
Bachelor’s thesis
Spring of 2024

Course: TS3000 Bacheloroppgave
Date: May 21, 2024
Title: Delirium

This report forms part of the basis for assessment in the subject.

Project group: 6
Group members: Stian Nordholm,

Helge K. Kopland,
Andreas B. Sørensen,
Anders M. Minde

Internal Supervisor: Joakim Bjørk
External supervisors: Sirajuddin Asjad,

Jan Dyre Bjerknes

Project partners: Kongsberg Defence & Aerospace

The University of South-Eastern Norway accepts no responsibility for the
results and conclusions presented in this report.

Acknowledgements

We would like to express our sincere gratitude to Sirajuddin Asjad and Jan Dyre Bjerknes, our
external supervisors, for the task we were given and the advice we received from them during
this project. Their support combined has been crucial for us, in terms of getting the equipment
we needed in place and providing us with tips, tricks, and tools to perform our best.

Our internal supervisor, Joakim Bjørk, was instrumental in keeping us on the right path,
provided guidance, and gave us calming advice throughout the project. It would not have been
possible for us to keep an even keel and deliver a report or product as required without his
insight.

Delirium further would like to show our greatest appreciation to Line Minde, both the
creator of our logo and our design overseer. Her expertise in graphical design has been important
for the look and feel of our produced artifacts.

We would like to thank Tina Tolleskoven for her time, as she willingly and happily endured
our presentation rehearsals and provided us with instrumental feedback.

For tips along the way, excellent insights, and help with formatting our report, we would
like to thank Ruben Sørensen.

2

Abstract

This report details the development of the bachelor’s project Delirium, which was carried out
at USN Kongsberg in the spring of 2024. Delirium is a portable system designed to attack
unmanned aerial vehicles with radio frequency jamming and spoofing of the civil Global Posi-
tioning System (GPS) signal. It is both a general jammer capable of denying Global Navigation
Satellite System (GNSS) reception with several strategies, and a GPS "spoofer" capable of gen-
erating its own faux GPS baseband data and transmitting this data to an arbitrary target
device. These capabilities can optionally be performed at the same time. The novelty of this
product lies in the synthesis of existing stand-alone programs and modern software-defined ra-
dio technology to create a completely mobile penetration testing -and attacking device to be
used against devices utilizing GNSS signals.

3

Contents

Acknowledgements . 2
Abstract . 3

1 Introduction & Scope 16
1 Introduction . 16

1.1 Group Members . 16
1.2 Initials . 17

2 Problem Statement . 17
3 Previous Work . 17

2 Background Theory 20
4 Global Navigation Satellite Systems . 20

4.1 Generally About GNSS Signals . 20
4.2 Determining the Position . 21
4.3 The GPS Example . 22

5 Jamming . 23
5.1 Jamming Methods . 24

6 Modulation Techniques . 27
7 Spoofing . 28
8 The Python Language . 31
9 The C & C++ languages . 31
10 Combining Python with C . 32
11 Continuous integration & version control . 33
12 Legal restrictions . 33

12.1 NKOM Application . 33

3 Method 35
13 Project Management . 35

13.1 General Work Pattern . 35
13.2 Project Model . 36
13.3 Project Management Tools . 39
13.4 Lessons Learned . 41

14 The Red Thread . 42

4

CONTENTS

14.1 Milestones & MVP . 42
14.2 User Stories . 43
14.3 System Requirements . 44
14.4 Risk Assessment . 46
14.5 Design Choices . 47

15 Equipment . 49
15.1 GNU Radio . 49
15.2 HackRF One . 50
15.3 GPS-SDR-SIM . 53
15.4 Briefcase . 53
15.5 Raspberry Pi 5 . 54
15.6 Touchscreen . 55
15.7 Power Management . 56
15.8 Attenuator . 58
15.9 Navio 2 . 64
15.10 NEO M8N . 64
15.11 Emlid OS . 68
15.12 u-center . 68

16 Software Development . 70
16.1 Modular Approach . 70
16.2 Programming Languages Used . 70
16.3 Implementation of CI & VCS . 70
16.4 Development of the Delirium API . 71
16.5 Creating the Flowgraphs in GNU Radio 74
16.6 Development of Delirium GUI . 78

4 Epilogue 82
17 Results . 82
18 Conclusions . 84
19 Recommendations . 85

19.1 Spoofing a drifting GPS-signal . 86
19.2 Future Work for the Delirium GUI . 86

References . 87
References of high regard . 92

Appendices 94

A Project Timeline 95

B The Red Thread 97

C Milestones 99

5

CONTENTS

D User Stories 101

E System Requirements 104

F Risk Assessment 112

G Testing Excel 114

H Test reports 116
1 Test Report: T1.1.1 . 117

1.1 Pre-condition: . 117
1.2 Method: . 117
1.3 Hypothesis: . 117
1.4 Equipment used: . 117
1.5 Results: . 117
1.6 Conclusions: . 118

