://docs.ultralytics.com/guides/yolo-data-augmentation/
https://huggingface.co/tasks/depth-estimation
https://arxiv.org/abs/2401.10891
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://huggingface.co/docs/transformers/en/main_classes/tokenizer
https://huggingface.co/docs/transformers/en/main_classes/tokenizer
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

REFERENCES

[83] “MySQL :: MySQL 8.4 Reference Manual :: 1.2.1 What is MySQL? — dev.mysql.com,”
https://dev.mysql.com/doc/refman/8.4 /en/what-is-mysql.html, [Accessed 06-04-2025].

[84] “DB Browser for SQLite — sqlitebrowser.org,” https://sqlitebrowser.org, [Accessed 02-
04-2025].

[85] “Home — opencv.org,” https://opencv.org, [Accessed 15-05-2025].
[86] “PlantCV — plantcev.org,” https://plantev.org, [Accessed 15-05-2025].

[87] R. v. HSV for Computer Vision | Rehan Guha Portfolio & Blog, “RGB v. HSV for Com-
puter Vision — rehanguha.github.io,” https://rehanguha.github.io/articles/rbg-vs-hsv-for
-computer-vision, [Accessed 06-05-2025].

[88] P. D. Team, “Watershed Segmentation - PlantCV — plantcv.readthedocs.io,” https://pl
antcv.readthedocs.io/en/stable/watershed, [Accessed 04-05-2025].

[89] “OpenCV: Image Segmentation with Watershed Algorithm — docs.opencv.org,” https:
//docs.opencv.org/4.x/d3/db4 /tutorial _py_watershed.html, [Accessed 08-05-2025].

[90] “OpenCV: Create calibration pattern — docs.opencv.org,” https://docs.opencv.org/4.x/
da/d0d/tutorial _camera_ calibration_pattern.html, [Accessed 29-04-2025].

[91] “OpenCV: Camera Calibration and 3D Reconstruction — docs.opencv.org,” https://docs
.opencv.org/4.11.0/d9/d0c/group___ calib3d.html, [Accessed 09-05-2025].

[92] S. Josefsson, “RFC 7914: The scrypt Password-Based Key Derivation Function — data-
tracker.ietf.org,” https://datatracker.ietf.org/doc/html/rfc7914, [Accessed 08-04-2025].

201

https://dev.mysql.com/doc/refman/8.4/en/what-is-mysql.html
https://sqlitebrowser.org
https://opencv.org
https://plantcv.org
https://rehanguha.github.io/articles/rbg-vs-hsv-for-computer-vision
https://rehanguha.github.io/articles/rbg-vs-hsv-for-computer-vision
https://plantcv.readthedocs.io/en/stable/watershed
https://plantcv.readthedocs.io/en/stable/watershed
https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html
https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html
https://docs.opencv.org/4.x/da/d0d/tutorial_camera_calibration_pattern.html
https://docs.opencv.org/4.x/da/d0d/tutorial_camera_calibration_pattern.html
https://docs.opencv.org/4.11.0/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.11.0/d9/d0c/group__calib3d.html
https://datatracker.ietf.org/doc/html/rfc7914

BIBLIOGRAPHY

Bibliography

[Bibl] H. Ott, Electromagnetic Compatibility Engineering, 1st ed. Wiley, 2009. [Online].
Available: libgen.li/file.php?md5=>b5afbcaac73ac4851{5{53d5513350fd3

[Bib2] M. O. Hara, EMC at Component and PCB Level, 1st ed. Chantilly: Elsevier Science
& Technology, 1998.

202

libgen.li/file.php?md5=5afbcaac73ac4851f5f53d5513350fd3

Appendices

203

Appendix A

Requirements earlier work

1 Requirements

This section is still under development and should only be seen as collaborative notes and under

no circumstances as finished work at this current stage.

Introducing Requirement development

Talk about the importance of requirements and why they must be customer and stakeholder
led, and well defined (quantifiable etc, for validation, verification..). Something worthwhile in
one of the ISO standards on this? ISO 15288, IEEE 291487

Talk about how requirements should guide the design process. Follow the main principles from
Sols book, i.e. talking about problem domain (user stories, use cases etc..) and solution domain
(system requirements. Note the step-by-step process on page 139 that involves stakeholder
requirements guiding us towards selecting the preferred design concept.

Stakeholder—Stakeholder requirements — System requirements — Verification methods

Requirements may be categorised as follows:

Product requirements

Process requirements

External requirements

(this canshould? be adapted to our project needs.)

How will we be developing requirements?

204

1. REQUIREMENTS

Figure A.1: Taken from page 134 in Alberto Sols’ book will adapt.

Talk a about stakeholders and their role in helping us develop our requirements. (More on this

in a later chapter)

o How were building our requirements hierarchy from a structural sense (Sols and the
ISO/IEEES)

— Problem domain, understanding the problem, written in language suitable for non
technical stakeholders:

User stories — Use cases
— Solution domain

% System requirements (Acceptance criteria?), Verification and Validation testing.
x For high level requirements in particular, remember to write about the feedback

process w/ customer/key stakeholders, to ensure were all on the same page etc.

— Traceability. Being able to trace any requirement all the way up to stakeholders and

their needs?

— Process for drilling down into system specification requirements from top level use

cases

Categories of priority (A, B, C).

Categories for easier reading: Functional, non-functional, performance, constraints,

etc

— Perhaps mention about requirement characteristics ref Sols pg. 148. But this might
be overkill?

205

1. REQUIREMENTS

— Traceability. Being able to trace any system requirement all the way up to stake-
holder need

1.0.1 How will we go about finding requirements? EG |

 Stakeholder analysis (refer to that chapter)

« Visiting leafy green producers

o Learning from our key stakeholder; HP Technologies
e Documentation dive

o Literature review helpful here?

e Perhaps mention about consideration to food safety and machine regulations but this is

probably covered in stakeholder analysis

sH-ID B us-i0 B userstory B uc- 10 Bl use case BAReQ-ID B System Requirement
Asafarmer | wantthe system to recognise not damaging The "gripper” shall not damage the leaves
plants so that it can perform optimal
handeling of the plant

3different lettuce types The system shall recognize salad type A,B,C
loosing leaves (plant biology) classify?
placement The system shall
handtere 3 ulike salater (jere, lose blader, osv) The system shallbe able to handle/lift? salad A,B,C
As a farmer, | want the system to harvest bytte modus for hestinga s1, s2, s3

differenttypes of leafygreens, so that| can
improve my product offering.

As afarmer I want the system to harvest
salads autonomously so that manual labor is
not needed

Figure A.2: Draft Requirement Matrix

SH-ID: Stakeholder ID

US-ID: User Story 1D

UC-ID: Use Case ID

REQ-ID: Requirement ID

A2

1.0.2 Verification and Validation EG |

o Talk about how well go about this.

206

1. REQUIREMENTS

o Story cards and acceptance criteria? Not yet defined

Initial ideas for Acceptance criteria summary (MUST be worked more on!)

RequirementIlD Requirement description Acceptance criteria Priority (A, B, C) Verification method Responsible Status

- - - - -1eamlpersun -

Status descriptions

Pending The requirement is documented, but no testing or validation has started yet

InProgress The requirement is being tested, results are being collected

Passed The requirement has met allthe acceptance criteria and is considered verified

Failed The requirement has not met one or more of the acceptance criteria, and needs improvement

Blocked The requirement cannot be tested due to dependencies (hardware or software not ready, component missing etc)

Figure A.3: Draft Acceptance criteria matrix

V&V testing

TestcaselD RequirementlD TestDescription Testmethod Testcriteria (Pass/fail) Responsible Test status

nteamt’persun -

Status descriptions

Pending The requirementis documented, but no testing or validation has started yet

InProgress The requirementis being tested, results are being collected

Passed The requirement has met all the acceptance criteria and is considered verified

Failed The requirement has not met one or more of the acceptance criteria, and needs improvement

Blocked The requirement cannot be tested due to dependencies (hardware or software not ready, component missing etc)

Figure A.4: Draft Verification and Validation matrix

1.0.3 Current state of requirements EG | BMR

Disse tabellene legges inn for a vise at requirements jobbes med, men vi har ikke rukket a
oppdatere videre med delen i rapporten for innlevering. Det gjores forguvrig oppmerksom om at
ID-nummereringen her ikke er riktig. Og sist, vi har en egen tabell hvor vi legger inn forslag

til nye requirements mens vi jobber med prosjektet, som tas opp for diskusjon i fellesskap.

207

1. REQUIREMENTS

User story IDJ Short title B User Story B Comments =
As a farmer, | want the harvesting system to harvest plants autonomously so that | can reduce the need for
US-01 Autonomous harvesting manual labor.
As a farmer, | want the harvesting system to classify plants so that it can optimise harvesting for different
Us-02 Plant regocnition plant types and handling needs.
As a farmer, | want the system to optimise handling of each plant, so that | can deliver produce meeting the
US-03 Optimal handling uniformity and quality expectations of my customers.
As afarmer, | want the harvesting system to operate efficiently and safely to minimise risk of damages to Efficiency as a separate
Us-04 Safety and efficiency personnel, equipment or plants. one?

Figure A.5: User stories

User story short title: Autonomous
harvesting

Use Case ID Use Case Requirement ID Requirement
uc-001 System requirements REQ-001-001 The robotic arm shall process X plants per minute.

All system operations shall take place in a circular area of
uc-002 The working area specifications REQ-001-0001 @1200 mm with the robot arm base in the middle.

The work area shall be divided into 5 zones: pick Up zone,

Placement zone, processing zone, disposal zone and robot
REQ-001-0002 base zone.

The robotic arm shall grip plants that are delivered to the
uc-002 Moving plants using robotic arm REQ-002-0001 pick-up zone

Once the robotic arm has gripped the plant, the robot shall
REQ-002-0002 move it to the next area as instructed by Central.

The root cutting mechanism shall perform a clean root
uc-o08 Root cutting cutting on first attempt at least 95% of the time.

The system shall verify that roots have been cut off
correctly.

The system shall perform 3 attempts to cut roots off a plant
successfully before discarding the plant.

The system shall stop the cutting process if >x N resistance
is detected?

Figure A.6: User story - autonomous harvesting

208

1. REQUIREMENTS

User Story ID: US-2 |
User story short title: Plant recognition

Use Case
1D Use Case

UC-01-
001 Capture an individual plant in the pickup area

Requirement ID

REQ-01-001

Requirement

The vision system shall detect an individual plant from the
scanning area with at least 95%7? accuracy.

REQ-01-002

The system shall calculate pick-up coordinates in X, Y, Z
dimensions with accuracy

REQ-001-003

The vision system shall isolate a plant from other
overlapping plants with an accuracy of at least 90%?

uc-002 Classify plants REQ-002-004

The system shall use Al technology to classify the plant
types: X, Y, Z.

REQ-002-005

The system shall use Al technology to estimate plant health
based on colour of leaves.

The system shall use Al technology to estimate if plant
growth stage based on size.

REQ-002-006

If plant classification confidence falls below X%, the system
shall attempt again Y more times before requesting human
verification.

REQ-002-001

The Al classification algorithms shall run with at least 95%
success rate over 100 test samples.

Figure A.7: User story - plant recognition

User Story ID: US-3
User story short title: Optimal handling

Use Case ID Use Case Requirement ID Requirement
Determine if plant should be harvested with or The system shall determine whether the plant should be
uc-003 without roots REQ-003-001 harvested with or without roots, based on type.
The system shall identify the best location for root cutting
REQ-003-002 with an accuracy of XXX
The system shall decide the best location for the grabber to
uc-004 Determine the best way to grip the plant. REQ-003-003 grip the plant for pickup.
The system shall decide the best method for picking up the
REQ-003-004 plant based on plant type, shape and.. growth structure?
The system shall adapt gripping pressure by X-X Newton?
REQ-003-005 based on the plant data?
The system shall support soft touch gripping in the range of
REQ-003-006 X-Y Newton.
The system shall support firm touch gripping in the range of
REQ-003-007 X-Y Newton.
The system shall support forklifting|as amethod to pick up
REQ-003-008 plants by soil type growth materials.
The system shall estimate if plant qualifies for sale based on
UC-006 Does the plant conform to acceptance criteria? REQ-003-009 plant health estimation.
The system shall estimate if plant qualifies for sale based on
REQ-003-010 growth stage estimation.
The system shall recycle plants that do not meet the
REQ-003-011 predefined sales acceptance criteria.
The system shall allow users to configure sales acceptance
REQ-003-012 criteria per plant type.

Figure A.8: User story - optimal handling

209

1. REQUIREMENTS

User Story ID: US-4
User story short title: Safety and efficiency

Use Case ID Use Case Requirement ID Requirement
Detecting failures

Defensive action

Notify users The system shall log gripping errors.

The system shall log cutting errors

The system shall log successful

Figure A.9: User story - safety and efficiency

210

Appendix B

(zeneral
1 Group Philosophy (initial outlines) JCDH | -
1.1 Introduction JCDH | -

These are the initial outlines of our group philosophy:

We aim to foster a fun, positive and creative environment that is based on collaboration,
all members feel valued. We therefore base ourselves on a flat leadership style, where
tasks and responsibilities are shared and assigned based on team discussions and evolving

project needs.
We aim to foster a collaborative environment where all members feel valued.

We will base our decision making and task allocation on a flat leadership structure, where

tasks and responsibilities are shared and assigned.

Our project should be a time of great learning and fun. We should try aim to keep a
sustainable workload, avoiding too much crunch time late in the project. We shall strive
for efficiency through being well prepared, exploring options and planning well. A safe

and enjoyable environment.

A safe and fun place to be.

211

1.2 Flat structure JCDH | -

Maintain a flat structure, with responsibilities shared and assigned based on team discussions

and evolving project needs.

1.3 Iterative process JCDH | -

Everything can’t be perfect on the first try. That’s why an iterative process is extremely useful.

212

2 Project Model earlier work EG | -

Her har ikke teksten endret seq siden forste innlevering (tid). Mesteparten av teksten slik den

star na bil bli flyttet over i appendiz.

Multidiciplinary group

At the very beginning, it was agreed by the founding members that a core value of our group
collaboration would be to fully embrace the opportunities to broaden our knowledge and our
skills as ambitiously and well targeted as we could. Our goal would be to depart in June as
a fresh generation of new engineers, confident and well prepared for the future with as much
industry-relevant knowledge and real-life experience as possible. Members that since joined
were presented with this philosophy and eagerly embraced it.

One of the new and highly interesting learning opportunities that we identified early on was
to opt for building a multidisciplinary group, preferably one covering all three engineering
disciplines. This felt like a daunting task as we had very little experience with this type of
collaboration from beforehand and, furthermore, had only very limited understanding of each
others work methodology and workflows. Yet, we considered multidisciplinary collaboration as
a relevant skill to hold across all engineering fields, and therefore it was a challenge we eagerly
wanted to take on.

With determined optimism we concluded that although this would add extra complexity to
our project, the benefits we would stand to gain from choosing this experience would be well
worth the added investments of effort required to obtain it. It was recognised, however, that
this choice would require extra effort and diligence put into building effective communication,

project management, and interfacing.

Balancing the needs of many, with an end goal in sight

An important project management factor found early was that most members in our group are
influenced by personal circumstances that may affect their availability or work capacity during
the time we intended to spend together. For instance, some live further afield and are likely,
at some points, to experience transportation issues during the extremes of Norwegian weather
conditions. Some have family commitments that might require them to stay at home during
times when children are ill. Also, they may be less available for project work during late nights
and weekends, than others who might in fact prefer to work during these times. Furthermore,
some are bound by out-of-project work commitments that greatly affect their working schedule
and time availability.

It was recognised that each member of the group brings valuable knowledge, experience, skills,

and ideas to the table, together with the key ingredients of a positive attitude, collaboration-

213

and solution-mindedness. It was therefore collectively decided to move forward with the above-
mentioned complicating factors; both of building a multidisciplinary focused group, and to
create an environment that everyone is able to thrive in.

For this to succeed, certain criteria must be met. It was reasoned that communication must be
structured through regular meetings, detailed minutes, and supporting documentation and user
guides produced and shared regularly. We agreed on core working hours (further detailed
in a different section? Or here?), to facilitate ease of communication and encourage
collaborative efforts, alongside our regular set meetings. However, when necessary, exceptions
could also be made by group agreement. An example of this was when one of our members was
granted a special adaptation of the core working hours setup to accommodate for their work

commitments.

Put in a paragraph about starting with a well thought out plan and project model, but to also
hold a view of continual improvement through early identification of problems/bottle necks
etc, and applying risk based thinking in order to see problems before they arise. Maybe also
loosely learn from the ISO way of thinking with the PDCA cycle (Plan, Do, Check, Act). Fre-
quent evaluations of process a improve continuously as we go along a Regular, slightly adapted
SCRUM Retrospectives.

Also throw in some good stuff about the importance of clear communication. Plan, responsi-
bilities /accountability, support, sharing documentation. Everyone knowing where to find key
information in order to understand what is expected and who does what. Partnering up on
tasks.

INTERFACING

Talk about the nice stuff too. Team building, learning from each other, supporting each other,

cakes!
Structured as a company, but not quite

Find an elegant way to lead into the two key topics of this subsection:

o Group following a company-like structure

e Discuss how the leadership team works

— Flat leadership hierarchy no leader

— Lead over to talking about agile project model — SCRUM

214

Company-like structure

Talk about how were designing our group as a mini company with a leadership team and its

technology departments.

e Think: A company with a leadership team. The team, here consisting of all the group
members together, make all the important decisions. We allocate budget, discuss concepts
and directions of development, develop requirements, plan and refine the product back
log. We monitor progress and make adaptations as necessary. We guide the teams and

hold them accountable.

o The company has three development departments: Mechanical (consisting of our three
mechanical engineers), Software (our two software engineers, and Electrical. Electrical
consists of one electronics engineer who is backed up by one of the mechanical engineers
and one of the software engineers. These two members committed themselves from the
start to supporting the needs of the electronics department when required, as part of

their roles.

Team Maskin Team Elektro Team Data

Why have we decided to organise ourselves this way?

Each engineering discipline uses their own workflow, tools and processes to conduct their work.
However, these methodologies dont always overlap too well. Therefore, instead of imposing
the processes and tools preferred by one discipline onto everyone else and expecting them to
spend the time finding less efficient work arounds, we opted a different approach. Our take
instead was to focus on managing the project on group level where wed apply an agile based
model, adapted from SCRUM to manage and structure our progress. Wed also be setting the
main standards for tools and templates such as risk management, requirements development
and so forth on this level. However, although the product backlog would largely sit at the
leadership level, each department would be given the freedom to develop and produce their
work using their own preferred techniques. An example to illustrate how this freedom might
prove beneficial is where it would mechanical engineers tend to work incrementally whereas

software development might prefer to develop their work in a more evolutionary way.

215

It was decided to focus our leadership team on deciding the work that needed to be done, and

to allow the department teams to utilise their own workflows, tools and methods in order to

deliver on the orders they receive.

« Partitioning our discipline related efforts into subsections allows us pass important deci-
sions on topics such as concepts, direction and problem domain related requirements on

the leadership level, and send these down the line to the departments as work orders

» to follow a main project model on the leadership level, yet at the same time allowing the

different departments to follow their own workflow and processes that dont necessarily

overlap all too well.

Tricky bit elegantly move over to talking about the bread and butter of this section: The

actual project model!

Agile work methodology based on SCRUM

Ive not had chance to write up on this topic yet, but please see the presentation slides

prepared and showed before the oppgave was given, they can be found in the appendix. There

are significant amounts of information there.

M

Sprint review I

Sprint retrospective
meeting

OM

v

Project vision Release planning

Sprint planning

Rretrospecy

Deployment...

216

Dag Klokkeslett Mate

1. Onsdag (Sprint start) 09.00 -11.00 Sprint Planning
Hverdager 9.15-9.30 Daily standup
2. Fredag (Sprint slutt) 9.00 - 10.00 Sprint review

10.15-11.00 Sprint Retrospective
11.00 - 12.00 KAKE-FR-DAG!

SCRUM supports a flat leadership structure, which is another approach our group was keen to

explore.

Talk about flat leadership hierarchy.

Why is this a good idea? -All the good references..

Why did we decide to run with it?

o How have we chosen to apply it, and why?

217

Tittel
Set up ROS2 workspace and version control

Define node architecture and message
layout

Create motor control node
(publish/subscribe)

Create gripper control node (service or
topic)

Design and i finite state
(FSM)
(o] FSM to individual L nodes

Create test launch file for integrated nodes

Log key data to rgshag

Optional Epic: Motion Planning with Movelt2

Beskrivelse

Install ROS2, configure golgon build system,
and create basic repo.

Sketch full system based on ROS2 layered
architecture:

- Perception (e.g., vision_node)

- Recognition (e.g., root_detector,
grasp_detector)

- Planning (e.g., task_planner)

- Control (e.g., move_group,
gripper_controller, cutting_controller)
-HAL (e.g., hal_bridge)

Define topics, services, and actions using
ROS2 message types.

Create a control node for arm motion using
ROS2 action interface or topic-based
command publication to the hardware or
simulation driver.

Implement a ROS2 service node (e.g.,
/gripper/set_state) or use topics to toggle
gripper state. Integrate pressure feedback
from HAL.

Implement FSM in task_planner node to
coordinate detection, movement, gripping,
cutting, and placing. Support recovery and
retry strategies via feedback and result
handling.

Link FSM to:

- move_group action for arm motion

- gripper_controller service for grasping

- cutting_controller action for cutting
Ensure data flow through topics like
Idetected_root_pose and
/gripper/pressure.

Launch script that brings up ROS2 nodes for
end-to-end test.

Enable rosbag? for selected topics (e.g. FSM
state, camera, motor commands).

D ion of Done

ROS2 workspace builds cleanly and version-
controlled code is pushed.

Architecture documented with layers,
node responsibilities, and interface types
(topics, services, actions). Reference
communication diagram and node table.

Node publishes to topic or provides action
interface. Verified with Movelt2 or
simulated joint interface.

Gripper responds to service or topic
command and pressure feedback is
observed on topic /gripper/pressure.

FSM runs full cycle using simulated or real
nodes with transitions between key phases
observed.

FSM successfully sends goals and
services, and reacts to feedback. End-to-
end cycle completes as expected.

All nodes launch without error and
topics/services are active.

Roshag files record correctly and can be
played back.

Define URDF for Movelt2 compatibility

Use Movelt Setup Assistant to generate config
package

Create test motion planning demo in RViz

Write basic ROS2 launch file for Movelt2 and
RViz

Connect Movelt2 planner to simulated
controllers

D Movelt2 i and i

plan

plementation

Beskrivelse

Ensure the robot's URDF includes joint limits,
inertia, and proper link definitions.
Generate the planning group, SRDF, and
Movelt2 configuration files.

Plan simple trajectories to a few fixed
positions using RViz planning interface.

Launch Movelt2 and RViz together with
correct configuration.

Simulate execution by publishing joint states
or using dummy controllers.

Describe how Movelt2 integrates into
control layer. Include /move_group action,
joint state updates from HAL, and
trajectory execution through controllers.
Show planning calls from task_planner.

3 Project Methodology

218

URDF loads cleanly in RViz and joints display
correctly.

Movelt2 config launches without errors and
shows robot model.

Planned trajectories visualize correctly in RViz
with joint motion preview.

Command launches both tools and robot is
interactable.

Planner output appears as if it were
commanding the robot.

Integration documented in system
architecture section with diagrams, node
connections, and Movelt2-specific
components.

3.0.1 Earlier work towards creating backlog items for ROS 2 im-

EG | -

EG | -

4. ARCHITECTURE

4 Architecture

4.0.1 Early work understanding communication and signals

EG | -

Et enkelt flytskjema for a skrive inn inputs og outputs

Must add verification — plant
gripping, root cutting, placement?

-—Inpur-

LIMSW
ENC

Suggested additions:

* A Rotary encoder — For positioning. Gives exact position of
motors and thereby helps us make sure that steps are not
missed.

* Limit switch — for

* Camera position — should be placed so that plant gripping
can be confirmed as success or failure. Also, check if the plant
is actually in position before gripping is attempted.

PUL

DIR
ENA

(oPTO?

MCUR

“Core”

Low level control

{Arduino)

LiMsw
ENC

PUL
DIR
ENA

(oPTO?

Gripper motor

Pressure sensors on gripper?
PUL

DR
ENA

(oPTO?

MCUR
GRPR

Figure B.1: Interfacing elektro og data

219

0¢ae

From motor to Core

Signal What it does Bits Details Details for dummies Important notes
ENCA+ Rotary encoder 1 Rotary encoder Sends pulse for each step. Each step is represented by a signal change.

1 inverse of ENCA+

Differential signaling (reduce

ENCA- Rotary Encoder interferance), not needed Software: Ignore
ENCB+ Rotary encoder 1 Rotary encoder Sends pulse for each step. Each step is represented by a signal change.

1 Differential signaling (reduce
ENCB- Rotary encoder interferance), not needed Software: Ignore
ENCZ+ N/A Center position, not needed Software: Ignore
ENCZ- N/A Center position, not needed Software: Ignore
REFR Limit switch 1 Limit switch for clockwise rotation When it comes to the limit the signal will be high (1)

1 Limit switch for counter-clockwise
REFL Limit switch rotation When it comes to the limit the signal will be high (1)

This will come in vsn 2 driver (internal
Motor Current Mest sansynlig pd UART development)
This will come in vsn 2 driver (internal
Stall Guard development)

From motor to Gripper
Signal What it does Bits Details Details for dummies Important notes
ENCA+ Rotary encoder 1 Rotary encoder Sends pulse for each step. Each step is represented by a signal change.

1 inverse of ENCA+

Differential signaling (reduce

ENCA- Rotary Encoder interferance), not needed Software: Ignore
ENCB+ Rotary encoder 1 Rotary encoder Sends pulse for each step. Each step is represented by a signal change.

1 Differential signaling (reduce
ENCB- Rotary encoder interferance), not needed Software: Ignore
ENCZ+ N/A Center position, not needed Software: Ignore
ENCZ- N/A Center position, not needed Software: Ignore
REFR Limit switch 1 Limit switch for clockwise rotation When it comes to the limit the signal will be high (1)

1 Limit switch for counter-clockwise
REFL Limit switch rotation When it comes to the limit the signal will be high (1)

Figure B.2: Signalinterfacing elektro og data

v

HINLOHLIHOYYV

4. ARCHITECTURE

221

GGG

Kommunikasjon Central €-=>Core

Central = Core: Commands & Instructions (Proposed)

Signal

Explanation

Movement commands Move the arm to coordinates X, Y,
Z

Gripper control Grip or Release
Apply X N gripping force

Send to [station] Send to:

Cutting station
packing station recycling station

Cutting instructions Coordinates
Circumference?
Force?

Emergency stop, reset STOP (how do we deal with

resume or reset?)

From Core to Central (proposed, to discuss in detail with JC)

Core to Central: Status and feedback

Message/Signal

Explanation
Current position Status: Moving, ldling..
Coordinates: X, Y, Z
Gripper force feedback Pressure sensor, Newton
Task status Task Status: "Task complete”

Task: Move to cutter... etc

Mation step counter Rotary encoder
Sending actual steps
Sensor readings Send warnings relating to

sensor readings: limit switch,
mMotor current sensor,
overload warnings etc

Alerts

Food for thought: How often should Core send feedback messages to Central? When
state change, or at intervals?

Kommunikasjon Core €= Motorer

From Core to moto

Signal

rs (DM332T & DM320T Manual):

Explanation

PUL Pulse signal

DIR Direction
signal

ENA Enable signal

OPTO Protection?

Motors to Core

Pulse, on rising edge.

Every time the PUL pin receives a pulse, it moves the motor one step. 4-
5V considered start of a step, 0-0.5V considered end of a step. Minimum
pulse width 2.5ps, so the arduing must hold the pulse for at least this
duration.

Presumably, we control the speed of the motor by the duration of the
pulses.

Direction. HIGH / LOW voltagelevels representing the different directions
of rotation. The driver needs at least Sus to change direction.

Enable signal. Enables or disables the motor driver. High voltage SV
enables the motor, meaning it can move. Low voltage OV, the driver is
disabled. The mator cannat move, but holds its position. This pin can be
used as the kill switch!

Add Resistors if using another voltage than 5V

Message/Signal Explanation

LiMsW Limit switch Has switch been triggered?

ENC Rotary Encoder For pasitioning - giving exact motor position feedback

> detecting missed steps

MCUR Motor current sensor To monitor if motor is operating well.
Also to detect if the motor stalls or is overloaded (I
believe?)

Gripper to Core

Message/Signal Explanation

LiMsw Limit switch Has limit switch been triggered?

ENC Rotary Encoder For positioning -_giving exact motor position feedback —>

detecting missed steps
MCUR Motor current To monitor if motor is operating well.
sensor Also to detect if the motor stalls or is overloaded (I believe?)
GRPR Gripper Pressure To give feedback

eanenr

Figure B.3: Communication and signal details from the early diagram above

v

HINLOHLIHOYYV

4. ARCHITECTURE

4.0.2 Early work on architecture EG | -
4.0.3 Early work on workflow EG | -
4.0.4 Early work on understanding communication EG | -

223

4. ARCHITECTURE

System architecture

Jimn CRaictlan,
Har tankar pg wi md
Torstd Failke: data v
trenger oF hva Al kan

s

asiiani

sar o sk o

R By bl i s T,

Calrslate pripping
ooenate M, ¥ T

Faf fisding.
oo v oY
@ripning cnarAseees

Toahe m ey poiet or

o *

Sriredes bl e 23l
il iy ey A i,

o i

ekt sl B i Zh

Monitarisg, sdaptasons,
e uabuty famturen

e 10w 82 Frsan TesBnES Ergape sty Seanies

Fral Tl mame s

Requests

Figure B.4: Early architectural design

Adaptad from hitgs: /W researchgate.nes Migune/Systens architeciure diagram of the proposed bin pick and place systems_figl 361235845

Perception Layer

vision_node

engnition Layer

root_detector grasp_detector

@ning Layer

task_planner

motion_planning

énrol Layer

arm_controller

gripper_controller

cutting_controller

Hardware Abstraction Layer

Figure B.5: Early architectural design

224

4. ARCHITECTURE

pAeE T et o

et i BN

D brvdeer mvexit By i
photo ares

Obgect dete ot

If no

If yes—j

B3l

ad to queus

Mapode af plant
[Hecycling starion)

D liver plant at
packing area

Lielner plant at
packing area

it n

it no

approved for

If yes

\

Cut roots

R cutting
station)

Figure B.6: Early attempts at mapping processes

Direction & Publisher Subscriber Purpose Example Payload
ROS2 Arduino
Ie ‘automation/motion >)-J
R R0S2> Arduine arm_control_node CommandManager Ve loints 044 MOVE 1000 2000 1500 500 250
leafy_automation/gripper ROS2 > Arduino o2 G Open/close gripper GRIP1
gripper_control_node CommandManager
ROS2 Ardui
leafy_automation/calibrate ROS2 > Arduino 0 uino Run calibration phase CALIBRATE
gripper_control_node CommandManager

ROS2

leaty_automation/status/command_received Arduino > ROS2 LMD LTS Confirm that any incoming command (MOVE, GRIF, ¢\ ReCEIVED: MOVE
CommandManager CALIBRATE) was received and understood

gripper._control_node.

Ardui ROS2 Nod

leafy_automation/status/motion Arduino > ROS2 uine ode Report MOVE command completed MOVE DONE
CommandManager arm_control_node

leafy_automation/status/gripper Arduino > ROS2 (ol [Pl Report GRIPPER action completed GRIPPER DONE
CommandManager gripper_control_node
Ardui ROS2 Nod

leafy_automation/status/calibration_done Arduino > ROS2 reuine ode Report CALIBRATE phase completed CALIBRATION DONE
CommandManager arm_control_node

leaty_automation/status/heartbeat Arduino > RS2 (o WESEREERIEET fo e sl alive?
CommandManager Node

225

4. ARCHITECTURE

Node(s) K Libraries / Tools -
Perception camera_driver_ncusb_cam, cv_camera, image_transport, opencv-python, relpy, depthz Use existing camera drivers.

Recognition plant_classifier_n PyTorch, TensorFlow, ONNX Runtime, OpenCV, vision_msgs, geometr Al inference works well in Python. Use standard ROS2 message types.
Planning task_planner_nocMovelt2, rclcpp, behaviortree_cpp_v3, yaml-cpp

Use C++ for motion planning. Integrate with Movelt and behavior trees.
Control

trajectory_contro ros2_control, control_msgs, joint_trajectory_controller, hardware_in Requires real-time safety. Integrates ROS2 control stack.

HAL arduino_interface rclpy, pyserial, paho-mqtt, micro_ros_agent Python for prototyping. C++ for performance. Wraps hardware access.

—

|
S iose

Figure B.7: Enter Caption

226

LCC

Perception
Recognition
Recognition
Planning
Planning
Control
Control
HAL
HAL

camera_node sensor_msgs/Image [camera/image_raw
plant_classifier_node vision msgs/ObjectHypothesis /plant_class
grip_point_estimator_node geometry msgs/PoseStamped /grip_pose
task_planner_node leafy_msgs/TaskGoal (custom) [next_task
motion_planner_node trajectory_msgs/lointTrajectory /planned_trajectory
trajectory_controller_node std_msgs/Float64MultiArray Jemd_joint_positions
joint_command_translator_node control_msgs/lointTrajectoryControllerState /joint_states
arduino_interface_node leafy_msgs/MotorCommand (custom) /motor_commands
gripper_driver_node leafy_msgs/GripperStatus (custom) /gripper_status

Topic
Topic
Topic
Service
Action
Topic
Topic
Topic
Topic

Figure B.8: Thoughts for future work.

Publishes raw camera images to be processed by recognition lay:
Publishes classification result of plant

Publishes estimated gripping pose

Receives task requests, returns task details

Executes robot motion via trajectory action server

Low-level joint command array

Reports joint states for feedback

Low-level motor control to Arduino

Reports gripper open/close state and force feedback |

v

HINLOHLIHOYYV

5. DESIGN AND WEBSITE

5 Design and Website

5.1 Design JCDH | -

The design will be used for presentations, website, and the thesis. Keeping a consistent look

across all these items is important to maintain a professional look.

The design philosophy was taken by combining parts of nature (plants) and modernity. This

fusion creates a clean and natural look. Figure B.19 shows the color palette we landed on.

#689c7d #92cf5f #f7f8f8 #9b9a95 #33373b #fff

" ko

Figure B.9: Our project color palette

5.1.1 Project logo design SME | JCDH

The visual identity of our project is represented by the logo shown in Figure B.10. The design
was primarily inspired by the project title, Leafy Automation, and reflects both the nature of
our work and the agricultural domain in which the project operates. Given that the primary
function of the robotic system is to harvest leafy greens, the choice of a green color palette and

the inclusion of a leaf motif in the logo was both symbolic and appropriate.

The leaf element in the logo not only refers to the crops our system is designed to handle
but also establishes a visual link to our project partner, Hydroplant Technologies AS, whose
branding similarly incorporates a leaf. This further reinforces the connection between our work

and the broader vision of sustainable and modern horticultural practices.

The design process began with a hand-drawn sketch in a digital notebook. The initial concept
was iteratively refined to strike a balance between organic shapes and professional aesthetics.
Ultimately, the final version was created by combining freehand elements with typefaces that

complemented the natural curves of the leaf. The fonts used were (Codigra and BirdsofPar-

228

5. DESIGN AND WEBSITE

adise), chosen for their readability and visual harmony with the drawing.

After finalizing the layout and structure, the logo was imported into Canva for final adjust-
ments. The background was removed to ensure versatility across multiple applications, includ-
ing presentations, promotional materials, and project accessories. As an example, the logo was

featured on the custom name tags designed for the team, as illustrated in Section 5.1.2.

ealy

Automation

Figure B.10: Project logo

5.1.2 Name tags SME | -

229

5. DESIGN AND WEBSITE

o Beatrix Rimestad

eafy
utomation

A

Figure B.11: Name tag: Beatrix Rimestad

@ Daniels Blomnieks

eafy
utomatiot

Al

ﬂ Hydroplant Technologies
Figure B.12: Name tag: Daniels Blomnieks

@ Elin Gravningen

eafy
Automation

Figure B.13: Name tag: Elin Gravningen

/B Jim Christian
O\Z r Haukvik

Figure B.14: Name tag: Jim Christian Haukvik

/B Vetle Myhre
O\Z : Nilsen

p Hydroplant Technologies
Figure B.15: Name tag: Vetle Myhre Nilsen

/B Sunniva Myrvang
O\Z Eineteig
eai‘,‘!ﬂ?nn

ﬂHydroplan(Technologies

Figure B.16: Name tag: Sunniva Myrvang Eineteig

5.1.3 Recruitment ad JCDH, EG | -

230

5. DESIGN AND WEBSITE

RN

Figure B.17: Recruitment ad

All pictures used in the recruitment ad have permissive and free-to-use licenses from unsplash.com

which don’t require attribution.

5.2 Website JCDH | -

The website is hosted on USN’s servers and can be found at https://itfag.usn.no/grupper/D08-

231

https://unsplash.com
https://itfag.usn.no/grupper/D08-25
https://itfag.usn.no/grupper/D08-25

5. DESIGN AND WEBSITE

25/ which is a subdirectory on an Apache instance.

Although the server includes support for both PHP and a MySQL (including PHPmyadmin),
there is no requirement to use these technologies, and reduced complexity often causes less

issues down the road.

The website is written using the Bootstrap Toolkit which is a CSS toolkit that simplifies the

process of website development and prototyping.

Git was considered for the website, but it was decided that because of it’s simplicity and in
order to consolidate resources on the engineering project itself, it was not needed. The group

agreed upon not using too much time or resources on developing the website.

Lequ Auvtomation Projectinfo The people Sprints Documents
°
We are Leafy Avtomation
Explore the project, learn about our talented team, dive into our sprints, and
access important documents to stay informed.
\
Project Info

Figure B.18: Website, iteration 1

5.2.1 Security considerations JCDH | -

When developing websites, there are in most cases a great many security considerations to keep
in mind. A good approach is to keep this list of can-be security issues as small as possible.
Therefore, the choice to drop technologies like PHP and MySQL - and only focusing on pure

HTML documents - keeps our website stable and secure for the foreseeable future.
A curated list of potential security issues regarding PHP and MySQL follows:

e Out-of-date PHP version

232

https://itfag.usn.no/grupper/D08-25
https://itfag.usn.no/grupper/D08-25
https://getbootstrap.com/

5. DESIGN AND WEBSITE

o MySQL injections

5.3 Website source code JCDH | -

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Explore the project, learn about
our talented team, dive into our sprints, and access important documents
to stay informed.">
<link rel="icon" href="assets/img/logo.png">
<title>Leafy Automation</title>

<!-- Open Graph -->

<meta property="og:title" content="Leafy Automation">

<meta property="og:description" content="Explore the project, learn
about our talented team, dive into our sprints, and access important
documents to stay informed.">

<meta property="og:image" content="https://itfag.usn.no/grupper/D08
-25/demo2/assets/img/logo. jpg">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/
bootstrap.min.css" rel="stylesheet" integrity="sha384-
QWTKZyjpPEjISv5WaRU90FeRpok6YctnYmDr5pN1yT2bRjXh0IJMhjY6hW+ALEwIH"
crossorigin="anonymous">

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
font-awesome/6.7.2/css/all.min.css" integrity="shab12-Evv84Mr4kqVGRNSgIGL
/F/alIDqQb7xQ2vcrdIwxfjThSH8CSR7PBEakCr51Ck+w+/U6swU2Im1vVX0SVk9ABhg=="
crossorigin="anonymous" referrerpolicy="no-referrer" />

<link href="assets/css/style.css" rel="stylesheet">
</head>
<body id="top">

<nav class="navbar navbar-expand-1g">

<div class="container">
Leafy Automation</

span>

<button class="navbar-toggler border-0" type="button" data-
bs-toggle="collapse" data-bs-target="#navbarlNav'" aria-controls="navbarlNav
" aria-expanded="false" aria-label="Toggle navigation">
<i class="fa-solid fa-ellipsis"></i>

</button>

<div class="collapse navbar-collapse" id="navbarNav">

<ul class="navbar -nav ms-auto'">

233

5. DESIGN AND WEBSITE

<1li class="nav-item">

Project

info
</1li>
<1li class="nav-item">
The people
</1li>
<1li class="mav-item">
Sprints
</1i>
<1li class="nav-item">
Documents<
/a>
</1li>

</div>
</div>
</nav>
<!-- Hero Section -->

<div class="container-fluid pb-5 pt-5 hero">
<div class="row">

<div class="col-md-6 d-flex align-items-center ps-md-5 pb-5"

<div class="hero-info">
<h1>We are Leafy Automation</hi1>
<p>Explore the project, learn about our talented
team, dive into our sprints, and access important documents to stay
informed.</p>
Read
more
</div>
</div>

<div class="col-md-6">
<img src="assets/img/logo.jpg" class="img-fluid hero-img

my-md-2 floating-image" alt="Hero Image">

</div>
</div>
</div>
<!-- Project Info Section -->

<div id="project-info" class="section bg-light">
<div class="container">
<h2 class="mb-5">Project Info</h2>

<div class="row">

<div class="col-md-12 mb-4">

234

5. DESIGN AND WEBSITE

<div class= >
<div class= >
<h4>Description</h4>
<p>Hydroplant Technologies seeks to develop
an autonomous system for efficient lettuce harvesting and handling in
vertical farming. The goal is to automate the process from harvesting to

further processing in a sustainable, scalable, and cost-effective way.</p

>
</div>
</div>
</div>
<div class= >
<div class= >
<div class= >
<h4>0bjectives</h4>

Recognize and handle different types
of lettuce.</1li>
Transport lettuce between system
areas safely.</1li>
Position accurately for optimal
operation.</1i>

</div>
</div>
</div>
<div class= >
<div class= >
<div class= >
<h4>Key Requirements</h4>

Recognition:
Identify lettuce types using sensors.</1li>

Movement: Precise,
safe transport of lettuce.</1li>

Positioning:
Accurate location within the system.</1i>

Quality Check:
Identify and remove bad leaves.</1li>

</div>
</div>
</div>

<div class= >

<div class= >

<div class= >

235

5. DESIGN AND WEBSITE

<h4>Expected Deliverables</h4>

Prototype or simulation of the
system.</1i>
<1li>Design and technical documentation.<
/1i>
<1li>Testing and evaluation reports.</1li>

</div>
</div>
</div>

<div class="col-md-12 mb-4">
<div class="card">
<div class="card-body">
<h4>Additional Info</h4>
<p>This project supports Hydroplant
Technologies' vision to enhance vertical farming's sustainability and

cost-efficiency.</p>

</div>
</div>
</div>
</div>
</div>
</div>
<!-- People Section -->

<div id="people" class="section'">
<div class="container">
<h2 class="mb-5">The People</h2>

<div class="row">
<div class="col-md-4 mb-4">
<div class="card">
<img src="assets/img/people/sunniva. jpg" class="
card-img-top" alt="Person 1">
<div class="card-body">
<h5 class="card-title">Sunniva Myrvang
Eineteig</hb>
<p class="card-text'">Machine
engineer
 External contact Instagram</p>
</div>
</div>
</div>

<div class="col-md-4 mb-4">
<div class="card">
<img src="assets/img/people/jim. jpg" class="card

-img-top" alt="Person 2">

236

5. DESIGN AND WEBSITE

<div class="card-body">

<h5 class="card-title">Jim Christian Dale
Haukvik</h5>

<p class="card-text">Computer
engineer
 AI Network-protocol Website ClickUp</p>

</div>
</div>
</div>

<div class="col-md-4 mb-4">
<div class="card">
<img src="assets/img/people/beatrix. jpg" class="
card-img-top" alt="Person 3">
<div class="card-body">
<h5 class="card-title">Beatrix Mgller
Rimestad</hb5>
<p class="card-text">Machine
engineer
 Internal contact</p>
</div>
</div>
</div>
</div>

<div class="row">
<div class="col-md-4 mb-4">
<div class="card">
<img src="assets/img/people/elin.jpg" class="
card-img-top" alt="Persomn 4">
<div class="card-body">
<h5 class="card-title">Elin Gravningen</h5>
<p class="card-text">Computer
engineer
 Robotics Risk-analysis SCRUM</p>
</div>
</div>
</div>

<div class="col-md-4 mb-4">
<div class="card">
<img src="assets/img/people/daniels. jpg" class="
card-img-top" alt="Person 5">
<div class="card-body">
<h5 class="card-title">Daniels Aleksandrs
Blomnieks</h5>
<p class="card-text">Machine
engineer
 LaTeX Risk-analysis</p>
</div>
</div>
</div>

237

5. DESIGN AND WEBSITE

<div class="col-md-4 mb-4">
<div class="card">
<img src="assets/img/people/vetle.jpg" class="
card-img-top" alt="Person 6">
<div class="card-body">
<h5 class="card-title">Vetle Myhre Nilsen</
h5>
<p class="card-text">Electronics

engineer
 LaTeX Group-environment</p>

</div>
</div>
</div>
</div>
</div>

</div>

<!-- Sprints Section -->

<!-- https://undraw.co -->

<div id="sprints" class="section bg-light">
<div class="container">

<h2 class="mb-5">Sprints</h2>

<!-- Sprint 1 -->
<div class="card mb-4 sprint">
<div class="row align-items-center">
<div class="col-md-4">
<img src="assets/img/illustrations/team.svg"
class="img-fluid sprint-img" alt="Sprint 1">
</div>

<div class="col-md-8">
<div class="card-body">
<h3 class="card-title">Sprint 1</h3>
<p class="card-text">In the first sprint we
working on gripper concepts, robotics concepts, motor driver, networking

and camera functionality.</p>

</div>
</div>
</div>
</div>
<!-- Sprint 2 -->

<div class="card mb-4 sprint">

<div class="row align-items-center flex-md-row-reverse'">

<div class="col-md-4">
<img src="assets/img/illustrations/team.svg" class="
img-fluid sprint-img" alt="Sprint 2">
</div>

238

5. DESIGN AND WEBSITE

<div class="col-md-8">
<div class="card-body">
<h3 class="card-title">8print 2</h3>
<p class="card-text">In sprint 2 we worked on
CAD and hardware, AI model training and R0S2. We now have a functional
mechanical base, fine tuned object detection models, and a defined

communication structure.</p>

</div>
</div>
</div>
</div>
<!-- Sprint 3 -->

<div class="card mb-4 sprint">
<div class="row align-items-center">
<div class="col-md-4">
<img src="assets/img/illustrations/team.svg"
class="img-fluid sprint-img" alt="Sprint 3">
</div>

<div class="col-md-8">
<div class="card-body">
<h3 class="card-title">Sprint 3</h3>
<p class="card-text">Sprint 3 included
completion of mechanical assembly, Arduino modules (RO0S2 and motor

control), HMI and AI salad detection.</p>

</div>
</div>
</div>
</div>
</div>
</div>
<!-- Documents Section -->

<div id="documents" class="section bg-dark text-light">
<div class="container">

<h2 class="mb-5">Documents</h2>

<!-- Bachelor Thesis -->
<div class="card text-dark mb-3">
<div class="card-body">
<h5 class="card-title">Bachelor Thesis</h5>
<p class="card-text">Coming soon</p>
<!--Download--

</div>

</div>
</div>

239

5. DESIGN AND WEBSITE

</div>

<!-- group image -->
<div id="group">
<img src="assets/img/group.jpg" class="img-fluid group-img"

style="object-fit: cover;
</div>

alt="Group Image">

<!-- Footer Section -->
<div class="container">
<footer class="d-flex flex-wrap justify-content-between align-
items-center py-3 my-4">
<div class="col-md-4 d-flex align-items-center">
I 2025
Leafy Automation
</div>

<ul class="nav col-md-4 justify-content-end list-unstyled d-

flex">
<1li class="ms-3"><a class="text-body-secondary" href="

https://www.instagram.com/leafyautomation"><i class="fa-brands fa-
instagram"></i></1i>

</footer>
</div>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/
bootstrap.bundle.min.js" integrity="sha384-
YvpcrYfOtY31HB60ONNkmXc5s9fDVZLESaAAS55NDz0xhy9GkcIdslK1eN7N6jIeHz"
crossorigin="anonymous"></script>

<script src="https://code.jquery.com/jquery-3.7.1.min.js" integrity=
"sha256-/JqT3SQfawRcv/BIHPThkBvsOOEvtFFmqPF/1YI/Cxo=" crossorigin="
anonymous"></script>

<script src="assets/js/main.js"></script>
</body>

</html>

Listing B.1: index.html

@import url('https://fonts.googleapis.com/css27family=Poppins:ital,wght@O
,100;0,200;0,300;0,400;0,500;0,600;0,700;0,800;0,900;1,100;1,200;1,300;1,4
display=swap');

@import url('https://fonts.googleapis.com/css2?family=Sour+Gummy:ital,wght@O
,100..900;1,100..900&display=swap');

body {

font-family: 'Poppins', sans-serif;

240

00;1,500;

5. DESIGN AND WEBSITE

h1, h2 {
font-family: , sans-serif;
}
p, ul 1i {
line-height: 1.8em;
}
ul {
padding: O;
}

.card-body p:last-child,
.card-body ul:last-child {

margin-bottom: O;

#project-info ul {

list-style: none;

#project-info ul li::before {
content: ;

margin-right: 10px;

.hero .hero-info {
opacity: O;

animation: fadeIn 1s ease-in-out forwards;

@keyframes fadeIn {
from {
opacity: O;

transform: translateY (20px);

}
to {

opacity: 1;

transform: translateY (0);
}

.floating-image {
display: block;
margin: 0 auto;

animation: float 3s ease-in-out infinite;

241

5. DESIGN AND WEBSITE

@keyframes float {

0% {
transform: translateY(0);
}
50% {
transform: translateY(-10px);
}
100% {
transform: translateY(0);
}

nav.navbar {

box-shadow: none;

.navbar {
position:
width: 100%;

0;

0;

z-index:

fixed;

top:
left:
999;
#E£ff;

border -bottom:

background:

1px solid rgba(0, 0, 0, 0.1);

.navbar .navbar-brand img {
height:

width:

40px;
40px;
border -radius:

object-fit:

50%;

cover;

.navbar .navbar-brand span {

font-family: , sans-serif;
font-size: 1.b5rem;
bold;
0.2s;
middle;

5px;

font-weight:
transition:
vertical-align:

padding-left:

.navbar .navbar-brand span:hover {

color :#4d6ebc;

.navbar .container-fluid {

padding-left:
padding-right:

3rem;

3rem;

242

5. DESIGN AND WEBSITE

.navbar-scroll {
background: #fff;

box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);

}
.hero {
margin-top: 63px;
}
.hero h1 {
font-size: 3rem;
font-weight: bold;
color: #668d76;
}

.hero-img {
border -radius: 5px;
width: 100%;

object-fit: cover;

.section {

padding: 5rem O;

.navbar-brand, h2 {
color: #668d76;

#people .card:hover {
transform: scale(1.02);

transition: transform 0.3s ease-in-out;

#people img {
height: 500px;
width: 100%;
object-fit: cover;
filter: grayscale (100%);

#sprints .sprint {

margin: 50px auto;

#sprints .card img {

padding: 10px;

243

5. DESIGN AND WEBSITE

border-radius: 5px;

#group img {
filter: grayscale (100%);

.btn-plant {
background-color: #668d76;
color: #fff;

.btn-plant:hover {
background-color: #4d6ebc;
color: #fff;

Listing B.2: style.css

jQuery (function($) {
$(window) .scroll (function() {
if ($(window) .scrollTop() > 0) {

$() .addClass ()
} else {
$() .removeClass ()

IO
IO

Listing B.3: main.js

244

5. DESIGN AND WEBSITE

6 Scrum Presentation EG | -

245

L

SCRUM: EN AGIL TILNARMING TIL PROSJEKTARBEID

11.02.2025

VI SER PA

Tradisjonell opp mot moderne prosjektarbeid

Hovedprinsipper og verdier | SCRUM = Sprinc

Forberedelse

s i
= Rollene
= Visjon og Story board mapping

= The Product Backlog — Backlog grooming
= “The definition of Done” Sprint

= Product Roadmap

Scrum-strukeur

o 0 x=m
= Daily scrum PrigeE i cHelidou plamnin v
= Sprint review

= Retrospektive

HVA ER UTFORDRINGEN?