2 Test Report: T2.1.1 . 119
2.1 Pre-condition: . 119
2.2 Method: . 119
2.3 Hypothesis: . 119
2.4 Equipment used: . 119
2.5 Results: . 119
2.6 Conclusions: . 119

3 Test Report: T3.1 . 120
3.1 Pre-condition: . 120
3.2 Method: . 120
3.3 Hypothesis: . 120
3.4 Equipment used: . 120
3.5 Results: . 120
3.6 Conclusions: . 121

4 Test Report: T3.2.1 . 122
4.1 Pre-condition: . 122
4.2 Method: . 122
4.3 Hypothesis: . 122
4.4 Equipment used: . 122
4.5 Results: . 122
4.6 Conclusions: . 123

5 Test Report: T4.1 . 124
5.1 Pre-condition: . 124
5.2 Method: . 124
5.3 Hypothesis: . 124
5.4 Equipment used: . 124

6

CONTENTS

5.5 Results: . 124
5.6 Conclusions: . 125

6 Test Report: T6.1 - GUI/API Integration test 126
6.1 Hypothesis: . 126
6.2 Equipment used: . 126
6.3 Method: . 126
6.4 Results: . 126
6.5 Conclusions: . 126

7 Test Report: Multiple Radios in Parallel . 127
7.1 Hypothesis: . 127

8 Equipment used: . 127
8.1 Method: . 127
8.2 Results: . 127
8.3 Conclusions: . 128

I SDR Components 129

J Delirium Budget 131

K Martin Fowler’s CI Model 133

L Delirium Diagram; Hardware & Software 135

M Software Architecture 137

N Delirium UML Diagrams 139
9 Activity Diagram - GUI . 139
10 Class Diagram - API . 141
11 Use Case Diagrams . 143
12 Sequence Diagrams . 146

12.1 Sequence Diagram - Barrage Jamming 147
12.2 Sequence Diagram - Spoofing . 149
12.3 Sequence Diagram - Sweep Jamming . 151
12.4 Sequence Diagram - Status Polling . 153

O NKOM Application Procedure 155

P NKOM Application 159

Q Digital Frequency Radio Memory 169
13 Digital Frequency Radio Memory . 169

7

List of Figures

1.1 Main use cases for Delirium, created by AM. Legend can be seen in figure N.1. . 17

2.1 Illustration of several satellite navigation system orbits[1]. The illustration is
animated and can be seen and interacted with by following the reference 21

2.2 GNSS signal frequencies[2] . 22
2.3 Position calculation . 23
2.4 The first subframe of the LNAV data [RefH1]. 24
2.5 Steps in a drone jamming operation. Made by HK. 24
2.6 Noise jamming methods. (Created by ABS.) . 25
2.7 Barrage jamming. [3] . 25
2.8 Spot jamming. [3] . 26
2.9 Amplitude modulation viewed in time-domain 27
2.10 Frequency modulation viewed in time-domain 28
2.11 BPSK modulation viewed in time-domain . 29
2.12 C/A-code and NAV message modulated into the carrier signal 29
2.13 Figure showing the final complex modulated signal [4]. 30
2.14 How asynchronous spoofing works. Made by HK. 30
2.15 Binding a C++ function to CPython via pybind11. Screenshot from the Delirium

source code repository. 32

3.1 Illustration of how we rotated the special roles weekly, created by AM. 36
3.2 Illustration of the backlogs and their relation. Diagram created by AM. 38
3.3 Illustration of our project model and work pattern. The days written outside

parentheses are before Easter, and inside parentheses are after Easter. Diagram
created by AM. 38

3.4 Screenshot of our timeline within Jira. 39
3.5 Time-tracking in Clockify [5] . 40
3.6 Errors in the Overleaf project . 41
3.7 Our MVP No. 1, called "basic jammer", is the simplest product that satisfies the

most important requirements of both faculty and customer. Diagram made by
AM. 42

3.8 User story template. 43
3.9 Our fields for ensuring correct testing . 46

8

LIST OF FIGURES

3.10 Risk Assessment example . 47
3.11 Design choices and the "red thread" (Created by ABS). 48
3.12 An example GNU Radio flowgraph within the GNU Radio Companion GUI [6]. 49
3.13 The HackRF One with its antenna output visible on the left, and clock synchro-

nization inputs/outputs on the right [7]. 51
3.14 Jula Protection Case M [8]. 54
3.15 The Raspberry Pi 5 (screenshot from kjell.com). 55
3.16 a) Raspberry Pi Touchscreen. b) Backside of the touchscreen (screenshot from

elfadistrelec.no). 56
3.17 Our Powerbank of choice (screenshot from Elkjop’s online store). 58
3.18 T-pad configuration. 59
3.19 T-pad configuration with impedance match. 61
3.20 Tuned vs. untuned resistor values. 61
3.21 a) 10 dB attenuator. b) 20 dB attenuator. 62
3.22 Simulation results with parallel connections. 62
3.23 Cascade connection. 63
3.24 Cascade simulation result. 63
3.25 Visual representation of cascading 10 dB and 20 dB attenuators (requires cables)

(Created by ABS). 64
3.26 Navio 2 features. 64
3.27 The NEO M8N GNSS-chip [9]. 65
3.28 Building blocks of a SAW-filter [10]. 66
3.29 SAW-filter bus bars [11]. 66
3.30 Frequency response (wide-band) of the EPCOS B7839 SAW-filter [12]. 67
3.31 Screenshot from u-center. 69
3.32 Screenshot from u-center. Choosing GNSS systems in the settings menu. 69
3.33 Use cases for the Delirium API, created by AM. Legend can be seen in figure N.1. 71
3.34 An overview of the file structure needed to implement the Delirium C++ exten-

sion, created by AM. 73
3.35 An overview of the CMake build process for the Delirium C++ extension module,

created by AM. 73
3.36 Osmocom and Soapy blocks. 74
3.37 Variables we used for protocol-aware jamming. 75
3.38 Barrage jamming flowgraph . 75
3.39 Spot jamming flow graph . 76
3.40 Sweep jamming flowgraph . 76
3.41 Protocol aware jamming flowgraph . 77
3.42 QPSK jamming flowgraph . 77
3.43 Protocol jamming with sweep functionality . 78
3.44 Screenshot of Delirium GUI. 80

9

LIST OF FIGURES

3.45 Screenshot of generate frame in GUI. 80
3.46 Screenshot of control frame in GUI. 81

4.2 Screenshot of the Delirium GUI. 84

F.1 Our list of risks that were determined to be likely or have a high impact. 113

G.1 Testing documentation in Excel . 115

H.1 CXA Keysight signal analyzer showing signal peak in middle of spectrum. . . . 118
H.2 CXA Keysight signal analyzer showing signal peak in middle of spectrum. . . . 123
H.3 Picture showing ucenter where the receiver believes it is in the middle of the ocean.125
H.4 CXA Keysight signal analyzer showing signal peak of both sweep jamming and

spoofing signals. 128

I.1 Comparison of different hardware solutions . 130

J.1 Delirium budget . 132

N.1 Legend explaining the Delirium use case notation 143
N.2 Use case diagram for Delirium as a whole. Created by AM 143
N.3 Use case diagram for the Delirium API. Created by AM 144
N.4 Use case diagram for the Delirium GUI when jamming is chosen. Created by AM144
N.5 Use case diagram for the Delirium GUI when spoofing is chosen. Created by AM 145
N.6 Legend for the Delirium sequence diagrams, created by AM. 146

Q.1 Digital Frequency Radio Memory operation [13]. 169

10

List of Tables

1.1 Group members . 18

3.1 System requirement fields, creator: AM . 44
3.2 Briefcase options. 55
3.3 Power consumption. 57
3.4 Powerbank options. 58
3.5 N-factor and resistor values for 10dB and 20dB attenuation. 60

11

Acronyms

API Application Programming Interface. 31, 70, 72

BPSK Binary Phase Shift Keying. 26, 28

CPLD Complex Programmable Logic Device. 51, 52

dB Decibel. 59, 60

DFRM Digital Frequency Radio Memory. 24, 169

FPGA Field-Programmable Gate Arrays. 52

GHz Giga Hertz. 52, 67

GNSS Global Navigation Satellite System. 14, 15, 20, 22, 84

GUI Graphical User Interface. 9, 49, 70–72, 82, 84

HAT Hardware Attached on Top. 64

KDA Kongsberg Defence & Aerospace. 17, 37, 39, 40, 42, 43, 47, 48, 50, 52, 57, 84, 99

Kg Kilogram(s). 54

LNA Low Noise Amplifier. 65, 66

mA Milli Ampere(s). 56, 57

mAh Milli Ampere Hour(s). 57, 58

MHz Mega Hertz. 28, 67, 75, 76

NASA National Aeronautics and Space Administration. 53

NKOM Norsk kommunikasjonsmyndighet (Norwegian Communication Authority). 33, 34, 59

NOK Norske kroner. 54

PPM Parts Per Million. 52

12

Acronyms

PSK Phase Shift Keying. 28

QPSK Quadrature Phase Shift Keying. 28

RAM Random Access Memory. 55, 169

SAW Surface Acoustic Waves. 65–67

SBAS Satellite Based Augmentation System. 65

SDR Software Defined Radio. 19, 30, 48, 51–53, 70, 71, 82

SMA SubMiniature version A. 63, 126

UAS Unmanned Aerial System. 17

UI User Interface. 47

UML Unified Modeling Language. 71

USB Universal Serial Bus. 55, 56

USB-PD USB Power Delivery. 56

USN University of South-Eastern Norway. 35, 70

W Watt(s). 56–58

13

Glossary

almanac Within GNSS systems, the almanac is a dataset that contains coarse orbit and status
information for the satellites in the respective GNSS’s constellation as well as data related
to error correction.. 21, 68