Hvordan kan vi levere et knallbra prosjekt med ulik fagbakgrunn, komplekse utfordringer, og stramme tidsfrister?

TRADISJONELL MATE A JOBBE PA

Reguirements

Vannfallsmetoden

+ Kunden gir et oppdrag
 Magic occurs
+ Kunden far produktet sitt til avtalt tid

Design/
implementasjon

Testing/Verifiasjon

Deployment

TRADISJONELL MATE A JOBBE PA

TRADISJONELL MATE A JOBBE PA

Requirements

Design/
implementasjon

Skrive requirements utvikling Testing Leveranse

Testing/Verifikasjon

Deployment Kundens perspektiv

i]
Requirements H

Design/
implementasjon

Skrive requirements utvikling Testing Leveranse

Testing/Verifiasjon

[E— Kundens perspektiv

11.02.2025

VEL OG BRA — | DEN IDEELLE VERDEN

Men, shit quite frequently happens:

= Endring i krav eller spesifikasjoner

= Eks: Et team jobber med & designe en prototyp for en ny maskin, men halvveis i prosjektet endres spesifikasjonene fordi
kunden nsker 4 inkludere en ny funksjon basert pi markedsundersokelser.

= Forsinket oppdagelse av feil

= En utvikler leverer et design som viderefores til produksjonsfasen, men under testfasen oppdages at en komponent ikke
oppfyller ytelseskravene.

= Manglende kundeinvolvering

= Et team utvikler en programvarelosning, men kunden er kun involvert i starten og slutten av prosjektet. Nar losningen
leveres, oppdager kunden at produktet ikke oppfyller deres faktiske behov.

= Uventede teknologiske endringer

= Et team jobber med utvikle et nytt produkt basert pé en bestemt teknologi, men halvveis i prosjektet lanseres en ny, mer
effekiv teknologi som gjor den opprinnelige losningen utdatert.

VEL OG BRA — | DEN IDEELLE VERDEN

. gir lav fleksibilitet og

= Problemer oppdages sent, som ofte krever enorme ressurser & korrigere
= Legger ikke opp til jevnlig tilbakemelding fra kunde (som ikke nodvendigvis kan s mye teknisk)

Isen av prosjekeet

= Planlegging og diskusjon rundt skjer primeere i b

En studie publisert i International Journal of Project Management fant at prosjekeer som benyttet agile metoder hadde
28% hoyere sannsynlighet for 4 levere pa tid sammenlignet med de som brukte vannfallsmetoden.
Videre viste en rapport fra Standish Group at agile prosjekter hadde en suksessrate pa 42%, mens
tradisjonelle vannfallsprosjekter 14 pa 14%

AGILT PROSJEKTARBEID

Stort prosjekt - Bryter opp | biter > Bitene utvikles (i iterasjoner) - Deler av produktet leveres underveis “releases” - Hele produktet ferdigstilles
il slut,

AGILT PROSJEKTARBEID

Handler om 4 bryte opp et stort prosjekt til mange sma komponenter; og bygge dem opp bit for bit giennom en
strukturert, iterativ prosess.

Iterasjon |

Iterasjon 2

(oo

10

AGILT PROSJEKTARBEID

Handler om 4 bryte opp et stort prosjekt til mange sma komponenter, og bygge dem opp bit for bit giennom en
strukturert, iterativ prosess.

Leveranse

| et T | rersionn

Iterasion 2

[ooho

AGILT.....SCRUM?

SCRUM F METHODOLOG Y

SCRUM = FRAME woRk

R,

RUM valtes j

11

12

11.02.2025

AGILT.....SCRU

AGILT.....SCRUM?

Teamet fokuserer pi sprintets mil og oppgavene som
gir mest verdi for produktet.

Apenhet Teamet har en transparent arbeidskultur hvor det

SCRUN F METHODOLOG Y SCRUMN F METHODO LG Y
deles apent om fremdrift, utfordringer, og

SCRUM = FRAME woRk : . SCRUM = FRAME work p
Ikke en arbeidsmetode, men et rammeverk som gir oss beslutninger.

struktur, fleksibilitet, og fokus..
. . . ngasjement | Teamet forplikcer seg til 4 oppna sprinets mal og
I ...basert pa noen kjerneverdier] jobber helhjertet for & levere verdi. Dedikasjon til
L—GE L_FLU bide oppgaver og samarbeidet.

(zceom vaces

SCRUM valves Respeke | Teamet respekeerer hverandres roller ferdigheter og

1111

erspektiver.
AGILE VALUES AGILE VALUES persp
S e | S |
M Teamet har mot til 4 ta utfordrende beslutninger, gi
rlige iinger, og adressere problemer
direkte.

13 14

OK, OK, OK.....NOK ABSTRAKTE GREIER

Over til noe litt mer handfast og praktisk

15 16

EKSEMPEL CASE SCRUM TEAM

I SCRUM har vi tre “roller”

Oppdrag: Developer —Alle utviklerne pi teamet

Lage en interaktiv treningssykkel Product Owner - Product Owner er ansvarlig for & gi
teamet Klarhet i hva som skal bygges, og sikre at det
Development team Development team:

reflekterer kundenes og interessentenes krav.
Karstein
. Scrum Master — Scrum Master hjelper teamet med 4 folge
Scrum-prosessen, fierner hindringer og sorger for at teamet
kan jobbe effektivt. Altsa ikke en «sjef», men en fasilitator
som server teamet.

17 18

11.02.2025

SCRUM TEAM

I SCRUM har vi tre “roller”
Developer —Alle utviklerne pi teamet

Product Owner - Product Owner er ansvarlig for 4 gi
teamet Klarhet i hva som skal bygges, og sikre at det
reflekterer kundenes og interessentenes krav.
Development team:

T Scrum Master — Scrum Master hjelper teamet med a folge
Scrum-prosessen, fierner hindringer og sorger for at teamet
kan jobbe effektivt. Altsa ikke en «sjefs, men en fasilitator
som server teamet.

3x init igrer 2x i iorer

VISJON - HBYNIVA BESKRIVELSE AV PRODUKTET

Funksjonelle krav
= User Stories
= Fokus p brukerens behov og opplevelse (funksjonelle krav).

= Formulert i et enkelt sprk for 4 fremme god kommunikasjon mellom utviklere og ikke tekniske interessenter

Tekniske krav
= Fokus pa de spesifikke tekniske egenskapene
= Presist, teknisk sprak som beskriver hvordan produktet skal fungere.

= Spesifiserer malbare parametere, som ytelse, sikkerhet, toleranser, materialvalg, osv.

19

20

EKSEMPEL

Standardmal for User Storie:

Som [brukerrolle] vil jeg [mal/behov] slik at [fordel/verdi].

Funksjonelt krav

= Som en bruker vil jeg ha en tr
over treningsoktene mine.

som mler p og motstand, sl at jeg kan holde oversikc

Tekniske krav

Sykkelen skal vaere utstyrt med en magnetisk sensor som kan male pedalfrekvens i omradet 20150 omdreininger
per minutt (RPM) med en noyaktighet pa +2 RPM

Motstandssystemet skal vare basert pa et elektromagnetisk bremsesystem som kan generere belastning fra 10 til
500 watt, med en justerbarhet pa minst | watt per trinn.

EKSEMPEL

Standardmal for User Stories:

Som [brukerrolle] vil jeg [mal/behov] slik at [fordel/verdi].

Funksjonelt krav

= Som en bruker vil jeg ha en treningssykkel som maler pedalfrekvens og motstand, slik at jeg kan holde oversikt
over treningsoktene mine.

Tekniske krav

= Sykkelen skal vare utstyrt med en magnetisk sensor som kan méle pedalfrekvens i omradet 20-150 omdreininger
per minutt (RPM) med en noyaktighet pa £2 RPM.

= Motstandssystemet skal vaere basert pa et elektromagnetisk bremsesystem som kan generere belastning fra 10 til
500 watt, med en justerbarhet pa minst | watt per trinn.

21

22

EKSEMPEL

Standardmal for User Stories:

Som [brukerrolle] vil jeg [mal/behov] slik at [fordel/verdi].

Funksjonelt krav

= Som en bruker vil jeg ha en tr
over treningsektene mine.

som miler p og motstand, slik at jeg kan holde oversike

Tekniske krav

Sykkelen skal vaere utstyrt med en magnetisk sensor som kan male pedalfrekvens i omradet 20150 omdreininger
per minutt (RPM) med en noyaktighet pa +2 RPM

Motstandssystemet skal vare basert pa et elektromagnetisk bremsesystem som kan generere belastning fra 10 til
500 watt, med en justerbarhet pa minst | watt per trinn.

VISION BOARD

VISIoN
Skpe en i enngssythe: = o v meningsoppleveise
pe
TARGET GROUP nEEDS PRODUCT BUSINESS GOALS
o Enmersay o Lage et produst som

‘skaper Iy
brukerme

raanet som ansker 3
e 929 1 farm emime. .

 w2ig av sykkeien
arenge

programvarcabonnement

23

24

11.02.2025

FRAVISJONTIL BACKLOG

Q e f L —
wE e >
s * 5 —
LIER SToRY

<
MAOPPIN G BAckLoc

STORYBOARD MAPPING

+ /’ +

—
=
e

...eller digital, f.eks med www.cardboardit.com

25

26

STORYBOARD MAPPING

-, - m——

Back bone: De overordnede omradene eller temaene som representerer
de viktigste delene av produktet.

STORYBOARD MAPPI

“Epics”: Dette er store funksjonelle blokker eller funksjonsomrider innenfor
hvert backbone item.

27

S BOARD MAPPING

komponentene. De
sscenarioer som kan

RYBOARD MAPPING

Synkende prioritet

29

30

11.02.2025

STORYBOARD MAPPING

Minimum viable product

ORYBOARD MAPPING

AN —— §
pecense T

31

32

BACKLOGGEN

Struktur

= @verst: Mest prioriterte og detaljerte oppgaver, klare for
utvikling.

= Nederst: Mindre detaljert, ideer og fremtidige planer.

Fleksibilitet
= Backloggen justeres etter behov, krav og innsikt.

Ansvar
= Product Owner administrerer prioriteringer.
= Teamet bidrar med estimering og detaljering.

Mal
= Fokuserer alltid pa & levere mest verdi forst.

33

34

BACKLOG GROOMING/REFINEMENT

Backlog grooming foregir regelmessig, og varer typisk 30-60 min.

At Backloggen er prioritert
De vanligste oppgavene

Estimert arbeid per story

Oppdatere eller fierne irrelevante stories

Sikre at stories er "klare"
* Kontrollere at de overste oppgavene i
har klare iterier og
er forstaelige for teamet

Definition of «Donex»

MEN HVA BETYR AT

EN STORY ER “KLAR”?

Men hva betyr at en story er “KLAR™?

35

11.02.2025

EKSEMPEL PA EN “KLAR” USER STO

Tittel: Justerbart sete for ergonomisk tilpasning

Beskrivelse:

kroppsstorrelse for en komfortabel og trygg treningsopplevelse.

Akseptansekriterier:

= Setet skal kunne justeres vertikalt i minst 5 nivier (3 cm intervaller)

= Setet skal kunne skyves horisontalt (minst 10 cm justeringsomrade).

= Mekanismen skal vaere enkel 4 betjene med én hind.
Tekniske detaljer:

= Bruk en lisemekanisme med fizrbelastning for enkel justering.

= Materialer skal tile en vektbelastning p opptil 150 kg.

= Test for minst 10 000 sykluser for slitestyrke.

Estimat:
3 dager arbeidstid (inkludert testing).

“Klar”
godt definert, fostalig og

Som en bruker onsker jeg & kunne justere setet opp og ned samt frem og tilliake, sl ar [g an tilpasse sykkelen til min

betyr at den er

arbeidsmengde er
estimert.

MEN HVA BETYR AT

EN STORY ER “KLAR”?

Jauja. ja. Hva med nér den er “Ferdig” \

da?

37

38

EKSEMPELER PA “DEFINITION OF DONE”

For en software story: For et fysisk produkt:

Koden er skrevet og sjekket inn i
versjonskontrollsystemet. realistiske forhold.

K

Mekanismen fungerer som spesifisert under

Enhetstester er skrevet og bestatt. .

Funksjonen er manuelt testet og validert mot
akseptansekriterier.

Ingen kjente feil knyttet til oppgaven.

Dokumentasjonen er oppdatert (brukerveiledning og
tekniske spesifikasjoner).

stress- eller brukssimulering).

Brukermanual er oppdatert.

(feks.

Produktet er montert og lar for kundevalidering.

NA ERVI STRAKS KLARE!

DET SISTEVITRENGER ER EN TIDSLINJE - ET PRODUCT ROADMAP

Release | Release 3

Release 2

39

40

PRODUCT ROADMAP

e Roiomsa 1 Roleaso 2 [reT—

[PUP—
Bock arey argerancs TUR Sxperency

Link

3 se o
4 Setun msogay e
Py

Camgiers
6 Schackdo mspocton by

Schacu ma out
& Racawe bosd bom
weTRcs 1000 achve users by oo
3 quain

especton
oo o whe et
fanans w1
s

eoraee cAprAs. | Mot oot cten

KLAR FOR SPRINT PLANNING

Na har vi:

= Story board map v’
= Groomed Product Backlog %/
= Definition of Done v
= Product Roadmap v

= masse forarbeid i boks

....Endelig kan vi snakke om sprinter

41

42

11.02.2025

NgN NOEN FASTSATTE M@TER

= Time boxing

Sprint planning
= Sprints har fast varighet

= Planlegge arbeidet som skal loses

Sprint-mal

Daily Scrum
= Et klart og overordnet mal for hva teamet skal

. = Et standup-mote pa max 15 minutter hver dag
oppna.

Inkrement

Sprint Review

= Resultatet er et fungerende produkt eller

= Gjennomgang og demonstrasion av fullforte leveranser il
unde
funksjonalitet som kan vurderes.

The sprint board

Sprint retrospektive

= Evaluering av hva som fungerte bra og hva som kan
forbedres i neste sprint

43 44

NOEN FASTSATTE M@TER SPRINT PLANNING

Sprint planning Sprint Planning

= Phanlegge arbeidet som skal loses

Forml: Bestemme hva som skal oppns og hvordan
arbeidet skal utfores i sprinten.

= Daily Scrum Deltakere: Scrum Master, Product Owner og
% =t standup-mote pi max 15 minutcer hver dag Utviklingsteamet.
3 = Sprint Review
= Gjennomgang og demonstrasjon av fullforte Innhold;
s fetvo leveranser dl kunde = Velge stories fra backloggen som skal fullfores i
plecnii Spviat ;"‘ ”' Pl = Sprint retrospektive sprinten.
24 foreck & ::;,., the /el = Evaluering av hva som fungerte bra og hva som SR = Planlegge oppgaver og arbeidsflyt for 4 levere

lan forbedres i neste sprint sprintmalet.

...ser kanskje mye ut, men er faktisk veldig tideffektivt!

Resultat: E¢ Klart Sprint-mal og en Sprint Backlog.

45 46

DAILY SCRU SPRINT REVIEW

Daily Scrum

Sprint Review

Formal: Sikre fremdrift mot sprintmalet og idenifisere Formal: Evaluere og demonstrere arbeidet som er fullfort i
hindringer. sprinten.
Tid: Maks 15 minutter — hold motet kort og fokusert. Deltakere: Scrt og holders).
Deltakere: Hele Scrum-teamet.

Innhold:

Strukeur:

= Demonstrasjon av det fungerende produktinkrementet.
= Hva har jeg gjort siden sist?

= Diskusjon om hva som er oppnidd, og hva som gienstr.
= Hva skal jeg giore i dag?

. . av fra interessenter:
= Er det noen hindringer som stir i veien?

Resultat: Fremmer kommunikasjon, synlighet og Resultat: Oppdatering av Backloggen basert pa
ansvarlighet. tilbakemeldinger:

47 48

11.02.2025

SPRINT REVIEW

Sprint Retrospective
Formalet: Reflektere over sprinten og finne
forbedringsomrader.

Deltakere: Kun Scrum-teamet (trygt rom for zrlig
diskusjon).

Innhold:
= Hva fungerte bra?
= Hva kan forbedres?

= Huvilke tiltak kan vi iverksette for a bli bedre?

LEGG OPP TIL SUKSESS

Resultat: Konkrete forbedringspunkter for neste sprint.

49

50

SCRUM BOARD

The Spvine .@a<kl=ﬂj

Visualisere fremdrift, oppgaver og status pi
mor T —
fc::(a ovt |dheted ot | dawe

arbeidet i sprinten.

Foats tanc
d il

= Kan vaere fysisk (whiteboard) eller digitalt. | S=<*<®
.) . g 21
= Mange miter, men veldig vanlig 4 kombinere [£T
med Kanban = @ | o

Moo

Brukes akeivt i moter og for & holde synlig

>

oversikt
(Oo T
urplaraed | gay /

oaA T
S0
A AE

SCRUM BOARD

Visualisere fremdrift, oppgaver og status pa
arbeidet i sprinten. e —

Kan vaere fysisk (whiteboard) eller digitalt.

Mange miter, men veldig vanlig 4 kombinere
med Kanban |
Brukes aktivt i moter og for a holde synlig .D & !

oversikt
as |l
()]
e ||

| =V

Checned ovt [Cheted out bowe

| BgE

Rackley

———
o= Bic Sach Expericace |
’

o
? %, |

51

52

TO ORD OM MULTITASKING

TO ORD OM MULTITASKING

Oh no....A"fun, little exercise” time! Roman Oh no....A“fun, little exercise” time! Roman
Letbewvs Numbe~vs Numevals lettevs Nuebe~s fiw.mvm(s
\ a i \ a |] 1
I |
2 3 " 2 ‘ 3 | "
3 < (AU T < e
[P IV 4 D | v
] € v] [v o
& F iVl I E v
7 [~ vt 7 [~ il
o) H alli ko) H | vill |
aq 1 1% q J N 7 1. W
10 3 * 10 3 *

53

54

11.02.2025

TO ORD OM MULTITASKING

Ohno....A

Er det effektivt 2 multitaske?

“fun, little exercise” time!

Roman
Letbevs Numbe~vs Nume~ads

v a i

3 "
3 & W
4 b | v
s € v
6 (= WV
T [~ it
B H Vil
a | IR
e I +

OPPSUMMERING

Tradisjonell opp mot moderne prosjektarbeid

Hovedprinsipper og verdier i SCRUM

Forberedelse

= Rollene
= Visjon, User Stories, Story board mapping
= The Product Backlog — Backlog grooming
= “The definition of Done”

= Product Roadmap

= Gjennomforing - Sprints
= Planning
= Daily scrum
= Sprint review

= Retrospektive

= Sprint

55

WE'RE DONE!

IT's'Do
| -

IT'S FINALLY OVER §

56

7. CLICKUP SPRINTS AND BACKLOG

7 ClickUp sprints and backlog

7.1 Sprints

L ClickUp

Sprint 1
COMPLETE

Task ID Task Name
8698pcSrk pulleys og belte bestilling til shahin
8698kzt8e Complete the HMI authentication system and user database
8698kd74y Setup ROS2 Workspace and Repository
IN PROGRESS

Task ID Task Name
8698kzwhn Choose components
8698kzuSt Draw schematic
8698kx0kz Bli enige om interface specifications
8698kzt2m Define requirements for base
8698kztmz Cad tegning base (V1,V2,V3..)
8698mfa8y Joint 3
8698kvzx3 CAD Prototype 1
TODO

Task ID Task Name
8698kwzub Define All ROS2 Interfaces (msg/srv/action)
8698kx1ef Sette opp nodene som skal utvikles

Assignee
Daniels Blomnieks
Jim Christian Dale Haukvik
Elin Gravningen

Assignee

Vetle Myhre Nilsen

Vetle Myhre Nilsen

Elin Gravningen, Jim Christian Dale Haukvik, Vetle Myhre Nilsen
Beatrix Rimestad

Beatrix Rimestad

Daniels Blomnieks

Sunniva Eineteig

Assignee
Elin Gravningen
Elin Gravningen

86987kz27 Implement some kind of Al model which can give information about Jim Christian Dale Haukvik
8698kzqq7 Complete Object Detection Al model implementation (no training). Jim Christian Dale Haukvik

8698kw191 Choose soft touch for the gripper

Sunniva Eineteig

Figure B.19: Sprintl

256

Sprint 2

Name Assigne Status

Sprint 3

Name Assigne Status

Sette opp nodene som skal utvikles Elin Complete
create cable routing clips to frame Daniels Complete
Joint 1 Daniels Complete
Arduino - CommunicationManager Elin Complete
Arduino - MotorControl Elin Complete
Implement some kind of Al model which can

give information about the salads size /

dimensions Jim Complete
Arduino - GripperControler Elin Complete
Define requirements for base Beatrix Complete

V5 - Base Beatrix Complete

Bli enig om interface specification Jim, Elin, Vetle IN PROGRESS
finne en lgsning pa 20mm shaft Daniels IN PROGRESS
CAD model with soft touch Sunniva IN PROGRESS
3D-print soft touch (TPU) Sunniva IN PROGRESS
Choose components Vetle TO DO

> MOSFET simulation Vetle TODO
Design an interchangable gripper mechanism [Sunniva TODO

PCB Layout Vetle TODO

> PCB art Vetle TODO
>ECM Vetle TODO

Draw schematic Vetle TODO

> EMC checks and ... Vetle TODO

> Simulation of RC filters for limit switches Vetle TODO
mount for camera frame Daniels TODO

7. CLICKUP SPRINTS AND BACKLOG

7.2 Backlog

259

Backlog

Name Assigne Status List

Vurdere Github repo for nettside Jim, Elin TODO Web

LaTeX kurs for gruppen Daniels, Vetle TO DO Felles arbeid

Rydde opp i rapport - mapper Daniels, Vetle TO DO Felles arbeid
Robotics core Elin

> Define interfaces between core and

motors, including sensors. Elin, Vetle TODO Dataingenigr arbeid
> Define interfaces between core and

central Elin, Jim TODO Dataingenigr arbeid
> Single stepper motor control Elin TODO Dataingenigr arbeid
>> Rotate motor forwards and

backwards TO DO Dataingenigr arbeid
>> Move motor at different speeds

(needs to be defined) TO DO Dataingenigr arbeid
>> Test that kill switch stops operations

but holds position TODO Dataingenigr arbeid
> Expand code to operate 2 motors Elin TODO Dataingenigr arbeid
>> Each motor works independently TODO Dataingenigr arbeid
>> Both motors can operate

independently at the same time TODO Dataingenigr arbeid
> Implement synchronized movement (Elin TODO Dataingenigr arbeid
>> Both motors move together at the

same speed TODO Dataingenigr arbeid
> Make motor control library Elin TODO Dataingenigr arbeid

>> Reusable functions for moving,
stopping, speed, changing direction, kill

switch. (?) TO DO Dataingenigr arbeid

> Implement limit switches Elin, Vetle TODO Dataingenigr arbeid

>> Movement stops when limit is

reached TODO Dataingenigr arbeid

>> The system logs and reports the

occurrence to operator/farmer? TODO Dataingenigr arbeid

> Implement emergency stop Elin, Vetle TO DO Dataingenigr arbeid

>> Pressing the button immediately

halts all movement. TO DO Dataingenigr arbeid

>> Resume button that resumes action TO DO Dataingenigr arbeid

>> Reset button sending robots back to

starting positions?

> Position tracking? Elin TODO Dataingenigr arbeid

> Automate movement sequences Elin TODO Dataingenigr arbeid

>> Set a "home" position TODO Dataingenigr arbeid

> System integration Elin TODO Dataingenigr arbeid

> Implement gripper pressure sensor Elin, Vetle TODO Dataingenigr arbeid

> Implement motor currency sensors Elin, Vetle TODO Dataingenigr arbeid
Choosing motor Vetle TODO Elektronikkingenigr arbeid
Stepper motor driver development Elin, Vetle TODO Elektronikkingenigr arbeid
> Current sensing TODO Elektronikkingenigr arbeid
> Stallguard TODO Elektronikkingenigr arbeid
> Limit switches TODO Elektronikkingenigr arbeid
> Rotary encoder TODO Elektronikkingenigr arbeid
Power delivery Vetle TODO Elektronikkingenigr arbeid
Choosing interface for motors Vetle TODO Elektronikkingenigr arbeid

PCB? Vetle TODO Elektronikkingenigr arbeid
Force sensor TODO Elektronikkingenigr arbeid
Bilder opp fra bedriftsbesgk pa Insta Sunniva TO DO SoMe
Based on results from open-source

object detection dataset, decide if we

need to compile our own dataset. Jim TODO Al
Compile a dataset with associated

labels and bounding boxes from images

of the lettuce. Jim TODO Al

Train the object detection Al model with

the dataset Jim TODO Al

Build standalone Python script for live

detection Jim TODO Al
Refactor Al for ROS2 compatibility Jim TODO Al
Finalize Al models Jim TODO Al
Opprette kommunikasjon mellom

nodene i ROS2 TODO Robotics
ROS2 Utvikle arm_controller TODO Robotics
ROS2 Utvikle FSM (task planner) TO DO Robotics
ROS2 Innlemme og interface Al --> task

planner TODO Robotics
ROS2 Implementere motion_planner

(Enkel) TO DO Robotics
ROS2 Implementere FSM TODO Robotics
Lage felles ROS2 launch-fil TODO Robotics
Full Hardware/software-test TO DO Robotics
Legge til kallibreringsrutine TODO Robotics
Sette opp MQTT Broker & ROS2 TO DO Robotics
Complete the http protocol class Jim TODO Misc

Finalize first iteration of API layer

between central and core Jim TODO Misc
Check if citations are correct according

to style guidelines Jim TODO Misc
Write about login table and login screen

in thesis Jim TODO Misc
Write a section about ClickUp TO DO Misc
Regenerate Doxygen docs for code and

put in the thesis before delivering Jim TODO Misc
Explain the code | wrote in the thesis Jim TODO Misc
Lisens pa Powerpoint og Visio stock

images. Kan de brukes i bachelor

rapport? Jim TO DO Misc
Make sure variable names and product

names are italic or bold text in thesis Jim TODO Misc
Implement token based security for the

API Jim TODO Misc
Implement a class abstraction for

interacting with the camera Jim TODO Camera
Refactor Camera for ROS2 compatibility [Jim TODO Camera
Create a login screen and users

database for HMI Jim TODO HMI
Build a live detection demo Jim TODO HMI
Design basic HMI layout Jim TODO HMI
Develop basic functional HMI Jim TODO HMI
Finalize HMI Jim TODO HMI

Fine tune and test the Green
Percentage Image segmentation

algorithm Jim TODO ML
Complete database for HMI, Camera

and Al Jim TO DO Network
Prepare integration adapter for ROS2

(future-ready) Jim TO DO Network
Authorization checks for api Jim TO DO Network
Document Al pipeline and Ul behavior [Jim TODO General
Finalize software, document

architecture, and record test logs. Jim TODO General
CAD simuleringer Beatrix IN PROGRESS Robot base
Valg av materialer Beatrix IN PROGRESS Robot base
Cad tegning kasse kontrollenheter Beatrix TO DO Robot base
Produksjon av elementer til kasse

kontrollenheter Beatrix TODO Robot base
Dokumentere base og design

begrunnelser TO DO Robot base
development of arm prototype Daniels IN PROGRESS Robot arm
> joint belt drive Daniels IN PROGRESS Robot arm
>> SW simulations Daniels IN PROGRESS Robot arm
> joint direct drive Daniels IN PROGRESS Robot arm
>> SW simulations Daniels IN PROGRESS Robot arm
> simulation of assembly Daniels IN PROGRESS Robot arm
physical prototype Daniels TODO Robot arm
3D print Daniels TODO Robot arm
Gripper/end effector research og

konseptforslag Sunniva IN PROGRESS Gripper / end effector

> Design for pressure/force sensor or

mechanical stop Sunniva IN PROGRESS Gripper / end effector
> Soft touch pa end effectoren, hva

funker best? Sunniva IN PROGRESS Gripper / end effector
> Sensor touch? Eller mekanisk Sunniva IN PROGRESS Gripper / end effector
> Kamera plassering pa griper eller

handledd pa arm? Sunniva, Jim IN PROGRESS Gripper / end effector
> Motor til griper, hvilken type? Sunniva, Vetle IN PROGRESS Gripper / end effector
> Kobling fra arm til griper Sunniva, Daniels IN PROGRESS Gripper / end effector
gripe arm konsepter Sunniva IN PROGRESS Gripper / end effector
> kanskje solidworks modell? Daniels IN PROGRESS Gripper / end effector
Requirements: Calculations (weight,

force, torque, etc.) Sunniva TODO Gripper / end effector
FEM analysis in SW of gripper Sunniva TO DO Gripper / end effector
3D-Print gripper parts Sunniva TODO Gripper / end effector
connect gripper parts after print Sunniva TODO Gripper / end effector
Install motor/servo for testing Sunniva, Vetle TO DO Gripper / end effector
Perform grip test Sunniva TODO Gripper / end effector
Connect gripper/end effector to robot

arm Sunniva, Daniels TODO Gripper / end effector
Final testing Jim, Elin, Beatrix, Sunniva, Daniels, Vetle |TO DO Gripper / end effector
Final documentation Sunniva TO DO Gripper / end effector
Teste assembly for dynamiske

belastninger i forskjellige

konfigurasjoner (FEM) Beatrix TODO Structural integrity
Order PCB Vetle TODO Custom PCB

Order components Vetle TODO Order components

Appendix C

mechanical

1 belts and pulleys DAB |

just a more detailed explanation. all parts are from maedler website [28]

1.0.1 Pulleys DAB |

pulley choice was made based on what bearings we had available based on its internal diameter.
But pulley for joint 1 had to be also sized so that the pulley itself is not too big and comes in
the way of maneuverability of the robot.

the list and info of pulley is in belt drive subsection 9. These pulleys do not have set screws,
its a clamp type where its held by the clamping force. one motor shaft was to short to have
the belt close to the frame as possible, so we decided to add 2 set screw M3 in pulley groove to

fasten it see in figure C.1.

266

Figure C.1: pulley joint 3 motor side

There is also a pulley for joint 2 motor side, the shaft is almost to short so a good idea would
be to also add 2 set screws to it instead of relying on the clamp with minimal contact.

CAD models for pulleys are all available to download from maedler supplier. use of Their
cad files are for internal use only and not for commercial use. since they just redirect to a

government site abut the general use of Cad files.

1.0.2 Belts DAB |

Belt type is T5 10mm belt. the five means the distance from center of the peak to center of
the peak is bmm that is called pitch, and width of 10mm. these belts are timing belts

Belt lengths were chosen trough meddler calculator. There you can input pulley teeth amount
and the distance from the pulleys center to center, and also select what kind of belt width and
type. then it gives the correct belt length.

after that we look at what is the closest size they sell and chose a little bit over size a few mm
to be on the safe side and we will add a belt tensioner which will almost eliminate all the sag
in the belt.

267

2 Robot Gripper Concepts SME |

A gripper is the mechanical component of a robot’s end effector designed to grasp, hold, or
transport objects. Performing as the "hand" of a robotic arm, the gripper enables the robot to

interact with physical objects efficiently.

The most common types of grippers include vacuum, pneumatic, hydraulic, and electric grip-
pers. In our project, we prioritize high flexibility and the use of materials that do not damage
plants. Through research, I identified various types of grippers, some of which are more suitable

for our application than others.

2.0.1 Jaw gripper SME |

One type we examined is the jaw gripper, a parallel gripper that is among the most versatile
and widely used in robotics. This gripper features two opposing jaws that move parallel to each
other, enabling it to grasp objects of different shapes and sizes. The jaw gripper is well suited
for pick-and-place operations due to its precision and ability to handle both small and large
irregularly shaped objects. Additionally, by controlling the gripping force and incorporating
soft-touch materials on the jaws, this type of gripper can safely manage fragile objects or

materials requiring a delicate touch.

Figure C.2: Jaw gripper
[65]

2.0.2 Finger gripper SME |

Another end effector that we explored is the finger gripper, which offers greater flexibility than

268

the jaw gripper. This type is particularly effective for handling objects with irregular shapes or
intricate geometries. Finger grippers provide a highly adaptable solution for robotics, as they
consist of multiple fingers that conform to an object’s shape during grasping. The fingers can be
made from rigid materials for stability or soft materials to protect delicate items, depending on
the specific application. A combination of both materials can also be used to balance gripping

force with a gentle touch.

Figure C.3: Finger gripper
[65]

2.0.3 Soft gripper SME |

Lastly, we investigated soft grippers, which include several gripper types. These grippers are
highly adaptable and applicable across various industries. In agricultural harvesting, soft-
touch technology has recently gained attention due to its ability to handle delicate crops,
cost-effectiveness, and potential for automated harvesting. Soft grippers can consist of one or
multiple fingers and are often constructed from rubber or silicone, making them suitable for

diverse applications.

~

L g

PN &

Figure C.4: Soft gripper
[66]

269

Soft grippers are primarily powered by pneumatic or hydraulic systems, utilizing compressed
air or pressurized fluids to generate mechanical movement. This energy conversion mechanism

allows for smooth and controlled gripper operation.

2.0.4 Fin-ray grippers SME |
Fin-Ray grippers are a type of soft robotic gripper designed for grasping complex and de-

formable objects. They are inspired by the fin-ray effect, a natural phenomenon observed in
the fins of fish. This principle has been adapted for robotics, enabling grippers to adapt to an

object’s shape without requiring extensive actuation systems.

The structure of Fin-Ray grippers is characterized by a triangular shape, where the fins consist
of two flexible elements arranged in a V-shaped configuration. When an external force is ap-
plied to the fins, the structure deforms in a way that enhances the gripping capability, allowing

the gripper to wrap around objects gently and securely.

One of the key advantages of Fin-Ray grippers is their ease of design and manufacturing. The
fin-ray effect can be efficiently modeled using CAD software and is well-suited for additive
manufacturing. These grippers can be 3D-printed, making them a cost-effective and accessible

solution for various robotic applications. [67]

Various filling patterns

(a) Fin-ray Gripper (b) Fish fin-ray effect
Figure C.5: Fin-Ray concept
[68]
2.1 Soft Touch in Agricultural Robotics SME |

In agricultural robotics, particularly in environments where robots handle delicate food prod-

ucts such as salad greens, a soft touch feature is usually incorporated to prevent damage to

270

the plants. Traditional robotic grippers, which are often designed for industrial applications,
may apply excessive force on fragile products, leading to reduced quality or waste. Therefore,
integrating soft touch technology in robotic grippers enhances their ability to handle sensitive

agricultural products effectively.

The materials commonly used to achieve a soft touch include silicone and rubber, both of which
provide flexibility and cushioning to minimize pressure on delicate items. However, when select-
ing materials for agricultural applications, it is essential to ensure compliance with food-contact
safety regulations. Regulatory standards dictate that all materials in direct contact with edible
products must be non-toxic, non-reactive, and free from harmful substances to maintain food

safety and quality.

Soft touch technology is typically implemented in the fingers of the robotic gripper, as these
components make direct contact with plants or products. One of the most effective methods
for achieving a soft touch is silicone molding, a process that allows for precise shaping of the
gripper’s contact surfaces. Silicone molding offers several advantages, including customizability,
durability, and biocompatibility, making it a suitable choice for agricultural applications. By
tailoring the shape and flexibility of the gripper fingers, robots can handle a wide variety of

plants while ensuring minimal stress on the harvested items.

The integration of soft touch technology in robotic grippers represents a significant advancement
in automated harvesting and food processing. With the increasing demand for automation in
agriculture, soft touch solutions not only improve efficiency but also contribute to reducing food
waste by ensuring gentler handling of crops. As research and technology evolve, further inno-
vations in material science and robotic control mechanisms will likely enhance the effectiveness

and adaptability of soft touch grippers in agricultural applications. [69]

271

3 3D-Printing for gripper development SME |

Additive Manufacturing Overview

3D printing, also known as additive manufacturing, is a fabrication process that creates objects
by depositing material layer by layer, directly from a digital model. This technique contrasts
with traditional subtractive methods such as milling or turning, where material is removed

from a solid block.

For prototyping purposes, 3D printing offers significant advantages in terms of speed, cost-

efficiency, and design flexibilityespecially for iterative development and rapid testing cycles.
Materials and Techniques

The gripper components in this project were manufactured using FDM, one of the most acces-
sible and widely used 3D printing methods. This technology melts thermoplastic filaments and

extrudes them layer by layer to form the final geometry.
Two primary materials were used:

o PLA: Chosen for its ease of printing, rigidity, and availability. PLA was used for all

structural components where stiffness and dimensional accuracy were required.

o« TPU: Selected for the Fin-Ray fingers in Prototype 2, TPU offers the flexibility and
elasticity necessary for soft-touch gripping. It allows the fingers to deform around the

object being handled, reducing the need for sensors while enhancing adaptability.

Design Considerations

Because 3D printed parts generally have lower mechanical strength compared to machined metal
parts, the designs had to account for stress distribution, layer adhesion, and print orientation.
The geometry was optimized to avoid weak points, and features such as ribbing, filleting, and

strategic wall thickness were incorporated to enhance structural integrity.

Moreover, modularity was prioritized to facilitate reprinting and replacement of individual com-
ponents without needing to manufacture the entire assembly again. This modular approach was
especially valuable for testing and educational environments with limited budgets and access

to industrial manufacturing tools.

272

Benefits and Limitations

The primary advantage of using 3D printing in this context was the ability to rapidly iterate on
the design at minimal cost. Changes could be made in CAD and quickly verified with a physical
prototype. However, 3D printing is not ideal for all application components that experience
high mechanical loads or require long-term durability, and may eventually need to be replaced

with machined metal versions. These considerations are explored in more detail in chapter 15.1.

273

Appendix D

Mechanical design

1 Forces acting on base BMR |

When designing and choosing the different elements for the base, it has been important to know
what forces the base will be subjected to, both in static equilibrium and during operation. In
addition to the combined weight of the whole arm, the base also needs to handle the moment

caused by off center mass, see fig. D.1.

To lower the strain on the motor shaft and reduce the power wasted on sliding friction between
rotating parts, we use bearings to support and control both the axial load and the moment

forces caused by off center load.

The axial load comes from the weight of the complete arm with payload (around 80 N). The
radial load comes from the moment of the off center mass of the outstretched arm, and the
magnitude of this force to be transferred through the bearings is dependent on the distance

and arrangement of the bearings.

The motor needs to be strong enough to rotate the combined weight of the arm with poayload

at the specified speed.

To find the exact values for this, a dynamic analysis with the inertia of each element in the arm

would be the correct way. This is a quite complex calculation, and is left out for this thesis.

274

Axial force

#

Radial
force

_

[N

Figure D.1: Forces acting on base and bearings

275

2 Dbase HPT interface BMR | —

For mounting of the robot arm, the base flange needs to be secured to a fixed surface by 4 X
MBS bolts (see fig.). This could be directly on a working table, on a separate mounting table or

for example a rail system (see fig.).

Important to consider - calibrate - put in parameter for the height (difference working table/-

mounting table).

NN <D%'00

&

Figure D.2: Interface for base flange

276

Figure D.3: Interface future possibilities

277

3 full scale model BMR | —

Figure D.4: Full scale model

278

4 Further work on base BMR | —

This section contains some thoughts around the future development of the base that has not

been implemented yet due to time constraints.
FEA and shaft layout

Initial analysis on the shaft has given a better understanding into where the stress concentra-
tions and problematic areas are situated and which applied loads affect the shaft the most.
Running the studies with different shaft lengths and different distances/loads between the two

bearings gave some insights. Figure D.5 shows the positioning of the applied loads.

279

Force pushing on one
wall of the keyway
hole

. N

/

Axial load
{weight robotic arm + “radial” load
payload) (moment transferred
through bearing)
[Fr)
“radial” load

(moment transferred
through bearing) ———»
[Fr]

—

Fixed to table/base

Figure D.5: Load applied in FEA

Axial load (from weight of arm + payload)
The axial load (80 N) is trivial and can be disregarded.

Radial load (from moment created by offset weight of arm + payload))

The radial load is affected by the distance between the two bearings. A longer distance between
the two bearings makes the radial loads they shall transfer smaller (using values from hand
calculations for the moment load). These loads are placed on 1/4 of the shaft circumference

to simulate the actual force distribution from the bearing. Even when shortening the distance

(down to 20 mm) to create higher loads, these do not seem to create problem areas.

280

Load from motor shaft

This load is set to act on one side of the key-slot wall, and is set to 2500 N (input: maximum
permissable torque of the motor of 10 Nm divided by the distance of 4 mm to the shaft axis).
The longer the shaft is, it creates the highest stress concentrations from the load of the rotating
motor shaft at the fixed bottom part. Considerations about how the shaft shall be fixed to the
table-base flange should be made. Also a shorter shaft is preferred, this will also reduce effects
of bending and deflection [25, p. 377].

One such simulation can be seen as a stress plot and a FOS plot in figure D.6. This shaft has a
bore diameter for the bearings of 25 mm and the shaft is 32 mm. The distance of the bearings
is 22 mm and the radial load set to 900 N.

won Mises (H/mm*2 (MPal)
184011
165610

L 4T208

- 122908

_ 110407
S2.006

'l- Mot | 184.011
L T3R0S

S5.204

% Wi 1,54

36803
18402

0.000

P Yiald srengeh: 282 AR5

l 168
154

Figure D.6: stress plot for shaft

Machining

The shaft itself can be turned easily, but the hole for the shaft of the motor with it’s key can
hardly be machined directly (as the design of the prototype). An idea is to design the upper
part of the shaft with an open slit for the keyway for the ease of machining, and place a sleeve
over the shafts to reduce stress at the keyway slit (see fig. D.7). The key slit should not be
directly above the shaft shoulder, since these both will have stress concentrations that can
combine [25, p 405].

281

Figure D.7: The left side is hard to machine, right side with sleeve as an alternativ

Bearings and bearing arrangement
Bearings are a "wear item", meaning that they need to be exchanged after a certain time/revolu-
tions. Choosing the right bearings for the application and ensuring proper mounting, facilitates

a longer bearing life (as specified by the manufacturer).