Atlassian An Australian-American corporation that makes software solutions for software
development teams and project managers. 39

AWGN Additive White Gaussian Noise. A random disturbance (noise) signal, following a
bell-shaped curve, evenly spread across all frequencies [14]. 25, 26

BeiDou The Chinese GNSS. 20

boilerplate code "In computer programming, boilerplate code, or simply boilerplate, are sec-
tions of code that are repeated in multiple places with little to no variation." [15]. 32

Chip A chip is a string of pseudo-random bits transmitted with a pre-determined length and
rate. Chip is often used to avoid confusion with bits containing useful data.. 29

ephemeris In astronomy and celestial navigation, an ephemeris is a dataset with tables that
gives the trajectory of naturally occurring astronomical objects as well as artificial satel-
lites in the sky, i.e., the position (and possibly velocity) over time.[16]. 21, 28, 29, 53, 68,
79

flight controller A circuit board or box, that with the help of multiple sensors controls ev-
erything a drone does, i.e. the drone’s brain. 64

flowgraph The concept of a flowgraph in GNU Radio is an acyclic directional graph with one
or more source blocks (to insert samples), one or more sink blocks (to terminate or export
samples) and any processing blocks in between.. 70

Galileio The European GNSS operated by the European Union Agency for the Space Pro-
gramme (EUSPA). 20

GIL Python’s Global Interpreter Lock. 31, 72

GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema, the Russian GNSS. 20

14

Glossary

GPS Global Positioning System, the American GNSS. 20, 22, 72, 82, 84

high-level language High-level programming languages have formats close to the English
language. They are very abstracted from the machine code which it represents, and
express instructions in a more human-readable form than low-level languages [RefH2]..
31

L band The L band is the IEEE designation for the range of frequencies in the radio spectrum
from 1 to 2 gigahertz (GHz). This is at the top end of the ultra high frequency (UHF)
band, at the lower end of the microwave range.[17]. 20

low-level language A low-level programming language has a small or nonexistent amount of
abstraction between the language and machine language [RefH2].. 31

LTspice ”LTspice is a powerful, fast, and free SPICE simulator software, schematic capture,
and waveform viewer with enhancements and models for improving the simulation of
analog circuits.” [18]. 60

MVP A Minimum Viable Product is an early version of a product that satisfies the stake-
holder’s requirements in the simplest ways possible so that any discontent can be weeded
out early on [19][20]. 42

Piezoelectric "The ability of certain materials to generate an electric charge in response to
applied mechanical stress." [21]. 66

shared object shared object files (.so) are - like Windows’ dynamic-link library (.dll) files -
shared library files which allow multiple executing programs access to the same source
code libraries.. 32, 33, 72

SV Space Vehicle, a common way to shorten the word "satellite" in the GNSS field. 22, 23

UBX-CFG-GNSS Configuration field in ucenter, used to select one or more frequency bands
for a particular constellation. E.g. GPS: L1C/A /L2C/L5 and/or GLONASS: L1 C/A.
65

15

Chapter 1

Introduction & Scope

This chapter serves as an introduction, both to this report itself and the task which defined
this project.

1 Introduction HK | SN

Global satellite navigation was originally a military invention. Developed in the 1960s it began
as a two-dimensional positioning service. After the invention of solid-state microprocessors,
bandwidth utilization techniques, and computers, its accuracy improved and led to the invention
of the American system Navstar, later renamed to Global Positioning Service (GPS) [RefH3].
In 1983 President Ronald Reagan authorized the use of GPS by civilian airlines, this was the
first time the system was to be used in a non-military application. By the end of the 1980s,
there were handsets available for consumers to buy, these were however expensive at around
3000$

With the continued development in computer technology, and widening usage of the GPS
system, receivers now cost around 1.5$ instead and are everywhere. Cars, watches, cellphones,
computers, and even some dog collars have them. We have come to rely on navigation services
for many things in our daily lives. Therefore we believe it is important to study the effect it
would have on us if this technology could be stopped in some way.

In our bachelor thesis, we have studied the process of developing a system that can block or
disrupt the GPS signal, and thus either obstruct the navigation or give the user a false location.
We have called the project "Delirium" as the state of delirium is a mental disorder manifesting
as a state of confusion, encapsulating our project goal.

The introduction section of this report is about the group, the problem statement, and the
previous works on this subject. The "background" section is technical background information
about the systems we interact and interface with. The "method" section explains our approach,
the tools we used, and how we implemented them into our system. Finally, in the "epilogue"
section; we show our results, discuss our findings, and suggest how to expand on our work.

1.1 Group Members SN | ABS

16

The Delirium project consists of four members: Anders Minde, Stian Nordholm, Helge Kop-
land, and Andreas Bondal Sørensen. Each group member’s portrait, full name, initials, and
engineering discipline can be found in Table 1.1.

1.2 Initials SN | ABS

The initials of the author and proofreader for each section are indicated in the headings through-
out this document. This approach clarifies the contributions of each group member, as the
project is graded individually. Clearly displaying each member’s contributions is essential for
individual assessment. Each section has been proofread by a different group member to ensure
the document’s quality. The format for crediting is as follows: the author’s initials are listed
first, followed by a vertical line |, and then the proofreader’s initials.

2 Problem Statement HK | ABS

We were tasked with creating a ’red-side’ (attacking) system for confusing the positioning service
of an Unmanned Aerial System (UAS) using GPS jamming. The system was to physically
appear as a small container with an antenna, and be capable of neutralizing a drone through
GPS jamming.

If this was achieved we were then supposed to iterate on the system and add spoofing
capabilities, with the aim of depriving the receiver of authentic signals (jamming) and sending
our own GPS signals that tell the receiver it is in another location.

KDA wants to use the system we develop internally for penetration testing of drones and
other systems that use GPS services, for example, their missiles. The system described by the
customer can be visualized as seen in figure 1.1.

Figure 1.1: Main use cases for Delirium, created by AM. Legend can be seen in figure N.1.

3 Previous Work HK | ABS

In recent years the wide usage of consumer-grade drone systems has generated issues for several
concerned parties and the number of drones sold to consumers is expected to double by 2030 [22].
In this context, experts are concerned about the increase in the malicious use of these drones,

17

Table 1.1: Group members

18

in particular the security, safety, and privacy within society[RefH4]. Therefore the operation of
hindering drone operations in certain areas is becoming more important in the coming years.
Recent studies have reviewed the possibility of manipulating a drone’s positioning services in
order to gain control of the perceived location of the drone [RefH5][RefH6][RefH7].

The consensus among these studies is that recent advancements in Software-Defined Radio
(SDR) peripherals and open-source software are making the concept of interfering with drone
positioning services more accessible to the layman. Previously in order to transmit the signals
needed to block GPS reception, one would need a signal generator, but the prices of these
systems make this approach rather infeasible: "Despite the ease of mounting a spoofing attack
with a signal simulator, there are some drawbacks. One is cost: the price of modern simulators
can reach $400k" [RefH5]. Another reason this method was seen as unlikely by Humphreys
et al., was the size of the signal generator system. A signal simulator is an advanced signal
generator, which generates simple sine waves with a set amplitude and frequency. The signal
simulator can in addition to this simulate specific signals, such as the pseudo-random ranging
codes found in the GPS L1-signal.

Lately, the development of SDR has made those points mute. In [RefH7] Renato Ferreira
et al. proved that with an SDR-peripheral costing in the order of a few hundred dollars, they
were able to jam the signals of a consumer-grade drone. Iterating on their work, we aim to
develop a system consisting of similarly priced components that can both jam and spoof the
signals of a consumer-grade drone.

19

Chapter 2

Background Theory

This chapter includes all the necessary background theories one would need to understand
the topics discussed later in this document. Subjects like jamming and spoofing, modulation
techniques, software languages, modern software development, as well as general information
on GNSS are all explained in detail. This is an important read to fully understand the extent
of our project and our task.

4 Global Navigation Satellite Systems AM | HK

There exist 4 Global Navigation Satellite Systems (GNSSs) which orbit the earth, here enlisted
from first to last:

• Global Positioning System (GPS), made by the United States, first launch: 1978

• Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), made by Soviet/Rus-
sia, first launch: 1982

• BeiDou, made by China, first launch: 2000

• Galileio, made by the European Union, first launch: 2011

Each of these systems manages about 30 Space Vehicles (SVs, meaning satellites in this
case) in orbit at any time, depending on health, age, system modernization plans, and so on.
The set of SVs belonging to a certain system is not uniform, it might contain older and newer
SVs with different capabilities depending on emerging technologies and demand. Although each
system is operated by individual entities representing different powers around the world, their
method of operation is quite similar. Each GNSS orbits at a specific radius relative to the
earth, roughly as illustrated in figure 2.1.

4.1 Generally About GNSS Signals AM | HK

Each GNSS broadcasts both open signals for civilian use and encrypted signals for authorized
personnel. Our project scope covers the signals available for civilian use. The satellites con-
tinuously transmit navigation signals in two or more frequencies in the L band (from 1 to 2

20

Figure 2.1: Illustration of several satellite navigation system orbits[1]. The illustration is
animated and can be seen and interacted with by following the reference

gigahertz). The signals’ spread along the band are shown in figure 2.2. The GNSS signals
generally contain the following main components[23]:

• Carrier wave: Radio frequency sinusoidal signal at a given frequency.