The bearings for the base needs to take both axial and moment loads, whereof the moment
loads will produce radial loads also. There are many specialized bearings for combined load
situations, but they are often quite expensive. Angular contact ball bearings or tapered roller

bearings are both suitable choices at a more reasonable price.

Studying some bearings (from the manufacturer SKF) with a bore diameter > 20 mm, and
comparing their load ratings with the loads working on the base, shows that they will all be
oversized. The axial /thrust load is so low compared to the load ratings that the bearings min-
imum load requirements is not fulfilled, and it would be necessary to apply a pre-load to the

bearings.

Many manufacturers of bearings (like SKF) have very good online resources like calculators
for bearing arrangements etc. When a bearing is chosen, they also provide information of
corresponding abutment dimensions, geometrical tolerances and CAD models to integrate into

an assembly:.

282

5 Further work on arms/joints DAB |

5.1 FEA on parts |

Initial analysis to have a better insight of where the stresses are located to make correct ad-

justments to improve part strength and design.

5.1.1 Shaft of each joint |
joint 1
tested firstly bending forces on the shaft end diameter of 20mm and middle diameter where

arm bolts up is 24mm. bearing support where bearing sits on shaft dark blue points and with

a force of 40.1N the purple arrows in figure D.8.with one fixture at the end where pulley sits.

v Mises (Nfmm ™2 (MPa))
0771
l 06
L 0817
_ 0340
_ 0463
L 0386
L 0309
0232
0154
0077

0,000

d strength: 230,594

o

Figure D.8: shaft bending forces

In this design study see figure D.9 try to find permissible torque when factor of safety is 1.5.

and we can see it is at 46Nm at n=1.5 factor of safety.

283

von Mises (N/mm 2 (MPa)

146,243
l 131,619
L 169
. 102371
- o7
L 13
L 584

3,875

29251
14627
0003

b Vield strength: 220,504

Y

L

SOLIDWORKS Educational Product.

For Instructional Use Only.

O Y R - =

80f 8 scenarios ran successfully. Design Study Quality: High

current | inital [optimai @) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario &
Toraue v 6 hm s2nm @nm sshm wtm 7tim hm o o
Stress <220 Nime2 1 wea)|1 1 " Pa) 1,462 Pa) 1,494+ P 1,525 (4Ps) [1,558¢+02 N2 (Pa) [1,590e+02 ime2 (uPa)
Minimum Factor o Safetyt [cose 0 1.5 1.508:00 13340100 1508600 15420100 1508400 14760400 1,446:00 1,416e:00 1.3880:00

Figure D.9: shaft torque forces design study

joint 2

had problems doing design studdy, discovered that increasing mesh quality made the factor of
safety show 0 but when you check in static it shows perfectly fine. becouse of this didnt have
time to put in.

joint 3

applying Bending forces for joint 3 shaft that is 8mm see figure D.10. purple arrows are 19.62N

force downwards. bearing support dark blue points and also fixture in the shaft pin hole.

284

Figure D.10: shaft bending forces

10471

won Mises (N/mm*2 (MPa))

10471

0424
L 837
- 7330
_ 628
L 5235
_ 4188

3141

2,00
1,047
0,000

—P Yield strength: 325,000

design study figure D.11 shows that the shaft can endure 4.6Nm before dropping below factor

of safety of n=1.5.

Y

K

EEZX,

von Mises (N/mm "2 (MPa)

216287

104,658

L 173,030

- 151401

_ 12977

L 108143

L 86515

64886
43,257
21,620

0000

—» Vield strength 325,000

SOLIDWORKS Educational Product. For Instructional Use Only.
|| variabteview | mabieview | resusview | 8
12 0f 13 scenarios ran successtully. Design Study Quality: High
current | b [optimal @) Scenario 2 Scenario 3 Scenario Scenario Scenario Scenario Scenario8 Scenario Scenario 10 Scenari
L] 430 520m 430m 4 410m 420m 430m 4anm 4shm 4snm 470 480m 49nm 5hm
uontor only o) ey P) ey
Minimum Factor o Safety2(1s close to 1.5 1.503€+00 12636200 1503400 15766400 1.536e:00 1.503€:00 1.468e+00 1.436e+00 1,405€+00 1375400 1346600 13196200 1.2526+00

Figure D.11: shaft torque forces design study

285

Appendix E

Electronics

1 Schematic VMN | -

286

wn

1 2 3 4 5 6
Vm
A .
Tt 1, o
+ Cl
CA1/2and CB1/2 s either 220nF or 470nF C2 20UE 80V
&l _[arong Z[220
T < < GND
DS c3 J_ A B8 2 1 = 1Q I 1 NTD3055L104T4G
C4 C5 =] #NTD3055L104T4GE 2] R2 2 HB2
— 470nF 15R
N - 2.2uF 2.2uF - - P
_ BMB2
. § R3 = BMB1
Connectors and differentigfop amps[1D] [NAI > 29 GND —
GND Q3
o . U1 ¥ ~ NTD3085L104T4G,
R6 29 [) 5 1 R4 2 1 =1 — 1 1R 2 LB2
1 c6 207 [N 3 |c7 A |7 #NTD3055L104T4GE 2] A
1|2 34 1 2 BMB2
| TR INASA 43 [-2eme ” ”
B - 100nF [3| VSA CB2 70— asonF
- 3 Vs HB2 [——(— 5 R7 Q BVAL 1 2
i
— e
C9 5 3.1 Tscres cB1 21 || 2 BMBL a7 - BMA2 2 |)
| 220nF PREC003SAAN-RC | =] SCKCFG2 HB1 >ORE - RS g E% i >
L 3 6, S0 BMBL |48 BMBI =Lc10 ROTS >
= [45 BMB2 2.2nF T EBQA-04-C-C
StepperDrisaI2[1B] <_NA AT 27 IAGLSWP BMB2 ———— , R9 L
. o o~ N[&
3C], StepperDriver2[1B]<_UART_P OART N 26 DIAGO SWN LB1 ig = pa c12 h c11
D], StepperDriver2[1B] <_UART_N 12 LB2 —— — 4700F 220uF 80V
Clock low = Intclock CLK SRBH 9 GND
- 1l REFLSTEP sreL 0 = e
c14 REFRDIR caz |35 L2 e - -
10 2 i Ha2 |36 HA2 1 [220nF Q5
[I 32 | oy cis 1 R0 2 1]0e | 1 NTD3055L104T4G
22nF caL 22 1 |2 BMAL "] $NTD3055L104745 [1 R 2 HA2
1 41 1
SPI low & SD low = UART LegMOBE Rl 220nF « « VAR
SPI high & SD low = SPI 22 40 BMAL
E SPI low & SD high = Standalone Step/Dir 21| S MODE BMAL 37 _BviA2 BMAL
SPI high & SD high = Step/Dir + SPI config R12 o o
h . 23 39 1 2 Q7
Connectors and differential op amps[5A]| ENCB > ENCB DCEN CFG4 LA1 —
- ; 4 38 _LA2 1 Q8 | 1 NTD3055L104T4G
Connectorsand differential op amps[3A] | ENCA ————>-={ ENCADCIN CFG5 LA2 15R H—} 4{"' R13
$— 2| ENCNDCOCFG6 .] FNTD30551104745 [7) 1 2 A2
28 SRAH — ™ ™ 15R
+5 DRV ENN SRAL | , R14 a
o GNDA (2 a7 -
R15 GNDD —5 B G
10K = Exoosed gN?.D 19 ——ci16 RO75
GND xposed Die Tie 22nF
|, rR17 ; R TMC5160A-TA-T - o
P1 ! ~ +5 1 2 1
2 22k =
: 1 c17 o GND &
—I | R19
61300211121 . 10k =
1 GND
D = o2 1 R0 5 REFL
GND el L e NI Title]
ci18 Stepper motor driver m
61300211121 | 1nF . =
Size Number Revision
1 2
GﬁD Date: 17/05/2025 Sheet 1 of3
File: StepperDriverl.SchDoc Drawn By: Vetle Myhre Nilsen
1 2 3 ‘ 4 5 6

+5 2 +5 2

& N
+ C19

c20
[arone C[220uF80V
+_5_2
N <] qo GND
"~ o1 o o | NT?3055RL21204T4G
T 47one % o NTD3055L104T4G [2 HB2 2
ro3 L 2.2uF ™ 15R BMB2 2
vm 25 N BMBL 2
Qu
3 U2 ou ~ NTD3055L104T4G
R26 vee 5VOUT -2 1 2 1 Q12 — 1 1 21LB2 2
1 C24 3 C25 NTD3055L104TAGT [
1 VCCI0 12vOouUT T S BMB2 15R 15R
| vCP " |—| |— -t ™
“ OOE I VSA CB2 =5 \psong
~ VS HB2
c26
o —'-%> TS crG3 c1 2L || 2 BVBILP - gmgg %
- StepperDrivert[1B8][NA) | SOxCAEs LB 220nF R28 BMBL2 3
— iR SDICFGL 48 BMBI 2 RO75 BMB2 2__4
Coeﬂﬁstorsanddlfferentlalopamps[lD]@ 6| spocrco BMBL ——pmes) Vm =¥bees =
1, StepperDriverL[18] < UART P 2| oiac1swp ELE2 - N TL
5] 47 ~
1, StepperDrivert[18] < UART N > ERISCOSV/ I[gg 46 1B72 -1 c20 * 20238 oy
e u
CLK 5 }ﬂ\
SRBH {3 S L
REFL STEP SRBL =T il
RERRDIR caz |35 1 [|_2 BMA2 2 - -
1 36 HA2 2 1[220nF
| CPO Hpz —2—mst o 1 R30 : 1 —lou Ly NTD3055L104T4G
c 2 1 L2 BMAL? t}moaossuom{j 1R 5 Hazo
SPI low & SD low = UART TSTMODE Sﬁi 41 |1 15R - - 15R
SPI high & SD low = SPI 2200F BMA2 2
SPI low & SD high = Standalone Step/Dir 40 BMA1 2
SPI high & SD high = Step/Dir + SPI config gg,\"/’l'ggEE o [(37_BMA2 2 SMATE?
&= < < Q15
Connectors and differential op amps[5B] | ENCB2 ——.=| ENCB DCEN CFG4 LA1 38 LA 2 —1016 L 1 NTD3055L104T4G
Connectors and differential opamps[38] | ENCA2 > =1 ENCADCINCFG5 LA2 H—} g-ﬂ R33
25, ENGNDCOCRGe] 1 *NTD3055L104T4S [1 2
SRAH — © o 15R
DRV ENN SRAL |
6
GNDA [-
GNDD ¢ =3
—— GNDD 29 RO75
< Exposed Die Tie
GND
+5 2 TMC5160A-TA-T N
N —
R37 GND
10k L
P3 =
L2 REFR_2 P4 CID
ol L N ~L2 1 R0 5 REFL2
c35 oL 22k N
61300211121 InF C36
- 61300211121 1nE
S Number Revision
R — * *
=
ChD oo 1770512025 Sheetz of3
StepperDriver2.SchDoc DrawnBy: *
1 2 ‘

5 ‘ 6

1 2 3 4 5 ‘ 6
52 5
ST1 ST2 ST3 ST4 T
- — | - | — — |
PTH-M2D5X5 PTH-M2D5X5 PTH-M2D5X5 PTH-M2D5X5
—_C41 ——C42 ——C43 ——C44
100nF 100nF 100nF 100nF
R4L
" i 1 2 L RA2Z
6 10k 5 =
6 |2 GND
5 R43
4 1 2 u3 R44
4 B+1 1 2 U4
) E— 10k LRLPIIREVR e TLVOLPLIDBVR
i T B 1 ENCA StepperDriver1[2C] ENCB > StepperDriver1[2C]
1 o2 B-1 1R 5
TBPO2R2-381-06BE
10k
. 10k
——C37 10k
— 110pF oD
GND ~
= =
GND GND
R49
. 52 1 2 RS0,
6 10k » 10k
6 = 45 2
5 R51
4 L i TR TR Br2 1 R% . 2 £o
3 10k i TLV91PLIDBVR
—{ ENCA2 > i :
i — r53 ENCA2 > StepperDriver2[1C] ENCB2 > StepperDriver2[1C]
i 2 B2 1R% 5
TBPO2R2-381-06BE
10k i
-
-
| ::EZEOQ . 10k = ——C40 10k ——
= ~ P GND 110pF GND
GND ~ N
= =
GND oD
.
R - S— ‘
VAN I
SARIEL 1 UART P > StepperDriver1[1B], StepperDriver2[15]
P5 | 3
1 ! |
21 ® | !
6 ~ 61300211121 | |
I
6 g T NAT > Steppe{DriverL[18]R57 | 3
5 120 | |
2[4 | |
s—1—4 ! 1
2 i 4 DERTEN i UART_N > StepperDriver1[1B], StepperDriver2[1B]
1 StepperDriver2[1B] e |
TBPO2R1-381-06BE
Vm
7
| 4 Title
; N\
2
1 Size Number Revision
] Ad * *
TBPO1R1-508-04BE —L_
= Date: 17/05/2025 Sheet3 of3
GND File: Connectors and differential op amps.SdbBawen By: *
1 ‘ 2 3 4 5 6

2 PCB layers VMN | —

290

STiﬂaan Yotom vyoqqsie THAU I[sud Q

noifsmoiuf pissal
Q P46 RFAREB R3] 15U

[[|l [

R4/ R41,

037U3. A RE
() l:l l

R8

tototiersvinl #7
sp1on-tzeeci 4

NA
NAI

<
(0)8

R26

‘ ‘ R28
c2/ o

e
o

O

| U
(

(

NN NN N
- AN NANS
.

o 3L

U8 c39 R55 (Y6 C40 R56
C/H 1 R\ T

<::> C42p53 R51)| R54 R52

[} llI‘bOII 1

C22 €23 Q23927924_

14!

C35 R37 P3
- ‘REFR
R39 -

c3s R0
- (REFL[’
38

Rff6 RffA R4 R4

e iy
AL

N\

LTO OO OO

O
O
) o

O

(o)
NN 7
\ I\ /| \

O
N 7N
|\ @) (@) __J

O
AR
\ _/

A
\ _/

\
()

O

OO0

O

3 PCB BOM VAN |

296

Name

Description

Designator

Quantity

Manufacturer 1

Manufacturer Part Number 1

Supplier Uni

Supplier Subtotal per Board 1

220uF 80V

Cap Aluminum 220uF 80V 20% Radial
Aluminum Cylindrical Can 5mm 1120mA
10000 hr 105°C Bulk

C1,C11,C19,C30

Panasonic

EEU-FS1K221

1.25

Capacitor 470nF +/-20% 25V 0603

Chip Capacitor, 470nF +/-20%, 25V,
0603, Thickness 1 mm

C2,C12

Murata

GRM188R71E474KA12D

GRM21BR72A474KA73L

Ceramic Capacitor, Multilayer, Ceramic,
100V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.47uF, Surface Mount, 0805

C3, C20,C21,C29

Murata

GRM21BR72A474KA73L

0.084

0.336

C2012X7R1C225K125AB

Ceramic Capacitor, Multilayer, Ceramic,
16V, 10% +Tol, 10% -Tol, X7R, 15% TC,
2.2uF, Surface Mount, 0805

C4,C5,C22,C23

TDK

C2012X7R1C225K125AB

0.17

0.68

Capacitor 100 nF +/-10% 50 V 0805

Chip Capacitor, 100 nF, +/- 10%, 50 V,
0805 (2012 Metric)

C6, C24,C41,C42,C43,C44

Yageo

CC0805KRX7R9BB104

0.027

0.162

C0805C224K1RACTU

Ceramic Capacitor, Multilayer, Ceramic,
100V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.22uF, Surface Mount, 0805

C7,Cs, C9, C13, C15, C25,C26,C27,C31,C33

10

KEMET

C0805C224K1RACTU

0.173

1.73

C0805C222K5RACTU

Ceramic Capacitor, Multilayer, Ceramic,
50V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.0022uF, Surface Mount, 0805

C10,C16,C28,C34

KEMET

C0805C222K5RACTU

0.029

0.116

08051C223KAT2A

Ceramic Capacitor, Multilayer, Ceramic,
100V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.022uF, Surface Mount, 0805

C14,C32

N

Kyocera AVX

08051C223KAT2A

0.01

0.02

08055C102KAT2A

Ceramic Capacitor, Multilayer, Ceramic,
50V, 10% +Tol, 10% -Tol, X7R, 15% TC,
0.001uF, Surface Mount, 0805

C17,C18,C35,C36

N

Kyocera AVX

08055C102KAT2A

0.015

0.06

GQM2195C2E111JB12D

Ceramic Capacitor, Multilayer, Ceramic,
250V, 5% +Tol, 5% -Tol, COG, 30ppm/Cel
TC, 0.00011uF, Surface Mount, 0805

C37,C38, C39, C40

Murata

GQM2195C2E111JB12D

PREC003SAAN-RC

Board Connector, 3 Contact(s), 1 Row(s),
Male, Straight, 0.1 inch Pitch, Solder
Terminal

J1

Sullins

PRECO03SAAN-RC

0.31

0.31

EBQA-04-C-C

4 Pin terminal block male pins

12,13

Adam Equipment

EBQA-04-C-C

0.6

1.2

TBP02R2-381-06BE

Connector

J4,15

TBP02R1-381-06BE

2~24 Poles

J6

=N |-

TBP01R1-508-04BE

Strip Terminal Block

17

=

Same Sky

TBP01R1-508-04BE

0.48

0.48

61300211121

Board Connector, 2 Contact(s), 1 Row(s),
Male, Straight, 0.1 inch Pitch, Solder
Terminal, Locking, Black Insulator, Plug

P1, P2, P3, P4, P5

Wurth Electronics

61300211121

0.12

0.6

Name

Description

Designator

Quantity |Manufacturer 1

Manufacturer Part Number 1

Supplier Uni

Supplier Subtotal per Board 1

NTD3055L104T4G

Power Field-Effect Transistor, 12A (D),
60V, 0.1040hm, 1-Element, N-Channel,
Silicon, Metal-oxide Semiconductor FET

Q1, Q2,Q3,Q4, Q5,Q6, Q7,Q8, Q9, Q10,Q11, Q12, Q13, Q14, Q15,Q16

16|ON Semiconductor

NTD3055L104T4G

0.945

15.12

15R

Fixed Resistor, Metal Glaze/thick Film,
0.125W, 150hm, 150V, 1% +/-Tol,
200ppm/Cel, Surface Mount, 0805

R1, R2, R4, R5, R10, R11, R12, R13, R21, R22, R24, R25, R30, R31, R32, R33

16| TE Connectivity

CRGCQO805F15R

0.036

0.576

CRCWO08052R20JNEAHP

Fixed Resistor, Metal Glaze/thick Film,
0.5W, 2.20hm, 150V, 5% +/-Tol,
200ppm/Cel, Surface Mount, 0805

R3, R23

N

Vishay Dale

CRCWO08052R20JNEAHP

0.013

0.026

CRCW25121R00FKEG

Fixed Resistor, Metal Glaze/thick Film,
1W, 1ohm, 500V, 1% +/-Tol, 100ppm/Cel,
Surface Mount, 2512

R6, R26

N

Vishay Dale

CRCW25121R00FKEG

0.3133

0.6266

ERJ-6ENF47R0OV

Fixed Resistor, Metal Glaze/thick Film,
0.125W, 470hm, 150V, 1% +/-Tol,
100ppm/Cel, Surface Mount, 0805

R7, R9, R14, R18, R27, R29, R34, R36

0o

Panasonic

ERJ-6ENF47R0OV

0.052

0.416

R075

RES SHUNT, 2512, 0.075 ohm, 1%, 3W

R8, R16, R28, R35

IN

Stackpole Electronics

CSNL2512FT75L0

Resistor 10k +/-1% 0805 125 mW

Chip Resistor, 10 KOhm, +/- 1%, 125 mW,
-55 to 155 degC, 0805 (2012 Metric)

R15, R19, R37, R38

4|Vishay

CRCWO080510K0OFKEA

0.026

0.104

RT0805FRE0722KL

Fixed Resistor, Thin Film, 0.125W,
220000hm, 150V, 1% +/-Tol, 50ppm/Cel,
Surface Mount, 0805

R17, R20, R39, R40

4|Yageo

RTO805FRE0722KL

0.0129

0.0516

Resistor 10k +/-1% 1206 250 mW

Chip Resistor, 10 KOhm, +/- 1%, 0.25 W, -
55 to 155 degC, 1206 (3216 Metric)

R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56

16|Yageo

RC1206FR-0710KL

0.018

0.288

CRGO0805F120R

Fixed Resistor, Metal Glaze/thick Film,
0.125W, 1200hm, 150V, 1% +/-Tol,
100ppm/Cel, Surface Mount, 0805

R57

TE Connectivity

CRGO0805F120R

0.006

0.006

PTH-M2D5X5

M2 PTH (2.5mm), 5mm pad

ST1, ST2, ST3, ST4

D=

TMC5160A-TA-T

Stepper Motor Controller, CMOS,
PQFP48

U1, U2

N

Trinamic

TMC5160A-TA-T

8.28

16.56

TLV9101IDBVR

General Purpose Opertational Amplifier 1
Circuit Rail-to-Rail SOT-23-5

U3, U4, U5, U6

IN

Texas Instruments

TLV9101IDBVR

0.61

244

Appendix F

Code Documentation

This chapter contains documentation which was generated from the doc comment in the source

code. The application used for this task is called Doxygen.

1 Leafy Automation Central

299

Leafy Automation Central

Generated by Doxygen 1.13.2

1 Namespace Index 1
1.1 Namespace List e e e 1

2 Hierarchical Index 3
2.1 Class Hierarchy e

3 Class Index 5
B Class List e

4 File Index

4.1 File List o e e 7
5 Namespace Documentation 9
5.1 access_levels Namespace Reference Lo 9
5.2 api Namespace Reference e 9
5.2.1 Function Documentation 9
5.2.1.1 capture_image_route() 9
5.2.1.2classify_image_route() 10

5.2.1.3get_ camera_feed() 10
5.21.4home() L e 10
5.21.51log_route() e 10
5.21.6stats_route() 10
5.21.7status() 10
5.2.1.8visual_get_depth() 11
5.2.1.9visual_get_geometry() 11
5.21.10visual_get_ mask() 11

5.2.2 Variable Documentation 11
5.22.1r0utes L 11

5.22.2stats e 11

5.3 benchmark Namespace Reference o 12
5.4 camera_feed Namespace Reference Lo 12
5.5 chessboard Namespace Reference o 12
5.5.1 Variable Documentation 12
5.5.1.1COrNers 12

55.1.20ray 12

551.3iMg 12

5514 pattern_size 12

55156t . . e 12

5.6 db Namespace Reference L 13
5.7 depth_estimation Namespace Referenceo oL 13
5.7.1 Function Documentation 13
5.71.1estimate_depth() 13

5.7.2 Variable Documentation 13
5.7.21 estimator fast 13

Generated by Doxygen

5.7.2.2estimator_slow 14

5.8 green_percentage Namespace Referenceo 14
5.8.1 Function Documentation 14
5.8.1.1 estimate_green_percentage() 14

5.9 grip_point Namespace Reference 14
5.9.1 Function Documentation 15
59.1.1get grip_point() 15

5.10 hmi Namespace Reference e 15
5.10.1 Function Documentation 16
5.10.1.1dashboard() 16
5.10.1.210gIN() o 16
5.10.1.31ogout() e 16

5.10.2 Variable Documentation e e 16
5.10.2.1routes L e e e e 16

5.11 image_analysis Namespace Reference oo 17
5.12 image_classification Namespace Referenceo 0oL 17
5.12.1 Function Documentationo 17
51211 classify_image() 17

5.12.2 Variable Documentationo 17
5.12.2.1 classifier 17

5.13log Namespace Reference e 17
5.14 main Namespace Reference 18
5.14.1 Function Documentation L 18
51414 get_frame() L 18

5.14.2 Variable Documentationo 18
5142.18PP o e 18
5.1422debug 18

51423 host e 18

51424 metrics L e 19

51425 model 19

5.142.6path e 19

51427 results L 19
5.14.2.8s0cketio L 19

51429TrUe L 19

5.15 mask_generation Namespace Referenceo 19
5.15.1 Function Documentation 20
5.15.1.1 generate_geometry_from_mask() oL 20
5.15.1.2generate_mask() 20

5.16 misc Namespace Reference L 21
5.16.1 Function Documentation L 21
5.16.1.1 get_device() L 21
5.16.1.2img_baseb4() 21

Generated by Doxygen

5.17 object_detection Namespace Reference oo 21
5.17.1 Function Documentation 22
5.17.1.1 object_detection() 22

5.17.2 Variable Documentation 22
547.24model L 22

5.18 plant_manager Namespace Reference oo 22
5.19 routes Namespace Reference e 22
5.19.1 Function Documentation 22
5.19.1.1 classify_image_route() 22
519.1.2home() e 23

5.19.2 Variable Documentation 23
5.19.2.1routes L L e 23

5.20 user Namespace Reference L 23
6 Class Documentation 25
6.1 access_levels.AccesslLevel Class Reference, 25
6.1.1 Detailed Description 25
6.1.2 Member Data Documentation 25
6.1.2.1 ADMIN e 25

6.1.22 SPECTATOR e 25

6.2 benchmark.Benchmark Class Reference 26
6.2.1 Detailed Description e 26
6.2.2 Constructor & Destructor Documentationo 26
6.22.1 _init_ () e 26

6.2.3 Member Function Documentation L 27
6.2.3.1avg() . . . 27
6.2.3.2end_1ap() 27
6.2.3.35aVE() e e e e e 27

6.2.3.4 standard_deviation() 28
6.23.5start_lap() 28

6.2.4 Member Data Documentation 28
6.2.4.1doNe. 28
6.2.4.2max_laps 28

6.2.4.3start time e e e 28

6.2.4.41HMeS L 28

6.2.4.51itle e e 29
6.24.6xlabel 29
6.24.7ylabel 29

6.3db.DB Class Reference e 29
6.3.1 Detailed Description e 29
6.3.2 Member Function Documentation L L 29
6.3.2.1 get_connection() 29

Generated by Doxygen

6.3.2.2migrations() e 30

6.3.2.3 migrations_populate() 30

6.3.2.4 query() e 31
6.3.2.5table_is_empty() 32

6.4 image_analysis.ImageAnalysis Class Reference 32
6.4.1 Detailed Description L 32
6.4.2 Constructor & Destructor Documentation oL 32
B.4.21 NIt () o ot 32

6.4.3 Member Data Documentation 33
6.4.3.1 classification 33
6.4.3.2green_percentageo e e e e e e e 33
6.4.3.38COMC 33
6.5log.Log Class Reference e 33
6.5.1 Detailed Description 33
6.5.2 Constructor & Destructor Documentation oL 33
6.5.21 _init_ () e 33

6.5.3 Member Function Documentation L 34
6.5.3.110ad() 34
6.5.3.25aVve()o 34

6.5.4 Member Data Documentation 34
6.5.4.1message 34

6.6 plant_manager.PlantManager Class Reference, 34
6.6.1 Constructor & Destructor Documentation 35
6.6.1.1 _init_ () e 35

6.6.2 Member Function Documentation L 35
6.6.2.1 detect_plants() 35
6.6.2.2draw_geometry() e 35
6.6.2.3draWw_hud() oo e e 36

6.6.2.4 get_binary_image() 36
6.6.2.5world_coordinates() 37

6.6.3 Member Data Documentation L L 37
6.6.3.10mage 37
6.6.3.2plants L 37

6.7 user.User Class Reference e 37
6.7.1 Constructor & Destructor Documentation 38
B.7.1.0 NIt () o ot 38

6.7.2 Member Function Documentation L 38
6.7.21 _iter () - . . . e 38
B.7.22aUth() .« . o o e e 39
6.7.23get_access_level() e 39

6.7.24 get user() 39
6.7.2510s_admin() 40

Generated by Doxygen

6.7.2.6 is_spectator() . .

6.7.3 Member Data Documentation

6.7.3.1 access_level_id .
6.7.32email
6.7.3.3 first_name
6.7.3.4last name
6.7.3.5 password

6.7.3.6 username

7 File Documentation

7.1 central/ai/chessboard.py File Referenceo

7.2 central/ai/nodes/camera_feed.py File Reference

7.3 central/ai/nodes/grip_point.py File Reference oL

7.4 central/ai/plant_manager.py File Reference Lo

7.5 central/ai/tasks/depth_estimation.py File Reference L.

7.6 central/ai/tasks/green_percentage.py File Reference oL

7.7 central/ai/tasks/image_classification.py File Referenceo

7.8 central/ai/tasks/mask_generation.py File Reference 0oL

7.9 central/ai/tasks/object_detection.py File Reference o o oL

7.10 central/api.py File Reference . . .

7.11 central/common/access_levels.py File Reference L.

7.12 central/common/db.py File Reference

7.13 central/common/image_analysis.py File Reference

7.14 central/common/log.py File Reference

7.15 central/common/user.py File Reference oo

7.16 central/hmi.py File Reference . .
7.17 central/main.py File Reference . .
7.18 training/main.py File Reference .

7.19 central/routes.py File Reference .

7.20 central/static/js/controllers/CameraController.js File Reference

7.21 central/static/js/controllers/StatusController.js File Reference

7.22 central/static/js/main.js File Reference

7.23 central/static/js/models/CameraModel.js File Reference

7.24 central/static/js/models/StatusModel.js File Reference

7.25 central/static/js/views/CameraView.js File Reference

7.26 central/static/js/views/StatusView.js File Reference oL

7.27 central/uti/lbenchmark.py File Reference o

7.28 central/util/misc.py File Reference

Index

40
40
40
40
40
40
40
40

41
41
41
41
42
42
42
42
43
43
43
44
44
44
45
45
45
45
46
46
47
47
47
47
47
47
47
47
47

49

Generated by Doxygen

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

access_levels . . . L e e 9
API . e e e e e 9
benchmark e 12
camera_feed L e e 12
chessboard L 12
db e 13
depth_estimation L 13
green_percentage L e e e e 14
grip_point . . . L e 14
hMi e 15
image_analysisS e e e e e e e e 17
image_classification L e e 17
(0 . . 17
MAIN . . o o e e e e e e e e 18
mask_generation L. L L e e e 19
MISC . o o o o e e 21
object_detection L 21
plant_manager e 22
FOUTES . . . o o o o e e 22
USEE L ot o e e e e 23

Generated by Doxygen

Namespace Index

Generated by Doxygen

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

benchmark.Benchmark 26
db.DB . . e 29
Enum

access_levels.Accesslevel e 25
image_analysis.ImageAnalysis e e e 32
109.L0Q o e e e e 33
plant_manager.PlantManager L 34
USEr.USEr 37

Generated by Doxygen

Hierarchical Index

Generated by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

access_levels.Accesslevel e e 25
benchmark.Benchmark 26
db.DB

Class for managing SQLite database connection 29
image_analysis.ImageAnalysis e e e 32
109.L0G . . . e e e e 33
plant_manager.PlantManager L 34
USer.USer e 37

Generated by Doxygen

Class Index

Generated by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

central/api.py L 43
centrallhmipy L 45
central/main.py L e e 45
central/routes.py L 46
central/ai/chessboard.py L 41
central/ai/plant_manager.py e e 42
central/ai/nodes/camera_feed.py 41
central/ai/nodes/grip_point.py e e e 41
central/ai/tasks/depth_estimation.py L 42
central/ai/tasks/green_percentage.py e 42
central/ai/tasks/image_classification.py 42
central/ai/tasks/mask_generation.py e 43
central/ai/tasks/object_detection.py L 43
central/common/access_levels.py L 44
central/common/db.py L e e 44
central/common/image_analysis.py 44
central/lcommon/log.py L e e e 45
central/common/user.py L e e e e e 45
central/static/js/main.js L L e 47
central/static/js/controllers/CameraController.js L 47
central/static/js/controllers/StatusController.js 47
central/static/js/models/CameraModel.js L 47
central/static/js/models/StatusModel.js 47
central/static/js/views/CameraView.js e 47
central/static/js/views/StatusView.js L 47
central/uti/lbenchmark.py e 47
central/util/misC.py 47
training/main.py e 46

Generated by Doxygen

File Index

Generated by Doxygen

Chapter 5

Namespace Documentation

5.1 access_levels Namespace Reference

Classes

 class AccessLevel

5.2 api Namespace Reference

Functions

* home ()

« status ()

« stats_route ()

* log_route ()

» get_camera_feed ()

« visual_get_mask ()

« visual_get_geometry ()
« visual_get_depth ()
 capture_image_route ()
« classify_image_route ()

Variables

« routes = Blueprint("api_v1", __name__, url_prefix="/api/v1")
« dict stats

5.2.1 Function Documentation
5.2.1.1 capture_image_route()

api.capture_image_route ()

00094 def capture_image_route():

00095 request.data:

00096 jsonify ({"msg": "No image data provided"}), 400
00097

00098 with open("./central/cache/camera0l. jpg", "wb") as f:
00099 f.write (request.data)

00100

00101 jsonify ({"msg": "Image saved"})

00102

00103 @routes.route("/classify-image", methods=["POST"])

Generated by Doxygen

10 Namespace Documentation

5.2.1.2 classify_image_route()

api.classify_image_route ()

00104 def classify_image_route():

00105 image = request.data # Raw image data (binary)
00106 #masks = generate_mask (image)

00107

00108 res = {

00109 "class": classify_image (image),

00110 #"mask": masks

00111 }

00112

00113 return Jjsonify(res)

5.2.1.3 get_camera_feed()

api.get_camera_feed ()

00055 def get_camera_feed():
00056 return visual_get_geometry (
00057

5.2.1.4 home()

api.home ()

00022 def home() :

00023 return jsonify ({"msg": "Hello from Leafy Automation Central!"})
00024

00025 @routes.route ("/status", methods=["GET"])

5.2.1.5 log_route()

api.log_route ()
00049 def log_route():

00050 log = Log(request.args.get ("msg")
00051 log.save ()

00052

00053 eturn jsonify ({})

00054

5.2.1.6 stats_route()

api.stats_route ()

00042 def stats_route():

00043 stats["image-capture-time"] = request.args.get ("image-capture-time"

00044 stats["image-capture-reg-time"] = request.args.get ("image-capture-reg-time")
00045

00046 return jsonify ({"msg": "Data captured"})

00047

00048 @routes.route("/log", methods=["GET"])

5.2.1.7 status()

api.status ()

00026 def status():

00027 image = Image.open("./central/cache/cameraOl. jpg")

00028 image_classification = classify_image (image)

00029

00030 json = {

00031 "status": "Online",

00032 "img-capture-time": stats["image-capture-time"]

00033 "img-capture-reg-time": stats["image-capture-reg-time"],

00034 "image-classification": max(image_classification, key=lambda x: x["score"]) ["label"],
00035 "green-percentage": estimate_green_percentage (cv2.imread("./central/cache/camerall. jpg")),
00036 "log": Log.load(

00037 }

00038

00039 return jsonify(json)

00040

00041 @routes.route("/log-stats", methods=["GET"])

Generated by Doxygen

5.2 api Namespace Reference

11

5.2.1.8 visual_get_depth()

api.visual_get_depth ()
00082 def wvisual_get_depth():

00083 image = Image.open("./central/cache/camerall.jpg")

00084

00085 depth = estimate_depth (image)

00086

00087 buffer = io.BytesIO()

00088 depth["depth"].save (buffer, format="PNG")

00089 buffer.seek (0)

00090

00091 return baseb64.bbdencode (buffer.getvalue()) .decode ("utf-8")
00092

00093 @routes.route ("/capture-i 2", methods=["POST"]

5.2.1.9 visual_get_geometry()

api.visual_get_geometry ()

00070 def visual_get_geometry():

00071 image = cv2.imread("./central/cache/camera0l. jpg")

00072

00073 plant_manager = PlantManager (image)

00074 bounding_boxes, contours, centroids = plant_manager.detect_plants(
00075 plant_manager.draw_geometry (bounding_boxes, contours, centroids)
00076 image_raw = plant_manager.get_binary_image (

00077

00078 baseb4_image = baseb64.bb64encode (image_raw.getbuffer()) .decode ("utf-8"
00079

00080 rettu base64_image

00081

5.2.1.10 visual_get_mask()

api.visual_get_mask ()

00058 def visual_get_mask () :

00059 image = cv2.imread("./central/cache/camera0Ol. jpg")
00060

00061 mask = generate_mask (image)

00062

00063 _, img_encoded = cv2.imencode (".jpg", mask)

00064 img_Jjpg = i0.BytesIO(img_encoded.tobytes())

00065

00066 base64_image = baseb4.bb64encode (img_jpg.getbuffer()) .decode ("utf-8"
00067

00068 eturn base64_image

00069

5.2.2 Variable Documentation

5.2.2.1 routes

api.routes = Blueprint ("api_vl1", _ _name__ , url_prefix="/api/v1l")

5.2.2.2 stats

dict api.stats

Initial value:

00001 = {

00002 "image-capture-time": O,
00003 "image-capture-reg-time": 0
00004 }

Generated by Doxygen

12

Namespace Documentation

5.3 benchmark Namespace Reference

Classes

« class Benchmark

5.4 camera_feed Namespace Reference

5.5 chessboard Namespace Reference

Variables

» img = cv2.imread("./central/cache/camera01.jpg")

+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
« tuple pattern_size = (5, 8)

* ret

* corners

5.5.1 Variable Documentation
5.5.1.1 corners

chessboard.corners

5.5.1.2 gray

chessboard.gray = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY)

5.5.1.3 img

chessboard.img = cv2.imread("./central/cache/camerall. jpg")

5.5.1.4 pattern_size

tuple chessboard.pattern_size = (5, 8)

5.5.1.5 ret

chessboard.ret

Generated by Doxygen

5.6 db Namespace Reference 13

5.6 db Namespace Reference

Classes

« class DB

Class for managing SQLite database connection.

5.7 depth_estimation Namespace Reference

Functions

 estimate_depth (image, fast=True)

Variables

+ estimator_fast = pipeline(task="depth-estimation”, model="depth-anything/Depth-Anything-V2-Metric-Indoor-
Small-hf")

« estimator_slow = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-
Indoor-Large-hf")

5.7.1 Function Documentation
5.7.1.1 estimate_depth()

depth_estimation.estimate_depth (
image,

fast = True)

Estimate the depth of an image using a depth estimation model.
@param image: PIL image.

@param fast: If True, use a faster model with lower accuracy.
@return: Depth estimation result.

00006 def estimate_depth(image, fast=True):

00007 wnn
00008 Estimate the depth of an image using a depth estimation model.
00009 @param image: PIL image.

00010 @param fast: If True, use a faster model with lower accuracy.
00011 @return: Depth estimation result.

00012 men

00013

00014 fast:

00015 estimator_fast (image)

00016

00017 estimator_slow (image)

5.7.2 Variable Documentation

5.7.2.1 estimator_fast

depth_estimation.estimator_fast = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-Vv2-Me

Generated by Doxygen

14

Namespace Documentation

5.7.2.2 estimator_slow

depth_estimation.estimator_slow = pipeline(task="depth-estimation",

5.8 green_percentage Namespace Reference

Functions

+ estimate_green_percentage (image)

5.8.1 Function Documentation
5.8.1.1 estimate_green_percentage()

green_percentage.estimate_green_percentage (

image)

Estimate the percentage of green pixels in an image.
@param image: OpenCV image.
@return: Percentage of green pixels in the image.

00004 def estimate_green_percentage (image) :

00005 e

00006 Estimate the percentage of green pixels in an image.
00007 @param image: OpenCV image.

00008 @return: Percentage of green pixels in the image.
00009 men

00010

00011 image_hsv = cv2.cvtColor (image, cv2.COLOR_BGR2HSV)
00012

00013 lower_green = np.array([35, 40, 40]

00014 upper_green = np.array([85, 255, 255]

00015

00016 mask = cv2.inRange (image_hsv, lower_green, upper_green)
00017

00018 green_pixels = np.count_nonzero (mask)

00019 total_pixels = image.shape[0] % image.shape[l]

00020 green_percentage = (green_pixels / total_pixels) * 100
00021

00022 return round(green_percentage, 2)

5.9 grip_point Namespace Reference

Functions

» get_grip_point (image)

model="depth-anything/Depth-Anything-V2-Me

Generated by Doxygen

5.10 hmi Namespace Reference 15

5.9.1 Function Documentation

5.9.1.1 get_grip_point()

grip_point.get_grip_point (

image)

This function uses AI models and CV techniques to calculate the grip point of the point of interest,
which is a lettuce in this case.

@param image: PIL image object

@return: grip point vector (x, y, z)

00007 def get_grip_point (image) :

00008 e

00009 This function uses AI models and CV techniques to calculate the grip point of the point of
interest,

00010 which is a lettuce in this case.

00011 @param image: PIL image object

00012 @return: grip point vector (x, y, z)

00013 men

00014

00015 image_opencv = cv2.cvtColor (np.array (image), cv2.COLOR_RGB2BGR)

00016

00017 depth = estimate_depth (image, fast=False)

00018 mask = generate_mask (image_opencv)

00019 bounding_boxes, contours, centroids = generate_geometry_from_mask (image_opencv, mask)

00020

00021 centroid = centroids[0]

00022

00023 x = centroid[0]

00024 y = centroid[1l]

00025 z = depth["predicted_depth"] [y] [x].item()

00026

00027 width, height = image.size

00028 cx = width / 2

00029 cy = height / 2

00030 fx = fy = 500 # Estimate of focal length.

00031

00032 X = (x — cx) x z / fx

00033 Y = (y - cy) » z / fy

00034 Z =z

00035

00036 lettuce_coord_cam_perspective = np.array([X, Y, Z])

00037 cam_vec = np.array ([0, 0.5, 0.2]) # Camera position from the robot base center. Must be adjusted
and calibrated.

00038

00039 eturn lettuce_coord_cam_perspective - cam_vec

5.10 hmi Namespace Reference

Functions
+ dashboard ()
* login ()
* logout ()

Variables

* routes = Blueprint("hmi", __name__)

Generated by Doxygen

16

Namespace Documentation

5.10.1

5.10.1.1

Function Documentation

dashboard()

hmi.dashboard ()

00007 def
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027

00028 @routes.route("/login",

5.10.1.2

dashboard () :
f not "user_id" session:
retur redirect ("/login"
user = User.get_user (session["user_id"]
modules = [
{
"name": "Leafy Automation Core",
"description":

"status": "Online"

"name": "Camera Module #1",
"description": "The camera module
"status": "Online"

render_template ("index.html",

methods=["GET",

login()

hmi.login ()

00029 def
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048

00049 @routes.route("/logout",

5.10.1.3

login () :
request.method == "POST":
username: str =
password: str =

User.auth (username, password) :
userl = User.get_user (username)
session["user_id"] =
session["username"] =
session["email"] = userl.email
session["first_name"] =
session["last_name"] =
session["access_level_id"] =

eturn redirect ("/")

else:

"The core of Leafy Automation

modules=modules,

(Arduino)

controls motors.",

(esp32-cam) .",

user=user)

"POST"])

request.form.get ("username")
request.form.get ("password")

userl.username
userl.username

userl.first_name
userl.last_name
userl.access_level_id

return redirect ("/login?error=login_failed")

¢ request.method == "GET":
re render_template ("login.html")

hmi.logout ()

00050 def
00051
00052

5.10.2.1

methods=["GET"]

logout()

logout () :

session.clear ()

redirect ("/login™)
5.10.2 Variable Documentation
routes
Blueprint ("hmi", _ _name_)

hmi.routes =

Generated by Doxygen

5.11 image_analysis Namespace Reference 17

5.11 image_analysis Namespace Reference

Classes

« class ImageAnalysis

5.12 image_classification Namespace Reference

Functions

« classify_image (image)

Variables

« classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
5.12.1 Function Documentation

5.12.1.1 classify_image()

image_classification.classify_image (

image)

Classify an image using a pretrained model.
@return: The class of the image.

00005 def classify_image (image) :

00006 e

00007 Classify an image using a pretrained model.

00008 @return: The class of the image.

00009 men

00010

00011 classifier (image=image, candidate_labels=["crispy_lettuce", "arugula"]

5.12.2 Variable Documentation
5.12.2.1 classifier

image_classification.classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patct

5.13 log Namespace Reference

Classes

* class Log

Generated by Doxygen

18 Namespace Documentation

5.14 main Namespace Reference

Functions

» get_frame ()

Variables

» app = Flask(__name__)

« socketio = SocketlO(app, cors_allowed_origins="x")

« debug

« True

* host

* model = YOLO("yolo11n.pt")

* results = model.train(data="training/datasets/leafy-automation/data.yaml", epochs=100, imgsz=640)
* metrics = model.val()

 path = model.export(format="onnx")

5.14.1 Function Documentation
5.14.1.1 get_frame()

main.get_frame ()

00046 def get_frame():

00047 #benchmark = Benchmark ("Object Detection Benchmark facebook detr-resnet-50", 100)
00048

00049 True:

00050 #benchmark.start_lap ()

00051 image_data = api.get_camera_feed()

00052 #benchmark.end_lap ()

00053

00054 socketio.emit ("camera_frame", image_data)

00055 socketio.sleep(0.1)

00056

5.14.2 Variable Documentation

5.14.21 app

main.app = Flask(__name__)

5.14.2.2 debug

main.debug

5.14.2.3 host

main.host

Generated by Doxygen

5.15 mask_generation Namespace Reference

5.14.2.4 metrics

main.metrics = model.val ()

5.14.2.5 model

main.model = YOLO("yololln.pt")

5.14.2.6 path

main.path = model.export (format="onnx")

5.14.2.7 results

main.results = model.train(data="training/datasets/leafy-automation/data.yaml", epochs=100,

imgsz=640)

5.14.2.8 socketio

main.socketio = SocketIO(app, cors_allowed_origins="x")

5.14.2.9 True

main.True

5.15 mask_generation Namespace Reference

Functions

» generate_mask (image)
» generate_geometry_from_mask (image, mask)

Generated by Doxygen

20 Namespace Documentation

5.15.1 Function Documentation

5.15.1.1 generate_geometry_from_mask()

mask_generation.generate_geometry_from_mask (
image,

mask)

Generate geometry from a mask (bounding boxes, centroids and contours).
@param image: OpenCV image.

00023 def generate_geometry_from mask (image, mask) :

00024 win
00025 Generate geometry from a mask (bounding boxes, centroids and contours) .
00026 @param image: OpenCV image.

00027 men

00028

00029 labels = pcv.watershed_segmentation (image, mask, 50)

00030

00031 bounding_boxes = []

00032 centroids = []

00033 all_contours = []

00034

00035 for label in np.unique (labels):

00036 # Skip background

00037 - label == 0:

00038 continue

00039

00040 object_mask = np.equal (labels, label) .astype (np.uint8)

00041

00042 contours, _ = cv2.findContours (object_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
00043

00044 for contour in contours:

00045 X, y, w, h = cv2.boundingRect (contour)

00046 bounding_boxes.append((x, y, x + w, y + h))

00047

00048 moments = cv2.moments (contour)

00049

00050 © moments["mO0"] != 0:

00051 centroids.append (

00052 (int (moments["m10"] / moments["m00"]), int (moments["m01"] / moments["m00"]))
00053)

00054

00055 all_contours.append (contour)

00056

00057 return (bounding_boxes, all_contours, centroids

5.15.1.2 generate_mask()

mask_generation.generate_mask (

image)

Generate a mask for an image.
@param image: OpenCV image.
@return Image mask.