• Ranging code: Sequences of 0s and 1s (zeroes and ones), which allow the receiver to
determine the travel time of a radio signal from a satellite to the receiver. They are called
pseudorandom noise (PRN) sequences or PRN codes.

• Navigation data: A binary-coded message providing information on the satellite ephemeris
(satellite position and velocity) which enables the computation of satellite coordinates at
any point in time, clock bias parameters, almanac (with a reduced accuracy ephemeris
data set), satellite health status, and other complementary information.

4.2 Determining the Position AM | HK

A device receiving GNSS signals can by algorithmic calculation determine its position in all 3
dimensions, its velocity and the time. For this to happen, the receiving device needs to acquire
the ranging code and navigation data, as described in the section above. The actual calculation
of the position from this data is quite exhaustive, several examples of which can be found on
GNSS-SDR’s web page [24]. The key is that each SV broadcasts omnidirectional signals which
form a sphere surrounding them. When the signal from one SV reaches the receiving device
with its ranging code and navigation data, the distance between them can be calculated. The
position on Earth cannot be determined, however, until signals from several SVs are received.

This is a consequence of the fact that the position of the receiver is calculated as being in

21

Figure 2.2: GNSS signal frequencies[2]

the intersection of the "signal spheres" arriving on it (see figure 2.3). As such, we could say that
the signal from one SV only provides enough information to assume a distance from the SV
itself as the position of the receiver. The signals from two SVs will place the receiver on Earth,
but in the largest possible area, etc. In fact, it takes signals from a minimum of four SVs in view
to get an actual position, where the 4th SV’s signal is used to correct for timing inaccuracies.
Receiving more than 4 signals further makes the position calculation more accurate [25] [26]
[27].

4.3 The GPS Example AM | HK

The by far most used GNSS in Western countries is the GPS, it therefore made sense for us to
focus on this system. The main GPS carrier signal, L1, at 1575.42MHz, consists of two carrier
components which are in phase quadrature with each other, both of which are referred to as the
"legacy signals" by the US Space Force. Each carrier component is a bi-phase shift key (BPSK)
modulated by a separate sequence of bits (more on that in section 6). One such sequence is the
modulo-2 sum of the P(Y)-code (precision/secure code) and legacy navigation (LNAV) data,
which is reserved by cryptographic techniques for military and authorized civilian users. The
other sequence is the modulo-2 sum of the C/A code (coarse/acquisition code) and the LNAV
data, which is freely available for public use.

All satellites in the GPS constellation currently broadcast the signal mentioned above with
its two carrier components, and therefore L1 C/A is the go-to civilian navigation signal within
the GPS. Newer satellites additionally broadcast more accurate signals on other frequencies.
Code-division-multiple-access (CDMA) techniques allow differentiating between the SVs even
though they may transmit at the same frequencies [RefH1] [28] [29].

22

(a) Omnidirectional illustration [25] (b) Light cones [26]

Figure 2.3: Position calculation

4.3.1 LNAV Data AM | HK

The LNAV data includes SV (Space Vehicle) ephemerides, system time, SV clock behavior
data, status messages, and C/A to P (or Y) code handover information, etc. The 50 bps (bits
per second) data is modulo-2 added to the P(Y)- and C/A- codes; the resultant bit-sequences
are used to modulate the L1 carrier. The actual broadcasted data is a 1500-bit long "frame"
made up of five subframes, where each subframe is 300 bits long (see the example in fig 2.4).
Subframes 4 and 5 are sub-communicated 25 times each, meaning that a complete data message
requires the transmission of 25 full frames [RefH1].

5 Jamming HK | AM

Drone Jamming can be accomplished by several methods. There are two main vectors of attack
for drone jamming. The communication link between the pilot and the drone, and the location
signals between the drone and the satellites.

In order to have a counter-drone system, there are several prerequisites that need to be
met. First, the drone must be detected, then it needs to be localized and finally, it needs
to be identified before beginning the drone jamming. There are numerous ways to perform
the detection, localization, and identification. One of these is visually detecting, locating, and
identifying the drone. Given the scope of our project; neutralization, we assume that the
prerequisites are met.

23

Figure 2.4: The first subframe of the LNAV data [RefH1].

Figure 2.5: Steps in a drone jamming operation. Made by HK.

Neutralizing the drone can be split into two categories; hard-kill and soft-kill. Drone jam-
ming falls into the latter category which means there are no physical components launched or
hurled at the drone. Instead, it is attacked wirelessly through radio frequencies.