00005 def generate_mask (image) :

00006 e

00007 Generate a mask for an image.

00008 @param image: OpenCV image.

00009 @return Image mask.

00010 e

00011

00012 image_hsv = cv2.cvtColor (image, cv2.COLOR_BGR2HSV)
00013 lower_green = np.array([35, 40, 40]

00014 upper_green = np.array([85, 255, 255]

00015

00016 mask = cv2.inRange (image_hsv, lower_green, upper_green)
00017

00018 img_fill = pcv.fill (bin_img=mask, size=100

00019 img_fill _holes = pcv.fill_holes (img_f£fill)

00020

00021 retur img_fill_holes

00022

Generated by Doxygen

5.16 misc Namespace Reference

5.16 misc Namespace Reference

Functions

» get_device ()
« img_base64 (image)

5.16.1 Function Documentation
5.16.1.1 get_device()
misc.get_device ()

Get the device to be used for AI models.

00005 def get_device():

00006 e

00007 Get the device to be used for AI models.
00008 e

00009

00010 if torch.cuda.is_available():

00011 S "cuda"

00012 1 torch.backends.mps.is_available () :
00013 et "mps"

00014 else:

00015 return "cpu"

00016

5.16.1.2 img_base64()

misc.img_base64 (

image)

Convert an image to base64 format.
@param image: OpenCV image.
@return: Base64 encoded string of the image.

00017 def img_base64 (image) :

00018 e

00019 Convert an image to base64 format.

00020 @param image: OpenCV image.

00021 @return: Base64 encoded string of the image.

00022 men

00023

00024 _, 1img_encoded = cv2.imencode (".jpg", image)

00025 et baseb4.bbdencode (img_encoded) .decode ("ut£-8"

5.17 object_detection Namespace Reference

Functions

» object_detection (image)

Variables

» model = YOLO("leafy-ai-obj-detection.pt")

Generated by Doxygen

22 Namespace Documentation

5.17.1 Function Documentation

5.17.1.1 object_detection()

object_detection.object_detection (

image)

Performs object detection on an image using a custom-trained YOLOv1l model.
@param image: PIL image.

00005 def object_detection (image) :

00006 wnn
00007 Performs object detection on an image using a custom-trained YOLOv1l model.
00008 @param image: PIL image.

00009 e

00010

00011 model (image)

5.17.2 Variable Documentation
5.17.2.1 model

object_detection.model = YOLO ("leafy-ai-obj-detection.pt")

5.18 plant_manager Namespace Reference

Classes

« class PlantManager

5.19 routes Namespace Reference

Functions

* home ()
« classify_image_route ()

Variables

« routes = Blueprint("routes", __name__)

5.19.1 Function Documentation
5.19.1.1 classify_image_route()

routes.classify_image_route ()

00010 def classify_image_route():

00011 from ai.classify_image import classify_image
00012

00013 image = request.data # Raw image data (binary)
00014

00015 res = {

00016 "class": classify_image (image)

00017 }

00018

00019 jsonify (res)

Generated by Doxygen

5.20 user Namespace Reference

23

5.19.1.2 home()

routes.home ()
00006 def home () :

00007 jsonify ({"msg": "Hello from Leafy Automation Central!"})
00008
00009 @routes.route("/classify-image", methods=["POST"])

5.19.2 Variable Documentation
5.19.2.1 routes

routes.routes = Blueprint ("routes", __ _name_)

5.20 user Namespace Reference

Classes

* class User

Generated by Doxygen

24

Namespace Documentation

Generated by Doxygen

Chapter 6

Class Documentation

6.1 access_levels.AccessLevel Class Reference

Inheritance diagram for access_levels.AccessLevel:

Enum

access_levels.AccessLevel

Static Public Attributes

 int ADMIN = 1
+ int SPECTATOR =2

6.1.1 Detailed Description

Enum for access levels.

6.1.2 Member Data Documentation

6.1.2.1 ADMIN

int access_levels.AccessLevel .ADMIN = 1 [static]

6.1.2.2 SPECTATOR

int access_levels.AccessLevel.SPECTATOR = 2 [static]

The documentation for this class was generated from the following file:

+ central/common/access_levels.py

Generated by Doxygen

26 Class Documentation

6.2 benchmark.Benchmark Class Reference

Public Member Functions

« __init__ (self, str title, int max_laps=100, tuple labels=("Lap", "Time"))
« start_lap (self)

+ end_lap (self)

* avg (self)

+ standard_deviation (self)

 save (self)

Public Attributes

« title = title

« start_time = None

* listtimes =[]

* max_laps = max_laps
* bool done = False

+ xlabel = labels[0]

* ylabel = labels[1]

6.2.1 Detailed Description

A class for handling benchmark related tasks.

6.2.2 Constructor & Destructor Documentation

6.2.21 __init_ ()

benchmark.Benchmark.__ _init__ (
self,
str title,
int max_laps = 100,
tuple labels = ("Lap", "Time"))

Benchmark constructor.
@param title: Title of the benchmark.

00011 def __init__ (self, title: str, max_laps: int = 100, labels: tuple = ("Lap", "Time")):
00012 mn

00013 Benchmark constructor.

00014 @param title: Title of the benchmark.
00015 e

00016

00017 self.title = title

00018 self.start_time = None

00019 self.times = []

00020 self.max_laps = max_laps

00021 self.done = False

00022 self.xlabel = labels[0]

00023 self.ylabel = labels([1]

00024

Generated by Doxygen

6.2 benchmark.Benchmark Class Reference

6.2.3 Member Function Documentation

6.2.3.1 avg()

benchmark.Benchmark.avg (
self)

Returns the average time of the benchmark.
@return: Average time.

00050 def avg(self):

00051 mwn

00052 Returns the average time of the benchmark.
00053 @return: Average time.

00054 Wi

00055

00056 r¢) sum(self.times) / len(self.times)
00057

6.2.3.2 end_lap()

benchmark.Benchmark.end_lap (
self)

Ends the current lap.

00032 def end_lap (self):

00033 mn

00034 Ends the current lap.

00035 mn

00036

00037 if self.done:

00038 eturn

00039

00040 f len(self.times) == self.max_laps:

00041 print ("Benchmark done. Saving results ...")

00042 self.done = True

00043 self.save ()

00044 else:

00045 self.times.append(time.perf_counter () - self.start_time)
00046 self.start_time = None

00047

00048 print (f"Current lap ({len(self.times)} / {self.max_laps})")
00049

6.2.3.3 save()

benchmark.Benchmark.save (
self)

Plots the benchmark results.

00066 def save (self):

00067 mwn

00068 Plots the benchmark results.

00069 mn

00070

00071 matplotlib.use(’Agg’) # Use a non-interactive backend. Prevents thread issues.
00072

00073 plt.figure ()

00074 plt.plot (self.times)

00075 plt.title(self.title)

00076 plt.xlabel (self.xlabel)

00077 plt.ylabel (self.ylabel)

00078 plt.grid()

00079 plt.savefig(f"{self.title.replace(’ ', '_’)}-{int(time.time() = 1000) }.png")
00080 plt.close()

00081

00082 print (f"Benchmark average time: {self.avg()} seconds, standard deviation:

{self.standard_deviation ()} seconds"

Generated by Doxygen

28 Class Documentation

6.2.3.4 standard_deviation()

benchmark.Benchmark.standard_deviation (
self)

Returns the standard deviation of the benchmark times.
@return: Standard deviation.

00058 def standard_deviation (self) :

00059 mwn

00060 Returns the standard deviation of the benchmark times.
00061 @return: Standard deviation.

00062 e

00063

00064 e np.std(self.times)

00065

6.2.3.5 start_lap()

benchmark.Benchmark.start_lap (
self)

Starts a new lap.

00025 def start_lap(self):

00026 mn

00027 Starts a new lap.

00028 W

00029

00030 self.start_time = time.perf_counter ()
00031

6.2.4 Member Data Documentation

6.2.4.1 done

bool benchmark.Benchmark.done = False

6.2.4.2 max_laps

benchmark.Benchmark.max_laps = max_laps

6.2.4.3 start_time

benchmark.Benchmark.start_time = None

6.2.4.4 times

benchmark.Benchmark.times = []

Generated by Doxygen

6.3 db.DB Class Reference

6.2.4.5 title

benchmark.Benchmark.title = title

6.2.4.6 xlabel

benchmark.Benchmark.xlabel = labels[0]

6.2.4.7 ylabel

benchmark.Benchmark.ylabel = labels([1]

The documentation for this class was generated from the following file:

+ central/util/lbenchmark.py

6.3 db.DB Class Reference

Class for managing SQLite database connection.

Static Public Member Functions

+ get_connection ()

 query (str sql, tuple args=(), bool commit=False)
« table_is_empty (table_name)

* migrations_populate ()

* migrations ()

6.3.1 Detailed Description

Class for managing SQLite database connection.

6.3.2 Member Function Documentation
6.3.2.1 get_connection()

db.DB.get_connection () [static]

Get a new database connection.
@return: SQLite connection object.

00011 def get_connection():

00012 mwn

00013 Get a new database connection.

00014 @return: SQLite connection object.
00015 mn

00016

00017 connection = sglite3.connect ("central.db")
00018 connection.row_factory = sglite3.Row
00019

00020 connection

00021

Generated by Doxygen

30 Class Documentation

6.3.2.2 migrations()

db.DB.migrations () [static]

Run database migrations.

00087 def migrations():

00088 e

00089 Run database migrations.

00090 mn

00091

00092 connection = DB.get_connection()

00093 cursor = connection.cursor ()

00094

00095 # Create users table

00096 cursor.execute ("""

00097 CREATE TABLE IF NOT EXISTS users (

00098 id INTEGER PRIMARY KEY AUTOINCREMENT,
00099 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00100 username TEXT NOT NULL UNIQUE,

00101 password TEXT NOT NULL,

00102 email TEXT NOT NULL UNIQUE,

00103 first_name TEXT NOT NULL,

00104 last_name TEXT NOT NULL,

00105 access_level_id INTEGER NOT NULL,

00106 FOREIGN KEY (access_level_id) REFERENCES access_levels (id)
00107)

00108)

00109

00110 # Create access_levels table

00111 cursor.execute ("""

00112 CREATE TABLE IF NOT EXISTS access_levels (
00113 id INTEGER PRIMARY KEY AUTOINCREMENT,
00114 name TEXT NOT NULL UNIQUE

00115)

00116 nwmy

00117

00118 # Create logs table

00119 cursor.execute ("""

00120 CREATE TABLE IF NOT EXISTS logs (

00121 id INTEGER PRIMARY KEY AUTOINCREMENT,
00122 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00123 message TEXT NOT NULL

00124)

00125 oy

00126

00127 # Create image_analysis table

00128 cursor.execute ("""

00129 CREATE TABLE IF NOT EXISTS image_analysis (
00130 id INTEGER PRIMARY KEY AUTOINCREMENT,
00131 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00132 classification TEXT NOT NULL,

00133 green_percentage REAL NOT NULL,

00134 label TEXT NOT NULL,

00135 score REAL NOT NULL

00136)

00137 e

00138

00139 # Create bounding_boxes table

00140 cursor.execute ("""

00141 CREATE TABLE IF NOT EXISTS bounding_boxes (
00142 id INTEGER PRIMARY KEY AUTOINCREMENT,
00143 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
00144 xmin INTEGER NOT NULL,

00145 ymin INTEGER NOT NULL,

00146 xmax INTEGER NOT NULL,

00147 ymax INTEGER NOT NULL,

00148 image_analysis_id INTEGER NOT NULL,
00149 FOREIGN KEY (image_analysis_id) REFERENCES image_analysis (id)
00150)

00151 ne)

00152

00153 connection.commit ()

00154 connection.close ()

00155

00156 DB.migrations_populate ()

6.3.2.3 migrations_populate()

db.DB.migrations_populate () [static]

Generated by Doxygen

6.3 db.DB Class Reference

Populate the database with initial data.

00058 def migrations_populate():

00059 e

00060 Populate the database with initial data.

00061 mn

00062

00063 connection = DB.get_connection()

00064 cursor = connection.cursor ()

00065

00066 # Insert default access levels

00067 if DB.table_is_empty ("access_levels"):

00068 cursor.executemany ("INSERT INTO access_levels (name) VALUES (?)", [

00069 ("admin",),

00070 ("spectator",)

00071 1)

00072

00073 # Insert default users

00074 © DB.table_is_empty ("users"):

00075 userl = user.User ("admin", os.getenv ("USERI1_PASSWORD"), "admin@example.com", "John",
"Green", 1)

00076 user2 = user.User ("spectator", os.getenv ("USER2_PASSWORD"), "spectator@example.com",
"Leafy", "Green", 2)

00077

00078 cursor.executemany ("INSERT INTO users (username, password, email, first_name, last_name,
access_level_id) VALUES (2, 2, 2, 2, 2,)", [

00079 (userl.username, userl.password, userl.email, userl.first_name, userl.last_name,
userl.access_level_id),

00080 (user2.username, user2.password, user2.email, user2.first_name, user2.last_name,
user2.access_level_id)

00081 1)

00082

00083 connection.commit ()

00084 connection.close ()

00085

6.3.2.4 query()

db.DB.query (
str sql,
tuple args = (),
bool commit = False) [static]

Execute a SQL query.

@param sgl: SQL query string.

@param args: Arguments for the SQL query.

@param commit: Whether to commit the transaction.
@return: Result of the query (sglite3.Row object) .

00023 def query(sqgl: str, args: tuple = (), commit: bool = False):
00024 mn

00025 Execute a SQL query.

00026 @param sgl: SQL query string.

00027 @param args: Arguments for the SQL query.

00028 @param commit: Whether to commit the transaction.
00029 @return: Result of the query (sglite3.Row object).
00030 W

00031

00032 connection = DB.get_connection ()

00033 cursor = connection.cursor ()

00034 cursor.execute (sqgl, args)

00035

00036 if commit:

00037 connection.commit ()

00038

00039 if cursor.description:

00040 result = cursor.fetchall()

00041

00042 connection.close ()

00043

00044 return result

00045

Generated by Doxygen

32 Class Documentation

6.3.2.5 table_is_empty()

db.DB.table_is_empty (

table_name) [static]

Check if a table is empty.
@param table_name: Name of the table to check.
@return: True if the table is empty, False otherwise.

00047 def table_is_empty (table_name) :

00048 mn

00049 Check if a table is empty.

00050 @param table_name: Name of the table to check.

00051 @return: True if the table is empty, False otherwise.
00052 mn

00053

00054 res = DB.query (f"SELECT COUNT (x) FROM {table_name}")
00055 res[0] [0] ==

00056

The documentation for this class was generated from the following file:

« central/common/db.py

6.4 image_analysis.ImageAnalysis Class Reference

Public Member Functions

« __init__ (self, str classification, float green_percentage, float score)

Public Attributes
« classification = classification

- green_percentage = green_percentage
* score = score

6.4.1 Detailed Description

@brief Class for storing image analysis results in db.

6.4.2 Constructor & Destructor Documentation

6.421 __init_ ()

image_analysis.ImageAnalysis._ _init__ (
self,
str classification,
float green_percentage,

float score)

00008 def __init__ (self, classification: str, green_percentage: float, score: float):
00009 self.classification = classification

00010 self.green_percentage = green_percentage

00011 self.score = score

Generated by Doxygen

6.5 log.Log Class Reference

33

6.4.3 Member Data Documentation

6.4.3.1 classification

image_analysis.ImageAnalysis.classification = classification

6.4.3.2 green_percentage

image_analysis.ImageAnalysis.green_percentage = green_percentage
6.4.3.3 score
image_analysis.ImageAnalysis.score = score

The documentation for this class was generated from the following file:

+ central/common/image_analysis.py

6.5 log.Log Class Reference

Public Member Functions

« _ init__ (self, str message)
* save (self)

Static Public Member Functions

* load ()

Public Attributes

* message = message

6.5.1 Detailed Description

@brief Class for logging messages. Also handles saving logs to the database.

6.5.2 Constructor & Destructor Documentation
6.5.2.1 __init_ ()

log.Log.__init___ (
self,

str message)

00008 def __init_ (self, message: str):
00009 self.message = message
00010

Generated by Doxygen

34 Class Documentation

6.5.3 Member Function Documentation

6.5.3.1 load()

log.Log.load () [static]

Load all log messages from database.

00012 def load() :

00013 mn

00014 Load all log messages from database.
00015 mn

00016

00017 logs = db.DB.query ("SELECT % FROM logs")
00018 logs

00019

6.5.3.2 save()

log.Log.save (
self)

Save the log message to the database.

00020 def save (self):

00021 mwn

00022 Save the log message to the database.

00023 mn

00024

00025 db.DB.query ("INSERT INTO logs (message) VALUES (?)", (self.message,), commit=True)

6.5.4 Member Data Documentation
6.5.4.1 message

log.Log.message = message

The documentation for this class was generated from the following file:

« central/common/log.py

6.6 plant_manager.PlantManager Class Reference

Public Member Functions

« _init__ (self, image)

+ detect_plants (self)

» world_coordinates (self, x, y, z)

+ draw_geometry (self, bounding_boxes, contours, centroids)
» draw_hud (self, bounding_boxes, contours, centroids)

» get_binary_image (self)

Generated by Doxygen

6.6 plant_manager.PlantManager Class Reference 35

Public Attributes

» image = image
« list plants =[]

6.6.1 Constructor & Destructor Documentation

6.6.1.1 __init_ ()

plant_manager.PlantManager.__init__ (
self,
image)

00006 def __init__ (self, image):

00007 self.image = image

00008 self.plants = []

00009

6.6.2 Member Function Documentation

6.6.2.1 detect_plants()

plant_manager.PlantManager.detect_plants (
self)

Detects plants in the image using the CV mask_generation task.
@return: A tuple containing bounding boxes, contours, and centroids of detected plants.

00010 def detect_plants(self):

00011 W

00012 Detects plants in the image using the CV mask_generation task.

00013 @return: A tuple containing bounding boxes, contours, and centroids of detected plants.
00014 mn

00015 mask = generate_mask (self.image)

00016 return generate_geometry_from_mask (self.image, mask)

00017

6.6.2.2 draw_geometry()

plant_manager.PlantManager.draw_geometry (
self,
bounding_boxes,
contours,

centroids)

Draws geometry (bounding boxes, contours, and centroids) on the image.
@param bounding_boxes: List of bounding boxes.

@param contours: List of contours.

@param centroids: List of centroids.

@return: Image with geometry drawn on.

Generated by Doxygen

36 Class Documentation

00029 def draw_geometry(self, bounding_boxes, contours, centroids):

00030 W

00031 Draws geometry (bounding boxes, contours, and centroids) on the image.
00032 @param bounding_boxes: List of bounding boxes.

00033 @param contours: List of contours.

00034 @param centroids: List of centroids.

00035 @return: Image with geometry drawn on.

00036 e

00037

00038 or i, bbox in enumerate (bounding_boxes) :

00039 xmin, ymin, xmax, ymax = bbox

00040 cv2.rectangle (self.image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
00041

00042 for contour in contours:

00043 cv2.drawContours (self.image, [contour], -1, (0, 0, 255), 2)
00044

00045 r centroid in centroids:

00046 cv2.circle(self.image, centroid, 10, (0, 255, 0), -1)

00047

00048 return self.image

00049

6.6.2.3 draw_hud()

plant_manager.PlantManager.draw_hud (
self,
bounding_boxes,
contours,

centroids)

Draws a HUD on the image with useful debugging info.
@param bounding_boxes: List of bounding boxes.
@param contours: List of contours.

@param centroids: List of centroids.

@return: Image with HUD drawn on.

00050 def draw_hud(self, bounding_boxes, contours, centroids):

00051 mwn

00052 Draws a HUD on the image with useful debugging info.

00053 @param bounding_boxes: List of bounding boxes.

00054 @param contours: List of contours.

00055 @param centroids: List of centroids.

00056 @return: Image with HUD drawn on.

00057 mn

00058

00059 image_size_text = f"Image Size: {self.image.shape[l]}x{self.image.shape[0]}"

00060 cv2.putText (self.image, image_size_text, (10, 30), cv2.FONT_HERSHEY_ SIMPLEX, 0.4, (255, 255,
255), 1, cv2.LINE_AA)

00061

00062 for i, bbox in enumerate (bounding_boxes) :

00063 xmin, ymin, xmax, ymax = bbox

00064

00065 cv2.putText (self.image, f"ID: {i}", (xmin - 300, ymin + 80), cv2.FONT_HERSHEY_PLAIN, 1,
(0, 0, 0), 1)

00066 #coords

00067 cv2.putText (self.image, f"COORDS: ({xmin}, {ymin}) ({xmax}, {ymax})", (xmin - 300, ymin +
100), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 1)

00068 #world coords

00069 world_coords = self.world_coordinates (xmin, ymin, O0)

00070 cv2.putText (self.image, f"WORLD COORDS: ({world_coords[0]:.2f}, {world_coords[1l]:.2f},

{world_coords([2]:.2f})", (xmin - 300, ymin + 120), cv2.FONT_HERSHEY_ PLAIN, 1, (0, 0, 0), 1)
00071 #grab point

00072 grab_point = self.world_coordinates(centroids([i][0], centroids([i][1], O

00073 cv2.putText (self.image, £"GRAB POINT: ({grab_point[0]:.2f}, {grab_point[1l]:.2f},
{grab_point[2]:.2f})", (xmin - 300, ymin + 140), cv2.FONT_HERSHEY_ PLAIN, 1, (0, 0, 0), 1)

00074

00075 eturn self.image

00076

6.6.2.4 get_binary_image()

plant_manager.PlantManager.get_binary_image (
self)

Generated by Doxygen

6.7 user.User Class Reference

37

Returns the binary image of the detected plants.
@return: Binary image of the detected plants.

00077 def get_binary_image (self) :

00078 mn

00079 Returns the binary image of the detected plants.
00080 @return: Binary image of the detected plants.
00081 mn

00082

00083 _, img_encoded = cv2.imencode (".Jjpg", self.image)
00084 i0.BytesIO(img_encoded.tobytes())

6.6.2.5 world_coordinates()

plant_manager.PlantManager.world_coordinates (
self,
Xy
Y

z)

Returns world coordinates (not yet implemented).
@param x: x coordinate.

@param y: y coordinate.

@param z: z coordinate.

@return: World coordinates (x, y, z).

00018 def world_coordinates(self, x, y, z):
00019 mn

00020 Returns world coordinates (not yet implemented) .
00021 @param x: x coordinate.

00022 @param y: y coordinate.

00023 @param z: z coordinate.

00024 @return: World coordinates (x, y, z).
00025 mn

00026

00027 return (0, 0, 0)

00028

6.6.3 Member Data Documentation
6.6.3.1 image

plant_manager.PlantManager.image = image

6.6.3.2 plants

list plant_manager.PlantManager.plants = []

The documentation for this class was generated from the following file:

+ central/ai/plant_manager.py

6.7 user.User Class Reference

Public Member Functions

e __init__ (self, str username, str password, str email, str first_name, str last_name, int access_level_id)

* int get_access_level (self)
* bool is_admin (self)

* bool is_spectator (self)

o _ iter__ (self)

Generated by Doxygen

38 Class Documentation

Static Public Member Functions

+ bool auth (str username, str password)
» "User" get_user (identifier)

Public Attributes

* username = username
* email = email

« first_name = first_name

* last_name = last_name

» access_level_id = access_level_id

password = generate_password_hash(password, method="scrypt")

6.7.1 Constructor & Destructor Documentation

6.7.1.1 __init_ ()

user.User.__init__ (
self,
str username,
str password,
str email,
str first_name,
str last_name,

int access_level_id)

00006 def __init__ (self, username: str, password: str, email: str, first_name: str, last_name: str,
access_level_id: int):

00007 self.username = username

00008 self.email = email

00009 self.first_name = first_name

00010 self.last_name = last_name

00011 self.access_level_id = access_level_id

00012

00013 # Make sure to not hash the password if we’re just loading an existing user.

00014 "~ password != "":

00015 self.password = generate_password_hash (password, method="scrypt")

00016

6.7.2 Member Function Documentation

6.7.2.1 _ iter_ ()

user.User._ _iter_ (
self)
00078 def __iter_ (self):
00079 = iter ((self.username, self.password, self.email, self.first_name, self.last_name,

self.access_level_id)

Generated by Doxygen

6.7 user.User Class Reference

39

6.7.2.2 auth()

bool user.User.auth (

str username,

str password) [static]

Authenticate user with username and password.
@param username: Username of the user.

@param password: Password of the user.

@return: True if authenticated, False otherwise.

00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032

def auth(username: str, password: str) -> bool:
W
Authenticate user with username and password.
@param username: Username of the user.
@param password: Password of the user.

@return: True if authenticated, False otherwise.
Wi

result = db.DB.query ("SELECT password FROM users WHERE username = ?", (username,))

check_password_hash (result [0] ["password"], password) :
return True

rn False

6.7.2.3 get_access_level()

int user.User.get_access_level (

self)

Get user access level.
@return: Access level name.

00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063

def get_access_level (self) -> int:
W
Get user access level.
@return: Access level name.

nun

result = db.DB.query ("SELECT % FROM access_levels WHERE id = ?", (self.access_level_id,))
if result:

return result[0] ["name"]

rn None

6.7.2.4 get_user()

"User" user.User.get_user (

identifier) [static]

Get user by username or id.
@param identifier: User ID or username.
@return: User object.

00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048

00049
00050
00051

def get_user (identifier) -> "User":
W
Get user by username or id.
@param identifier: User ID or username.

@return: User object.
wan

if isinstance(identifier, int):
result = db.DB.query ("SELECT % FROM users WHERE id = ?", (identifier,)
else:

result = db.DB.query ("SELECT % FROM users WHERE username = ?", (identifier,))

© result:
result = result[0]
return User (result["username"], "", result["email"], result["first_name"]

result ["last_name"], result["access_level id"])

return None

Generated by Doxygen

40 Class Documentation

6.7.2.5 is_admin()

bool user.User.is_admin (

self)

Check if user is admin.
@return: True if admin, False otherwise.

00064 def is_admin(self) -> bool:

00065 mwn

00066 Check if user is admin.

00067 @return: True if admin, False otherwise.

00068 mn

00069 = self.access_level_id == AccessLevel.ADMIN.value
00070

6.7.2.6 is_spectator()

bool user.User.is_spectator (
self)

Check if user is spectator.
@return: True if spectator, False otherwise.

00071 def is_spectator(self) -> bool:

00072 W

00073 Check if user is spectator.

00074 @return: True if spectator, False otherwise.

00075 mn

00076 retur self.access_level_id == Accesslevel.SPECTATOR.value
00077

6.7.3 Member Data Documentation
6.7.3.1 access_level_id

user.User.access_level_id = access_level_id

6.7.3.2 email

user.User.email = email

6.7.3.3 first_name

user.User.first_name = first_name

6.7.3.4 last_name

user.User.last_name = last_name

6.7.3.5 password

user.User.password = generate_password_hash (password, method="scrypt")

6.7.3.6 username

user.User.username = username

The documentation for this class was generated from the following file:

« central/common/user.py

Generated by Doxygen

Chapter 7

File Documentation

7.1 central/ai/chessboard.py File Reference

Namespaces

* namespace chessboard

Variables
* chessboard.img = cv2.imread("./central/cache/camera01.jpg")
» chessboard.gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
+ tuple chessboard.pattern_size = (5, 8)

» chessboard.ret
» chessboard.corners

7.2 central/ai/nodes/camera_feed.py File Reference

Namespaces

* namespace camera_feed

7.3 central/ai/nodes/grip_point.py File Reference

Namespaces

+ namespace grip_point

Functions

* grip_point.get_grip_point (image)

Generated by Doxygen

42 File Documentation

7.4 central/ai/plant_manager.py File Reference

Classes

+ class plant_manager.PlantManager

Namespaces

+ namespace plant_manager

7.5 central/ai/tasks/depth_estimation.py File Reference

Namespaces

* namespace depth_estimation

Functions

 depth_estimation.estimate_depth (image, fast=True)

Variables
+ depth_estimation.estimator_fast = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-
V2-Metric-Indoor-Small-hf")

» depth_estimation.estimator_slow = pipeline(task="depth-estimation", = model="depth-anything/Depth-
Anything-V2-Metric-Indoor-Large-hf")

7.6 central/ai/tasks/green_percentage.py File Reference

Namespaces

+ namespace green_percentage

Functions

» green_percentage.estimate_green_percentage (image)

7.7 central/ai/tasks/image_classification.py File Reference

Namespaces

* namespace image_classification

Generated by Doxygen

7.8 central/ai/tasks/mask_generation.py File Reference 43

Functions

» image_classification.classify_image (image)

Variables

» image_classification.classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-
patch32")

7.8 central/ai/tasks/mask_generation.py File Reference

Namespaces

* namespace mask_generation

Functions

* mask_generation.generate_mask (image)
* mask_generation.generate_geometry_from_mask (image, mask)

7.9 central/ai/tasks/object_detection.py File Reference

Namespaces

* namespace object_detection

Functions

» object_detection.object_detection (image)

Variables
+ object_detection.model = YOLO("leafy-ai-obj-detection.pt")
7.10 central/api.py File Reference

Namespaces

* namespace api

Generated by Doxygen

44

File Documentation

Functions
* api.home ()
+ api.status ()
+ api.stats_route ()
+ api.log_route ()
+ api.get_camera_feed ()
 api.visual_get_mask ()
+ api.visual_get_geometry ()
 api.visual_get_depth ()
+ api.capture_image_route ()
 api.classify_image_route ()

Variables

 api.routes = Blueprint("api_v1", __name__, url_prefix="/api/v1")
« dict api.stats

7.11 central/common/access_levels.py File Reference

Classes

« class access_levels.AccessLevel

Namespaces
* namespace access_levels
7.12 central/common/db.py File Reference

Classes

« class db.DB

Class for managing SQLite database connection.

Namespaces

* namespace db

7.13 central/common/image_analysis.py File Reference

Classes

« class image_analysis.ImageAnalysis

Generated by Doxygen

7.14 central/common/log.py File Reference

45

Namespaces
* namespace image_analysis
7.14 central/common/log.py File Reference

Classes

+ class log.Log

Namespaces
* namespace log
7.15 central/common/user.py File Reference

Classes

« class user.User

Namespaces

* namespace user

7.16 central/hmi.py File Reference

Namespaces

* namespace hmi

Functions
* hmi.dashboard ()

* hmi.login ()
» hmi.logout ()

Variables

» hmi.routes = Blueprint("hmi", __name__)

7.17 central/main.py File Reference

Namespaces

* namespace main

Generated by Doxygen

46 File Documentation

Functions

» main.get_frame ()

Variables
* main.app = Flask(__name_)
» main.socketio = SocketlO(app, cors_allowed_origins="x")
* main.debug

* main.True
* main.host

7.18 training/main.py File Reference

Namespaces

* namespace main

Variables
» main.model = YOLO("yolo11n.pt")
* main.results = model.train(data="training/datasets/leafy-automation/data.yaml", epochs=100, imgsz=640)

* main.metrics = model.val()
+ main.path = model.export(format="onnx")

7.19 central/routes.py File Reference

Namespaces

+ namespace routes

Functions

* routes.home ()
« routes.classify_image_route ()

Variables

* routes.routes = Blueprint("routes”, _ _name_)

Generated by Doxygen

7.20 central/static/js/controllers/CameraController.js File Reference

47

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

Classes

central/static/js/controllers/CameraController.js File Reference

central/static/js/controllers/StatusController.js File Reference

central/static/js/main.js File Reference

central/static/js/models/CameraModel.js File Reference

central/static/js/models/StatusModel.js File Reference

central/static/js/views/CameraView.js File Reference

central/static/js/views/StatusView.js File Reference

central/util/benchmark.py File Reference

 class benchmark.Benchmark

Namespaces

* namespace benchmark

7.28 central/util/misc.py File Reference

Namespaces

* namespace misc

Functions

* misc.get_device ()
* misc.img_base64 (image)

Generated by Doxygen

48

File Documentation

Generated by Doxygen

Index

init

benchmark.Benchmark, 26
image_analysis.ImageAnalysis, 32
log.Log, 33
plant_manager.PlantManager, 35
user.User, 38

_ iter__
user.User, 38

access_level_id
user.User, 40
access_levels, 9
access_levels.AccesslLevel, 25
ADMIN, 25
SPECTATOR, 25
ADMIN
access_levels.AccesslLevel, 25
api, 9
capture_image_route, 9
classify_image_route, 9
get_camera_feed, 10
home, 10
log_route, 10
routes, 11
stats, 11
stats_route, 10
status, 10
visual_get_depth, 10
visual_get_geometry, 11
visual_get_mask, 11
app
main, 18
auth
user.User, 38
avg
benchmark.Benchmark, 27

benchmark, 12
benchmark.Benchmark, 26
__init._,26
avg, 27
done, 28
end_lap, 27
max_laps, 28
save, 27
standard_deviation, 27
start_lap, 28
start_time, 28
times, 28
title, 28

xlabel, 29
ylabel, 29

camera_feed, 12
capture_image_route

api, 9
central/ai/chessboard.py, 41
central/ai/nodes/camera_feed.py, 41
central/ai/nodes/grip_point.py, 41
central/ai/plant_manager.py, 42
central/ai/tasks/depth_estimation.py, 42
central/ai/tasks/green_percentage.py, 42
central/ai/tasks/image_classification.py, 42
central/ai/tasks/mask_generation.py, 43
central/ai/tasks/object_detection.py, 43
central/api.py, 43
central/common/access_levels.py, 44
central/common/db.py, 44
central/common/image_analysis.py, 44
central/common/log.py, 45
central/common/user.py, 45
central/hmi.py, 45
central/main.py, 45
central/routes.py, 46
central/static/js/controllers/CameraController.js, 47
central/static/js/controllers/StatusController.js, 47
central/static/js/main.js, 47
central/static/js/models/CameraModel.js, 47
central/static/js/models/StatusModel.js, 47
central/static/js/views/CameraView.js, 47
central/static/js/views/StatusView.js, 47
central/util/benchmark.py, 47
central/util/misc.py, 47
chessboard, 12

corners, 12

gray, 12

img, 12

pattern_size, 12

ret, 12
classification

image_analysis.ImageAnalysis, 33
classifier

image_classification, 17
classify_image

image_classification, 17
classify_image_route

api, 9

routes, 22
corners

chessboard, 12

Generated by Doxygen

50

dashboard
hmi, 16
db, 13
db.DB, 29
get_connection, 29
migrations, 29
migrations_populate, 30
query, 31
table_is_empty, 31
debug
main, 18
depth_estimation, 13
estimate_depth, 13
estimator_fast, 13
estimator_slow, 13
detect_plants
plant_manager.PlantManager, 35
done
benchmark.Benchmark, 28
draw_geometry
plant_manager.PlantManager, 35
draw_hud
plant_manager.PlantManager, 36

email
user.User, 40

end_lap
benchmark.Benchmark, 27

estimate_depth
depth_estimation, 13

estimate_green_percentage
green_percentage, 14

estimator_fast
depth_estimation, 13

estimator_slow
depth_estimation, 13

first_name
user.User, 40

generate_geometry_from_mask
mask_generation, 20
generate_mask
mask_generation, 20
get_access_level
user.User, 39
get_binary_image
plant_manager.PlantManager, 36
get_camera_feed
api, 10
get_connection
db.DB, 29
get_device
misc, 21
get_frame
main, 18
get_grip_point
grip_point, 15
get_user

user.User, 39
gray
chessboard, 12
green_percentage, 14
estimate_green_percentage, 14
image_analysis.ImageAnalysis, 33
grip_point, 14
get_grip_point, 15

hmi, 15
dashboard, 16
login, 16
logout, 16
routes, 16

home
api, 10
routes, 22

host
main, 18

image
plant_manager.PlantManager, 37
image_analysis, 17
image_analysis.ImageAnalysis, 32
__init__, 32
classification, 33
green_percentage, 33
score, 33
image_classification, 17
classifier, 17
classify_image, 17
img
chessboard, 12
img_base64
misc, 21
is_admin
user.User, 39
is_spectator
user.User, 40

last_name
user.User, 40
load
log.Log, 34
log, 17
log.Log, 33
__init_, 33
load, 34
message, 34
save, 34
log_route
api, 10
login
hmi, 16
logout
hmi, 16

main, 18
app, 18

Generated by Doxygen

INDEX

debug, 18
get_frame, 18
host, 18
metrics, 18
model, 19
path, 19
results, 19
socketio, 19
True, 19
mask_generation, 19

generate_geometry_from_mask, 20

generate_mask, 20
max_laps
benchmark.Benchmark, 28
message
log.Log, 34
metrics
main, 18
migrations
db.DB, 29
migrations_populate
db.DB, 30
misc, 21
get_device, 21
img_baseb4, 21
model
main, 19
object_detection, 22

object_detection, 21
model, 22
object_detection, 22

password
user.User, 40
path
main, 19
pattern_size
chessboard, 12
plant_manager, 22
plant_manager.PlantManager, 34
__init_,35
detect_plants, 35
draw_geometry, 35

draw_hud, 36

get_binary_image, 36

image, 37

plants, 37

world_coordinates, 37
plants

plant_manager.PlantManager, 37

query

db.DB, 31
results

main, 19

ret
chessboard, 12

routes, 22
api, 11
classify_image_route, 22
hmi, 16
home, 22
routes, 23

save
benchmark.Benchmark, 27
log.Log, 34
score
image_analysis.ImageAnalysis, 33
socketio
main, 19
SPECTATOR
access_levels.AccesslLevel, 25
standard_deviation
benchmark.Benchmark, 27
start_lap
benchmark.Benchmark, 28
start_time
benchmark.Benchmark, 28
stats
api, 11
stats_route
api, 10
status
api, 10

table_is_empty

db.DB, 31
times

benchmark.Benchmark, 28
title

benchmark.Benchmark, 28
training/main.py, 46
True

main, 19

user, 23

user.User, 37
__init__, 38
__iter__, 38
access_level id, 40
auth, 38
email, 40
first_name, 40
get_access_level, 39
get_user, 39
is_admin, 39
is_spectator, 40
last_name, 40
password, 40
username, 40

username
user.User, 40

visual_get_depth
api, 10

Generated by Doxygen

52 INDEX

visual_get_geometry
api, 11
visual_get_mask
api, 11

world_coordinates
plant_manager.PlantManager, 37

xlabel
benchmark.Benchmark, 29

ylabel
benchmark.Benchmark, 29

Generated by Doxygen

2. LEAFY AUTOMATION CORE

2 Leafy Automation Core

360

Leafy Automation Core

Generated by Doxygen 1.13.2

1 Topic Index 1
1A TOPICS . o o o o e e e e e e e e e 1

2 Class Index 3
2.1 Class List e

3 File Index

B FileList . . . o e e 5
4 Topic Documentation 7
4.1 Configuration e e 7
4.1.1 Detailed Description L 7
4.1.2 Variable Documentation L e 7
4121 ARM_JOINTS 7
4122DIR_PIN . . . e 8

4123 GEAR_RATIO e 8

4124 GRIP_MOVE_TIME_MS e 8
41.25GRIPPER_CLOSED ANGLE 8

41.26 GRIPPER_OPEN_ANGLE 9
41.27GRIPPER_SERVO_PIN 9

4128 LIMIT_LEFT_PINS e e 9

4129 LIMIT_RIGHT_PINS e 9

41210 MAX_OUTPUT_RPM e e 10

41211 MICROSTEPS e 10

41212 STEP_PIN e 10

4.2 Communication Manager e e e 11
4.2.1 Detailed Description L 11
4.2.2 Function Documentation 11
4.2.2.1 checkActionStatus() 11

4.2.2.2 handlelncomingCommand() 12

4.3 Gripper Driver e e e 12
4.3.1 Detailed Description e 13
4.3.2 Function Documentation L e 13
4321 gripperDone() 13
4.32.21InItGripper() 13
4.3.23mMoveGripper() e e e 13

4.3.2.4 updateGripper() 14

4.3.3 Variable Documentation L 14
4.3.3.1gripperServo e e e 14
4.3.32moveStartTime e 14
43.33MOVING e 15

4.4 Motor Driver e e e e 15
4.41 Detailed Description L 15

Generated by Doxygen

4.4.2 Function Documentation L e 15
4.42.1 alldointsDone() e 15

4.42.2 calibrateAllJoints() 16
4.4.23calibrationDone() 17

4.4.2.4 getdointPosition() 17
4.425initMotors() e e e 17
4.426movedoint() L L e 18

4.42.7 stopAlldoints() 18
4.428updateMotors() 18

45 MQTT Client Module o e 19
4.5.1 Detailed Description 19
4.5.2 Function Documentation L 19
4521 0IntMQTT() . - . . o o e 19
4.5.22mattloop() e 20

4523 publishStatus() e 21

4524 sendHeartbeat() 21
4.525setMessageHandler() 22

4.5.3 Variable Documentation L 22
4531 MQTT_TOPIC_CALIBRATE it e 22
4532MQTT_TOPIC_GRIPPER e e 22

4533 MQTT_TOPIC_MOTION e e e e 22

4534 MQTT_TOPIC_STATUS_CALIBRATION 23

4535 MQTT_TOPIC_STATUS_COMMAND it 23

4536 MQTT_TOPIC_STATUS_GRIPPER 23

45.3.7 MQTT_TOPIC_STATUS_HEARTBEAT i it 23

4.53.8 MQTT_TOPIC_STATUS_MOTION e e 23

5 Class Documentation 25
5.1 APIClass Reference e e 25
5.1.1 Detailed Description e 25
5.1.2 Constructor & Destructor Documentation 25
5121 API) . . e 25

5.1.3 Member Function Documentation L 26
513.1pIng() . - . o e 26

5.1.4 Member Data Documentation 26
5.1.4.1access_token L L e 26
5.1.4.2auth token L e e 26
52HTTP Class Reference o e e 27
5.2.1 Detailed Description 27
5.2.2 Constructor & Destructor Documentation L. 28
5221 HTTP() . . . o o e 28

5.2.3 Member Function Documentationo 28

Generated by Doxygen

523 fetch() e 28

B.23.2G0H) « v v e e e e e 28
5.233header() 29
5.23.4JS0N() 29
523.5p0st() 30

5.23.681text() 30

5.2.4 Member Data Documentation 30
5.24.1client 30
5.242connected e 31

5.243host 31
5.24.4716SPONSE L e e e e 31

5.3 NetCommander Class Reference 31
5.3.1 Detailed Description L 31
5.3.2 Member Function Documentationo 31
5.3.2.1connect() L e 31
5.3.2.2disconnect() 32

6 File Documentation 33
6.1 include/common/api/api.h File Reference 33
B.2api.h . L e 33
6.3 include/common/net/http.h File Reference oL Lo 34
BANMDN . . . 34
6.5 include/common/net/net_commander.h File Reference 35
6.6 net_commander.h e 35
6.7 include/common/secrets.h File Referenceo 36
6.7.1 Detailed Description e 36
6.7.2 Macro Definition Documentation 36
6.721 MQTT_CLIENT_ID e e e e 36
6.7.22MQTT_PORT e e 36

6.723 MQTT_SERVER e 36

6.7.24 WIFI_PASSWORD e 36
6.725WIFI_SSID e 37

B6.8secrets.h 37
6.9 include/common/secrets.sample.h File Reference 37
6.9.1 Macro Definition Documentation L 37
6.9.1.1 LA_SERVER_ADDR e 37

6.9.1.2 LA_SERVER_PORT 37
6.9.1.3LA_SERVER_TOKEN e 38
6.9.1.4WIFI_PASSWORD e 38

6.9 1 5WIFI_SSID e 38

6.10 secrets.sample.h L 38
6.11 include/common/util/logger.h File Reference oL 38

Generated by Doxygen

6.11.1 Function Documentation L 38
6.11.1.1 logger_print_line() 38
6.12logger.h e 39
6.13 include/config.h File Reference Lo 39
6.13.1 Detailed Description L 40

6.14 config.h L e 40
6.15 include/modules/base/main_base.h File Reference 41
6.15.1 Function Documentation 41
6.15.1.1 main_base_loop() 41

6.15.1.2 main_base_setup() 42

6.16 main_base.h L e e 42
6.17 include/modules/cam/esp32-cam-gpio.h File Reference 42
6.17.1 Detailed Description 43
6.17.2 Macro Definition Documentation L 43
6.17.21 HREF_GPIO_NUM e 43
6.17.22LED_GPIO_NUM e 43

6.17.23 PCLK_GPIO_NUM e 43

6.17.24 PWDN_GPIO_NUM 43

6.17.25 RESET_GPIO_NUM e 44

6.17.26 SIOC_GPIO_NUM e 44

6.17.2.7 SIOD_GPIO_NUM e 44

6.17.28 VSYNC_GPIO_NUM e e 44

6.17.29 XCLK_GPIO_NUM e 44

6.17.210 Y2_GPIO_NUM e 44

6.17.211 Y3 GPIO NUM o 44

6.17.212 Y4_GPIO_NUM e 44

6.17.213 Y5_GPIO_NUM e 45
6.17.2.14Y6_GPIO NUM 45

6.17.215 Y7_GPIO_NUM 45

6.17.216 Y8_GPIO_NUM e 45

6.17.217 Y9 GPIO NUM 45

6.17.3 Function Documentation 45
6.17.3.1 setupCameraConfig() o o 45

6.18 esp32-cam-gpio.h L e 46
6.19 include/modules/cam/main_cam.h File Reference 47
6.19.1 Function Documentation L 47
6.19.1.1 main_cam_loop() e 47
6.19.1.2main_cam_setup() e 47

6.20 main_cam.h L e e e 47
6.21 include/Utilities.h File Reference 47
6.22 Utilities.h e 47
6.23 src/base/main_base.cpp File Reference L oL 47

Generated by Doxygen

6.24 Main_base.Ccpp e e 48
6.25 src/common/api/api.cpp File Reference L 48
B.26 API.CPP - - - . e e e e e e e 48
6.27 src/common/net/http.cpp File Reference Lo 48
6.28 httP.CPP - . - o o o e e e 49
6.29 src/common/net/net_commander.cpp File Referenceo oL 50
6.30 net_commander.Cpp o e e e e e e e e e e e e e 50
6.31 src/communication_manager/communication_manager.cpp File Reference 50
6.31.1 Detailed Description L 51
6.31.2 Function Documentation 51
6.31.2.1 handleCalibrationCommand() 51

6.31.2.2 handleGripperCommand() 51

6.31.2.3 handleMoveCommand() o e 52

6.31.3 Variable Documentation L 52
6.31.3.1 calibrationInProgress L 52

6.31.3.2 gripperInProgress 52

6.31.3.3 movementInProgress 52

6.32 commuNication_manager.CPP - - « « « v v v e e e e e e e e e e e 53
6.33 src/communication_manager/communication_manager.h File Reference 54
6.33.1 Detailed Description L 54

6.34 communication_manager.h L 55
6.35 src/gripper_driver/gripper_driver.cpp File Reference oo 0oL 55
6.35.1 Detailed Description L 56

6.36 gripper_driver.Cpp o e e e e e 56
6.37 src/gripper_driver/gripper_driver.h File Reference o L. 57
6.37.1 Detailed Description 57

6.38 gripper_driver.h . . . L L e e 57
6.39 src/main.cpp File Reference 58
6.39.1 Detailed Description 58
6.39.2 Function Documentation L 59
6.39.2.1100P() -« - . o e 59
6.39.2.2setUp() e 59

B6.40 MAIN.CPP -+« o o ot e e e e e e e e e e e e e e 60
6.41 src/motor_driver/motor_driver.cpp File Reference oL 60
6.41.1 Detailed Description 61
6.41.2 Variable Documentation 61
6.41.2.1homed L e 61
6.41.22homing 62

6.41.2.3 stepperMotors L e e 62

6.42 MOtOr_driVEr.CPP . -« « v o e e e e e e e e e e e e 62
6.43 src/motor_driver/motor_driver.h File Reference 64
6.43.1 Detailed Description L 64

Generated by Doxygen

vi

6.44 motor_driver.h L e e 65
6.45 src/mqtt_client/matt_client.cpp File Reference oL 66
6.45.1 Function Documentation L 67
6.45.1.1 backoffinterval() 67

6.45.1.2 mgttCallback() 67

6.45.1.3 mqttClient() e 67

6.45.1.4 subscribeTopiCs() e 67

6.45.2 Variable Documentation L 68
6.45.2.1 BASE_INTERVAL_MS e 68

6.45.2.2 incomingMessageHandler Lo 68

6.45.2.3 LAST_ATTEMPT o . e e e e e e 68

6.45.2.4 MAX_BACKOFF_MS e 68

6.45.25 RETRIES e 68

6.45.26 wifiClient e 68

6.46 matt_client.Cpp e 69
6.47 src/mqtt_client/maqtt_client.h File Referenceo 0oL 70
6.47.1 Detailed Description 71

6.48 matt_client.h L 71
Index 73

Generated by Doxygen

Chapter 1

Topic Index

1.1 Topics

Here is a list of all topics with brief descriptions:

Configuration L e e e 7
Communication Manager e e 11
Gripper Driver e e e e 12
Motor Driver e e 15
MQTT Client Module e e e 19

Generated by Doxygen

Topic Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

API

High-level API abstraction for interacting with the Leafy Automation Central
HTTP

A simple HTTP client abstraction
NetCommander

Provides a simple interface for connecting to the internet

Generated by Doxygen

Class Index

Generated by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

include/config.h

Project-wide configuration constants (pins, timings, ratios) 39
include/Utilities.h L e 47
include/common/secrets.h

Network and MQTT credentials for Leafy Automation firmware 36
include/common/secrets.sample.h L 37
include/common/api/api.h e e e e 33
include/common/net/http.h L L 34
include/common/net/net_commanderh 35
include/common/util/loggerh L 38
include/modules/base/main_base.h e 41

include/modules/cam/esp32-cam-gpio.h

This file is based on the esp32-cam CameraWebServer example from the arduino-esp32 repos-

itory. https://github.com/espressif/arduino-esp32 42
include/modules/cam/main_cam.h 47
src/main.cpp

Entry point for the Arduino Uno R4 Wifi, responsible for low level motor control. Coordinates

hardware and MQTT handling 58
src/base/main_base.Cppo e 47
SIC/COMMON/API/APILCPP « v o o o e e e e e e e e e e e 48
src/common/net/http.cpp L L e 48
src/common/net/net_commander.Cpp L e e e 50
src/communication_manager/communication_manager.cpp

Implementation of the Communication Manager module 50
src/communication_manager/communication_manager.h

Parses incoming MQTT commands and publishes status updates 54
src/gripper_driver/gripper_driver.cpp

Controls the gripper servo (End EffectorEF) oo 55
src/gripper_driver/gripper_driver.h

Controls the gripper servo (End EffectorEF) 57
src/motor_driver/motor_driver.cpp

Implementation of the Motor Driver for joints JO-J4 60
src/motor_driver/motor_driver.h

Driver for stepper motors J0—J4 (DM332T/DM320T step/dir drivers) 64
src/matt_client/matt_client.cpp L 66
src/mqtt_client/mqtt_client.h

Handles MQTT setup, subscriptions, publishing, and heartbeat 70

Generated by Doxygen

File Index

Generated by Doxygen

Chapter 4

Topic Documentation

4.1

Configuration

Variables

411

static constexpr uint8_t ARM_JOINTS =5

Number of stepper-driven joints (JO. .. J4).
static constexpr uint8_t STEP_PIN [ARM_JOINTS]

STEP pin mapping for joints JO. . . J4.
static constexpr uint8_t DIR_PIN [ARM_JOINTS]

DIR pin mapping for joints JO. . . J4.
static constexpr uint16_t MICROSTEPS = 200

Microsteps per full revolution.
static constexpr float GEAR_RATIO [ARM_JOINTS]

Gear ratio for each joint.
static constexpr float MAX_OUTPUT_RPM [ARM_JOINTS]

Max output RPM per joint.
static constexpr uint8_t LIMIT_LEFT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s left limit switch (Active LOW)
static constexpr uint8_t LIMIT_RIGHT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s right limit switch (Active LOW)
static constexpr uint8_t GRIPPER_SERVO_PIN

PWM pin for the servo controlling the gripper (End Effector, EF).
static constexpr unsigned long GRIP_MOVE_TIME_MS = 500

Allocated time in milliseconds for the gripper to open/close.
static constexpr uint8_t GRIPPER_CLOSED_ANGLE =0

Open closed (degrees) for the gripper servo.
static constexpr uint8_t GRIPPER_OPEN_ANGLE = 90

Open angle (degrees) for the gripper servo.

Detailed Description

4.1.2 Variable Documentation

4.1.2.1 ARM_JOINTS

uint8_t ARM_JOINTS = 5 [static], [constexpr]

Number of stepper-driven joints (JO...J4).

Definition at line 21 of file config.h.

Generated by Doxygen

8 Topic Documentation

4.1.2.2 DIR_PIN

uint8_t DIR_PIN[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

PR e e

DIR pin mapping for joints JO. .. J4.

Definition at line 35 of file config.h.
00035 {

00036 /* JO %=/ 1, // TO DO: Replace 1ls with actual pin numbers
00037 /* J1 =/ 1,
00038 /* J2 x/ 1,
00039 /* J3 %/ 1,
00040 /x J4 x/ 1};

4.1.2.3 GEAR_RATIO

float GEAR_RATIO[ARM_JOINTS] [static], [constexpr]

Initial value:

= {
1.0f / 10.0f,
1.0f / 50.0f,
1.0f / 50.0f,
1.0f / 19.0f,
1.0f / 16.0f}

Gear ratio for each joint.

Definition at line 48 of file config.h.

00048 {
00049 /* J0 =/ 1.0f / 10.0f,
00050 /% Jl1 =/ 1.0f / 50.0f,
00051 /* J2 %=/ 1.0f / 50.0f,
00052 /* J3 =/ 1.0f / 19.0f,
00053 /% J4 %/ 1.0f / 16.0f};

4.1.2.4 GRIP_MOVE_TIME_MS

unsigned long GRIP_MOVE_TIME_MS = 500 [static], [constexpr]
Allocated time in milliseconds for the gripper to open/close.

Definition at line 85 of file config.h.

4.1.2.5 GRIPPER_CLOSED_ANGLE

uint8_t GRIPPER_CLOSED_ANGLE = 0 [static], [constexpr]
Open closed (degrees) for the gripper servo.

Definition at line 89 of file config.h.

Generated by Doxygen

4.1 Configuration

4.1.2.6 GRIPPER_OPEN_ANGLE

uint8_t GRIPPER_OPEN_ANGLE = 90 [static], [constexpr]
Open angle (degrees) for the gripper servo.

Definition at line 93 of file config.h.

4.1.2.7 GRIPPER_SERVO_PIN

uint8_t GRIPPER_SERVO_PIN [static], [constexpr]

Initial value:

1
PWM pin for the servo controlling the gripper (End Effector, EF).

Definition at line 80 of file config.h.

4.1.2.8 LIMIT_LEFT_PINS

uint8_t LIMIT_LEFT_PINS[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

XX, XX, XX, XX, XX}
Array of digital input pins connected to each joint’s left limit switch (Active LOW)

Definition at line 68 of file config.h.

00068 {
00069 XX, XX, XX, XX, xx}; // Replace with pin numbers

4.1.2.9 LIMIT_RIGHT_PINS

uint8_t LIMIT_RIGHT_PINS[ARM_JOINTS] [static], [constexpr]

Initial value:
= {

XX, XX, XX, XX, XX}
Array of digital input pins connected to each joint’s right limit switch (Active LOW)

Definition at line 75 of file config.h.

00075 {
00076 XX, XX, XX, XX, xx}; // Replace with pin numbers

Generated by Doxygen

10

Topic Documentation

4.1.2.10 MAX_OUTPUT_RPM

float MAX_OUTPUT_RPM[ARM_JOINTS] [static], [constexpr]

Initial value:

= {

30.
20.
20.
.0f,
.0f}

25
25

0f,
0f,
0f,

Max output RPM per joint.

Definition at line 57 of file config.h.

00057
00058
00059
00060
00061
00062

41.2.11

/*
/*
/*
/*
/*

Jo
Jl
J2
J3
J4

*/
*/
*/
*/
*/

30.
20.
20.
25.
25.

of,
of,
of,
of,
0f};

MICROSTEPS

uintl6_t MICROSTEPS

= 200 [static], [constexpr]

Microsteps per full revolution.

Definition at line 44 of file config.h.

4.1.2.12 STEP_PIN

uint8_t STEP_PIN[ARM_JOINTS] [static], [constexpr]

Initial value:

= {

el

STEP pin mapping for joints JO. .. J4.

Precondition

STEP_PIN size must equal ARM_JOINTS

Definition at line 26 of file config.h.

00026
00027
00028
00029
00030
00031

/ *
/*
/*
/*
/*

Jo
Jl
J2
J3
J4

*/
*/
*/
*/
*/

{
// TO DO: Replace 1ls with actual pin numbers

Generated by Doxygen

4.2 Communication Manager 11

4.2 Communication Manager

Files

« file communication_manager.cpp

Implementation of the Communication Manager module.

Functions

+ void handlelncomingCommand (const String &command)

Handle an incoming command and route it to the appropriate module.
« void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

4.2.1 Detailed Description

4.2.2 Function Documentation

4.2.2.1 checkActionStatus()

void checkActionStatus ()
Checks in-progress flags and publish DONE messages.

Checks in-progress flags and publishes DONE messages.
Note

Must be called each loop to detect action completion promptly.

Returns
void

Checks the movementinProgress, gripperinProgress, and calibrationinProgress flags. For each flag that is set, it
calls the corresponding completion test:

+ allJointsDone() for MOVE
« gripperDone() for GRIP

« calibrationDone() for CALIBRATE If the test returns true, it publishes the respective “DONE” status via
publishStatus() and clears the in-progress flag.

Returns
void
Note

Must be called in every main loop to catch completions promptly.

Definition at line 112 of file communication_manager.cpp.

00112 {

00113

00114 if (calibrationInProgress && calibrationDone()) {

00115 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00116 calibrationInProgress = false;

00117 }

00118 if (movementInProgress && allJointsDone()) {

00119 publishStatus (MQTT_TOPIC_STATUS_MOTION, "MOVE DONE");
00120 movementInProgress = false;

00121 }

00122

00123 if (gripperInProgress && gripperDone()) {

00124 publishStatus (MQTT_TOPIC_STATUS_GRIPPER, "GRIPPER DONE");
00125 gripperInProgress = false;

00126 }

00127 }

Generated by Doxygen

12

Topic Documentation

4.2.2.2 handlelncomingCommand()

void handleIncomingCommand (

const String & command)
Handle an incoming command and route it to the appropriate module.
Decode and route a received command string.

Parameters

command | Text like "MOVE 100 200 300 400 500" or "GRIP 1".

Returns

void

Note
Is called from the MQTT Client's callback.

Definition at line 30 of file communication_manager.cpp.

00030 {

00031 String trimmed = command;

00032 trimmed.trim(); // Removing leading/trailing whitespaces
00033

00034 i f (trimmed.startsWith ("MOVE")) {

00035 handleMoveCommand (trimmed) ;

00036 } else if (trimmed.startsWith ("GRIP")) {

00037 handleGripperCommand (trimmed) ;

00038 } else if (trimmed.startsWith ("CALIBRATE")) {

00039 handleCalibrationCommand (trimmed) ;

00040 } e

00041 Serial.print (" [CommunicationManager] Unknown command: ");
00042 Serial.println (trimmed);

00043 }

00044 1}

4.3 Gripper Driver

Functions

+ void initGripper ()
Initialise the gripper servo on its PWM pin and open it.
« void moveGripper (int state)

Command the gripper to open (state=0) or close (state=1).
+ void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.

* bool gripperDone ()

Returns true if the gripper has completed its movement.

Variables

» static Servo gripperServo
« static bool moving = false
« static unsigned long moveStartTime = 0

Generated by Doxygen

4.3 Gripper Driver

4.3.1 Detailed Description

4.3.2 Function Documentation
4.3.2.1 gripperDone()

bool gripperDone ()
Returns true if the gripper has completed its movement.
Check whether the gripper has completed its action.

Returns

true if no gripper motion is in progress.

Definition at line 52 of file gripper_driver.cpp.
00052 { !'moving; }

4.3.2.2 initGripper()

void initGripper ()
Initialise the gripper servo on its PWM pin and open it.

Initialise the gripper servo and set to open position.

Precondition

GRIPPER_SERVO_PIN must be defined in config.h.

Postcondition

Servo is attached and moved to open angle.

Returns

void

Definition at line 22 of file gripper_driver.cpp.

00022 {

00023 gripperServo.attach (GRIPPER_SERVO_PIN) ;
00024 gripperServo.write (GRIPPER_OPEN_ANGLE) ;
00025 moving = false;

00026 }

4.3.2.3 moveGripper()

void moveGripper (

int state)
Command the gripper to open (state=0) or close (state=1).

Command the gripper to open or close.

Generated by Doxygen

14 Topic Documentation

Parameters

‘ state ‘ 0 = open, 1 = close.

Returns

void

Definition at line 30 of file gripper_driver.cpp.

00030 {
00031 uint8_t angle;
00032 if (state) {

00033 angle = GRIPPER_CLOSED_ANGLE;
00034 } else {

00035 angle = GRIPPER_OPEN_ANGLE;
00036 }

00037 gripperServo.write (angle);
00038 moveStartTime = millis();
00039 moving = true;

00040 }

4.3.2.4 updateGripper()

void updateGripper ()
Update the gripper; clear the moving flag after the configured move time.

Must be called frequently to update the gripper motion state.

Returns

void

Definition at line 44 of file gripper_driver.cpp.

00044 {

00045 if (moving && (millis() - moveStartTime >= GRIP_MOVE_TIME_MS)) {
00046 moving = false;

00047 }

00048 1}

4.3.3 Variable Documentation

4.3.3.1 gripperServo

Servo gripperServo [static]

Definition at line 14 of file gripper_driver.cpp.

4.3.3.2 moveStartTime

unsigned long moveStartTime = 0 [static]

Definition at line 18 of file gripper_driver.cpp.

Generated by Doxygen

4.4 Motor Driver

15

4.3.3.3 moving

bool moving = false [static]

Definition at line 17 of file gripper_driver.cpp.

4.4

Files

Motor Driver

file motor_driver.cpp

Implementation of the Motor Driver for joints JO-J4.

Functions

441

void initMotors ()

Initialise all stepper drivers’ speed & acceleration per config.h settings.
void movedJoint (uint8_t jointindex, int32_t stepCount)

Queue a relative microstep move for a specific joint.
void updateMotors ()

Must be called every loop in order to advance the stepper motors.
void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.

bool calibrationDone ()

Check if calibration has completed.
bool allJointsDone ()

Check if all steppers have reached their targets.
int32_t getJointPosition (uint8_t jointindex)

Get the current microstep position of a joint.
void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

Detailed Description

4.4.2 Function Documentation

4.4.21 allJointsDone()

bool allJointsDone ()

Check if all steppers have reached their targets.

Returns

true if every joint’s distanceToGo()==0.

Definition at line 116 of file motor_driver.cpp.

00116
00117
00118
00119
00120
00121
00122

{
(uint8_t j = 0; j < ARM_JOINTS; ++7j) {
(stepperMotors[j].distanceToGo () != 0)
false;
}
true;

}

Generated by Doxygen

16 Topic Documentation

4.4.2.2 calibrateAllJoints()

void calibrateAllJoints ()
Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.

Run a blocking homing (calibration) sequence on all stepper joints.
Precondition

LIMIT_LEFT_PINSJ] and LIMIT_RIGHT_PINS[] must be defined in /include/config.h.

Postcondition

After return, currentPosition()==0 for each motor.

Returns
void
Note

This routine blocks until all limit switches have been found.

Definition at line 55 of file motor_driver.cpp.

00055 {
00056 const unsigned long timeoutMs = 5000; // max time per switch
00057 const unsigned int debounceMs = 50; // debounce delay

00058 homing = true;
00059 homed = false;

00060

00061 for (uint8_t j = 0; j < ARM_JOINTS; ++3) {

00062 unsigned long startTime;

00063 bool switchState;

00064

00065 // Drive toward left switch

00066 stepperMotors[]j].setMaxSpeed (MICROSTEPS * 100.0f);
00067 stepperMotors|[j].moveTo (-1000000) ;

00068 startTime = millis();

00069 while (true) {

00070 stepperMotors[j].run();

00071 switchState = digitalRead (LIMIT_LEFT_PINS[j]) == LOW; // active low
00072 f (switchState) {

00073 delay (debounceMs) ;

00074 if (digitalRead (LIMIT_LEFT_PINS[j]) == LOW)
00075 oreak;

00076 }

00077 f (millis() - startTime > timeoutMs)

00078 >reak;

00079 }

00080 stepperMotors[j].setCurrentPosition (0);

00081

00082 // Drive toward right switch

00083 stepperMotors[j].moveTo (1000000) ;

00084 startTime = millis();

00085 while (true) {

00086 stepperMotors[j].run();

00087 switchState = digitalRead (LIMIT_RIGHT_PINS[]j]) == LOW;
00088 if (switchState) {

00089 delay (debounceMs) ;

00090 - (digitalRead (LIMIT_RIGHT_PINS[j]) == LOW)
00091 oreak;

00092 }

00093 if (millis() - startTime > timeoutMs)

00094 oreak;

00095 }

00096 long maxSteps = stepperMotors[j].currentPosition();
00097

00098 // Return to midpoint

00099 long mid = maxSteps / 2;

00100 stepperMotors|[j].setCurrentPosition (0);

00101 stepperMotors[j] .moveTo (mid) ;

00102 while (stepperMotors[]j].distanceToGo() != 0) {
00103 stepperMotors[j].run();

00104 }

00105 stepperMotors|[j].setCurrentPosition (0);

00106 }

00107

00108 homed = true;
00109 homing = false;
00110 }

Generated by Doxygen

4.4 Motor Driver 17

4.4.2.3 calibrationDone()

bool calibrationDone ()
Check if calibration has completed.
Returns

true if the last call to calibrateAllJoints() completed.

Definition at line 113 of file motor_driver.cpp.
00113 { return homed; }

4.4.2.4 getJointPosition()

int32_t getJointPosition (
uint8_t jointIndex)

Get the current microstep position of a joint.

Parameters

jointindex | Index of the joint (0...4). |

Returns

Current position in microsteps (zeroed at last calibration).

Definition at line 125 of file motor_driver.cpp.

00125 {
00126 tu stepperMotors[jointIndex].currentPosition();
00127 }

4.4.2.5 initMotors()

void initMotors ()

Initialise all stepper drivers’ speed & acceleration per config.h settings.
Initialise stepper parameters(max speed & acceleration).

Precondition

STEP_PIN[], DIR_PIN[], MICROSTEPS, GEAR_RATIO[] and MAX_OUTPUT_RPM[] must be configured via
config.h.

Postcondition

Each steppers[j] has its maxSpeed and acceleration set.

Returns

void

Definition at line 29 of file motor_driver.cpp.

00029 {

00030 for (uint8_t j = 0; j < ARM_JOINTS; ++3j) {

00031 // compute max step rate: (RPM/60) % (microsteps/gear_ratio)
00032 float stepsPerSec =

00033 (MAX_OUTPUT_RPM[J] / 60.0f) % (MICROSTEPS / GEAR_RATIO[]]);
00034 stepperMotors|[]j].setMaxSpeed (stepsPerSec);

00035 stepperMotors|[j].setAcceleration (stepsPerSec * 2.0f);

00036 }

00037 homed = false;

00038 }

Generated by Doxygen

18 Topic Documentation

4.4.2.6 movedoint()

void moveJdoint (
uint8_t jointIndex,
int32_t stepCount)

Queue a relative microstep move for a specific joint.

Parameters

jointindex | Index of the joint (0...4, i.e. JO...J4).
steps Signed microstep delta (positive=forward, negative=backward).

Returns

void

Definition at line 41 of file motor_driver.cpp.

00041 {
00042 stepperMotors[jointIndex] .move (stepCount) ;
00043 }

4.4.2.7 stopAllJoints()

void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

Returns

void

Definition at line 130 of file motor_driver.cpp.

00130 {

00131 ‘or (uint8_t j = 0; j < ARM_JOINTS; ++3) {
00132 stepperMotors[j].stop();

00133 }

00134 }

4.4.2.8 updateMotors()

void updateMotors ()

Must be called every loop in order to advance the stepper motors.

Returns

void

Definition at line 46 of file motor_driver.cpp.

00046 {

00047 for (uint8_t j = 0; j < ARM_JOINTS; ++7) {
00048 stepperMotors([j].run();

00049 }

00050 }

Generated by Doxygen

4.5 MQTT Client Module

19

4.5 MQTT Client Module

Functions

- void initMQTT ()

Initialise MQTT server and set callback.
* bool publishStatus (const char xtopic, const String &message)

Publish a status message and report failure.
+ void sendHeartbeat ()

Register the handler for incoming MQTT messages.
+ void setMessageHandler (void(xhandler)(const String &msg))
Registers a callback to handle incoming parsed MQTT messages.
« void mqttLoop ()

Process incoming messages and reconnect with exponential backoff.

Variables

» constexpr char MQTT_TOPIC_MOTION [] = "leafy_automation/motion”

« constexpr char MQTT_TOPIC_GRIPPER [] = "leafy_automation/gripper”

« constexpr char MQTT_TOPIC_CALIBRATE [] = "leafy_automation/calibrate"
+ constexpr char MQTT_TOPIC_STATUS_COMMAND []

« constexpr char MQTT_TOPIC_STATUS_MOTION []

+ constexpr char MQTT_TOPIC_STATUS_GRIPPER[]

« constexpr char MQTT_TOPIC_STATUS_CALIBRATION []

« constexpr char MQTT_TOPIC_STATUS_HEARTBEAT []

4.5.1 Detailed Description

4.5.2 Function Documentation

4521 initMQTT()

void initMQTT ()
Initialise MQTT server and set callback.
Initialises MQTT connection and subscribes to control topics.

Precondition

WiFi is connected via initWiFi().

Postcondition

Single connect attempt. Further reconnects in mqttLoop().

Returns

void

Generated by Doxygen

20 Topic Documentation

Precondition

WiFi must already be connected via initWiFi().

Postcondition

Control topics are subscribed and the incoming message callback is set.

Definition at line 62 of file matt_client.cpp.

00062 {
00063 mgttClient.setServer (MQTT_SERVER, MQTT_PORT) ;
00064 mgttClient.setCallback (mgttCallback);

00065

00066 // Establish connection attempt

00067 1f (mgttClient.connect (MQTT_CLIENT_ID)) {
00068 subscribeTopics () ;

00069 Serial.println ("MQTT connected.");

00070 } else {

00071 Serial.print ("MQTT connect failed, rc=");
00072 Serial.println(mgttClient.state());

00073 }

00074 }

4.5.2.2 mgqttLoop()

void mgttLoop ()

Process incoming messages and reconnect with exponential backoff.
Process incoming MQTT traffic and attempt reconnects if needed.
Must be called frequently in loop() to maintain the connection.

Note

Must be called frequently in loop() to maintain connection.

Returns

void

Note

Must be called frequently in loop() to maintain the connection.

Returns

void

Definition at line 132 of file mqtt_client.cpp.

00132 {

00133 unsigned long now = millis();

00134

00135 1f (!mgttClient.connected() &&

00136 (now - LAST_ATTEMPT >= backoffInterval (RETRIES))) {
00137 © (mgttClient.connect (MQTT_CLIENT_ID)) {

00138 Serial.println ("MQTT reconnected");

00139 subscribeTopics () ;

00140 RETRIES = 0;

00141 } else {

00142 RETRIES++;

00143 Serial.println ("MQTT reconnect failed, will retry");
00144 }

00145 LAST_ATTEMPT = now;

00146 }

00147 mgttClient.loop () ;

00148 1}

Generated by Doxygen

4.5 MQTT Client Module

4.5.2.3 publishStatus()

bool publishStatus (
const char * topic,

const String & message)
Publish a status message and report failure.

Publishes a status message to a given MQTT topic.

Parameters

topic MQTT topic string.

message | Payload to publish.

Returns

true if publish was accepted; false otherwise.

Parameters

topic | The MQTT topic to publish to.
msg | The payload string.

Returns

true if the message was successfully handed off to the network, otherwise returns false.

Definition at line 83 of file mqtt_client.cpp.

00083 {
00084 bool ok = mgttClient.publish(topic, message.c_str());

00085 Lf (lok) {

00086 Serial.print ("Publish failed to topic: ");

00087 Serial.println(topic);

00088 }

00089 ~turn ok;

00090 1}

4.5.2.4 sendHeartbeat()

void sendHeartbeat ()
Register the handler for incoming MQTT messages.

Sends a periodic "alive" signal to the status/heartbeat topic.

Parameters

handler | Function invoked when message is received.

Returns
void
void

Definition at line 98 of file mqtt_client.cpp.

00098 {

00099 static unsigned long lastPing = 0;

00100 1f (millis() - lastPing >= 1000) {

00101 publishStatus (MQTT_TOPIC_STATUS_HEARTBEAT, "alive");
00102 lastPing = millis();

00103 }

00104 }

Generated by Doxygen

22 Topic Documentation

4.5.2.5 setMessageHandler()

void setMessageHandler (

void (¥ handler) (const String &msg))
Registers a callback to handle incoming parsed MQTT messages.

To set user defined callback to handle parsed MQTT messages.

Parameters

handler | Function to call with message string.

Returns

void

Parameters

handler | Function to call when a new message arrives.

Note

This function should be called after initMQTT() to set the callback

Definition at line 112 of file mqtt_client.cpp.

00112 {
00113 incomingMessageHandler = handler;
00114 }

4.5.3 Variable Documentation

4.5.3.1 MQTT_TOPIC_CALIBRATE

char MQTT_TOPIC_CALIBRATE[] = "leafy_automation/calibrate" [inline], [constexpr]

Definition at line 22 of file mqtt_client.h.

4.5.3.2 MQTT_TOPIC_GRIPPER

char MQTT_TOPIC_GRIPPER[] = "leafy_automation/gripper" [inline], [constexpr]

Definition at line 21 of file mqtt_client.h.

4.5.3.3 MQTT_TOPIC_MOTION

char MQTT_TOPIC_MOTION[] = "leafy_automation/motion" [inline], [constexpr]

Definition at line 20 of file mqtt_client.h.

Generated by Doxygen

4.5 MQTT Client Module

4.5.3.4 MQTT_TOPIC_STATUS_CALIBRATION

char MQTT_TOPIC_STATUS_CALIBRATION]] [inline], [constexpr]

Initial value:

"leafy_automation/status/calibration"

Definition at line 31 of file mqtt_client.h.

4.5.3.5 MQTT_TOPIC_STATUS_COMMAND

char MQTT_TOPIC_STATUS_COMMAND] [inline], [constexpr]

Initial value:

"leafy_automation/status/command_received"

Definition at line 25 of file mqtt_client.h.

4.5.3.6 MQTT_TOPIC_STATUS_GRIPPER

char MQTT_TOPIC_STATUS_GRIPPER]] [inline], [constexpr]

Initial value:

"leafy_automation/status/gripper"

Definition at line 29 of file mqtt_client.h.

4.5.3.7 MQTT_TOPIC_STATUS_HEARTBEAT

char MQTT_TOPIC_STATUS_HEARTBEAT]] [inline], [constexpr]

Initial value:

"leafy_automation/status/heartbeat"

Definition at line 33 of file mqtt_client.h.

4.5.3.8 MQTT_TOPIC_STATUS_MOTION

char MQTT_TOPIC_STATUS_MOTION]] [inline], [constexpr]

Initial value:

"leafy_automation/status/motion"

Definition at line 27 of file mqtt_client.h.

Generated by Doxygen

24

Topic Documentation

Generated by Doxygen

Chapter 5

Class Documentation

5.1 API Class Reference

High-level API abstraction for interacting with the Leafy Automation Central.

#include <api.h>

Public Member Functions

» API (String access_token)

Constructs an API object.
* bool ping ()
Pings the Leafy Automation Central. Used to check if the server is online.

Static Public Attributes

« static const String access_token
The access token for the Leafy Automation Central.

Private Attributes

« String auth_token = LA_SERVER_TOKEN

5.1.1 Detailed Description

High-level API abstraction for interacting with the Leafy Automation Central.

Definition at line 10 of file api.h.

5.1.2 Constructor & Destructor Documentation
5.1.2.1 APIl()

API::API (

String access_token)

Constructs an API object.

Generated by Doxygen

26 Class Documentation

Parameters

access_token | The access token for the Leafy Automation Central.

Definition at line 3 of file api.cpp.

00003 {
00004 this->auth_token = access_token;
00005 }

5.1.3 Member Function Documentation

5.1.3.1 ping()

bool API::ping ()
Pings the Leafy Automation Central. Used to check if the server is online.

This function sends a GET request to the /' endpoint of the Leafy Automation Central, and checks for a response.
Used to check if the server is online.

Returns

Whether the ping was successful.

Definition at line 7 of file api.cpp.

00007 {

00008 HTTP (LA_SERVER_ADDR)
00009 .get ("/")

00010 .fetch()

00011 Ltext () = "";

00012 }

5.1.4 Member Data Documentation

5.1.4.1 access_token

const String API::access_token [static]
The access token for the Leafy Automation Central.

Definition at line 15 of file api.h.

5.1.4.2 auth_token

String API::auth_token = LA_SERVER_TOKEN [private]
Definition at line 34 of file api.h.

The documentation for this class was generated from the following files:

* include/common/api/api.h
* src/common/api/api.cpp

Generated by Doxygen

5.2 HTTP Class Reference 27

5.2 HTTP Class Reference

A simple HTTP client abstraction.

#include <http.h>

Public Member Functions

e HTTP (String host)
Constructs a HTTP object.
HTTP & header (String key, String value)
Adds a header to the HTTP request.
* HTTP & get (String path)
Performs an HTTP GET request.
» HTTP & post (String path, uint8_t xdata, size_t data_length)
Performs an HTTP POST request.
HTTP & fetch ()
Ends the HTTP request and returns the response.
« String text ()
Returns the response as plaintext.
+ JsonDocument json ()

Returns the response as a JSON document.

Private Attributes
« String host

« String response
* bool connected = false

Static Private Attributes

« static WiFiClient client

5.2.1 Detailed Description

A simple HTTP client abstraction.

This class provides basic HTTP functionalities such as GET and POST requests using a provided NetCommander
instance for network communication.

https://datatracker.ietf.org/doc/html/rfc2616

Definition at line 16 of file http.h.

Generated by Doxygen

28 Class Documentation

5.2.2 Constructor & Destructor Documentation

5.2.21 HTTP()

HTTP::HTTP (
String host)

Constructs a HTTP object.

Definition at line 5 of file http.cpp.

00005 {

00006 this->host = host;

00007 this->connected = client.connect (host.c_str (), LA_SERVER_PORT);
00008

00009 " (!'this->connected) {

00010 Serial.println ("HTTP request failed");

00011 }

00012 }

5.2.3 Member Function Documentation
5.2.3.1 fetch()

HTTP & HTTP::fetch ()

Ends the HTTP request and returns the response.

Returns

The HTTP response as a String.

Definition at line 54 of file http.cpp.

00054 {

00055 1f (!'this—->connected) {

00056 return xthis;

00057 }

00058

00059 A e (client.connected()) {
00060 if (client.available()) {
00061 this->response += (char) client.read();
00062 }

00063 }

00064

00065 client.stop();

00066

00067 *this;

00068 }

5.2.3.2 get()

HTTP & HTTP::get (
String path)

Performs an HTTP GET request.

Parameters

host | The hostname or IP address to connect to.
path | The resource path to request.

Generated by Doxygen

5.2 HTTP Class Reference

Returns

The HTTP object instance.

Definition at line 24 of file http.cpp.

00024 {

00025 f (!this->connected) {

00026 return *this;

00027 }

00028

00029 HTTP::client.println("GET " + path + " HTTP/1.1");
00030 HTTP::client.println("Host: " + this->host);

00031 HTTP::client.println ("Connection: close");

00032 client.println(); // Double crlf (carriage return line feed) to end the request.
00033

00034 ret *this;

00035 }

5.2.3.3 header()

HTTP & HTTP::header (
String key,

String value)

Adds a header to the HTTP request.

Parameters

key The header key.

value | The header value.

Returns

The HTTP object instance.

Definition at line 14 of file http.cpp.

00014 {
00015 1f (!'this->connected) {

00016 return *this;

00017 }

00018

00019 HTTP::client.println(key + ": " + wvalue);
00020

00021 return xthis;

00022 }

5.2.3.4 json()

JsonDocument HTTP::json ()
Returns the response as a JSON document.
Returns

The JSON document.

Definition at line 74 of file http.cpp.

00074 {

00075 JsonDocument doc;

00076

00077 DeserializationError error = deserializeJdson(doc, this->response);
00078

00079 if (error) {

00080 Serial.print ("deserializedJson () failed: ");
00081 Serial.println(error.c_str());

00082

00083 doc.clear();

00084 }

00085

00086 ret doc;

00087 }

Generated by Doxygen

30

Class Documentation

5.2.3.5 post()

HTTP & HTTP::

post (

String path,
uint8_t x data,
size_t data_length)

Performs an HTTP POST request.

Parameters
host The hostname or IP address to connect to.
data The data to send.

data_length

Length of the data to send.

Returns

The HTTP object instance.

Definition at line 37 of file http.cpp.

00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052 }

(!'this—>connected) {

}

etur *this;

HTTP::client.println ("POST " + path + " HTTP/1.1");

HTTP::client.println("Host: " + this->host);

HTTP::client.println("Content-Type: application/octet-stream");
HTTP::client.println("Content-Length: " + String(data_length));
HTTP::client.println("Connection: keep-alive");

client.println(); // Double crlf (carriage return line feed) to end the request.
HTTP::client.write(data, data_length);

5.2.3.6 text()

«this;

String HTTP::text ()

Returns the response as plaintext.

Returns

The response as a String.

Definition at line 70 of file http.cpp.

00070
00071
00072 }

{

this->response;

5.2.4 Member Data Documentation

5.2.4.1 client

WiFiClient HTTP::client [static], [private]

Definition at line 76 of file http.h.

Generated by Doxygen

5.3 NetCommander Class Reference 31

5.2.4.2 connected

bool HTTP::connected = false [private]

Definition at line 74 of file http.h.

5.2.4.3 host

String HTTP::host [private]

Definition at line 72 of file http.h.

5.2.4.4 response

String HTTP::response [private]
Definition at line 73 of file http.h.

The documentation for this class was generated from the following files:

* include/common/net/http.h
» src/common/net/http.cpp

5.3 NetCommander Class Reference

Provides a simple interface for connecting to the internet.

#include <net_commander.h>

Public Member Functions

+ void connect (String ssid, String password)

Connects to a Wi-Fi network.
+ void disconnect ()

Disconnects from the Wi-Fi network.

5.3.1 Detailed Description

Provides a simple interface for connecting to the internet.

NetCommander wraps the WiFiS3 library to simplify Wi-Fi connection handling. It manages network credentials
and provides a WiFiClient instance for communication.

Definition at line 20 of file net_commander.h.

5.3.2 Member Function Documentation
5.3.2.1 connect()

void NetCommander::connect (
String ssid,

String password)

Connects to a Wi-Fi network.

Generated by Doxygen

32 Class Documentation

Parameters

ssid The SSID (name) of the Wi-Fi network.
password | The password for the Wi-Fi network.

Definition at line 3 of file net_commander.cpp.

00003 {
00004 Serial.println("Connecting to WiFi...");
00005

00006 WiFi.begin(ssid.c_str(), password.c_str());
00007

00008 while (WiFi.status() != WL_CONNECTED) {
00009 delay (1000);

00010 Serial.println(".");

00011 }

00012

00013 Serial.println("Connected to WiFi!");

00014 }

5.3.2.2 disconnect()

void NetCommander::disconnect ()
Disconnects from the Wi-Fi network.

Definition at line 16 of file net_commander.cpp.

00016 {

00017 WiFi.disconnect () ;

00018 Serial.println("Disconnected from WiFi.");
00019 }

The documentation for this class was generated from the following files:

* include/common/net/net_commander.h
» src/common/net/net_commander.cpp

Generated by Doxygen

Chapter 6

File Documentation

6.1 include/common/api/api.h File Reference

#include "common/secrets.h"
#include "common/net/http.h"

Classes

* class API

High-level API abstraction for interacting with the Leafy Automation Central.

6.2 api.h

Go to the documentation of this file.

00001 /==

00002 =« @brief High-level API abstraction for interacting with the Leafy Automation Central.
00003 =/

00004

00005 #pragma once

00006

00007 #include "common/secrets.h"

00008 #include "common/net/http.h"

00009

00010 class API {

00011 public:

00012 /*x

00013 * @brief The access token for the Leafy Automation Central.

00014 */

00015 static const String access_token;

00016

00017 / xx

00018 * @brief Constructs an API object.

00019 *

00020 * @param access_token The access token for the Leafy Automation Central.

00021 */

00022 API (String access_token);

00023

00024 [*x

00025 * @brief Pings the Leafy Automation Central. Used to check if the server is online.

00026 *

00027 %+ @details This function sends a GET request to the ’/’ endpoint of the Leafy Automation
Central,

00028 « and checks for a response. Used to check if the server is online.

00029 *

00030 * @return Whether the ping was successful.

00031 */

00032 bool ping();

00033 private:

00034 String auth_token = LA_SERVER_TOKEN;

00035 };

Generated by Doxygen

34

File Documentation

6.3

include/common/net/http.h File Reference

#include <ArduinoJson.h>
#include "common/net/net_commander.h"

Classes

e class HTTP

A simple HTTP client abstraction.

6.4 http.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059

/ **
*

*

*
*
*

*

*/
#pr
#in
#in

cla

@brief A simple HTTP client abstraction.

@details This class provides basic HTTP functionalities such as GET and POST requests

using a provided NetCommander instance for network communication.

https://datatracker.ietf.org/doc/html/rfc2616

agma once
clude <ArduinoJson.h>
clude "common/net/net_commander.h"

ss HTTP {
public:
/*x
« @brief Constructs a HTTP object.
*/
HTTP (String host);

/ **
@brief Adds a header to the HTTP request.

@param key The header key.
@param value The header value.
* @return The HTTP object instance.
*/
HTTP& header (String key, String value);

*
*
*
*
*

/

*

@brief Performs an HTTP GET request.

@param host The hostname or IP address to connect to.
@param path The resource path to request.

* @return The HTTP object instance.

*/
HTTP& get (String path);

EaE

/%

* @brief Performs an HTTP POST request.

*

« @param host The hostname or IP address to connect to.
* @param data The data to send.

* @param data_length Length of the data to send.

* @return The HTTP object instance.
*/
HTTP& post (String path, uint8_tx data, size_t data_length);

/**
* @brief Ends the HTTP request and returns the response.
*
* @return The HTTP response as a String.
*/
HTTP& fetch();

/ **

* @brief Returns the response as plaintext.

Generated by Doxygen

6.5 include/common/net/net_commander.h File Reference

35

00060 *

00061 * @return The response as a String.
00062 */

00063 String text ();

00064

00065 /xx

00066 * @brief Returns the response as a JSON document.
00067 *

00068 * @return The JSON document.

00069 */

00070 JsonDocument json () ;

00071 private:

00072 String host;

00073 String response;

00074 bool connected = false;

00075

00076 static WiFiClient client;

00077 };

6.5 include/common/net/net_ commander.h File Reference

#include <Arduino.h>
#include "common/secrets.h"

Classes

 class NetCommander

Provides a simple interface for connecting to the internet.

6.6 net_commander.h

Go to the documentation of this file.

00001 /=%

00002 «* @brief Provides a simple interface for connecting to the internet.

00003 «

00004 * Qdetails NetCommander wraps the WiFiS3 library to simplify Wi-Fi connection handling.

00005 «+ It manages network credentials and provides a "WiFiClient‘ instance for communication.

00006 =/

00007

00008 f#pragma once

00009

00010 #include <Arduino.h>

00011

00012 #ifdef PLATFORMIO_ENV_UNO_R4_WIFI
00013 #include "WiFiS3.h"

00014 #elif PLATFORMIO_ENV_ESP32CAM
00015 #include <WiFi.h>

00016 #endif

00017

00018 #include "common/secrets.h"

00019

00020 class NetCommander {

00021 public:

00022 [*x

00023 « @brief Connects to a Wi-Fi network.

00024 *

00025 * @param ssid The SSID (name) of the Wi-Fi network.
00026 * @param password The password for the Wi-Fi network.
00027 */

00028 void connect (String ssid, String password);

00029

00030 [

00031 * @brief Disconnects from the Wi-Fi network.

00032 */

00033 void disconnect () ;

00034 };

Generated by Doxygen

36 File Documentation

6.7 include/common/secrets.h File Reference

Network and MQTT credentials for Leafy Automation firmware.

Macros

* #define WIFI_SSID "your-ssid"

* #define WIFI_PASSWORD "your-password”

« #define MQTT_SERVER "your-broker-ip"

+ #define MQTT_PORT 1883

» #define MQTT_CLIENT_ID "LeafyAutomationClient"

6.7.1 Detailed Description

Network and MQTT credentials for Leafy Automation firmware.

Definition in file secrets.h.

6.7.2 Macro Definition Documentation

6.7.2.1 MQTT_CLIENT_ID

#define MQTT_CLIENT_ID "LeafyAutomationClient"

Definition at line 17 of file secrets.h.

6.7.2.2 MQTT_PORT

#define MQTT_PORT 1883

Definition at line 16 of file secrets.h.

6.7.2.3 MQTT_SERVER

#define MQTT_SERVER "your-broker—-ip"

Definition at line 15 of file secrets.h.

6.7.2.4 WIFI_PASSWORD

#define WIFI_PASSWORD "your-password"

Definition at line 12 of file secrets.h.

Generated by Doxygen

6.8 secrets.h

6.7.2.5 WIFI_SSID

#define WIFI_SSID "your-ssid"

Definition at line 11 of file secrets.h.

6.8 secrets.h

Go to the documentation of this file.

00001 /%
00002 « @file secrets.h

00003 « @brief Network and MQTT credentials for Leafy Automation firmware.

00004 «
00005 =/
00006

00007 #ifndef SECRETS_H
00008 #define SECRETS_H

00009

00010 // WiFi credentials

00011 #define WIFI_SSID "your-ssid"

00012 #define WIFI_PASSWORD "your-password"

00013

00014 // MQTT broker settings

00015 #define MQTT_SERVER "your-broker-ip"
00016 #define MQTT_PORT 1883

00017 #define MQTT_CLIENT_ID "LeafyAutomationClient"
00018 // Not sure if this will be required yet,

00019 // #define MQTT_USERNAME "your-mgtt-username"
00020 // #define MQTT_PASSWORD "your-mgtt-password"
00021

00022 #endif // SECRETS_H

00023

keeping for now

6.9 include/common/secrets.sample.h File Reference

Macros

« #define WIFI_SSID "your-ssid"

+ #define WIFI_PASSWORD "your-password"
« #define LA_SERVER_ADDR "ip-addr"

« #define LA_SERVER_PORT 5000

« #define LA_SERVER_TOKEN "your-token"

6.9.1 Macro Definition Documentation

6.9.1.1 LA_SERVER_ADDR

#define LA_SERVER_ADDR "ip-addr"

Definition at line 9 of file secrets.sample.h.

6.9.1.2 LA_SERVER_PORT

#define LA_SERVER_PORT 5000

Definition at line 10 of file secrets.sample.h.

Generated by Doxygen

38 File Documentation

6.9.1.3 LA_SERVER_TOKEN

#define LA_SERVER_TOKEN "your-token"

Definition at line 11 of file secrets.sample.h.

6.9.1.4 WIFI_PASSWORD

#define WIFI_PASSWORD "your-password"

Definition at line 8 of file secrets.sample.h.

6.9.1.5 WIFI_SSID

#define WIFI_SSID "your-ssid"
Copy this file to secrets.h and fill in the values

Definition at line 7 of file secrets.sample.h.

6.10 secrets.sample.h

Go to the documentation of this file.

00001 /*x
00002 =« Copy this file to secrets.h and fill in the wvalues
00003 =/

00004

00005 #pragma once
00006

00007 #define W _SSID
00008 #define W

'your-ssid"

SWORD "your-password"
00009 #define ER_ADDR "ip-addr"
00010 #define LA_SERVER_PORT 5000

00011 #define LA_SERVER_TOKEN "your-token"

6.11 include/common/util/logger.h File Reference

#include "Arduino.h"
#include "common/net/http.h"

Functions

+ void logger_print_line (String msg)
Simple logger which outputs to a REST endpoint.

6.11.1 Function Documentation
6.11.1.1 logger_print_line()

void logger_print_line (

String msg)

Simple logger which outputs to a REST endpoint.

Generated by Doxygen

6.12 logger.h

39

Parameters

‘ msg ‘ The message to log.

Definition at line 11 of file logger.h.

00011 {
00012 String res = HTTP (LA_SERVER_ADDR)
00013 .get ("/api/vl/log?msg=" + msg)
00014 .fetch ()

00015 .text ();

00016 }

6.12 logger.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include "Arduino.h"

00004

00005 #include "common/net/http.h"
00006

00007 /%%

00008 « @brief Simple logger which outputs to a REST endpoint.

00009 + @param msg The message to log.

00010 =/

00011 void logger_print_line(String msg) {
00012 String res = HTTP (LA_SERVER_ADDR)
00013 .get ("/api/vl/log?msg=" + msg)
00014 .fetch ()

00015 .text ();

00016 }

6.13 include/config.h File Reference

Project-wide configuration constants (pins, timings, ratios).