5.1 Jamming Methods ABS | HK

There are two main jamming techniques, noise-jamming (spot, sweep, barrage) and repeater-
jamming (DFRM). Noise-jamming works by sending noise in the form of additive white Gaus-

24

sian noise (AWGN) on either a specific frequency or multiple frequencies to make the target
unable to communicate on said frequencies. The repeater technique is based on receiving a
signal from a radar, modulate either the frequency, phase, or amplitude, and then sending the
signal back, creating false "hits" on the target radar. This method can be read more about in
appendix Q. Figure 2.6 shows the different forms of noise-jamming.

Jamming is highly dependent on power density and the jamming-to-signal ratio (J/S), where
"J" is the jammer’s transmitting power and "S" is the target signal strength, or the received
GPS-signal strength [3]. In a jammer, we want "J" to be as big as possible, but as described in
the next sections, this varies with which method being used.

Figure 2.6: Noise jamming methods. (Created by ABS.)

5.1.1 Barrage Jamming ABS | HK

As mentioned in the intro above, power density is very important in jamming. However, with
barrage-jamming (fig. 2.7), power density is sacrificed for covering greater bandwidth [3]. This
means that the jammer will be less powerful, but will work better against frequency agile
receivers and several receivers even. By spreading the power there is some level of jamming
no matter what frequency the receiver operates at. The main advantage of barrage jamming
is its simplicity and that it can cover much of the electromagnetic spectrum [3]. The main
disadvantage is the low power, given that modern receivers often demand high power to be
jammed.

Figure 2.7: Barrage jamming. [3]

25

5.1.2 Spot Jamming ABS | HK

A way to fully raise the signal power density of a jammer is to use a spot jammer (fig. 2.8). The
spot jammer works by being tuned to the anticipated centre frequency of the victim receiver
and focusing all its energy on that specific frequency. This increases the jamming-to-signal
ratio to a maximum. In contrast to the barrage jammer, the spot jammer cannot jam several
frequencies at once. If the need of jamming several frequencies is present, multiple jammers are
needed. Even though spot jammers are powerful, they are also quite vulnerable to frequency
agile receivers, or receivers that can change their frequency, which means that the operator, or
jammer, have to tune the the jamming signal to meet the receiver’s frequency [3].

Figure 2.8: Spot jamming. [3]

5.1.3 Sweep Jamming (Swept Spot Jamming) ABS | HK

Sweep jamming, or swept spot jamming, works as a middle point between spot jamming and
barrage jamming. As with spot jamming, sweep jamming can only cover one frequency at once.
However, as the name implies, the sweep jammer will sweep through several frequencies after
one another. This allows the jammer to cover a broader spectrum, but still focus all its energy
on one "point". The efficiency of a sweep jammer depends both on transmitting power and
sweeping speed (how fast it changes frequency).

Another ability of the sweep jammer is causing vibrations in the receiver made from power
bursts from the jammer. If the sweeping speed is fast enough, the vibrations can last from the
first power burst until the next power burst arrives [3]. This phenomenon is known as "ringing",
and increases the effect of the sweep jammer with a great amount.

5.1.4 Protocol Aware Jamming ABS | HK

In difference to the other jamming methods discussed in this section, protocol-aware jamming
does not involve transmitting jamming signals in the form of AWGN. Instead, it transmits
a random stream of bits that are modulated through BPSK modulation. The bit-stream, or
jamming signal, is specified towards the receiving units, taking center frequency, bandwidth, and
data rate into consideration. The constructed signal will then be very similar to the original
GPS signal (section 5). This gives it a lower detection probability than the other jamming
methods and will cause less interference with other communication systems [RefH8].

26

6 Modulation Techniques HK | ABS

Radio signals are around us all the time, our phones are transmitting and receiving them
constantly. The signals are analog in nature, but through modulation, digital data are imple-
mented into the carrier signal. This modulation happens through different methods and can
be explained through how they work [RefH9]:

• ASK Carrier Amplitude modulation.

• FSK Carrier Frequency modulation.

• PSK Carrier Phase modulation.

• QAM Carrier amplitude and phase modulation.

In amplitude modulation, the carrier amplitude is increased or decreased in accordance with
the signal properties. In fig. 2.9 we can see that the output has a varying amplitude based on
the input above. In the middle, when the signal is zero, the output is also zero.

Figure 2.9: Amplitude modulation viewed in time-domain

In frequency modulation, the carrier frequency is adjusted according to the signal properties.
For an example, we simulated a two-component sine wave with a 30 Hz and 60 Hz frequency.
Then we modulated that signal onto a carrier frequency of 200 Hz with a set frequency deviation
of 100 Hz. The resulting modulated signal can be seen in fig. 2.10 together with the original
sine wave.

In phase modulation, the phase of the carrier frequency is adjusted according to the signal
properties. See fig. 2.11 for an example. In the figure, the top line is the digital signal that
will be added to the carrier. The middle is the carrier with the signal modulated onto it (the
phase shifts every time the signal goes from one state to the other).

27

Figure 2.10: Frequency modulation viewed in time-domain

And in quadrature, or amplitude and phase modulation, both the amplitude and phase of
the carrier are adjusted according to the signal properties.