#include <Arduino.h>

Variables

« static constexpr uint8_t ARM_JOINTS =5
Number of stepper-driven joints (JO. .. J4).
« static constexpr uint8_t STEP_PIN [ARM_JOINTS]
STEP pin mapping for joints JO. .. J4.
« static constexpr uint8_t DIR_PIN [ARM_JOINTS]
DIR pin mapping for joints JO. . . J4.
» static constexpr uint16_t MICROSTEPS = 200
Microsteps per full revolution.
« static constexpr float GEAR_RATIO [ARM_JOINTS]
Gear ratio for each joint.
« static constexpr float MAX_OUTPUT_RPM [ARM_JOINTS]
Max output RPM per joint.
« static constexpr uint8_t LIMIT_LEFT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint's left limit switch (Active LOW)

Generated by Doxygen

40

File Documentation

« static constexpr uint8_t LIMIT_RIGHT_PINS [ARM_JOINTS]

Array of digital input pins connected to each joint’s right limit switch (Active LOW)
« static constexpr uint8_t GRIPPER_SERVO_PIN

PWM pin for the servo controlling the gripper (End Effector, EF).
+ static constexpr unsigned long GRIP_MOVE_TIME_MS = 500

Allocated time in milliseconds for the gripper to open/close.
« static constexpr uint8_t GRIPPER_CLOSED_ANGLE =0

Open closed (degrees) for the gripper servo.
« static constexpr uint8_t GRIPPER_OPEN_ANGLE = 90

Open angle (degrees) for the gripper servo.

6.13.1 Detailed Description
Project-wide configuration constants (pins, timings, ratios).

Author

Elin Gravningen

Central place for hardware mapping and motion parameters that may vary as the project develops (such as adapting

gripping according to plant type).

Definition in file config.h.

6.14 config.h

Go to the documentation of this file.
00001 // config.h

00002 #ifndef CONFIG_H

00003 #define CONFIG_H

00004

00005 #include <Arduino.h>

00006

00007 /=%

00008 =« Q@file config.h

00009 «* Rauthor Elin Gravningen

00010 « @brief Project-wide configuration constants (pins, timings, ratios).
00011 =« Qdetails Central place for hardware mapping and motion parameters that
00012 «+ may vary as the project develops (such as adapting gripping according to
00013 =« plant type).

00014 «

00015 « Qdefgroup Configuration Configuration

00016 * @f

00017 =/

00018

00019 /// @var ARM_JOINTS

00020 /// Number of stepper-driven joints (JO0...J4).
00021 static constexpr uint8_t ARM_JOINTS = 5;

00022

00023 /// @var STEP_PIN

00024 /// STEP pin mapping for joints J0...J4.

00025 /// @pre STEP_PIN size must equal ARM_JOINTS
00026 static constexpr uint8_t STEP_PIN[ARM_JOINTS] = {

00027 /% J0 %/ 1, // TO DO: Replace 1ls with actual pin numbers
00028 /x Jl =/ 1,

00029 /* J2 %/ 1,

00030 /% J3 %/ 1,

00031 /% J4 %/ 1};

00032

00033 /// @var DIR_PIN
00034 /// DIR pin mapping for joints J0...J4.

00035 static constexpr uint8_t DIR_PIN[ARM_JOINTS] = {
00036 /%« J0 %=/ 1, // TO DO: Replace 1ls with actual pin numbers
00037 /x Jl =/ 1,

Generated by Doxygen

6.15 include/modules/base/main_base.h File Reference

00038 /% J2 %/ 1,
00039 /% J3 %/ 1,
00040 /% J4 %/ 1};
00041

00042 /// @var MICROSTEPS

00043 /// Microsteps per full revolution

00044 static constexpr uintlé_t MICROSTEPS = 200;

00045

00046 /// @var GEAR_RATIO

00047 /// Gear ratio for each joint

00048 static constexpr float GEAR_RATIO[ARM_JOINTS] = {

00049 /*x J0 =/ 1.0f / 10.0f,
00050 /% Jl =/ 1.0f / 50.0f,
00051 /% J2 =/ 1.0f / 50.0f
00052 /% J3 %/ 1.0f / 19.0f
00053 /% J4 %/ 1.0f / 16.0f};
00054

00055 /// @var MAX_OUTPUT_RPM
00056 /// Max output RPM per joint

00057 static constexpr float MAX_OUTPUT_RPM[ARM_JOINTS] = {
00058 /% J0 =/ 30.0f,

00059 /% J1 =/ 20.0f,

00060 /x J2 =/ 20.0f,

00061 /% J3 %/ 25.0f

00062 /% J4 %/ 25.0f};

00063

00064 /// @var LIMIT_LEFT_PINS

00065 /// Array of digital input pins connected to each joint’s left limit switch
00066 /// (Active LOW)

00067 /// Ringroup Configuration

00068 static constexpr uint8_t LIMIT_LEFT_PINS[ARM_JOINTS] = {

00069 XX, XX, XX, XX, xx}; // Replace with pin numbers

00070

00071 /// @var LIMIT_RIGHT_PINS

00072 /// Array of digital input pins connected to each joint’s right limit switch
00073 /// (Active LOW)

00074 /// Ringroup Configuration

00075 static constexpr uint8_t LIMIT_RIGHT_PINS[ARM_JOINTS] = {
00076 XX, XX, XX, XX, xx}; // Replace with pin numbers
00077

00078 /// @var GRIPPER_SERVO_PIN

00079 /// PWM pin for the servo controlling the gripper (End Effector, EF).
00080 static constexpr uint8_t GRIPPER_SERVO_PIN =

00081 1; // TO DO: Replace 1ls with actual pin numbers

00082

00083 /// @var GRIP_MOVE_TIME_MS

00084 /// Allocated time in milliseconds for the gripper to open/close.
00085 static constexpr unsigned long GRIP_MOVE_TIME_MS = 500;

00086

00087 /// @var GRIPPER_CLOSED_ANGLE

00088 /// Open closed (degrees) for the gripper servo.

00089 static constexpr uint8_t GRIPPER_CLOSED_ANGLE = 0;

00090

00091 /// @var GRIPPER_OPEN_ANGLE

00092 /// Open angle (degrees) for the gripper servo.

00093 static constexpr uint8_t GRIPPER_OPEN_ANGLE = 90;

00094

00095 #endif // CONFIG_H

00096 /+x @} %/ // end of Configuration

6.15 include/modules/base/main_base.h File Reference

Functions

+ void main_base_setup ()

Defines the code paths for the Arduino (base system).
« void main_base_loop ()

6.15.1 Function Documentation
6.15.1.1 main_base_loop()

void main_base_loop ()

Generated by Doxygen

42 File Documentation

6.15.1.2 main_base_setup()

void main_base_setup ()

Defines the code paths for the Arduino (base system).

6.16 main_base.h

Go to the documentation of this file.

00001 /%

00002 =« Q@brief Defines the code paths for the Arduino (base system).
00003 «/

00004

00005 #pragma once

00006

00007 void main_base_setup();

00008

00009 void main_base_loop();

6.17 include/modules/cam/esp32-cam-gpio.h File Reference

This file is based on the esp32-cam CameraWebServer example from the arduino-esp32 repository. https«
://github.com/espressif/arduino—-esp32.

#include "esp_camera.h"

Macros

« #define PWDN_GPIO_NUM 32
« #define RESET_GPIO_NUM -1
* #define XCLK_GPIO_NUM 0

- #define SIOD_GPIO_NUM 26
« #define SIOC_GPIO_NUM 27
« #define Y9_GPIO_NUM 35

« #define Y8_GPIO_NUM 34

« #tdefine Y7_GPIO_NUM 39

« #define Y6_GPIO_NUM 36

* #define Y5_GPIO_NUM 21

« #define Y4_GPIO_NUM 19

- #define Y3_GPIO_NUM 18

- #define Y2_GPIO_NUM 5

- #define VSYNC_GPIO_NUM 25
- #define HREF_GPIO_NUM 23
- #define PCLK_GPIO_NUM 22
« #define LED_GPIO_NUM 4

Functions

» camera_config_t setupCameraConfig ()

Generated by Doxygen

6.17 include/modules/cam/esp32-cam-gpio.h File Reference 43

6.17.1 Detailed Description

This file is based on the esp32-cam CameraWebServer example from the arduino-esp32 repository. https«
://github.com/espressif/arduino—-esp32.

Copyright Espressif Systems (Shanghai) PTE LTD

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General

Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Definition in file esp32-cam-gpio.h.

6.17.2 Macro Definition Documentation

6.17.2.1 HREF_GPIO_NUM

#define HREF_GPIO_NUM 23

Definition at line 42 of file esp32-cam-gpio.h.

6.17.2.2 LED_GPIO_NUM

#define LED_GPIO_NUM 4

Definition at line 46 of file esp32-cam-gpio.h.

6.17.2.3 PCLK_GPIO_NUM

#define PCLK_GPIO_NUM 22

Definition at line 43 of file esp32-cam-gpio.h.

6.17.2.4 PWDN_GPIO_NUM

#define PWDN_GPIO_NUM 32

Definition at line 27 of file esp32-cam-gpio.h.

Generated by Doxygen

44

File Documentation

6.17.2.5 RESET_GPIO_NUM

#define RESET_GPIO_NUM -1

Definition at line 28 of file esp32-cam-gpio.h.

6.17.2.6 SIOC_GPIO_NUM

#define SIOC_GPIO_NUM 27

Definition at line 31 of file esp32-cam-gpio.h.

6.17.2.7 SIOD_GPIO_NUM

#define SIOD_GPIO_NUM 26

Definition at line 30 of file esp32-cam-gpio.h.

6.17.2.8 VSYNC_GPIO_NUM

#define VSYNC_GPIO_NUM 25

Definition at line 41 of file esp32-cam-gpio.h.

6.17.2.9 XCLK_GPIO_NUM

#define XCLK_GPIO_NUM O

Definition at line 29 of file esp32-cam-gpio.h.

6.17.2.10 Y2_GPIO_NUM

#define Y2_GPIO_NUM 5

Definition at line 40 of file esp32-cam-gpio.h.

6.17.2.11 Y3_GPIO_NUM

#define Y3_GPIO_NUM 18

Definition at line 39 of file esp32-cam-gpio.h.

6.17.2.12 Y4_GPIO_NUM

#define Y4_GPIO_NUM 19

Definition at line 38 of file esp32-cam-gpio.h.

Generated by Doxygen

6.17 include/modules/cam/esp32-cam-gpio.h File Reference

45

6.17.2.13 Y5_GPIO_NUM

#define Y5_GPIO_NUM 21

Definition at line 37 of file esp32-cam-gpio.h.
6.17.2.14 Y6_GPIO_NUM

#define Y6_GPIO_NUM 36

Definition at line 36 of file esp32-cam-gpio.h.
6.17.2.15 Y7_GPIO_NUM

#define Y7_GPIO_NUM 39

Definition at line 35 of file esp32-cam-gpio.h.
6.17.2.16 Y8_GPIO_NUM

#define Y8_GPIO_NUM 34

Definition at line 34 of file esp32-cam-gpio.h.
6.17.2.17 Y9_GPIO_NUM

#define Y9_GPIO_NUM 35

Definition at line 33 of file esp32-cam-gpio.h.
6.17.3 Function Documentation
6.17.3.1 setupCameraConfig()

camera_config_t setupCameraConfig ()

Definition at line 48 of file esp32-cam-gpio.h.

00048 {
00049 camera_config_t config;

00050 config.ledc_channel = LEDC_CHANNEL_O;
00051 config.ledc_timer = LEDC_TIMER_O;
00052 config.pin_d0 = Y2_GPIO_NUM;

00053 config.pin_dl = Y3_GPIO_NUM;

00054 config.pin_d2 = Y4_GPIO_NUM;

00055 config.pin_d3 = Y5_GPIO_NUM;

00056 config.pin_d4 = Y6_GPIO_NUM;

00057 config.pin_d5 = Y7_GPIO_NUM;

00058 config.pin_d6 = Y8_GPIO_NUM;

00059 config.pin_d7 = Y9_GPIO_NUM;

00060 config.pin_xclk = XCLK_GPIO_NUM;
00061 config.pin_pclk = PCLK_GPIO_NUM;
00062 config.pin_vsync = VSYNC_GPIO_NUM;
00063 config.pin_href = HREF_GPIO_NUM;
00064 config.pin_sccb_sda = SIOD_GPIO_NUM;
00065 config.pin_sccb_scl = SIOC_GPIO_NUM;
00066 config.pin_pwdn = PWDN_GPIO_NUM;
00067 config.pin_reset = RESET_GPIO_NUM;
00068 config.xclk_freqg hz = 20000000;

00069 config.frame_size = FRAMESIZE_VGA;
00070 config.pixel_format = PIXFORMAT_JPEG;
00071 config.grab_mode = CAMERA_GRAB_LATEST;
00072 config.fb_location = CAMERA_FB_IN_PSRAM;
00073 config.jpeg_quality = 10;

00074 config.fb_count = 2;

00075

00076 et config;

00077 }

Generated by Doxygen

46 File Documentation

6.18 esp32-cam-gpio.h

Go to the documentation of this file.

00001 /==
00002 * @file
00003 =« @brief This file is based on the esp32-cam CameraWebServer example from the arduino-esp32

repository.
00004 + https://github.com/espressif/arduino-esp32
00005
00006 « Copyright Espressif Systems (Shanghai) PTE LTD
00007

00008 = This library is free software; you can redistribute it and/or

00009 = modify it under the terms of the GNU Lesser General Public

00010 =« License as published by the Free Software Foundation; either

00011 « version 2.1 of the License, or (at your option) any later version.
00012

00013 «+ This library is distributed in the hope that it will be useful,
00014 but WITHOUT ANY WARRANTY; without even the implied warranty of
00015 =+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
00016 «* Lesser General Public License for more details.

00017

00018 «* You should have received a copy of the GNU Lesser General Public
00019 =« License along with this library; if not, write to the Free Software
00020 =« Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

00021 =/

00022

00023 #pragma once

00024

00025 #include "esp_camera.h"
00026

00027 #define PWDN_GPIO_NUM 32
00028 #define RESET_GPIO_NUM -1
00029 #define XCLK_GPIO_NUM O

00030 #define SIOD_GPIO_NUM 26
00031 #define SIOC_GPIO_NUM 27

00032

00033 #define Y9_GPIO_NUM 35
00034 #define Y8_GPIO_NUM 34
00035 #define Y7_GPIO_NUM 39
00036 #define Y6_GPIO_NUM 36
00037 #define Y5_GPIO_NUM 21
00038 #define Y4_GPIO_NUM 19
00039 #define Y3_GPIO_NUM 18
00040 #define Y2_GPIO_NUM 5

00041 #define VSYNC_GPIO_NUM 25

00042 #define HREF_GPIO_NUM 23

00043 #define PCLK_GPIO_NUM 22

00044

00045 // 4 for flash led or 33 for normal led
00046 #define LED_GPIO_NUM 4

00047

00048 camera_config_t setupCameraConfig() {
00049 camera_config_t config;

00050 config.ledc_channel = LEDC_CHANNEL_O;
00051 config.ledc_timer = LEDC_TIMER_O;
00052 config.pin_d0 = Y2_GPIO_NUM;

00053 config.pin_dl = Y3_GPIO_NUM;

00054 config.pin_d2 = Y4_GPIO_NUM;

00055 config.pin_d3 = Y5_GPIO_NUM;

00056 config.pin_d4 = Y6_GPIO_NUM;

00057 config.pin_d5 = Y7_GPIO_NUM;

00058 config.pin_d6 = Y8_GPIO_NUM;

00059 config.pin_d7 = Y9_GPIO_NUM;

00060 config.pin_xclk = XCLK_GPIO_NUM;
00061 config.pin_pclk = PCLK_GPIO_NUM;
00062 config.pin_vsync = VSYNC_GPIO_NUM;
00063 config.pin_href = HREF_GPIO_NUM;
00064 config.pin_sccb_sda = SIOD_GPIO_NUM;
00065 config.pin_sccb_scl = SIOC_GPIO_NUM;
00066 config.pin_pwdn = PWDN_GPIO_NUM;
00067 config.pin_reset = RESET_GPIO_NUM;
00068 config.xclk_freqg hz = 20000000;

00069 config.frame_size = FRAMESIZE_VGA;
00070 config.pixel_format = PIXFORMAT_JPEG;
00071 config.grab_mode = CAMERA_GRAB_LATEST;
00072 config.fb_location = CAMERA_FB_IN_PSRAM;
00073 config.jpeg_quality = 10;

00074 config.fb_count = 2;

00075

00076 return config;

00077 }

Generated by Doxygen

6.19 include/modules/cam/main_cam.h File Reference

47

6.19 include/modules/cam/main_cam.h File Reference

Functions

+ void main_cam_setup ()

Defines the code paths for the Cam (esp32-cam).
* void main_cam_loop ()

6.19.1 Function Documentation
6.19.1.1 main_cam_loop()

void main_cam_loop ()

6.19.1.2 main_cam_setup()

void main_cam_setup ()

Defines the code paths for the Cam (esp32-cam).

6.20 main_cam.h

Go to the documentation of this file.

00001 /==
00002 =« @brief Defines the code paths for the Cam (esp32-cam).
00003 «/

00004

00005 #pragma once

00006

00007 void main_cam_setup();
00008

00009 void main_cam_loop () ;

6.21 include/Utilities.h File Reference

6.22 Utilities.h

Go to the documentation of this file.
00001

6.23 src/base/main_base.cpp File Reference

#include "modules/base/main_base.h"

Generated by Doxygen

48 File Documentation

6.24 main_base.cpp

Go to the documentation of this file.

00001 #include "modules/base/main_base.h"
00002

00003 #ifdef PLATFORMIO_ENV_UNO_R4_WIFI
00004 #include "common/net/net_commander.h"
00005 #1 lude "common/net/http.h"

00006 clude "common/api/api.h"

00007

00008 NetCommander netCommander;

00009 API api (LA_SERVER_TOKEN) ;

00010

00011 void main_base_setup() {

00012 Serial.begin(9600);

00013

00014 netCommander.connect (WIFI_SSID, WIFI_PASSWORD) ;
00015

00016 String res = HTTP (LA_SERVER_ADDR)
00017 .get ("/api/v1l")

00018 .fetch ()

00019 .text ();

00020

00021 Serial.println(res);

00022

00023 netCommander.disconnect () ;

00024 }

00025

00026 void main_base_loop () {

00027

00028 }

00029

00030 #endif

6.25 src/common/api/api.cpp File Reference

#include "common/api/api.h"

6.26 api.cpp

Go to the documentation of this file.
00001 #include "common/api/api.h"

00002

00003 API::API(String access_token) {
00004 this->auth_token = access_token;
00005 }

00006

00007 bool API::ping() {

00008 ~turn HTTP (LA_SERVER_ADDR)
00009 .get ("/")

00010 .fetch()

00011 .text () = "";

00012 1}

6.27 src/common/net/http.cpp File Reference

#include "common/net/http.h"

Generated by Doxygen

6.28 http.cpp

6.28 http.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

#include
WiFiClie
HTTP: :HT

this

this

it

}

HTTP& HT
iE

}
HTTP

retu

}

HTTP& HT
if

}

HTTP::client.println("GET " + path + " HTTP/1.1");
::client.println("Host: " + this->host);

HTTP
HTTP
clie

eturn

}

HTTP& HT
1t

HTTP:
HTTP:
HTTP:
HTTP:
HTTP:

clie
HTTP

retu
}

HTTP& HT
it |

}

whil

}

clie

return

}

"common/net/http.h"
nt HTTP::client;

TP (String host) {
—->host = host;

->connected = client.connect (host.c_str(),

'this->connected) {

Serial.println ("HTTP request failed");

TP::header (String key, String value) {

'this—->connected) {
return *this;

::client.println(key + ": " + value);

rn *this;

TP::get (String path) {
'this—>connected) {
return xthis;

::client.println("Connection: close");
nt.println(); // Double crlf (carriage return line feed) to end the request.

«this;

TP::post (String path, uint8_t«* data,

'this->connected) {
return xthis;

:client.println("Content-Type:

LA_SERVER_PORT) ;

size_t data_length) {

:client.println ("POST " + path + " HTTP/1.1");
:client.println("Host: " + this->host);

application/octet-stream") ;

:client.println("Content-Length: " + String(data_length));
:client.println("Connection: keep-alive");

nt.println(); // Double crlf (carriage return line feed) to end the request.

::client.write(data, data_length);

rn *this;

TP::fetch () {
'this->connected) {
return *xthis;
e (client.connected()) {
if (client.available()) {
this->response += (char) client.read();
}
nt.stop();

«this;

String HTTP::text () {

retu

}

rn this->response;

JsonDocument HTTP::json() {
JsonDocument doc;

Dese

it |

rializationError error = deserializeJson (doc,

error) {
Serial.print ("deserializedJson ()
Serial.println(error.c_str());

failed:

")

this->response);

Generated by Doxygen

50 File Documentation

00083 doc.clear();
00084 }

00085

00086 doc;
00087 }

6.29 src/common/net/net_commander.cpp File Reference

#include "common/net/net_commander.h"

6.30 net_commander.cpp

Go to the documentation of this file.

00001 #include "common/net/net_commander.h"

00002

00003 void NetCommander::connect (String ssid, String password) {
00004 Serial.println("Connecting to WiFi...");
00005

00006 WiFi.begin(ssid.c_str (), password.c_str());
00007

00008 (WiFi.status () != WL_CONNECTED) {
00009 delay (1000) ;

00010 Serial.println(".");

00011 }

00012

00013 Serial.println("Connected to WiFi!");

00014 1}

00015

00016 void NetCommander::disconnect () {

00017 WiFi.disconnect () ;

00018 Serial.println("Disconnected from WiFi.");
00019 }

6.31 src/communication_manager/communication_manager.cpp File
Reference

Implementation of the Communication Manager module.

#include "communication_manager.h"
#include "MQTT_client.h"

#include "gripper_driver.h"
#include "motor_driver.h"

Functions

+ static void handleMoveCommand (const String &incCommand)

Handle a MOVE command by parsing it into 5 values which are then converted and sent to joint actuators via
movedoint(). Sets movementinProgress = true to indicate motion has started. This flag is later cleared by
checkActionStatus() once all joints reach their targets.

« static void handleGripperCommand (const String &incCommand)
Handle a GRIP command: 0 = open, 1 = close. Sets gripperinProgress = true to indicate motion has started. This
flag is later cleared by checkActionStatus() once all joints reach their targets.

« static void handleCalibrationCommand (const String &incCommand)
Handle a CALIBRATE command: 0 = cancel, 1 = start calibration. Sets calibrationIinProgress = true to indicate motion
has started. This flag is later cleared by checkActionStatus() once all joints reach their targets.

+ void handlelncomingCommand (const String &command)

Handle an incoming command and route it to the appropriate module.
« void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

Generated by Doxygen

6.31 src/communication_manager/communication_manager.cpp File Reference 51

Variables

« static bool calibrationInProgress = false
« static bool movementinProgress = false
« static bool gripperInProgress = false

6.31.1 Detailed Description

Implementation of the Communication Manager module.

Author

Elin Gravningen

Parses and routes incoming MQTT command strings to the driver modules, and monitors action completion to
publish DONE events.

Definition in file communication_manager.cpp.

6.31.2 Function Documentation

6.31.2.1 handleCalibrationCommand()

static void handleCalibrationCommand (

const String & command) [static]

Handle a CALIBRATE command: 0 = cancel, 1 = start calibration. Sets calibrationInProgress = true to indicate
motion has started. This flag is later cleared by checkActionStatus() once all joints reach their targets.

Definition at line 50 of file communication_manager.cpp.

00050 {

00051 publishStatus (MQTT_TOPIC_STATUS_COMMAND, incCommand);

00052

00053 int state = incCommand.substring(incCommand.indexOf(’ ") + 1).toInt();
00054 if (state == 1) {

00055 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATE RECEIVED");
00056 calibrationInProgress = true;

00057 calibrateAllJoints () ;

00058 calibrationInProgress = false;

00059 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00060 } else {

00061 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION,

00062 "CALIBRATE CANCELED"); // Qtodo: Should we implement
00063 // calibration cancellation?
00064 calibrationInProgress = false;

00065 }

00066 }

6.31.2.2 handleGripperCommand()

static void handleGripperCommand (

const String & command) [static]

Handle a GRIP command: 0 = open, 1 = close. Sets gripperIinProgress = true to indicate motion has started. This
flag is later cleared by checkActionStatus() once all joints reach their targets.

Definition at line 99 of file communication_manager.cpp.

00099 {
00100 publishStatus (MQTT_TOPIC_STATUS_COMMAND, incCommand) ;
00101 int state = incCommand.substring(incCommand.indexOf(’ ") + 1).toInt();

00102 moveGripper (state) ;
00103 gripperInProgress = true;
00104 }

Generated by Doxygen

52 File Documentation

6.31.2.3 handleMoveCommand()

static void handleMoveCommand (

const String & command) [static]

Handle a MOVE command by parsing it into 5 values which are then converted and sent to joint actuators
via movedoint(). Sets movementInProgress = true to indicate motion has started. This flag is later cleared by
checkActionStatus() once all joints reach their targets.

Definition at line 72 of file communication_manager.cpp.

00072 {
00073 publishStatus (MQTT_TOPIC_STATUS_COMMAND, incCommand);
00074 int32_t jointValues|[5];

00075 int index = 0;

00076 int argStart = incCommand.indexOf (" ") + 1;

00077

00078 while (index < 5) {

00079 int argEnd = incCommand.indexOf (" ’, argStart);

00080 if (argkEnd == -1)

00081 argkEnd = incCommand.length () ;

00082 jointValues[index++] = incCommand.substring(argStart, argEnd) .toInt();
00083 argStart = argkEnd + 1;

00084 }

00085

00086 moveJoint (0, jointvValues[0]); // JO
00087 moveJdoint (1, jointvalues[1]); // J1
00088 moveJoint (2, jointValues[2]); // J2
00089 moveJoint (3, jointvValues[3]); // J3
(4, 1)

00090 moveJoint jointValues[4 // J4
00091

00092 movement InProgress = true;

00093 }

6.31.3 Variable Documentation

6.31.3.1 calibrationInProgress

bool calibrationInProgress = false [static]

Definition at line 18 of file communication_manager.cpp.

6.31.3.2 gripperinProgress

bool gripperInProgress = false [static]

Definition at line 20 of file communication_manager.cpp.

6.31.3.3 movementinProgress

bool movementInProgress = false [static]

Definition at line 19 of file communication_manager.cpp.

Generated by Doxygen

6.32 communication_manager.cpp

53

6.32 communication_manager.cpp

Go to the documentation of this file.

00001 /=%
00002 «+ @file communication_manager.cpp

00003 * Qauthor Elin Gravningen

00004 * @brief Implementation of the Communication Manager module.

00005 =« Qdetails Parses and routes incoming MQTT command strings to the driver
00006 = modules, and monitors action completion to publish DONE events.
00007 =

00008 «* @ingroup Communication_Manager

00009 =/

00010

00011 #include "communication_manager.h"

00012 #include "MQTT_client.h"™ // for publishStatus()

00013 #include "gripper_driver.h"

00014 #include "motor_driver.h"

00015

00016 // Internal flags to track the state of calibration, movement, and gripper
00017 // actions.

00018 static bool calibrationInProgress = false;
00019 static bool movementInProgress = false;
00020 static bool gripperInProgress = false;
00021

00022 // Internal helper function declarations for parsing and handling specific
00023 // commands

00024 static void handleMoveCommand (const String &command) ;

00025 static void handleGripperCommand (const String &command) ;

00026 static void handleCalibrationCommand (const String &command);

00027

00028 /// Handle an incoming command and route it to the appropriate module.
00029 /// @ingroup Communication_Manager

00030 void handleIncomingCommand (const String &command) {

00031 String trimmed = command;

00032 trimmed.trim(); // Removing leading/trailing whitespaces

00033

00034 if (trimmed.startsWith ("MOVE")) ({

00035 handleMoveCommand (trimmed) ;

00036 } else if (trimmed.startsWith ("GRIP")) {

00037 handleGripperCommand (trimmed) ;

00038 } else if (trimmed.startsWith ("CALIBRATE")) {

00039 handleCalibrationCommand (trimmed) ;

00040 } else {

00041 Serial.print (" [CommunicationManager] Unknown command: ");
00042 Serial.println (trimmed);

00043 }

00044 }

00045

00046 /// Handle a CALIBRATE command: 0 = cancel, 1 = start calibration.
00047 /// Sets calibrationInProgress = true to indicate motion has started.

00048 /// This flag is later cleared by checkActionStatus() once all joints reach
00049 /// their targets.

00050 static void handleCalibrationCommand (const String &incCommand) {

00051 publishStatus (MQTT_TOPIC_STATUS_COMMAND, incCommand) ;

00052

00053 int state = incCommand.substring(incCommand.indexOf(’) + 1).toInt();

00054 if (state == 1) {

00055 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATE RECEIVED");

00056 calibrationInProgress = true;

00057 calibrateAllJoints () ;

00058 calibrationInProgress = false;

00059 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");

00060 } else {

00061 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION,

00062 "CALIBRATE CANCELED"); // Qtodo: Should we implement

00063 // calibration cancellation?

00064 calibrationInProgress = false;

00065 }

00066 }

00067

00068 /// Handle a MOVE command by parsing it into 5 values which are then converted
00069 /// and sent to joint actuators via moveJoint (). Sets movementInProgress = true

00070 /// to indicate motion has started. This flag is later cleared by
00071 /// checkActionStatus() once all joints reach their targets.
00072 static void handleMoveCommand (const String &incCommand) {

00073 publishStatus (MQTT_TOPIC_STATUS_COMMAND, incCommand);

00074 int32_t jointValues[5];

00075 int index = 0;

00076 int argStart = incCommand.indexOf (" ") + 1;

00077

00078 while (index < 5) {

00079 int argEnd = incCommand.indexOf (’ ', argStart);

00080 if (argkEnd == -1)

00081 argkEnd = incCommand.length();

00082 jointValues[index++] = incCommand.substring(argStart, argEnd).toInt();

Generated by Doxygen

54 File Documentation

00083 argStart = argkEnd + 1;
00084 }
00085

00086 moveJoint (0, jointValues // J0

[01);
00087 moveJoint (1, jointvalues[1]); // J1
00088 moveJoint (2, jointValues[2]); // J2
00089 moveJoint (3, jointValues[3]); // J3
00090 moveJoint (4, jointValues[4]); // J4
00091
00092 movement InProgress = true;
00093 }
00094

00095 /// Handle a GRIP command: 0 = open, 1 = close.

00096 /// Sets gripperInProgress = true to indicate motion has started.

00097 /// This flag is later cleared by checkActionStatus() once all joints reach
00098 /// their targets.

00099 static void handleGripperCommand (const String &incCommand) {

00100 publishStatus (MQTT_TOPIC_STATUS_COMMAND, incCommand) ;

00101 int state = incCommand.substring(incCommand.indexOf(’ ") + 1).toInt();
00102 moveGripper (state);

00103 gripperInProgress true;
00104 }

00105

00106 /%%

00107 «* @brief Checks in-progress flags and publish DONE messages.

00108 «* @ingroup Communication_Manager

00109 * @note Must be called each loop to detect action completion promptly.
00110 * Qreturn void

00111 =/

00112 void checkActionStatus() {

00113

00114 if (calibrationInProgress && calibrationDone()) {

00115 publishStatus (MQTT_TOPIC_STATUS_CALIBRATION, "CALIBRATION DONE");
00116 calibrationInProgress = false;

00117 }

00118 if (movementInProgress && allJointsDone()) {

00119 publishStatus (MQTT_TOPIC_STATUS_MOTION, "MOVE DONE");
00120 movementInProgress = false;

00121 }

00122

00123 if (gripperInProgress && gripperDone()) {

00124 publishStatus (MQTT_TOPIC_STATUS_GRIPPER, "GRIPPER DONE");
00125 gripperInProgress = false;

00126 }

00127 }

6.33 src/communication_manager/communication_manager.h File
Reference

Parses incoming MQTT commands and publishes status updates.

#include <Arduino.h>

Functions

+ void handlelncomingCommand (const String &command)

Handle an incoming command and route it to the appropriate module.
+ void checkActionStatus ()

Checks in-progress flags and publish DONE messages.

6.33.1 Detailed Description

Parses incoming MQTT commands and publishes status updates.
Author

Elin Gravningen

This module is responsible for interpreting command strings received via MQTT and dispatches the messages to
the appropriate actuator logic. It also sends status updates back to the Central Leafy Automation ROS2 system.

Definition in file communication_manager.h.

Generated by Doxygen

6.34 communication_manager.h 55

6.34 communication_manager.h

Go to the documentation of this file.

00001 #ifndef COMMUNICATION_MANAGER_H
00002 #define COMMUNICATION_MANAGER_H
00003

00004 #include <Arduino.h>

00005

00006 /**

00007 =« Q@file communication_manager.h

00008 = Rauthor Elin Gravningen

00009 =« @brief Parses incoming MQTT commands and publishes status updates.

00010 % @details This module is responsible for interpreting command strings received
00011 =« via MQTT and dispatches the messages to the appropriate actuator logic. It
00012 « also sends status updates back to the Central Leafy Automation ROS2 system.
00013 =«

00014 =« Qdefgroup Communication_Manager Communication Manager

00015 = @{

00016 =/

00017

00018 /%%

00019 « @brief Decode and route a received command string.

00020 =« @param command Text like "MOVE 100 200 300 400 500" or "GRIP 1".
00021 * Qreturn void

00022 « @ingroup Communication_Manager

00023 = @note Is called from the MQTT Client’s callback.

00024 «/

00025 void handleIncomingCommand (const String &command) ;

00026

00027 /xx

00028 =« @brief Checks in-progress flags and publishes DONE messages.

00029 «* @details Checks the movementInProgress, gripperInProgress, and

00030 «* calibrationInProgress flags. For each flag that is set, it calls the
00031 « corresponding completion test:

00032 = — allJointsDone () for MOVE

00033 = - gripperDone () for GRIP

00034 « — calibrationDone () for CALIBRATE

00035 If the test returns true, it publishes the respective “DONE” status
00036 * via publishStatus() and clears the in-progress flag.

00037 = Qreturn void

00038 «* @ingroup Communication_Manager

00039 «* @note Must be called in every main loop to catch completions promptly.

00040 =/

00041 void checkActionStatus();

00042

00043 #endif // COMMUNICATION_MANAGER_H
00044

00045 /** @} %/ // end of Communication_Manager

6.35 src/gripper_driver/gripper_driver.cpp File Reference

Controls the gripper servo (End Effector EF).

#include "gripper_driver.h"
#include "config.h"
#include <Servo.h>

Functions

+ void initGripper ()
Initialise the gripper servo on its PWM pin and open it.
+ void moveGripper (int state)

Command the gripper to open (state=0) or close (state=1).
+ void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.
* bool gripperDone ()

Returns true if the gripper has completed its movement.

Generated by Doxygen

56 File Documentation

Variables

+ static Servo gripperServo
« static bool moving = false
« static unsigned long moveStartTime = 0

6.35.1 Detailed Description

Controls the gripper servo (End Effector EF).

Author

Elin Gravningen

Definition in file gripper_driver.cpp.

6.36 gripper_driver.cpp

Go to the documentation of this file.

00001 /=

00002 « @file gripper_driver.cpp

00003 «# Rauthor Elin Gravningen

00004 « @brief Controls the gripper servo (End Effector EF).
00005 =« Qdefgroup Gripper_Driver Gripper Driver

00006 * @f

00007 =/

00008

00009 #include "gripper_driver.h"

00010 #include "config.h"

00011 #include <Servo.h>

00012

00013 // Servo object for gripper

00014 static Servo gripperServo;

00015

00016 // Movement state

00017 static bool moving = false;

00018 static unsigned long moveStartTime = O;
00019

00020 /// @ingroup Gripper_Driver

00021 /// Initialise the gripper servo on its PWM pin and open it.
00022 void initGripper () {

00023 gripperServo.attach (GRIPPER_SERVO_PIN) ;
00024 gripperServo.write (GRIPPER_OPEN_ANGLE) ;
00025 moving = false;

00026 }

00027

00028 /// @ingroup Gripper_Driver

00029 /// Command the gripper to open (state=0) or close (state=1).
00030 void moveGripper (int state) {

00031 uint8_t angle;

00032 if (state) {

00033 angle = GRIPPER_CLOSED_ANGLE;
00034 } else {

00035 angle = GRIPPER_OPEN_ANGLE;
00036 }

00037 gripperServo.write (angle);

00038 moveStartTime = millis();

00039 moving = true;

00040 }

00041

00042 /// Ringroup Gripper_Driver

00043 /// Update the gripper; clear the moving flag after the configured move time.
00044 void updateGripper () {

00045 1f (moving && (millis() - moveStartTime >= GRIP_MOVE_TIME_MS)) {
00046 moving = false;

00047 }

00048 }

00049

00050 /// Ringroup Gripper_Driver

00051 /// Returns true if the gripper has completed its movement.
00052 bool gripperDone() { return !moving; }

00053

00054 /x+ @} =/ // end of Gripper_Driver

Generated by Doxygen

6.37 src/gripper_driver/gripper_driver.h File Reference 57

6.37 src/gripper_driver/gripper_driver.h File Reference

Controls the gripper servo (End Effector EF).

#include <Arduino.h>

Functions

+ void initGripper ()
Initialise the gripper servo on its PWM pin and open it.
+ void moveGripper (int state)

Command the gripper to open (state=0) or close (state=1).
« void updateGripper ()

Update the gripper; clear the moving flag after the configured move time.
* bool gripperDone ()

Returns true if the gripper has completed its movement.

6.37.1 Detailed Description
Controls the gripper servo (End Effector EF).

Author

Elin Gravningen

Provides initialisation, open/close commands, and status checking for the gripper mechanism using the Servo
library.

Definition in file gripper_driver.h.

6.38 gripper_driver.h

Go to the documentation of this file.

00001 /=%
00002 « @file gripper_driver.h

00003 * Qauthor Elin Gravningen

00004 =« @brief Controls the gripper servo (End Effector EF).

00005 «+ @details Provides initialisation, open/close commands, and status checking
00006 x for the gripper mechanism using the Servo library.

00007 «* Qdefgroup Gripper_Driver Gripper Driver

00008 * @f

00009 =/

00010 #ifndef GRIPPER_DRIVER_H

00011 #define GRIPPER_DRIVER_H

00012

00013 #include <Arduino.h>

00014

00015 /%%

00016 « @brief Initialise the gripper servo and set to open position.
00017 «* @pre GRIPPER_SERVO_PIN must be defined in config.h.
00018 =« @post Servo is attached and moved to open angle.
00019 « @ingroup Gripper_Driver

00020 % @return void

00021 «/

00022 void initGripper();

00023

00024 /«x*

Generated by Doxygen

58 File Documentation

00025 «* @brief Command the gripper to open or close.
00026 «* @param state 0 = open, 1 = close.

00027 % @ingroup Gripper_Driver

00028 = Qreturn void

00029 «/

00030 void moveGripper (int state);

00031

00032 /%%

00033 «* @brief Must be called frequently to update the gripper motion state.
00034 «+ @ingroup Gripper_Driver

00035 «* @return void

00036 */

00037 void updateGripper();

00038

00039 /%%

00040 « @brief Check whether the gripper has completed its action.

00041 « @ingroup Gripper_Driver

00042 Qreturn true if no gripper motion is in progress.

00043 «/
00044 bool gripperDone () ;
00045

00046 #endif // GRIPPER_DRIVER_H

6.39 src/main.cpp File Reference

Entry point for the Arduino Uno R4 Wifi, responsible for low level motor control. Coordinates hardware and MQTT
handling.

#include "common/secrets.h"
#include "communication_manager.h"
#include "gripper_driver.h"
#include "motor_driver.h"

#include "mgtt_client.h"

#include <Arduino.h>

Functions

+ void setup ()

Arduino setup() — runs once on power-up or reset.
« void loop ()

Arduino loop() — runs continuously after setup().

6.39.1 Detailed Description

Entry point for the Arduino Uno R4 Wifi, responsible for low level motor control. Coordinates hardware and MQTT
handling.

Author

Elin Gravningen

Initialises serial, network, motor and gripper drivers, and enters the main control loop to service MQTT, motion
updates, status checks, and heartbeat.

Definition in file main.cpp.

Generated by Doxygen

6.39 src/main.cpp File Reference 59

6.39.2 Function Documentation

6.39.2.1 loop()

void loop ()
Arduino loop() — runs continuously after setup().
Note

Each iteration services MQTT traffic, steps motors and gripper, publishes completion events, and sends a
periodic heartbeat.

Definition at line 48 of file main.cpp.

00048 {

00049 mgttLoop () ; // Handle MQTT messages & reconnect logic

00050 updateMotors () ; // Advance each stepper motor toward its target
00051 updateGripper () ; // Update gripper movement timing

00052 checkActionStatus(); // Check if any actions are in progress (e.g., move,
00053 // gripper, calibration) and publish status

00054 sendHeartbeat () ; // Send regular "alive" status

00055 }

6.39.2.2 setup()

void setup ()
Arduino setup() — runs once on power-up or reset.
Note

Initialises Serial, WiFi, MQTT client, and hardware drivers, then registers the command callback for incoming
MQTT messages.

Definition at line 23 of file main.cpp.

00023 {

00024 Serial.begin(115200);

00025 wh -~ (!Serial) {

00026 delay (10);

00027 }

00028

00029 // Networking

00030 initwiFi () ; // Connect to WiFi

00031 initMQTT () ; // Connect to broker
00032 setMessageHandler (handleIncomingCommand); // Setting up the message handler
00033 // for incoming commands
00034

00035 // Hardware subsystems

00036 initMotors(); // Initialise stepper drivers (phase 1 drivers)
00037 initGripper(); // Initialise gripper

00038

00039 Serial.println("[System] Leafy Automation Core is ready");
00040 }

Generated by Doxygen

60

File Documentation

6.40 main.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055

6.41

[x*
* @file main.cpp
* Qauthor Elin Gravningen
* @brief Entry point for the Arduino Uno R4 Wifi, responsible for low level
* motor control. Coordinates hardware and MQTT handling.
* (@details Initialises serial, network, motor and gripper drivers, and enters
* the main control loop to service MQTT, motion updates, status checks, and
* heartbeat.

#include "common/secrets.h"
#include "communication_manager.h"
#include "gripper_driver.h"
#include "motor_driver.h"

#include "mgtt_client.h"

#include <Arduino.h>

[**
* @brief Arduino setup() -- runs once on power-up or reset.
* @note Initialises Serial, WiFi, MQTT client, and hardware drivers, then
* registers the command callback for incoming MQTT messages.
*/
void setup() {
Serial.begin(115200);
while (!Serial) {
delay(10);
}

// Networking

initWiFi () ; // Connect to WiFi

initMQTT () ; // Connect to broker

setMessageHandler (handleIncomingCommand); // Setting up the message handler
// for incoming commands

// Hardware subsystems
initMotors(); // Initialise stepper drivers (phase 1 drivers)
initGripper(); // Initialise gripper

Serial.println (" [System] Leafy Automation Core is ready");

}
[**

* @brief Arduino loop() —-- runs continuously after setup().
* @note Each iteration services MQTT traffic, steps motors and gripper,
* publishes completion events, and sends a periodic heartbeat.

*/

void loop () {
mgttLoop () ; // Handle MQTT messages & reconnect logic
updateMotors () ; // Advance each stepper motor toward its target
updateGripper () ; // Update gripper movement timing
checkActionStatus(); // Check if any actions are in progress (e.g., move,

// gripper, calibration) and publish status

sendHeartbeat () ; // Send regular "alive" status

}

src/motor_driver/motor_driver.cpp File Reference

Implementation of the Motor Driver for joints JO—J4.

#include "motor_driver.h"
#include "config.h"
#include <AccelStepper.h>

Functions

+ void initMotors ()

Generated by Doxygen

6.41 src/motor_driver/motor_driver.cpp File Reference 61

Initialise all stepper drivers’ speed & acceleration per config.h settings.
+ void movedoint (uint8_t jointindex, int32_t stepCount)

Queue a relative microstep move for a specific joint.
« void updateMotors ()

Must be called every loop in order to advance the stepper motors.
« void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.
* bool calibrationDone ()

Check if calibration has completed.
* bool allJointsDone ()

Check if all steppers have reached their targets.
* int32_t getdointPosition (uint8_t jointindex)
Get the current microstep position of a joint.
« void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

Variables

« static AccelStepper stepperMotors [ARM_JOINTS]
« static bool homed = false

true once homing has completed
« static bool homing = false

true while homing is in progress

6.41.1 Detailed Description

Implementation of the Motor Driver for joints JO—J4.

Author

Elin Gravningen

Uses the AccelStepper library to drive step/dir drivers, perform blocking homing via limit switches, and report motion
status.

Definition in file motor_driver.cpp.

6.41.2 Variable Documentation

6.41.2.1 homed

bool homed = false [static]
true once homing has completed

Definition at line 24 of file motor_driver.cpp.

Generated by Doxygen

62 File Documentation

6.41.2.2 homing

bool homing = false [static]
true while homing is in progress

Definition at line 25 of file motor_driver.cpp.

6.41.2.3 stepperMotors

AccelStepper stepperMotors[ARM_JOINTS] [static]

Initial value:

={
AccelStepper (AccelStepper: :DRIVER, STEP_PIN[O0] [0])
AccelStepper (AccelStepper: :DRIVER, STEP_PIN[1] [11)
AccelStepper (AccelStepper: :DRIVER, STEP_PIN[2], DIR_PIN[2]),
AccelStepper (AccelStepper: :DRIVER, STEP_PIN[3] [3])
AccelStepper (AccelStepper: :DRIVER, STEP_PIN[4] [41)

Definition at line 16 of file motor_driver.cpp.

00016 {

00017 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[O], DIR_PIN[O]),
00018 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[1], DIR_PIN[1l]),
00019 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[2], DIR_PIN[2]),
00020 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[3], DIR_PIN[3]),
00021 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[4], DIR_PIN[4])};

6.42 motor_driver.cpp

Go to the documentation of this file.

00001 /*x

00002 « @file motor_driver.cpp

00003 * Rauthor Elin Gravningen

00004 =« @brief Implementation of the Motor Driver for joints J0-J4.

00005 =« @details Uses the AccelStepper library to drive step/dir drivers, perform

00006 «x blocking homing via limit switches, and report motion status.
00007 x

00008 * Qingroup Motor_Driver

00009 =/

00010

00011 #include "motor_driver.h"

00012 #include "config.h"

00013 #include <AccelStepper.h>

00014

00015 // One AccelStepper instance per joint (JO...J4)
00016 static AccelStepper stepperMotors[ARM_JOINTS] =

, using the DRIVER interface.
{
00017 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[0], DIR_PIN

’

[01)
00018 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[1], DIR_PIN[1]),
00019 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[2], DIR_PIN[2]),
00020 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[3], DIR_PIN[3]),
00021 AccelStepper (AccelStepper: :DRIVER, STEP_PIN[4], DIR_PIN[4])};
00022
00023 // Homing state flag
00024 static bool homed false; ///< true once homing has completed
00025 static bool homing = false; ///< true while homing is in progress

00026

00027 /// Ringroup Motor_Driver

00028 /// Initialise all stepper drivers’ speed & acceleration per config.h settings.
00029 void initMotors () {

00030 for (uint8_t j = 0; J < ARM_JOINTS; ++7) {

00031 // compute max step rate: (RPM/60) % (microsteps/gear_ratio)
00032 float stepsPerSec =

00033 (MAX_OUTPUT_RPM[J] / 60.0f) % (MICROSTEPS / GEAR_RATIO[]]);
00034 stepperMotors|[]j].setMaxSpeed (stepsPerSec);

00035 stepperMotors|[j].setAcceleration (stepsPerSec x 2.0f);

00036 }

00037 homed = false;

00038 }

Generated by Doxygen

6.42 motor_driver.cpp

00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125

/// @ingroup Motor_Driver
void moveJoint (uint8_t jointIndex, int32_t stepCount) {
stepperMotors|[jointIndex] .move (stepCount) ;

}

/// Ringroup Motor_Driver

void updateMotors () {
for (uint8_t j = 0; j < ARM_JOINTS; ++3) {
stepperMotors[j].run();

}
}

/// @ingroup Motor_Driver

/// Perform a blocking homing routine (the calibration routine) of all joints with timeout and

/// debounce.

void calibrateAllJoints() {
const unsigned long timeoutMs = 5000; // max time per switch
const unsigned int debounceMs = 50; // debounce delay
homing = true;
homed = false;

for (uint8_t j = 0; j < ARM_JOINTS; ++3) {
unsigned long startTime;
bool switchState;

// Drive toward left switch
stepperMotors[j].setMaxSpeed (MICROSTEPS % 100.0f);
stepperMotors[j] .moveTo (-1000000) ;
startTime = millis();
while (true) {

stepperMotors[j].run();

switchState = digitalRead (LIMIT_LEFT_PINS[J]) == LOW; // active low

(switchState) {
delay (debounceMs) ;

if (digitalRead (LIMIT_LEFT_PINS[j]) == LOW)
break;
}
f (millis() - startTime > timeoutMs)
break;

}

stepperMotors[j].setCurrentPosition (0);

// Drive toward right switch

stepperMotors[j] .moveTo (1000000) ;

startTime = millis();

while (true) {
stepperMotors[j].run();

switchState = digitalRead (LIMIT_RIGHT_PINS[j]) == LOW;
if (switchState) {
delay (debounceMs) ;
f (digitalRead (LIMIT_RIGHT_PINS[j]) == LOW)
break;
}
if (millis() - startTime > timeoutMs)
break;
}
long maxSteps = stepperMotors[j].currentPosition();

// Return to midpoint

long mid = maxSteps / 2;

stepperMotors[j].setCurrentPosition(0);

stepperMotors[j] .moveTo (mid) ;

while (stepperMotors[j].distanceToGo() != 0) {
stepperMotors[j].run();

}

stepperMotors[j].setCurrentPosition(0);

}

homed = true;
homing = false;

}

/// @ingroup Motor_Driver
bool calibrationDone () { return homed; }

/// Ringroup Motor_Driver
bool allJointsDone () {
for (uint8_t j = 0; j < ARM_JOINTS; ++3) {

1f (stepperMotors[j].distanceToGo() != 0)
return false;
}
return true;

}

/// @ingroup Motor_Driver
int32_t getJointPosition (uint8_t jointIndex) {

Generated by Doxygen

64 File Documentation

00126 stepperMotors[jointIndex].currentPosition();
00127 }

00128

00129 /// Ringroup Motor_Driver

00130 void stopAllJoints () {

00131 (uint8_t j = 0; j < ARM_JOINTS; ++J) {
00132 stepperMotors[]j].stop();

00133 }

00134 }

6.43 src/motor_driver/motor_driver.h File Reference

Driver for stepper motors JO—J4 (DM332T/DM320T step/dir drivers).

#include <Arduino.h>

Functions

« void initMotors ()

Initialise all stepper drivers’ speed & acceleration per config.h settings.
+ void movedJoint (uint8_t jointindex, int32_t stepCount)

Queue a relative microstep move for a specific joint.
+ void updateMotors ()

Must be called every loop in order to advance the stepper motors.
+ void calibrateAllJoints ()

Perform a blocking homing routine (the calibration routine) of all joints with timeout and debounce.
* bool calibrationDone ()

Check if calibration has completed.
* bool allJointsDone ()

Check if all steppers have reached their targets.
* int82_t getJointPosition (uint8_t jointindex)
Get the current microstep position of a joint.
« void stopAllJoints ()

Stop all motor motion immediately by clearing queued moves.

6.43.1 Detailed Description

Driver for stepper motors JO—J4 (DM332T/DM320T step/dir drivers).
Author
Elin Gravningen

This module provides initialisation, movement commands, and status checks for each joint motor. Each motor is
mapped to a joint index:

* 0 =base (JO)

* 1 =shoulder (J1)
+ 2 =elbow (J2)

* 3 = wrist bend (J3)

* 4 = wrist rotation (J4)

Definition in file motor_driver.h.

Generated by Doxygen

6.44 motor_driver.h

6.44 motor_driver.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

/ **
* @file motor_driver.h
@author Elin Gravningen
@brief Driver for stepper motors J0-J4 (DM332T/DM320T step/dir drivers).
@details This module provides initialisation, movement commands, and status
checks for each joint motor. Each motor is mapped to a joint index:
0 = base (JO)
= shoulder (J1)
elbow (J2)
= wrist bend (J3)
= wrist rotation (J4)

R
| |
Bw N
I

*
|

@defgroup Motor_Driver Motor Driver
@f
/

* ok ko

#ifndef MOTOR_DRIVER_H
#define MOTOR_DRIVER_H

#include <Arduino.h>

% @brief Initialise stepper parameters(max speed & acceleration).

* @pre STEP_PIN[], DIR_PIN[], MICROSTEPS, GEAR_RATIO[] and MAX_OUTPUT_RPM[]
+ must be configured via config.h.

* @post Each steppers[j] has its maxSpeed and acceleration set.

* @ingroup Motor_Driver

* @return void

*/

void initMotors();

* Q@brief Queue a relative microstep move for a specific joint.

* @param jointIndex Index of the joint (0...4, i.e. J0...J4).

* @param steps Signed microstep delta (positive=forward, negative=backward) .
* @ingroup Motor_Driver

* @return void

*/

void moveJoint (uint8_t jointIndex, int32_t stepCount);

[x*
* Q@brief Must be called every loop in order to advance the stepper motors.
* @ingroup Motor_Driver
* @return void
*/
void updateMotors();

[**

* @brief Run a blocking homing (calibration) sequence on all stepper joints.

@pre LIMIT_LEFT_PINS[] and LIMIT_RIGHT_PINS[] must be defined in
/include/config.h.

@post After return, currentPosition()==0 for each motor.

* @ingroup Motor_Driver

* @return void

* @note This routine blocks until all limit switches have been found.
*/

void calibrateAllJdoints();

* ok ko

[x*
* @brief Check if calibration has completed.
* @ingroup Motor_Driver
* @return true if the last call to calibrateAllJoints () completed.
*/
bool calibrationDone();

/ **
* @brief Check if all steppers have reached their targets.
* @ingroup Motor_Driver
* @return true if every joint’s distanceToGo ()==0.
*/

bool allJdointsDone () ;

[x*
% @brief Get the current microstep position of a joint.
% @param jointIndex Index of the Jjoint (0...4).
* @ingroup Motor_Driver
* @return Current position in microsteps (zeroed at last calibration).
*/
int32_t getJointPosition(uint8_t jointIndex);

/ **

Generated by Doxygen

66

File Documentation

00083
00084
00085
00086
00087
00088
00089
00090

* @brief Stop all motor motion immediately by clearing queued moves.
* @ingroup Motor_Driver
* @return void
*/
void stopAllJoints();

#endif // MOTOR_DRIVER_H
/*x @} x/ // end of Motor_Driver

6.45 src/mqtt_client/mqtt_client.cpp File Reference

finclude "mgtt_client.h"
#include "common/secrets.h"
#include <PubSubClient.h>
#include <WiFiS3.h>

Functions

static PubSubClient mqttClient (wifiClient)
static void subscribeTopics ()
static void mqttCallback (char xtopic, byte xpayload, unsigned int length)
Callback from PubSubClient for incoming MQTT messages. Receives the MQTT payload and reserves the required

space, and then converts it to a String. It then checks if a user defined handler has been set, and if it has, calls it for
the converted message.

void initMQTT ()

Initialise MQTT server and set callback.
bool publishStatus (const char xtopic, const String &message)

Publish a status message and report failure.
void sendHeartbeat ()

Register the handler for incoming MQTT messages.
void setMessageHandler (void(xhandler)(const String &msg))

Registers a callback to handle incoming parsed MQTT messages.
static unsigned long backoffInterval (uint8_t retries)

Calculate backoff interval (ms) for reconnection attempts.
void mqttLoop ()

Process incoming messages and reconnect with exponential backoff.

Variables

static unsigned long LAST_ATTEMPT =0
static uint8_t RETRIES =0
static constexpr unsigned int BASE_INTERVAL_MS = 2000
Minimum interval between connection attempts (in ms)
static constexpr unsigned int MAX_BACKOFF_MS = 60000
Maximum backoff interval (in ms)
static WiFiClient wifiClient
static void(* incomingMessageHandler)(const String &msg) = nullptr

Message handler - used when payload is received. This user-defined function pointer is set to handle incoming
messages.

Generated by Doxygen

6.45 src/mqtt_client/mqtt_client.cpp File Reference

67

6.45.1 Function Documentation

6.45.1.1 backoffinterval()

static unsigned long backoffInterval (

uint8_t retries) [static]

Calculate backoff interval (ms) for reconnection attempts.

Parameters

‘ retries ‘ Number of attempts made so far.

Returns

Interval in milliseconds, capped at MAX_BACKOFF_MS.

Definition at line 121 of file mqtt_client.cpp.
00121

00122 unsigned long interval = BASE_INTERVAL_MS « min<uint8_t> (retries,

00123 ot 1 min(interval, MAX_BACKOFF_MS) ;
00124 }

6.45.1.2 maqttCallback()

static void mgttCallback (
char * topic,
byte * payload,
unsigned int length) [static]

{

5);

Callback from PubSubClient for incoming MQTT messages. Receives the MQTT payload and reserves the required
space, and then converts it to a String. It then checks if a user defined handler has been set, and if it has, calls it for

the converted message.

Definition at line 44 of file mqtt_client.cpp.

00044
00045 String msg;
00046 msg.reserve (length) ;

00047 E (unsigned int i = 0; 1 < length; ++i) {
00048 msg += static_cast<char>(payload[il]);
00049 }

00050 if (incomingMessageHandler)

00051 incomingMessageHandler (msg) ;

00052 }

6.45.1.3 maqttClient()

static PubSubClient mgttClient (
wifiClient) [static]

6.45.1.4 subscribeTopics()

static void subscribeTopics () [static]

Definition at line 30 of file mqtt_client.cpp.

00030 {

00031 mgttClient.subscribe (MQTT_TOPIC_MOTION) ;
00032 mgttClient.subscribe (MQTT_TOPIC_GRIPPER) ;
00033 mgttClient.subscribe (MQTT_TOPIC_CALIBRATE);
00034 }

Generated by Doxygen

68 File Documentation

6.45.2 Variable Documentation

6.45.2.1 BASE_INTERVAL_MS

unsigned int BASE_INTERVAL_MS = 2000 [static], [constexpr]
Minimum interval between connection attempts (in ms)

Definition at line 21 of file mqtt_client.cpp.

6.45.2.2 incomingMessageHandler

void (¥ incomingMessageHandler) (const String &msg) (

const String & msg) = nullptr [static]

Message handler - used when payload is received. This user-defined function pointer is set to handle incoming
messages.

Definition at line 38 of file mqtt_client.cpp.

6.45.2.3 LAST_ATTEMPT

unsigned long LAST_ATTEMPT = 0 [static]

Definition at line 18 of file mqtt_client.cpp.

6.45.2.4 MAX_BACKOFF_MS

unsigned int MAX_BACKOFF_MS = 60000 [static], [constexpr]

Maximum backoff interval (in ms)

Definition at line 23 of file mqtt_client.cpp.

6.45.2.5 RETRIES

uint8_t RETRIES = 0 [static]

Definition at line 19 of file mqtt_client.cpp.

6.45.2.6 wifiClient

WiFiClient wifiClient [static]

Definition at line 26 of file mqtt_client.cpp.

Generated by Doxygen

6.46 mqtt_client.cpp 69

6.46 mqtt_client.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

/ **
* @file MQTTClient.cpp
@author Elin Gravningen
@brief MQTT Client for Leafy Automation Arduino R4 WiFi.

* ok ok

*

Connects to WiFi and EMQX broker. Subscribes to motion, gripper, and

* calibration topics, and publishes status and heartbeat updates. Allows the

* user to set a custom callback function that will be invoked whenever an MQTT
* message is received.

*/

#include "mgtt_client.h"

#include "common/secrets.h" // Defines network credentials and MQTT broker address
#include <PubSubClient.h>

#include <WiFiS3.h>

// Connection attempt settings (for reconnects)

static unsigned long LAST_ATTEMPT = 0;

static uint8_t RETRIES = 0;

/// Minimum interval between connection attempts (in ms)
static constexpr unsigned int BASE_INTERVAL_MS = 2000;
/// Maximum backoff interval (in ms)

static constexpr unsigned int MAX_BACKOFF_MS = 60000;

// MQTT Client settings
static WiFiClient wifiClient;
static PubSubClient mgttClient (wifiClient);

// Helper function to subscribe to MQTT Control topics from ROS2.
static void subscribeTopics () {

mgttClient.subscribe (MQTT_TOPIC_MOTION) ;

mgttClient.subscribe (MQTT_TOPIC_GRIPPER) ;

mgttClient.subscribe (MQTT_TOPIC_CALIBRATE) ;
}

/// Message handler - used when payload is received. This user-defined function
/// pointer is set to handle incoming messages.
static void (xincomingMessageHandler) (const String &msg) = nullptr;

/// Callback from PubSubClient for incoming MQTT messages. Receives the MQTT
/// payload and reserves the required space, and then converts it to a String.
/// It then checks if a user defined handler has been set, and if it has, calls
/// it for the converted message.
static void mgttCallback (char *topic, byte *payload, unsigned int length) {
String msg;
msg.reserve (length) ;
for (unsigned int i = 0; i < length; ++i) {
msg += static_cast<char>(payload[il]);
}
if (incomingMessageHandler)
incomingMessageHandler (msg) ;

/ x*
* @ingroup MQTT_Client
* @brief Initialise MQTT server and set callback.
* @pre WiFi is connected via initWiFi() .

* @post Single connect attempt. Further reconnects in mgttLoop () .
* @return void
*/

void initMQTT () {
mgttClient.setServer (MQTT_SERVER, MQTT_PORT);
mgttClient.setCallback (mgttCallback);

// Establish connection attempt

i1f (mgttClient.connect (MQTT_CLIENT_ID)) {
subscribeTopics () ;
Serial.println ("MQTT connected.");

} else {
Serial.print ("MQTT connect failed, rc=");
Serial.println(mgttClient.state());

}

/**
* @ingroup MQTT_Client
* @brief Publish a status message and report failure.
* @param topic MQTT topic string.
* @param message Payload to publish.
* Qreturn true if publish was accepted; false otherwise.

*/

Generated by Doxygen

70

File Documentation

00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148

6.47 src/mqtt_client/mqtt_client.h File Reference

bool publishStatus(const char xtopic, const String &message) {
bool ok = mgttClient.publish(topic, message.c_str());

if (lok) {
Serial.print ("Publish failed to topic: ");
Serial.println(topic);
}
return ok;
}
/ **
* @ingroup MQTT_Client
* @brief Register the handler for incoming MQTT messages.
* @param handler Function invoked when message is received.
* @Qreturn void
*/
void sendHeartbeat () {
static unsigned long lastPing = 0;
if (millis() - lastPing >= 1000) {
publishStatus (MQTT_TOPIC_STATUS_HEARTBEAT, "alive");
lastPing = millis();
}
}
/ **
* @ingroup MQTT_Client
* @brief Registers a callback to handle incoming parsed MQTT messages.
* @param handler Function to call with message string.
* @return void
*/
void setMessageHandler (void (xhandler) (const String &msg)) {
incomingMessageHandler = handler;
}
/ **
* @brief Calculate backoff interval (ms) for reconnection attempts.
* @param retries Number of attempts made so far.
% @return Interval in milliseconds, capped at MAX_BACKOFF_MS.
*/
static unsigned long backoffInterval (uint8_t retries) {

unsigned long interval = BASE_INTERVAL_MS « min<uint8_t> (retries,

return min(interval, MAX_BACKOFF_MS) ;
}

/ x*
@ingroup MQTT_Client

*
* @brief Process incoming messages and reconnect with exponential backoff.
*

5);

@note Must be called frequently in loop() to maintain connection.

* @return void
*/
void mgttLoop () {
unsigned long now = millis();

£ (!mgttClient.connected() &&
(now - LAST_ATTEMPT >= backoffInterval (RETRIES))) {
if (mgttClient.connect (MQTT_CLIENT_ID)) {
Serial.println ("MQTT reconnected");
subscribeTopics () ;
RETRIES = 0;
} else {
RETRIES++;
Serial.println ("MQTT reconnect failed, will retry");
}
LAST_ATTEMPT = now;
}
mgttClient.loop();
}

Handles MQTT setup, subscriptions, publishing, and heartbeat.

#include <Arduino.h>

Functions

« void initMQTT ()

Generated by Doxygen

6.48 mqtt_client.h 71

Initialise MQTT server and set callback.
« void mattLoop ()
Process incoming messages and reconnect with exponential backoff.
+ void setMessageHandler (void(xhandler)(const String &msg))
Registers a callback to handle incoming parsed MQTT messages.
* bool publishStatus (const char xtopic, const String &message)
Publish a status message and report failure.
+ void sendHeartbeat ()

Register the handler for incoming MQTT messages.

Variables

« constexpr char MQTT_TOPIC_MOTION [] = "leafy_automation/motion"

+ constexpr char MQTT_TOPIC_GRIPPER [] = "leafy_automation/gripper"

« constexpr char MQTT_TOPIC_CALIBRATE [] = "leafy_automation/calibrate"
« constexpr char MQTT_TOPIC_STATUS_COMMAND []

« constexpr char MQTT_TOPIC_STATUS_MOTION []

+ constexpr char MQTT_TOPIC_STATUS_GRIPPER []

- constexpr char MQTT_TOPIC_STATUS_CALIBRATION []

« constexpr char MQTT_TOPIC_STATUS_HEARTBEAT []

6.47.1 Detailed Description
Handles MQTT setup, subscriptions, publishing, and heartbeat.

Author

Elin Gravningen

Connects the Arduino R4 WiFi to the EMQX broker, subscribes to control topics (motion, gripper, calibrate), and
publishes status updates and periodic heartbeats back to the ROS2 system.

Definition in file mqtt_client.h.

6.48 mqtt_client.h

Go to the documentation of this file.

00001 /%
00002 % @file mgtt_client.h
00003 @author Elin Gravningen

*
00004 + @brief Handles MQTT setup, subscriptions, publishing, and heartbeat.
00005 * @details Connects the Arduino R4 WiFi to the EMQX broker, subscribes to
00006 « control topics (motion, gripper, calibrate), and publishes status
00007 = updates and periodic heartbeats back to the ROS2 system.
00008 «
00009 + @defgroup MQTT_Client MQTT Client Module
00010 «* @ingroup LeafyAutomationFirmware
00011 * @
00012 «/
00013
00014 #ifndef MQTT_CLIENT_H
00015 #define MQTT_CLIENT_H
00016
00017 #include <Arduino.h>
00018

00019 // Incoming command topics (from ROS2 to Arduino)

Generated by Doxygen

72

File Documentation

00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080

inline constexpr char MQTT_TOPIC_MOTION[] = "leafy_automation/motion";
inline constexpr char MQTT_TOPIC_GRIPPER[] = "leafy_automation/gripper";
inline constexpr char MQTT_TOPIC_CALIBRATE[] = "leafy_automation/calibrate";
// Outgoing status topics (from Arduino to ROS2)

inline constexpr char MQTT_TOPIC_STATUS_COMMAND[] =
"leafy_automation/status/command_received";

inline constexpr char MQTT_TOPIC_STATUS_MOTION[] =
"leafy_automation/status/motion";

inline constexpr char MQTT_TOPIC_STATUS_GRIPPER[] =
"leafy_automation/status/gripper";

inline constexpr char MQTT_TOPIC_STATUS_CALIBRATION[] =
"leafy_automation/status/calibration";

inline constexpr char MQTT_TOPIC_STATUS_HEARTBEAT[] =

"leafy_automation/status/heartbeat";
/**
* @brief Initialises MQTT connection and subscribes to control topics.
* @ingroup MQTT_Client
* @pre WiFi must already be connected via initWiFi ().
* @post Control topics are subscribed and the incoming message callback is set.
*/
void initMQTT () ;

/ x*
* @brief Process incoming MQTT traffic and attempt reconnects if needed.
* @ingroup MQTT_Client
* Must be called frequently in loop() to maintain the connection.
* @note Must be called frequently in loop() to maintain the connection.
* @return void
*/

void mgttLoop () ;

/ **
* @brief To set user defined callback to handle parsed MQTT messages.
* @ingroup MQTT_Client
* @param handler Function to call when a new message arrives.
* @note This function should be called after initMQTT() to set the callback
*/
void setMessageHandler (void (xhandler) (const String &msg));

/ **
* @brief Publishes a status message to a given MQTT topic.
* @ingroup MQTT_Client
@param topic The MQTT topic to publish to.
@param msg The payload string.
@return true if the message was successfully handed off to the network,
* otherwise returns false.
*/
bool publishStatus(const char *topic, const String &msg);

* ok ok

/ **
* @brief Sends a periodic "alive" signal to the status/heartbeat topic.
* @ingroup MQTT_Client
* @return void
*/

void sendHeartbeat ();
#endif // MQTT_CLIENT_H

/+xx @} %/ // end of MQTT_Client

Generated by Doxygen

Index

access_token
API, 26
allJointsDone
Motor Driver, 15
API, 25
access_token, 26
API, 25
auth_token, 26
ping, 26
ARM_JOINTS
Configuration, 7
auth_token
API, 26

backoffInterval
maqtt_client.cpp, 67

BASE_INTERVAL_MS
maqtt_client.cpp, 68

calibrateAllJoints
Motor Driver, 15
calibrationDone
Motor Driver, 16
calibrationInProgress
communication_manager.cpp, 52
checkActionStatus
Communication Manager, 11
client
HTTP, 30
Communication Manager, 11
checkActionStatus, 11
handleIncomingCommand, 11
communication_manager.cpp
calibrationInProgress, 52
gripperinProgress, 52
handleCalibrationCommand, 51
handleGripperCommand, 51
handleMoveCommand, 51
movementInProgress, 52
Configuration, 7
ARM_JOINTS, 7
DIR_PIN, 7
GEAR_RATIO, 8
GRIP_MOVE_TIME_MS, 8
GRIPPER_CLOSED_ANGLE, 8
GRIPPER_OPEN_ANGLE, 8
GRIPPER_SERVO_PIN, 9
LIMIT_LEFT_PINS, 9
LIMIT_RIGHT_PINS, 9
MAX_OUTPUT_RPM, 9

MICROSTEPS, 10

STEP_PIN, 10
connect

NetCommander, 31
connected

HTTP, 30

DIR_PIN
Configuration, 7
disconnect
NetCommander, 32

esp32-cam-gpio.h
HREF_GPIO_NUM, 43
LED_GPIO_NUM, 43
PCLK_GPIO_NUM, 43
PWDN_GPIO_NUM, 43
RESET_GPIO_NUM, 43
setupCameraConfig, 45
SIOC_GPIO_NUM, 44
SIOD_GPIO_NUM, 44
VSYNC_GPIO_NUM, 44
XCLK_GPIO_NUM, 44
Y2_GPIO_NUM, 44
Y3_GPIO_NUM, 44
Y4_GPIO_NUM, 44
Y5_GPIO_NUM, 44
Y6_GPIO_NUM, 45
Y7_GPIO_NUM, 45
Y8_GPIO_NUM, 45
Y9_GPIO_NUM, 45

fetch
HTTP, 28

GEAR_RATIO
Configuration, 8
get
HTTP, 28
getJointPosition
Motor Driver, 17
GRIP_MOVE_TIME_MS
Configuration, 8
Gripper Driver, 12
gripperDone, 13
gripperServo, 14
initGripper, 13
moveGripper, 13
moveStartTime, 14
moving, 14

Generated by Doxygen

74

INDEX

updateGripper, 14
GRIPPER_CLOSED_ANGLE

Configuration, 8
GRIPPER_OPEN_ANGLE

Configuration, 8
GRIPPER_SERVO_PIN

Configuration, 9
gripperDone

Gripper Driver, 13
gripperinProgress

communication_manager.cpp, 52
gripperServo

Gripper Driver, 14

handleCalibrationCommand
communication_manager.cpp, 51
handleGripperCommand
communication_manager.cpp, 51
handlelncomingCommand
Communication Manager, 11
handleMoveCommand
communication_manager.cpp, 51
header
HTTP, 29
homed
motor_driver.cpp, 61
homing
motor_driver.cpp, 61
host
HTTP, 31
HREF_GPIO_NUM
esp32-cam-gpio.h, 43
HTTP, 27
client, 30
connected, 30
fetch, 28
get, 28
header, 29
host, 31
HTTP, 28
json, 29
post, 29
response, 31
text, 30

include/common/api/api.h, 33
include/common/net/http.h, 34
include/common/net/net_commander.h, 35
include/common/secrets.h, 36, 37
include/common/secrets.sample.h, 37, 38
include/common/util/logger.h, 38, 39
include/config.h, 39, 40
include/modules/base/main_base.h, 41, 42
include/modules/cam/esp32-cam-gpio.h, 42, 46
include/modules/cam/main_cam.h, 47
include/Utilities.h, 47
incomingMessageHandler

maqtt_client.cpp, 68
initGripper

Gripper Driver, 13
initMotors

Motor Driver, 17
initMQTT

MQTT Client Module, 19

json
HTTP, 29

LA_SERVER_ADDR
secrets.sample.h, 37
LA_SERVER_PORT
secrets.sample.h, 37
LA_SERVER_TOKEN
secrets.sample.h, 37
LAST_ATTEMPT
maqtt_client.cpp, 68
LED_GPIO_NUM
esp32-cam-gpio.h, 43
LIMIT_LEFT_PINS
Configuration, 9
LIMIT_RIGHT_PINS
Configuration, 9
logger.h
logger_print_line, 38
logger_print_line
logger.h, 38
loop
main.cpp, 59

main.cpp
loop, 59
setup, 59
main_base.h
main_base_loop, 41
main_base_setup, 41
main_base_loop
main_base.h, 41
main_base_setup
main_base.h, 41
main_cam.h
main_cam_loop, 47
main_cam_setup, 47
main_cam_loop
main_cam.h, 47
main_cam_setup
main_cam.h, 47
MAX_BACKOFF_MS
maqtt_client.cpp, 68
MAX_OUTPUT_RPM
Configuration, 9
MICROSTEPS
Configuration, 10
Motor Driver, 15
allJointsDone, 15
calibrateAllJoints, 15
calibrationDone, 16
getJointPosition, 17
initMotors, 17

Generated by Doxygen

INDEX

75

movedoint, 17
stopAllJoints, 18
updateMotors, 18
motor_driver.cpp
homed, 61
homing, 61
stepperMotors, 62
moveGripper
Gripper Driver, 13
movedJoint
Motor Driver, 17
movementInProgress
communication_manager.cpp, 52
moveStartTime
Gripper Driver, 14
moving
Gripper Driver, 14
MQTT Client Module, 19
initMQTT, 19
MQTT_TOPIC_CALIBRATE, 22
MQTT_TOPIC_GRIPPER, 22
MQTT_TOPIC_MOQOTION, 22
MQTT_TOPIC_STATUS_CALIBRATION, 22
MQTT_TOPIC_STATUS_COMMAND, 23
MQTT_TOPIC_STATUS_GRIPPER, 23
MQTT_TOPIC_STATUS_HEARTBEAT, 23
MQTT_TOPIC_STATUS_MOTION, 23
mqttLoop, 20
publishStatus, 20
sendHeartbeat, 21
setMessageHandler, 21
maqtt_client.cpp
backoffinterval, 67
BASE_INTERVAL_MS, 68
incomingMessageHandler, 68
LAST_ATTEMPT, 68
MAX_BACKOFF_MS, 68
mqttCallback, 67
mqttClient, 67
RETRIES, 68
subscribeTopics, 67
wifiClient, 68
MQTT_CLIENT_ID
secrets.h, 36
MQTT_PORT
secrets.h, 36
MQTT_SERVER
secrets.h, 36
MQTT_TOPIC_CALIBRATE
MQTT Client Module, 22
MQTT_TOPIC_GRIPPER
MQTT Client Module, 22
MQTT_TOPIC_MOTION
MQTT Client Module, 22
MQTT_TOPIC_STATUS_CALIBRATION
MQTT Client Module, 22
MQTT_TOPIC_STATUS_COMMAND
MQTT Client Module, 23

MQTT_TOPIC_STATUS_GRIPPER
MQTT Client Module, 23
MQTT_TOPIC_STATUS_HEARTBEAT
MQTT Client Module, 23
MQTT_TOPIC_STATUS_MOTION
MQTT Client Module, 23
mgqttCallback
mqtt_client.cpp, 67
magqttClient
maqtt_client.cpp, 67
mqttLoop
MQTT Client Module, 20

NetCommander, 31
connect, 31
disconnect, 32

PCLK_GPIO_NUM
esp32-cam-gpio.h, 43
ping
API, 26
post
HTTP, 29
publishStatus
MQTT Client Module, 20
PWDN_GPIO_NUM
esp32-cam-gpio.h, 43

RESET_GPIO_NUM
esp32-cam-gpio.h, 43
response
HTTP, 31
RETRIES
mqtt_client.cpp, 68

secrets.h
MQTT_CLIENT_ID, 36
MQTT_PORT, 36
MQTT_SERVER, 36
WIFI_PASSWORD, 36
WIFI_SSID, 36
secrets.sample.h
LA_SERVER_ADDR, 37
LA_SERVER_PORT, 37
LA_SERVER_TOKEN, 37
WIFI_PASSWORD, 38
WIFI_SSID, 38
sendHeartbeat
MQTT Client Module, 21
setMessageHandler
MQTT Client Module, 21
setup
main.cpp, 59
setupCameraConfig
esp32-cam-gpio.h, 45
SIOC_GPIO_NUM
esp32-cam-gpio.h, 44
SIOD_GPIO_NUM
esp32-cam-gpio.h, 44

Generated by Doxygen

76

INDEX

src/base/main_base.cpp, 47, 48

esp32-cam-gpio.h, 45

src/common/api/api.cpp, 48 Y9_GPIO_NUM

src/common/net/http.cpp, 48, 49
src/common/net/net_commander.cpp, 50
src/communication_manager/communication_manager.cpp,
50, 53
src/communication_manager/communication_manager.h,
54, 55

src/gripper_driver/gripper_driver.cpp, 55, 56
src/gripper_driver/gripper_driver.h, 57
src/main.cpp, 58, 60
src/motor_driver/motor_driver.cpp, 60, 62
src/motor_driver/motor_driver.h, 64, 65
src/mqtt_client/matt_client.cpp, 66, 69
src/mqtt_client/matt_client.h, 70, 71
STEP_PIN

Configuration, 10
stepperMotors

motor_driver.cpp, 62
stopAllJoints

Motor Driver, 18
subscribeTopics

maqtt_client.cpp, 67

text
HTTP, 30

updateGripper

Gripper Driver, 14
updateMotors

Motor Driver, 18

VSYNC_GPIO_NUM
esp32-cam-gpio.h, 44

WIFI_PASSWORD
secrets.h, 36
secrets.sample.h, 38

WIFI_SSID
secrets.h, 36
secrets.sample.h, 38

wifiClient
maqtt_client.cpp, 68

XCLK_GPIO_NUM
esp32-cam-gpio.h, 44

Y2_GPIO_NUM
esp32-cam-gpio.h, 44
Y3_GPIO_NUM
esp32-cam-gpio.h, 44
Y4_GPIO_NUM
esp32-cam-gpio.h, 44
Y5_GPIO_NUM
esp32-cam-gpio.h, 44
Y6_GPIO_NUM
esp32-cam-gpio.h, 45
Y7_GPIO_NUM
esp32-cam-gpio.h, 45
Y8_GPIO_NUM

esp32-cam-gpio.h, 45

Generated by Doxygen

Appendix G

Software

1 Artificial Intelligence Machine Learning

tasks in detail JCDH | -

1.1 Image Classification Task JCDH | -

“Image classification is the task of assigning a label or class to an entire image. Images are
expected to have only one class for each image. Image classification models take an image as

input and return a prediction about which class the image belongs to.” [70].

In our system, image classification lets us get information about what type of plant we are
dealing with. Initial testing showed that current image classification models must be “fine
tuned” to give accurate outputs. Figure G.1 shows the general flow of the image classification

process.

Input Image Classification Model Output

N . E , Category: Plant
</ gory

Figure G.1: Image Classification Diagram

445

1.2 Object Detection Task JCDH | -

A useful definition of object detection from Hugging Face is the following: “Object Detection
models allow users to identify objects of certain defined classes. Object detection models receive
an image as input and output the images with bounding boxes and labels on detected objects
[71]”

There are a great number of object detection AI models to choose from, so before further
work could commence, a comparison of the two most used models in this category had to be

compared.

1.2.1 Comparing facebook/detr-resnet-50 and Ultralytics/Y-

OLO11 JCDH | -

Benchmarking was done with the image in Figure G.2, because these models are not yet able
to accurately identify salads. This is to be expected as these AI models are made for general
use cases like identifying people and objects like cars, and our use-case is highly specific. The
image is VGA resolution (640x480).

446

ol | ﬂ:& =\

o L

Figure G.2: Al model input

Image by Bhong Bahala on Unsplash [72]

Once the Al model processes the input, we draw bounding boxes and labels on the image (as

seen in Figure G.3).

447

https://unsplash.com/@bhongbahala10
https://unsplash.com

Figure G.3: Al model output (bounding boxes and labels shown visually)

Image by Bhong Bahala on Unsplash [72]

448

https://unsplash.com/@bhongbahala10
https://unsplash.com

Object Detection Benchmark facebook detr-resnet-50

1.0 A

0.9 1

0.8

0.7 A

Time

0.6

0.5 4

0.4

WWWW\W

!
0 20 40 60 80 100
Lap

0.3

Figure G.4: Object Detection Benchmark: facebook/detr-resnet-50
Average execution time (approx): 0.34 seconds. Standard deviation (approx):
0.06 seconds

facebook/detr-resnet-50: Benchmark average time: 0.33638124000048264 seconds.
Standard deviation: 0.0647590208927982 seconds.

449

Object Detection Benchmark Ultralytics YOLO11

0.16 -

0.14

0.12 ~

Time

0.10 ~

0.08 ~

0.06

!
0 20 40 60 80 100
Lap

Figure G.5: Object Detection Benchmark: YOLO11

Average execution time (approx): 0.06 seconds. Standard deviation (approx):
0.012 seconds

YOLO11: Benchmark average time: 0.06007338625029661 seconds.
Standard deviation: 0.011615161145226758 seconds.

The Ultralytics/YOLO11 is a promising model for the following reasons: !

1. Great performance characteristics.
2. Trained on a smaller and more specific dataset.

3. Easy to use API for training with new datasets.

1.2.2 Bounding boxes and how they work JCDH | -

!The current version of the ultralytics library (v8.3.108) which gives access to the YOLO model requires
numpy v2.1.1 or earlier. Therefore a downgrade had to be made to the numpy library (>=2.2.3,<3.0.0 to
>=1.23.0,<=2.1.1).

450

Object detection AT models generate a bounding box around the object(s) of interest, which is
a set of points (top left, top right, bottom left, and bottom right) which indicates where in the

image the object(s) of interest occurs, as seen in Figure G.6.

Figure G.6: Example of bounding box

1.2.3 Fine tuning of the object detection model with a open-

source dataset JCDH | -

Fine tuning refers to the process of taking existing Al models and adding additional training
data in order to improve its functioning in new areas. An example in our case would be the
act of taking an image classification model and adding additional images of lettuces, and its

respective labels in order for the model to more accurately recognize sub types of lettuces.

Fine tuning of the object detection model took place using the Roboflow100/lettuce-pallets
dataset [73], which is hosted on Roboflow and is licensed under “CC BY 4.0” [74]. ? This dataset
is a collection of images of lettuce pallets together with their respective bounding boxes and

labels. 3

Categories in this dataset can be of the following types: [Ready, empty__pod, germination,
pod, young].

Fine tuning of the AI model was performed using Google Colab because of resource and time

2Fine tuning is also known as training an AI model on a custom dataset.
3The dataset is part of an Intel sponsored initiative called RF100 which aims to create a new generalized
object detection benchmark [75]

451

constraints. Normal consumer hardware lacks the necessary resources to fine tune the AI model

in a timely fashion.
Data augmentation

When training Al models, you expand your initial dataset by using methods like data augmen-
tation, which means applying augmentation methods to the images. Methods include (but are
not limited to) image flipping, cropping, changing contrast and blurring the image. YOLO11
employs these methods by default when using their system to fine-tune their models [76].

Fine tuning results

In this specific fine tuning of the YOLO11 model with the Roboflow100/lettuce-pallets
dataset [73], training was run for 5 epochs to assess the results of the process within a reasonable
time-frame. Fine-tuning of Al models often runs for more than 100 epochs, but for initial
testing, letting the AI model train on the dataset for around 1 hour creates a fine baseline. If
results are not satisfactory to our accuracy requirements, fine-tuning can always be continued

at a later time.

Please refer to Appendix G.4 for in-depth training results (5 epoch) and Appendix G.5 for 100

epoch results.

N3 l-52 3
aergernifeliigerigermination 7«
fgerngermination

L .
rmination

ge,.gerngerminagerminationr
gerrgermgermgerngermination
icrgermination /(RGN

Figure G.7: Al object detection (in-training, batch 2)

Images used for training by Roboflow100/lettuce-pallets are licensed under CC BY 4.0 [73].

452

https://universe.roboflow.com/roboflow-100/lettuce-pallets

5 epoch training results

Taking a look at the results in Figure G.8, we see various metrics pertaining to the training
results. Here, the z-axis corresponds to the specific training epoch, while the y-azis relates to

the specific value of the metric.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
301 —e— results 1.301
1.254
1.20 4
1.154
1.10 4
2 4 2 4 2 4 2 4 2 4
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.15 4 1.12 A
1.101 1.10 4
1.05 1 1.08 4
1.00 1.06 -
2 4 2 4 2 4

Figure G.8: Al training results

100 epoch training results

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
3.0
—e— results 1.3
147 54 e smooth 0.90 1 0.81f
1.2
1 0.85 q
12 0.6 A
1.04 1.1 A 0.80 -
0.4
081 1.0 0.75 -
0.2 1
0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss 30 val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.200 1 0.7
121 2.5 11751
08¢ 0.6 1
1.150
1.1 2.0 1 054
1.125 A
1.5 0.6 1
0.4 1
1.100 A
1.0 A
1.0 4% 1.075 A 0.3 -
0.4 1
0.9 4 0.5 1.050 1 0.2
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure G.9: Al training results (100 epochs)

453

1.2.4 Evaluating Roboflow100/lettuce-pallets JCDH | -

The dataset from Roboflow100/lettuce-pallets proved to be insufficient in identifying the types

of lettuce we use, and therefore Computer Vision (CV) was explored.

454

1.3 Depth Estimation Task JCDH | -

As stated by the Hugging Face documentation: “Depth estimation is the task of predicting
depth of the objects present in an image.” [77].

Figure G.10 shows an example of depth estimation on an image. The information we receive
from the depth estimation AI model is the distance (in meters) of each pixel in the the image, or

the camera sensor in practice. This data can be translated to a vector responding to a specific

point, or points, which gives a real-world representation of distance.

Figure G.10: Depth estimation

Depth Anything delivers three models within the indoor (metric) category (in order of model
size) [78]:

o depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf

455

o depth-anything/Depth-Anything-V2-Metric-Indoor-Base-hf

o depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf

Larger models should in practice offer more accuracy as they are trained on a larger and
more diverse dataset, but larger models have greater processing times. For our system we
use the “depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf” model for visualization
purposes, and the “depth-anything /Depth-Anything-V2-Metric-Indoor-Large-hf” for the actual

grab point calculations.

456

2 Artificial Intelligence side notes JCDH | -

2.1 Performance considerations JCDH | -

A quick realization which was made was on the topic of the performance issues related to
running Al models and ML algorithms. Especially when running on resource constrained
hardware like the Raspberry PI or other consumer grade hardware. Thankfully, there exists
simpler Al models which are more targeted to our specific use case, as opposed to very general
purpose models that meet every conceivable use case. These simpler Al models usually have

much lower resource requirements [79]. *

2.2 A simple performance improvement to model pro-

. JCDH | -
cessing

While reviewing the code for model processing, it was discovered that the pipeline function
of the Hugging Face Transformers library would load the whole model every time a new image

frame was processed (as seen in Figure G.11) °.

def object_detection(image_bytes):
image = Image.open(io.BytesIO(image_bytes)).convert)

model = pipeline(, model=)

return model (image)

Figure G.11: Python Al processing: Before

A simple solution was to move the initial model loading pipeline function outside of the image

frame processing function (as seen in Figure G.12) ©.

4Tt was discovered that not all AI models run well on the Macbook Air M1 because Graphical Processing
Unit (GPU) support has not yet been implemented.

5The aim of this section is to show the performance improvement by improving model loading, and not
specifying which model was chosen.

SIn recent version of Hugging Face Transformers, use__fast is set to true, which enables a faster Rust-based
tokenizer, if available for the chosen model. Some older models used a slower pure Python implementation [80].

457

model = pipeline(, model=)

def object_detection(image_bytes):
image = Image.open(io.BytesIO(image_bytes)).convert()

return model (image)

Figure G.12: Python Al processing: After

In order to measure the gained performance benefits, benchmarking was employed. This was
done using the Python time.perf counter() method, and checking the before / after times
between the model processing an image [81]. These values where stored in a list, which stored
the last 100 frames. An average of these times where then calculated. These benchmarks where
done using an image of an iceberg lettuce on a neutral background. The image size was 640 x

480 px, which is comparable to VGA quality .

Object Detection Benchmark

LA

!
0 20 40 60 80 100
Lap

Figure G.13: Object Detection Benchmark (before optimization)
Average execution time (approx): 1.26 seconds. Standard deviation (approx):
0.89 seconds

"Benchmarks where done on a MacBook Air M1.

458

From Figure G.13, we see a very sporadic curve. This is bad because it creates less predictability

around how long the processing times for the model will take &.

Object Detection Benchmark

0.8 1

0.7 1

0.6

Time

0.5 1

0.4

o3l Moo

T
0 20 40 60 80 100
Lap

Figure G.14: Object Detection Benchmark (after optimization)
Average execution time (approx): 0.31 seconds. Standard deviation (approx):
0.05 seconds

From the benchmark in Figure G.14, we can see a much smoother curve after the optimizations.
We also observe some initial loading times, but after that, the curve looks relatively smooth

and stable .

These benchmarks where done using a custom developed Benchmark class, which you can read

more about in Section 6.

3 AI / ML research phase JCDH |

8 Avg. execution time: 1.2581327729400074 seconds. Standard deviation: 0.8867701786412608 seconds.
9Avg. execution time: 0.30796559668000556 seconds. Standard deviation: 0.04867672829155695 seconds

459

Artificial Intelligence (AI) and Machine Learning (ML) are important technologies and critical

parts of our system.

3.1 AI models of interest JCDH |

Research into Al models are still ongoing, but so far the following models seems to be especially

useful for our system.

o Image classification
o Mask generation

e Object tracking

3.2 Initial object tracking research JCDH | -

Initial research began with the Sam2 model by Meta. Based on our workshop meeting with

Hydroplant we where recommended this Al object tracking model in particular.

Based on testing using their online demo interface it seemed to work well.

Figure G.15: Initial Sam2 object tracking demo - tracking of a lettuce plant

3.3 Image classification models testing JCDH | -

460

Initial testing started with the google/vit-base-patch16-224 model, but further testing of run-
ning the model using Hugging Face transformers with python showed that the model performed
slowly on a Macbook Air M1. Because of the fact that we would optimally have the model run

on a raspberry PI 5th gen, further research into more performant models must be done.

3.4 Al models - specifics JCDH |

The following is a list of the AI models which our system may need:

o Image classification: one possible model is google/vit-base-patch16-224 which is a
Vision Transformer (VT) model which was trained on ImageNet-21k that contains 14

million images [82]

4 In-depth AI training results (5 epochs) JCDH | -

Confusion Matrix Normalized

0.21

Ready

0.8

empty_pod

0.6

0.33

germination
\

Predicted

-04

pod

0.30

young

-0.2

background

| ' | | ' \ -0.0
Ready empty_pod germination pod young background
True

Figure G.16: Confusion matrix - normalized

461

Predicted

young pod germination empty_pod Ready

background

Confusion Matrix

275 92 178

284 2 1 32

275

106

76 252

24 21 M 20 67
Ready empty_pod germination pod young background

True

Figure G.17: Confusion matrix

462

1000

800

600

— 400

- 200

F1-Confidence Curve

1.0
—— Ready

—— empty_pod

—— germination

— pod

—— young

= 3|l classes 0.86 at 0.376

O-O T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure G.18: F1 curve

463

T T T

0.25 0.50 0.75 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.00 0.25 0.50 0.75

X y width height

Figure G.19: Labels correlogram

464

4000 -

e e

I

I
o
o
o
m
5

1

o
o
o
]

22uUe]lsul

I

o
o
o
—

0_

pod Aidwie

Apeay

|
<
o

0.2 -

width

Figure G.20: Labels

465

Precision

Precision

Precision-Confidence Curve

1.0

0.8 -

o
o
!

o
N
.

0.2

0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Confidence
Figure G.21: P curve
10 Precision-Recall Curve

0.8

o
o
.

©
>
.

0.2

0-0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure G.22: PR curve

466

—— Ready

—— empty_pod

—— germination

— pod

—— young

= 3|l classes 0.99 at 1.000

Ready 0.814

empty_pod 0.954
germination 0.934

pod 0.947

young 0.913

all classes 0.913 mAP®@0.5

Recall-Confidence Curve

Recall

0.0 0.2

train/box_loss

0.4

0.6

Confidence

Figure G.23: R curve

train/cls_loss

0.8

train/dfl_loss

1.0

metrics/precision(B)

—— Ready

—— empty_pod

—— germination

— pod

—— young

= 3|l classes 0.99 at 0.000

metrics/recall(B)

3.0

2.51

2.0 A

1.5

1.0 A

—e— results
----- smooth

1.30

1.25

1.20 A

1.15

1.10 A

val/cls_loss

val/dfl_loss

metrics/mAP50(B)

metrics/mAP50-95(B)

2 4
val/box_loss
1.151
1.10 1
1.05
1.00

1.12 4

1.10 A

1.08

1.06 1

Figure G.24: Results

5 In-depth AI training results (100 epochs)

467

JCDH | -

Predicted

young pod germination empty_pod Ready

background

Confusion Matrix Normalized

0.03
0.38
0.20
0.15 0.20
0.04 0.03 0.05 0.01 0.02
! ! | ! | !
Ready empty_pod germination pod young background

True

Figure G.25: Confusion matrix - normalized

468

0.8

0.6

-0.4

-0.2

-0.0

Predicted

young pod germination empty_pod Ready

background

Confusion Matrix

304 52

303 2

56

! ' ! \
Ready empty_pod germination pod young
True

Figure G.26: Confusion matrix

469

62

11

132

70

69

!
background

1000

800

600

- 400

- 200

F1-Confidence Curve

1.0
—— Ready
—— empty_pod
—— germination
— pod
0.8 —— young
= 3|l classes 0.90 at 0.428
0.6 -
—
[T
0.4
0.2 A
O-O T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure G.27: F1 curve

470

T T T

0.25 0.50 0.75 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.00 0.25 0.50 0.75

X y width height

Figure G.28: Labels correlogram

471

4000 -

e e

I

I
o
o
o
m
5

1

o
o
o
]

22uUe]lsul

I

o
o
o
—

0_

pod Aidwie

Apeay

|
<
o

0.2 -

width

Figure G.29: Labels

472

Precision

Precision

Precision-Confidence Curve

1.0

0.8

o
o

o
N
\

0.2 A

———

— —— Ready

—— empty_pod

—— germination

—— pod

—— young

= 3|l classes 1.00 at 0.972

0.0
0.0

1.0 -

0.8

o
o
.

©
>
.

0.2

0.0

0.2 0.4 0.6 0.8 1.0
Confidence

Figure G.30: P curve

Precision-Recall Curve

—— Ready 0.879

—— empty_pod 0.993

—— germination 0.971

—— pod 0.965

—— young 0.957

= 3|l classes 0.953 mMAP@0.5

0.0

Recall

Figure G.31: PR curve

473

Recall-Confidence Curve

1.0
—— Ready
—— empty_pod
—— germination
—— pod
0.8 1
—— young
= all classes 0.98 at 0.000
0.6
T
(9}
Q
o
0.4 A
0.2 A
O-O T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Confidence
Figure G.32: R curve
train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
3.01 —e— results 1.3
147 PR | BEEEE smooth 0.90 1 0.81f
1.2]
1.2 0.85 064
104 1.1+ 0.80 4
0.4
084 1.0 0.75
0.2 1
0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss 30 val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
: 1.200 0.7
127 251 11751
08¢ 0.6 1
1.150 A
1.1 2.0 1 0.5
1.125 A
1.5 0.6 1
] 0.4
104 1.100
1.0 ¢ 1.075 0.3
0.4 1
0.9 0.54 1.050 4 0.2
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure G.33: Results

474

6 Benchmarking JCDH | -

Benchmarking is an important concept in software development. We use it to check the time
that a task takes, and then use this as a baseline for further improvements to the execution
time of the task.

A custom Benchmark class was developed for the Python code, which has a simple Application

Programming Interface (API). A simple usage example can be seen in Figure G.34.

from util.benchmark import Benchmark
benchmark = Benchmark (, 100)
benchmark.start_lap ()

The code to benchmark.
benchmark.end_lap ()

Figure G.34: Python Benchmark Example

Once the requested amounts of iterations (laps) has been achieved, the Benchmark class prints
the average execution time of all iterations and stores a MatplotLib plot as an image in the

project repo with the format seen in Figure G.35 '°.

[normalized title]-[epoch time] .png

Figure G.35: Python benchmark plot naming format

The average execution time and standard deviation (which gives us an idea of the volatility

between each iteration of the benchmark) is calculated using standard formulas.

¥pnormalized title means replacing spaces with underscores in this case. epoch time means seconds since

1. jan. 1970, which is a common way to track time and to ensure an unique filename

475

7 HTTP / ESP32-Cam benchmarking JCDH | -

7.1 Benchmarking JCDH | -

Initial testing shows HTTP image transfer (POST request from the ESP32-CAM) latency to
be acceptable, but its incapable of providing a video feed. Although having a video feed is not a
hard requirement (as per our requirements in Section ?7?), it gives the users of the HMI instant

feedback, which could improve the user experience. The following two benchmarks where done
using frame size UXGA (1600 x 1200 px), and HTTP Connection: close.

1 2 3 45 6 7 8 910
Request number

Q

g

[<B)}

=

q 1OOOI|I I
oL O I

Figure G.36: HT'TP request latency measurements

From what can be gathered, the time it takes to send a picture over HT'TP can vary greatly.
This seems to be related to many different variables like CPU usage, memory allocation etc. The
HTTP request latency measurement diagram above shows 10 measurements done in succession
with a 10 second delay between each request (this was done to make sure the previous request
had time to finish, as this is not a load test. Load testing comes in a later section). If we take
the average of these measurements we find that avg. request latency was 1290.2 ms, or 1.2902

seconds.

476

300 |-

100 | |I I .
e || |

1 2 3 4 5 6 7 8 9 10
Capture number

Figure G.37: Image capture latency

The image capture latency diagram above shows us time it takes for the esp32-cam sensor to
capture a picture. Assumptions can be made that time it takes will depend upon variables like
lighting conditions, etc. This sample of 10 measurements was taken in dim lighting conditions
in a normal living room, with a 10 second delay between each measurement. If we take the
average of these measurements we find that avg. image capture latency was 94.6 ms, or 0.0946

seconds.

7.2 Further optimizations JCDH | -

Further optimizations using was done, which included setting HT'TP Connection to keep-alive,
waiting 100 ms (instead of 10 seconds) between each sent image and framesize to VGA
(640x480) which gave more promising numbers (although image quality and system stability
suffered):

477

200 | y

180 |- :

160 |- :

Latency (ms)

140 :

120 |- y

12 3 45 6 7 8 9 10
Request number

Figure G.38: HTTP request latency measurements (trial #2)

Average latency here was 156.3 ms or 0.1563 seconds.

30 |- :

20 y

Latency (ms)

10 :

12 3 4 5 6 7 8 9 10
Capture number

Figure G.39: Image capture latency (trial #2)

Average capture time here was 21.1 ms or 0.0211 seconds.

These averages gives us a baseline to work from when doing further optimizations.

7.3 HTTP load testing JCDH | -

Initial testing shows no major concerns with the amount of requests being sent over the network.

In other words this is not a bottle neck in our system the way its meant to be used.

478

8 Demo of working HTTP communication

between Core and Central JCDH | -

Further work with Leafy Automation Core was done. A custom “network stack” was created

and tested. This communicates with Leafy Automation Central over the network (port 5000
for now) as illustrated in Figure G.40.

1ng response = "”;

e (client.connected) {

if (client.available()
response += (char) client.read();

22 }
23
24 client.stop();

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

HTTP/1.1 260 oK

Server: Werkzeug/3.1.3 Python/3.13.2
Date: Sat, 22 Feb 2025 20:51:43 eMT
Content-Type: application/json
Content-Length: 52

Connection: close

Figure G.40: HTTP initial testing

479

9 Leafy Automation Core code restructuring
JCDH | -

A change was made to the code structure to more easily facilitate for a modular approach to

development. Figure G.41 shows the code structure before, and Figure G.42 shows the code

structure after. '

v include

> api
v cam
C esp32-cam-gpio.h
> net
> util
C main_base.h
C main_cam.h
@ README
C secrets.h

C secrets.sample.h

Figure G.41: Leafy Automation Core code restructuring - before

Vv include
> common
v modules ®
> base

> cam

Figure G.42: Leafy Automation Core code restructuring - after

1 Changes made on 20.03.2025

480

10 HMI HTTP Camera Feed JCDH | -

The old HMI HTTP camera feed captures a new frame using a polling technique that runs every
2 seconds. It’s a simple, yet effective method to transmit data, but struggles with real-time use

cases.

10.1 Frontend

10.2 CameraController.js

export class CameraController {
constructor (model, view) {
this.model = model;

this.view = view;

this.updateFeed () ;

setInterval (() => this.updateFeed (), 2000);

updateFeed () {
this.view.render (this.model.getFeed ());

Listing G.1: Old HMI HTTP CameraController.js

10.2.1 CameraModel.js

export class CameraModel {
getFeed () {

return "~ /api/vl/camera-feed?seed=${new Date().getTime ()} ;

Listing G.2: Old HMI HTTP CameraModel.js

10.2.2 CameraView.js

export class CameraView {

constructor () {

481

this.cameraFeed = $("#camera-feed");

render (data) {

this.cameraFeed.attr("src", data);

Listing G.3: Old HMI HTTP CameraView.js

10.3 Backend

10.4 api.py

@routes.route("/camera-feed", methods=["GET"])

def camera_feed():

return send_from_directory("cache", "cameraOl.jpg")

Listing G.4: Old HMI HTTP api

11 HMI dashboard v1

2

Leafy Automation Central (HMI)

Welcome to Leafy Automation Central, here you can manage the system and view currrent status.

Camera feed System status

HTTP image request latency: 0 ms .
Leafy Automation Core

Image capture latency: 0 ps The core of Leafy Automation.

Leafy Automation Robotics

The robotics systems of Leafy
Automation.

Leafy Automation Core -
Camera Module #1

The camera module for Leafy
Automation Core.

Figure G.43: HMI dashboard v1

482

JCDH | -

Leafy Automation API
The API for Leafy Automation.

Leafy Automation Al
The Al for Leafy Automation.

12 Database side notes JCDH | -

How we connect to the database

SQLite stores the database as a file on the file system. This stands in contrast to more complex
database application such as MySQL, which runs as a separate server instance and manage

databases through traditional client-server communication [83].

As shown in Figure G.44, a connection is established to a specific file on the file system, which

represents the database.

import sqlited

class DB:

@brief Class for managing SQLite database connection.
nnn

@staticmethod
def get_connection():

nnn

Get a new database connection.

O@return: SQLite connection object.
nnn

connection = sqlite3.connect()

return connection

Figure G.44: Python DB connection

Migrations

The database migrations are specific queries that run the first time the application starts,
or after upgrades to the codebase. They often do tasks like creating new tables or adding /
removing columns from existing tables. In the case of Leafy Automation Central, migrations
are created for the users table and access__levels table. Figure G.45 shows how the migration

for the “users” table looks like.

483

CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
username TEXT NOT NULL UNIQUE,
password TEXT NOT NULL,
email TEXT NOT NULL UNIQUE,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,
access_level_id INTEGER NOT NULL,
FOREIGN KEY (access_level_id) REFERENCES access_levels (id)

Figure G.45: SQlite database migration example

Debugging the database

Debugging the SQLite database is easy with the tool we use, which is called DB Browser

for SQLite. This tools allows you to view all data corresponding to the database tables in a

Graphical User Interface (GUI), as seen in Figure G.46 [84].

[] E DB Browser for SQLite - [Usersfjim/Documents/Skole/Usn/bacheloroppgave/code/leafy-automation-central/central.db

® New Database ® Open Database |, @ (2 @ Open Project @ Save Project ®, Attach Database % Close Database

Database Structure Browse Data Edit Pragmas Execute SQL x & Edit Database Cell

I Create Table ~ R Create Index [L & Print 2 Refresh
Name | Type | Schema
v [Tables (6)
v - access_levels CREATE TABLE access_levels (id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL U
B .. "id" INTEGER
E name ‘name" TEXT NOT NULL UNIQUE
v B bounding_boxes CREATE TABLE bounding_boxes (id INTEGER PRIMARY KEY AUTOINCREMENT, created_at TIMESTAM
Bi id" INTEGER
B created_at created_at" TIMESTAMP DEFAULT CURRENT_TIMESTAMP
B xmin " INTEGER NOT NULL
B ymin "ymin® INTEGER NOT NULL
g xmax 'xmax" INTEGER NOT NULL
B ymax ymax" INTEGER NOT NULL
B image_analysis_id .. "image_analysis_id" INTEGER NOT NULL.
- image_analysis CREATE TABLE image_analysis (id INTEGER PRIMARY KEY AUTOINCREMENT, created_at TIMESTAMF
Bi .. "id" INTEGER
B created_at .. "created_at" TIMESTAMP DEFAULT CURRENT_TIMESTAMP ity ~ Select an identity to connect &
B classification "classification" TEXT NOT NULL
B oreen_percentage "green_percentage" REAL NOT NULL DBHub.io Local Current Database
g label "label" TEXT NOT NULL
g score "score" REAL NOT NULL > .
. logs CREATE TABLE logs (id INTEGER PRIMARY KEY AUTOINCREMENT, created_at TIMESTAMP DEFAULT ¢ [Last modified ‘ Size
B .. "id" INTEGER
E created_at .. "created_at" TIMESTAMP DEFAULT CURRENT_TIMESTAMP
B message “message" TEXT NOT NULL
B salite_sequence CREATE TABLE sqlite_sequence(name,seq)
B reme “name®
B s "seq®
. users CREATE TABLE users (id INTEGER PRIMARY KEY AUTOINCREMENT, created_at TIMESTAMP DEFAULT
. id ... "id" INTEGER
! created_at ... "created_at" TIMESTAMP DEFAULT CURRENT_TIMESTAMP
! username "username" TEXT NOT NULL UNIQUE
B password “password" TEXT NOT NULL

B email "email" TEXT NOT NULL UNIQUE SQLlog Plot DBSchema Remote

Figure G.46: DB Browser for SQLite example

A note on thread safety

| Commit

Each request in Python Flask creates a new thread. An earlier iteration of the DB class used

the singleton pattern for the database, but because of the fact that a new thread is created for

484

each request, a single database connection between threads was deemed not to be thread safe

(deadlocks, race conditions, and data integrity issues could occur). Therefore, each thread has

its own connection to the database.

For high-traffic applications, creating a new database connection on each request could intro-

duce performance issues, but this is a non-issue until specific evidence points to the contrary.

It could also be argued that creating a new thread for each request, like how Python Flask is

architectured would make it hard to scale for high-traffic applications, but for our use case it

has been deemed perfectly fine.

13 In-progress database work

logs

id

created_at

message

users

id

created_at

username

password

email

first_name

last_name

access_level_id

image_analysis
id =

created_at

classification

green_percentage

JCDH | -

object_detections

id

label

score

ymax

Xxmin

ymin

Xmax

access_levels
id

name

Figure G.47: Database overview diagram

Note: Arrows indicate foreign key relationships.

13.1 Logs table (logs)

485

image_analysis_id

JCDH | -

The logs table is responsible for storing system logs and messages. Devices like the Arduino

and ESP32-CAM report on their current status which is then sent to and stored in the logs

table.

It contains information like the timestamp of the message and the message itself.

Name Description Datatype | Metadata
id The unique id of the specific log | INTEGER | AUTO INCREMENT, PRI-
entry MARY KEY
created at | The time at which the log entry TEXT CURRENT TIMESTAMP
was created.
message | The log message TEXT NOT NULL
Table G.1: Database: Logs table structure
id created__at message

1743357828

picture_ taken

13.2 Image analysis table

Table G.2: Database: Logs table example

(image__analysis)

JCDH | -

Name

Description

Datatype

Metadata

id

unique id

INTEGER

AUTO INCREMENT, PRIMARY KEY

created at

The timestamp TEXT
for when this

was stored

CURRENT _TIMESTAMP

classification

The image clas- TEXT

sification

NOT NULL

green_ percentage

Amount of REAL
green hue in

the image

NOT NULL

label

The label from
the object de-
tection

TEXT

NOT NULL

score

Confidence
score for the
object detec-
tion

REAL

NOT NULL

Table G.3: Database: Image analysis table structure

486

id | timestamp classification green__percentage label | score
1 | 1743357828 lettuce 47.2 broccoli | 0.83
Table G.4: Database: Image analysis table example
13.3 Bounding boxes table (bounding_ boxes) JCDH | -

Name Description Datatype Metadata
id unique id INTEGER AUTO INCRE-
MENT, PRIMARY
KEY
Xmin Boundingbox xmin INTEGER NOT NULL
ymin Boundingbox ymin INTEGER NOT NULL
Xmax Boundingbox xmax | INTEGER NOT NULL
ymax Boundingbox ymax | INTEGER NOT NULL
image analysis id connects the bound- | INTEGER FORFIGN KFEY to
ing box to the spe- image__analysis.id,
cific image analysis NOT NULL
row

Table G.5: Database: Bounding boxes table structure

id | image__analysis__id

xXmin

ymin

Xmax | ymax

1|1

10

3 150 100

487

Table G.6: Database: Bounding boxes table example

14 API JSON schema JCDH | -

The Leafy Automation Central API communicates using the JSON format for request and
response payloads. This format was chosen because of its easy of use, group experience, sim-

plicity, compatibility and availability of coding libraries.

{

22,

243,
0.43,
[,]
}
Listing G.5: JSON response example

14.1 API status codes JCDH | -

The Leafy Automation Central API makes use of HTTP status code. HTTP status codes are
a collection of codes which tells you something about the success / failure of a response. As an
example response code 200 indicates success, while other codes like 404 or 500 indicates that

something was not found, or an internal server error occurred, respectively.

14.2 API routes JCDH | -

API routes defines the routes used for the web server, which the Leafy Automation Core
communicates with. This API architecture is written in a REST API style.

488

Route Method Description Arguments Returns
/api/vl GET Index route, | {} {}
used for pinging
the system to
check connec-
tion status
/api/vl/status | GET Returns current | {} {"img-capture-
status of the sys- time": "
tem "img-capture-
req-time":
o "image-
classification":
e "green-
percentage": ...,
'log": ...}
/api/v1/log- GET Log information | image- {"msg": "Data
stats related to Core | capture-time captured"}
latency (Time it took
to capture an
image), image-
capture-req-
time (Time it
took to send the
image to the
Central)
/api/v1/log GET Stores the sup- | msg (The mes- | {}
plied message in | sage to log)
a log datastruc-
ture
/api/vl/camera- | GET Gets the latest | {} [binary-data]
feed image in the
buffer as a jpg
/api/vl/capture-| POST Stores the sup- | [binary-data/ {"msg": "Tm-
image plied image in age saved'} |
the buffer as jpg {"msg": "No
image data
provided'}, 400
/api/v1/classify- | POST Classifies an | [binary-dataf {"class": ...}
image image using Al

model

Table G.7: Leafy Automation Central - API routes

489

15 Specialized Computer Vision with
OpenCV and PlantCV

JCDH | -

15.1 Understanding OpenCV and PlantCV JCDH | -

OpenCV and PlantCV are widely used Computer Vision (CV) libraries for analyzing images.
They have good documentation, and interface with most programming languages [85]. PlantCV
is built on top of Computer Vision (CV), but contains a more specialized set of functions for

plant specific tasks [86].

15.2 Color segmentation JCDH | -

Another interesting technology, which has been explored (partly because of its simplicity) is
color segmentation. This allows us for our use case to figure out the percentage of green
color in an image. Our theory is that this information can be used as a data point which tells

us how close the camera (if placed on a robot arm) is to the plant.

Application in robotic proximity detection

By analyzing the proportion of green pixels detected in an image, we hypothesize that the
relative distance between the camera and the plant can be inferred. As the robot arm moves
closer to the plant, the percentage of green pixels should increase (green percentage). This

provides us with a simple, yet effective data point.

Conversion from RGB to HSV color space

Images are normally coded in the Red, Green, Blue (RGB) color space. Because Hue, Satura-
tion, Value (HSV) provides a better format for color extraction, and natural light conditions,

it is converted [87].

Color thresholding

490

Color thresholding is used to only extract the colors within a specified range (in this case green

colors), so that anything in the image not of interest is ignored.

Normalization and scaling

Finally, in order to calculate the percentage of “green” pixels in relation to other colors, the

formula defined in Equation G.1 is used.

N
__ ‘Vgreen
Pgreen_percentage — x 100

Ntotal
Ntotal =HxW

where H is the height and W is the width of the image, both in pixels.

15.3 Mask Generation

(G.1)

JCDH | -

Figure G.48, G.49 and G.51 shows the steps involved in generating clean masks without any

noise.

491

Figure G.48: Lettuce top-down image

492

Figure G.49: Lettuce top-down image mask

493

Figure G.50: Lettuce top-down image mask (fill holes and specs of noise)

15.4 Handling overlapping lettuce JCDH | -

Once masks have been generated, you may encounter overlap, as seen in Figure G.51. 2 This
is solved using watershed segmentation [88]. Watershed segmentation treats the image like a
landscape with peaks and valleys, where low intensity are valleys, and high intensity parts of
the image are peaks. This information can then be used to detect edges (where two peaks
meet) [89]. This information gives us a close approximation to the correct boundaries for each
lettuce. Figure G.52 shows the drawn on contours based on the results from the watershed
algorithm, and looking at the intersecting point between the two lettuce plants, it is clear that

an approximation is being done.

12 An important area of research for Hydroplant Technologies was how to handle overlapping lettuce.

494

Figure G.51: Lettuce top-down image mask (overlap)

T —am

Figure G.52: Lettuce top-down (watershed)

15.5 Chessboard pattern for camera calibration JCDH | -

A chessboard pattern allows the system to deduce the camera rotation and location in space,
camera parameters and the chessboard location in the scene. This information could be useful
to make more accurate approximations of the lettuce location. To generate a chessboard pat-

tern, the script supplied by OpenCV for this purpose was used [90].

15.6 Generating a chessboard pattern JCDH | -

Listing G.6 shows the command that was used to generate a chessboard pattern. This “gen_ pattern.py”

495

script receives parameters like number of rows and columns in the chessboard, and the square

size in millimeters 3.

poetry run python scripts/opencv/gen_pattern.py -o chessboard.svg --rows 9

--columns 6 --type checkerboard --square_size 20

Listing G.6: OpenCV checkerboard / chessboard pattern generation command

The generated chessboard pattern is sized in the dimensions of an A4 paper as seen in Figure
G.53. Measurements indicated that each square was 19 mm in size, which is a small difference
from the prompted size of 20 mm. This difference indicates a small error in the print configu-
ration or printer hardware, but as long as one is aware of this deviation (and enter the deviated

values into the algorithms), it does not pose an issue.

13Note that the word “chessboard” and “checkerboard” is being used interchangeably here, which is something
the official OpenCV documentation also does.

496

Figure G.53: Chessboard pattern

15.7 Using the chessboard pattern in practice JCDH | -

Figure G.54 shows the OpenCV “findChessboardCorners” algorithm, and “drawChessboard-
Corners” in action [91]. The algorithm defines the points in the supplied image corresponding

to the corners of the chessboard squares, which is useful for deducing real-world scale of objects

497

and camera orientation.

Figure G.54: Chessboard detection

According to the OpenCV documentation, at least a collection of 10 images of the chessboard

from different angles are required to get accurate calibration data [55].

15.8 Creating a 3D representation of the scene JCDH | -

A scene is made up of the following objects:

e Lettuce
e Camera

« Robot arm

The aim of the scene is to represent the position of the lettuce in three dimensions, so that the

robotics can pick up the lettuce.

The pinhole camera model is used to estimate real-world lettuce coordinates from a two-
dimensional image, and the depth estimation Z coordinate [91]. This coordinate is from the

perspective of the camera, so the distance vector between the camera center and robot arm

498

center must then be subtracted to give correct gripping points from the perspective of the robot

arm.

499

16 Earlier system architecture work

16.1 High-level architectural relational overview

Aweb server and the piece of
software which runs the Al models

* Robotics

Human Machine
Leafy Automation Central Interface
*—
v v
EEEE— ™ Sensors
Power Embedded Cameras, depth-
delivery devices g | sensors, et

Main System

Figure G.55: High-level architectural overview

500

JCDH | -

JCDH | -

16.2 Main System relational overview JCDH | -

A simple summary of the Main System would be the structural components, robotics and micro

controllers.
> > Sensors
Power Embedded Cameras, depth-
delivery devices fg—| sensors, etc
> Robotics
Main System
Figure G.56: Main System architectural diagram

16.3 Communications protocols / pipeline JCDH | -

The following diagram tells us something interesting. It shows in simple terms how communi-
cation throughout our system works. The Arduino serves as an important intermediary binding

both Networking and Signals together.

Networking Signals
< > Arduino -t > Robotics

(—

Figure G.57: Communications pipeline

501

16.4 Al

stack

Image
classification

Depth estimation

Mask generation

Hugging Face /
Transformers

Ultralytics

OpenCV / PlantCV

Python

PyTorch

Figure G.58: Al stack

002

Model layer

Framework
layer

Application
layer

JCDH | -

17 Considering development boards JCDH | -

The following microcontrollers are of interest:

o ESP32

o STM32
Considering development boards:

Arduino

Raspberry Pi

BBC Micro:bit

Any ESP32 board

17.1 Development boards supplied by Hydroplant JCDH | -

e Arduino UNO R4 Wifi

o Raspberry Pi 5

503

18 Explaining scrypt JCDH | -

Scrypt is a password-based key derivation function. Although, many such password-based key
derivation functions exist (like berypt), scrypt aims to make the algorithm more secure against
a common weakness in most alternatives; the ability to use custom-designed circuits to brute

force the password-based key derivation functions [92].

Figure G.59 shows an example of a scrypt password hash. It’s made up of the following

components [92]:

[scrypt] - Password hashing algorithm name.

[32768] - Amount of memory and computing power available.

[8] - Block size.

e [1] - The amount of parallelization.

[$YmOgtO...] - The hash of the password itself.

scrypt:32768:8:
1$YmOgtOFv10wxf0GE$413087246aabeecef0b89e316£3e5c87d92fdb9c7bbe0dd21b56327£478a
7£72bbb23a4e40a57f0bd0d84e6£df728f4ab9f39abbd8542£5£c11£10008e8215140

Figure G.59: scrypt password hash used for system authentication

504

scrypt:32768:8:1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140
scrypt:32768:8:1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140
scrypt:32768:8:1$Ym0gtOFvl0wxf0GE$413087246aabeeef0b89e316f3e5c87d92fdb9c7bbe0dd21b56327f478a7f72bbb23a4e40a57f0bd0d84e6fdf728f4ab9f39ab5d8542f5fc11f10008e8215140

Appendix H

Calculations

1 Configuration Space Excel sheet BMR | —

theta_1 theta 2 theta_3 120
Start [210 80
Stop 80 360 80
Step 10 10 10 x y
max 69 95.4
min 14 -13.1
antall 10 16 19 3040
thetal theta2 theta3
Px Py
0 210 50 0 210 80 0.416352 25.77436 Al
10 220 80 0 210 80 -1.58267 24.37462 £
20 230 70 0 210 70 -3.30827 22.64903 2
30 240 60 0 210 60 4708 20.65 =
40 250 50 0 210 50 -5.73934 18.43828 s
50 260 -40 0 210 -40 -6.37096 16.08107 o
60 270 30 0 210 30 -6.58365 13.65 2
70 280 20 0 210 20 -6.37096 11.21883 =
80 290 -10 0 210 10 -5.73934 8.861718 it
90 300 0 0 210 0 -4708 6.65 5
310 10 0 210 10 -3.30827 4.650973 >
320 20 0 210 20 -1.58267 2.925378
330 30 0 210 30 0.416352 1.525644
340 40 0 210 40 2.62807 0.494303
350 50 0 210 50 4.985278 -0.13731
360 60 0 210 60 7.416352 0.35
70 0 210 70 9.847427 -0.13731
80 0 210 80 12.20463 0.494303 -20
80 0 210 S0 14.41635 1525644
o 220 80 0.96684 20.73354
0 220 80 -0.75876 19.00794
0 220 70 -2.15849 17.00892 Horizontal direction (in cm)
0 220 60 -3.18083 14.7972
0 220 50 -3.82144 12.43989
0 220 -40 -4.03413 10.00882 [
0 220 -30 -3.82144 7.577841 P, =1 * cos(8) + I * cos(By + 62) + 15 * cos(6, + 8; + 65)
0 220 20 -3.18983 5.220634
0 220 10 -2.15849 3.008916 P, =1, *sin(6;) + I, = sin(f; + 6,) + 13 *sin(8, + 6, + 63)
0 220 0 -0.75876 1.009839 |
0 220 10 0.86684 -0.71571 T T T T T
0 220 20 2.965867 -2.11544
0 220 30 5.177585 -3.14678
o 220 40 7.534792 -3.77838%
0 220 50 9.965867 -3.99108
0

Figure H.1: Excel sheet with configuration space calculation

505

Stop
Step

antall

theta_1

0

10

10
20
30
40
a0
60
70
a0
90

theta_2
210
360
10

16

210
220
230
240
250
260
270
280
280
300
310
320
330
340
350
360

theta_3

50
S0
10

3040

thetal

=A== =A== = =A=A =R =R =Rl =R == =RN=RN=R)=]

theta2

210
210
210
210
210
210
210
210
210
210
210
210
210
210
210
210
210
210
210

max
min

thetad

69
-14

Px
0.416352
-1.58267
-3.30827
-4.708
-5.730834
-5.37096
-6.58365
-6.37096
-5.730834
-4.708
-3.30827
-1.58267
0.416352
2.62807
4.985278
7.416352
9.847427
12.20463
14.41635

Figure H.2: Excel sheet with configuration space (portion)

506

85.4
-13.1

Py
25.77436

24,.37462
22.64503
20.65
18.43328
16.08107
13.65
11.21453
8.861718
6.65
4650973
2.825378
1.525644
0.454303
-0.13731
-0.35
-0.13731
0454303
1.525644

2 Moment calculations BMR | -

The 2 first excel sheets show the moment calculations for direct drive, the last two show the

moment calculations with belt drive.

payload capacity max: 10=q]

gravity (g): 0. gearl
tml (m52) (eonstant) (peak]
Motors: Gear ra weight: Torquetholding): Halding Terque w. 5221 Torquelmas. per Torquelmas. perm. mon Max asial lo. Max radial lo efficiency:
Lb kal [Hm] [Mm] [Nm] [Nm] 1 Nl
Lo — s : . : ‘ : 23HE22-25040-VGESD- B0 16T 102 47.84 F] st
Li 0235 Mew lengihs) TTHSTE-16340-EG10-AR 00 0.3 3744 5 0 100
L2 0255 TWHSE-IES40-EGS0-AF 50 0.7 033 1633 0 20 100
L3 01 MemaTllengthl TE1351684ME4-200A5-AR4 045 044
Total length 069 WHST-IO0AD-PGIS-4F 19 0.254 0125 192375 3 5 50
kgl (0] THIZ0-06TAO-EGS -5 B 034 0 1056 4 [100
wlifiintt) H 13,62 Fil %
wiZeire2) i 261 FiZ
wl3leine3) 1 261 Fi3 Energylostir
i
wIEF) 1 261
wPL(maspaylaad) 1 381 20.
wd (payload+End o 2 19.62 Fa * 0G7DEGSIE
wLiliek1) 022 21582 FL1 176195 1684M .
wl2llink2) 019 18639 FL2 BA20M N L & sisiesap 1M1
wL3llink3) 005 04305 23HS22-2804D- EC10-ARA 1004D-PG13.
ARd
wL3llink3+NemsT) 0,33 38253 FL3 VESS0.ARE
mass atjoints = matarjoint assembly 17151516840
EGS0-ARS
Suggested Hold Torg Safety Facior
M1 [Him] 25305 NemaZs 4T3d 183
M2 [Nm] 733 Nemalf(tS0 B33 158
M3 [Nm] 3018 Nemal?(t10) 3740 124
Altmotor M3 Nems14(113) 1920 084 PR bl fa)d
@+ R+ (s R
Nema 23 Nema 17(1:50) Nema17{1:10) (+Nema11) o 20"
5 (-0sm t=asm
My = (D) Fu b TR Le05m
27 br Farn Feom
T——— anis a2 ar
T - s s Beor
g0 w0
e coniish 49N Fa-F * cos701 24N FxeF* cosan-on
acompnsa orgmaFarce FyeF +Snga) = 430 Fy=F* S0, 65K P S0 - TH
nractionof i) ang
parpendicuor otk o) MR 25 Nm MeFrisa3tim HeFyt 35 b
Fr=F* cosiza = 58N
Fy=F* Sn20)= 24N
MeFyi= 120

Figure H.3: Moment calculations screenshot V1 (picture and CAD of motors from [3])

507

payload capacity max: 1(r=q.]
gravity [g):

L e

T

T

[m] [mis 2]
3.51

Lb
Lo [
L1 0.295 [Mew length=) { : '['1 J Lz : LE :
L2 0.255 { ! ! ! .
L3 014 [Memalllength) { ! ™ ' !
Total length 0.63

[kal [M]
wd(jaint 1] 2 1a9.62 Fil ;-'ul
wd2(joint2) 1 3.51 Fijz2
wJ3ljoint3) 1 3,81 Fi3 Fia

]
w(EF] 1 3.51
wPLImax payload] 1 9.81
wi [pavload+End e z2 13.62 Fd
wLlink1) 0.2z 21582 FL1
wLZ2(linkz2] 0.13 18633 FLZ
wL3(link3] 0.05 0.4305
wL3llink3+MemaTl)] 0.33 3.8259 FL3
mass at joints = motor+oint assembly - T T
M, Iilz‘ -.r“_} #lLys Falt
L, + %] s FPad (kg + L) =F) +
Suggested Hold Torg Safetu Factar i
M1 [Nm] 25.305 MemaZ3 47.34 183 (L + Ly # ;J * Fuad # (L + Ly # L) = Fy)
M2 [Mm] N.733 Memal7(1.50 18.33 156
M3 [Mm] 3.0046 Memal7(1:10) 3.7d4d 124
L,
Altmotor M3 Nemald(113) 192 0E4 =03 Fa) 4l =)+
{[Ly +f.—;'l * Figd+((L; +Lg)=F)

MNema 23 MNema 17(1:50) MNema 17 (1:10) {+ Mema 11)

L
My = (()* Fud (L e Fa)

L e

Figure H.4: Moment calculations screenshot (portion) - (CAD motors from [3])

508

& e c o E F [} H il K I M [o P q [s it u ") %

2E

V2. bel e design B ast
Cique at ok
T THSZ0-06FA0-EGSE-5
e[Hemarr 0] |
enghin] oot el Foroe]
U 0295 007iTvse | 1055 103436 FLI
L2 0255 00SeMSt 0438 430688 FL2 ! = L
i o 007 043 434580 FL3 |
Tos e 068 - @
W o7 13508k Fae
Pesload-Endefector 2 meEe 7
[¥alues from St model]
Fiing snderof g [{stanse from s soseat o basel
n & 0.295 : S
) w2) R (L) ' =1
003 006 o7 6258 m] [Nare.
|] i MBS friction torque of
uss wm o Ikl ! GEARRA
H 221405 2 W s v woommw o w B we s mse amam
Hleg) 5 2t
00748/ [m] J 162228K08 stz sz a s " wr @ s e = o sa e e as w1 s
2208 ‘s . v womew s »ws s wmse am s
st
iz s2zearre w e v Wooma w wmmi w me w
Wl 7 AL i
0.045, 0.08 0172, 0255 [m] d 162230K14 BLKZ T El " i il 5 s £ 5 El a4 0.0 Mtz a 3 iz
0.086 0.313 0.06] [ka] 1
H[eg) 3 testhiteeth gear
0.0944 [m] h
' Pl (msedis]
: Madel mass [kg] Driver Flacement
[} ! T2k oz o
‘ e it i 2
222212 onssz (ematr) 2
osss a1 ezzaaros o7 i) %
o Myt Xy + M * Xz H Mg x X
Feg = my+ms +mg
Figure H.5: Moment calculations screenshot V2
¥2 - belt drive design q 9.8 Motors: Gear rd weight] Torquefhold{ Holding Torque w. ged Ton
Torque at joink: [ka] [Mm] [Mm] [
[Mm] 23HSE2-28040-YGE50- [=i] 167 102 1794
[13913 1THE15-165840-EGI0-AF 1 06 0.33 3744
1z 4913 17HS15-16240-EGE0-AF [=i] 0.7 0.38 1533
(5 30651 a0 1TEISSIER4MES-200RS- AR 0.45 0.44
Torque at mob Pulley ratio: SF Mlokar: 14HS11-1DD4D-F’G13-AH1 19 0294 01250 192375
FAT 13912 1 24| NemaZ31h0) minuz 1HS20-06740-EGS1E-A] 16 0.34 0.14 21056
[FF T.209504207 1375 254 | Memalr[1:50] friction loss
[3 152660405 2 1.26| Memal4(1:13] efficiancy
(KR 152660406 2 2.46] Memalf[1:10) Alt.motar
[From left axis [total]
length [m] cg[m] mass [k Forze [M]
L1 0296 00747782 1085 1003496 FLI
3 L ! La : L: i
L2 0266 0094443 0433 420653 FL2 v . : H -]
] ' '
Lz 014 007 0443 434583 FL3 i i :
Tatal ler 0.63 ™
J1 g - o @
-
Jz2 01683 166102 FJ2 "“I - l = ’l F“I hl
J3 01377 136024 F.J3 IR AL S W
Payload:EndEffector 2 1362 F4 Lg

[Walues from SW model]
Finding center of gravity [distance from axis closest o base)

Figure H.6: Moment calculations screenshot V2 (portion)

509

3 Varied payload BMR | -

payload capacity max: 1 kg (req.)
gravity (g): 0
[m] [m/s"2)
9.81 Motors: Gear ratio weight: T
Lb [ke] [r
Lo 23H522-2804D-YGS50-AR4 50 167
L1 0.295 (New lengths) 17H515-1684D-EG10-ARS 10 0.6
12 0.255 17H515-1684D-EG50-AR4 50 07
L3 0.14 (Nemall length) 17E1351684MB4-200R5-ARS 0.45
Total | h 0.69 Payload M1 M2 M3 .
chet = T =L Daﬂg - o . Payload effect on moment calculations
-4 X
wll{jointl) 2 19.62 Fil 0.5 22 10 2 0
wl2(joint2) 1 9.81 Fj2 0.8 24 11 3 as
wl3{joint3) 1 981 Fj3 10 a5 12 8l |7
0 13 77 13 6 | =
w(EF) 1 9.81 15 29 14 4 € -
wPL[max payload) 1 981 18 30 15 4 ':
b, 25 ——M1
w4 (payload+End ef) 2 19.62 F4 20 32 16 4 =
wLi(link1) 022 2.1582 FL1 23 34 17 5 | £ = —+—mz
wL2(link2) 0.19 1.8639 FLZ 25 35 18 5 | 2 15 M3
wL3{link3) 0.05 0.4905 28 57 19 5 10
wL3(link3+Nemall) 0.39 3.8259 FL3 3.0 39 13 6 s
mass at joints = motor+joint assembly 33 41 20 6 0
35 42 21 & 0.0 05 10 15 20 25 3.0 35 40
if‘ :: g ; Weight of payload [kg]

Figure H.7: Excel sheet with moment calculations for varied payload

510

Appendix 1

Project expenses

1 Project expenses BMR | —

This is an overview of all bought and given components for the bachelor project "Leafy Au-

tomation", see fig. .1

011

Software:

Mechanical

Materials:

Electronics:

Common:

Leafy Automation bachelor project expenses

Purchases (NOK):

[tems:

Bearings x 4
shipping
Bearings x 2
shipping

Pulleys and belts
Stepper motor kit
Shipping

Circuit board
Components

Mametags for Expo

Given resources from HPT:
Rasbermy Pi 5

Arduino UNO R4 Wi-Fi
Aluminum profiles (20:20)
Servo motor for gripper

Camera (ESP-32-CAM)

Resources from USMN and group

members:

Filament (3D print)

MDF (laser cut)

Limit switches, wires, etc.

Leafy greens

Estimated cost:
1000,-

500, -

110, -

250,-

100, -

500, -
100, -
300, -

200, -

Estimated cost:

With MVA
(VAT):

0,-
568, -
70, -
328, -
70, -
1324, -
9206, -
941, -
1974, -
2449, -

820, -

Partial sum:

Partial sum:

Partial sum:

Total sum:

Figure I.1: Project expenses overview

012

Sum (NOK):

2360, -

14570, -

920, -

17 850, -

1950, -

1100, -

208040, -

Appendix J

Robot Concepts

513

Robot concepts

For our robot arm, we researched different pick and place types to ensure that we chose
one that would fit with our project. The table below describes the five types we looked
into.

Some are more like each other than others, and some types we could rule out from an
early stage. We needed to focus on our requirements to help choosing the most suitable
robot type. Factors like work area, type/ weight of load, precision, speed requirements
and others, needed to be put in consideration when choosing a concept to move
forward with.

Robot type Description

Articulated robot arm - Thisrobot type
resembles the human

hand and allows
mechanical
movement and
configurations.

- One of the most
common types of
robotic arms for
industrial
automation.

- Single arm attached
to a base with a
twisting joint.

Cartesian robot arm - These are linear/
gantry robots. They

work on three linear
axis (up and down, in
and out, side to side).
- Popularinthe
industry and for
manufactures who
want high flexibility in
their configurations.

Cylindrical robot arm

This type of robotic
arm is designed
around a single arm
that is capable of
moving up and down
vertically.

They have a rotary
joint at the base and
prismatic joint to
connect the links.
Very compact and
cover smalland
simple tasks

Delta robot arm

This robot type is also
referred as parallel
robot arms, because
they facilitate three
arms connected to a
single base mounted
over a workspace.
They have high speed
options and are
therefore used for
automation.

SCARA robot arm

Selective compliance
assembly robot arm
These types are
designed with a
horizontal arm that
moves in two
directions

Known for high speed
and precision
Limited range of
motion in the vertical
place, designed to
move primary in the
horizontal plane.

s

From valuation, research and the Pugh matrix, we decided to use an articulated robot
arm. The robots we did not choose was because of several different reasons. Many of
the industrial robot types are built on large frames in which the end defector (gripper)
moves along the different axis (Gantry-and cartesian robots). These could be suitable for
the purpose of this project and are quite simple in their overall construction but also

have some drawbacks.

While being very scalable they take up a lot of space since their frame needs to cover the
whole working area. For our project we want to put most weight on the flexibility and
design of the end effector, therefore we wanted to make an articulated robot arm. The
other robot arms have more limitations in the end effector and makes it more difficult to
pick plants from different angles.

The delta robot arm is also used in pick and place applications and has good
applications, precision and speed. The reason we discharged this type is because itis
not able to lift a product from the side, which can be needed in our project.

For the SCARA and cylindrical robot arm, they are types of robots that is fast and have
high precision, while taking up little space. The downside is that it has limited flexibility
that again makes it hard to pick plants from different angles.

Sources robot pictures:

Articulated robot arm

Cartesian robot arm

Cylindrical robot arm

Delta robot arm

SCARA robot arm

517

https://robotsdoneright.com/Articles/what-is-an-articulated-robot.html?srsltid=AfmBOoqwi49xl_c36MwuGjLUOIMzpKG0hU8zEm7bDSX4jKj5Bmz0D74J
https://www.machinedesign.com/mechanical-motion-systems/article/21831692/the-difference-between-cartesian-six-axis-and-scara-robots
https://www.alibaba.com/product-detail/HITBOT-industrial-robot-arm-handling-manipulator_1600658229190.html
https://www.igus.eu/product/20433?artNr=DLE-DR-0001
https://epson.ca/scara-robots

	Acknowledgements
	Abstract
	Introduction
	Hydroplant Technologies AS
	Project description
	Budget and expenses
	Group members

	Stakeholders
	Company Visit: O. Espedal Handelsgartneri AS
	Project Methodology
	Leadership model
	Structure
	Project model
	Work shops
	Office and remote work days
	Software used
	Other work

	Requirements
	Introduction
	User stories
	Requirements in detail

	Risk Management
	Risk identification and assessment
	Risk management strategies
	Risk analysis

	System Architecture
	Literature review
	Project Constraints and Architectural Drivers
	System Objectives
	System Overview
	Layered Software Architecture
	Communication model
	Critical technologies
	Earlier work

	Physical concept
	Comparison of robot types
	Choice of robot type
	Robot arm diagram
	Definition of working area
	Definition robot arm

	Mechanical
	The base
	The Joints / arm
	Gripper
	Design Process for The Gripper
	Structural integrity

	Electronics
	Sensors
	Electric motors
	Choosing a Motor
	Stepper motor drivers
	Component selection
	MOSFET
	Operational Amplifier circuit
	PCB Design
	Microcontroller & Computer
	Electrical Signals & Communication

	Software
	Leafy Automation Central
	hmia
	Database
	Leafy Automation Core
	Design and Implementation of Arduino Firmware
	Camera
	aia and cva
	Code quality and maintainability

	Design Review
	Prototype
	3D printing
	The base prototype
	The joints/arm
	Gripper development and Testing
	Specifications robot arm prototype

	Conclusion
	Reflection
	Future work

	References
	Bibliography
	Appendices
	Requirements earlier work
	Requirements

	General
	Group Philosophy (initial outlines)
	Introduction
	Flat structure
	Iterative process

	Project Model earlier work
	Project Methodology
	Architecture
	Design and Website
	Design
	Website
	Website source code

	Scrum Presentation
	ClickUp sprints and backlog
	Sprints
	Backlog

	mechanical
	belts and pulleys
	Robot Gripper Concepts
	Soft Touch in Agricultural Robotics

	3D-Printing for gripper development

	Mechanical design
	Forces acting on base
	base HPT interface
	full scale model
	Further work on base
	Further work on arms/joints
	FEA on parts

	Electronics
	Schematic
	PCB layers
	PCB BOM

	Code Documentation
	Leafy Automation Central
	Leafy Automation Core

	Software
	aia mla tasks in detail
	Image Classification Task
	Object Detection Task
	Depth Estimation Task

	aia side notes
	Performance considerations
	A simple performance improvement to model processing

	aia / mla research phase
	AI models of interest
	Initial object tracking research
	Image classification models testing
	AI models - specifics

	In-depth aia training results (5 epochs)
	In-depth aia training results (100 epochs)
	Benchmarking
	HTTP / ESP32-Cam benchmarking
	Benchmarking
	Further optimizations
	HTTP load testing

	Demo of working HTTP communication between Core and Central
	Leafy Automation Core code restructuring
	HMI HTTP Camera Feed
	Frontend
	CameraController.js
	Backend
	api.py

	HMI dashboard v1
	Database side notes
	In-progress database work
	Logs table (logs)
	Image analysis table (image_analysis)
	Bounding boxes table (bounding_boxes)

	apia jsona schema
	apia status codes
	apia routes

	Specialized Computer Vision with OpenCV and PlantCV
	Understanding OpenCV and PlantCV
	Color segmentation
	Mask Generation
	Handling overlapping lettuce
	Chessboard pattern for camera calibration
	Generating a chessboard pattern
	Using the chessboard pattern in practice
	Creating a 3D representation of the scene

	Earlier system architecture work
	High-level architectural relational overview
	Main System relational overview
	Communications protocols / pipeline
	aia stack

	Considering development boards
	Development boards supplied by Hydroplant

	Explaining scrypt

	Calculations
	Configuration Space Excel sheet
	Moment calculations
	Varied payload

	Project expenses
	Project expenses

	Robot Concepts