GPS signals, specifically the L1-band are modulated using BPSK-modulation where the
C/A-code and P(Y)-code are transmitted using two separate bit streams. The C/A-code is
transmitted as a 1.023MHz signal and the P(Y)-code is transmitted as a 10.23MHz signal.

These two signals are out of phase by 90◦ to each other and are added together before being
modulated into the carrier. This is a form of PSK called Quadrature Phase Shift Keying or
QPSK. See fig. 2.13 for a representation of the final signal.

From fig. 2.12 we can see that the codes are modulated onto the carrier with a central
frequency of 1575.42 MHz. The bandwidth of the channel is 15.345MHz.

7 Spoofing HK | AM

In section 5 we introduced the concept of jamming a signal, which is the act of denying access
to a radio frequency by sending noise at an amplitude exceeding that of the target signal. Jam-
ming is a relatively simple approach to the denial of service for the GNSS receiver, requiring
no real signal analysis or signal processing (except for protocol-aware jamming).

Spoofing on the other hand is the method of generating simulated signals using real ephemeris
data from NASA, then transmitting these at the correct frequency in the same manner as the
real satellites do. This gives the appearance of a genuine satellite connection for the receiver,
and it can lock on to these fake signals and calculate its own position based on the data emit-
ted from the spoofing device. This means that the spoofing device can send out positioning
data such that the receiver believes it is in a completely different place than it is. It can also

28

Figure 2.11: BPSK modulation viewed in time-domain

Figure 2.12: C/A-code and NAV message modulated into the carrier signal

change the perceived velocity and the time of the receiver. The goal of spoofing may be denial
of service, removing the navigation reliability of the receiver, or to manipulate the perceived
location of the receiver to gain control of the system the receiver is connected to.

7.0.1 Asynchronous versus Synchronous Spoofing HK | AM

There are two main approaches to spoofing; asynchronous and synchronous. In asynchronous
spoofing, the spoofer needs to transmit data the same way the satellites do, with the same
transmission rate, using legitimate ephemeris data. Synchronous on the other hand demands
more accuracy. It also requires that the spoofing signal is accurate to within microseconds
of the original signal, as well as the Chip delay must be zero. The GPS L1 signal has two
separate bit streams (C/A- and P-code). The C/A PRN codes are 1023 chips in length and
are transmitted at 1.023 Mchips/s.

29

Figure 2.13: Figure showing the final complex modulated signal [4].

This means the code repeats every millisecond. The P codes however are much longer, and
even though they are transmitted at ten times the rate (10.23 Mchips/s) they are only repeated
once every week [30]. The reason they are longer is to improve the accuracy of the GNSS sys-
tem. To do this, most solutions for synchronous spoofing involve a separate GPS receiver that
is connected to the SDR-peripheral in order to gather information about the ranging codes
[RefH10] [RefH5]. The spoofing system must also have knowledge about the location of the
receiver to transmit signals accurately to the receiver’s antenna [RefH5].

Figure 2.14: How asynchronous spoofing works. Made by HK.

30

In figure 2.14 we can see the difference between synchronous and asynchronous spoofing
from the receiver’s point of view. The green triangle is the authentic signal and the red triangle
is the signal from the spoofing device. The distance between the peaks is the chip delay. Notice
how, in the asynchronous spoofing scenario, the spoofing signal does not overlap the authentic
signal.

8 The Python Language AM | SN

Python is a very high-level (see glossary for "high-level language" and "low-level language")
general-purpose programming language focusing on object-oriented programming with high
readability and is one of the most if not the most popular programming language today [31]
[32]. The Python programming language has several different implementations, the reference
of which is CPython, which is what Delirium was implemented in [33]. CPython consists of
source code written in both Python and C and provides an API for using C/C++ with it (see
10). Despite the advantages CPython provides in terms of readability and abstraction, it does
come with some clear disadvantages.

CPython’s GIL (Global Interpreter Lock) does not support threading in the sense that one
would expect coming from a language such as C++. The interpreter is locked to the main
thread, and no threads are allowed interpretation in actual parallel, only one at a time, which
prevents multi-threaded programs from taking full advantage of multiprocessor systems [34].
This meant that we had to take special care to not implement any features which could result
in a blocking state in the main process.

9 The C & C++ languages AM | SN

The C language is a relatively old one, created in 1970 at the AT&T Bell Laboratories to
write the Unix operating system (OS). It has had a huge impact, being used to create OS’
and generally applications that require high efficiency and speed [RefH11]. The C language
can be characterized as being higher-leveled than assembly languages, but lower-leveled than
e.g. Python, making it a middle-level language [RefH2]. The C++ language was also created
at AT&T Bell Laboratories but at a later time. The purpose of C++ was to expand the
exclusively procedural C language with object-oriented programming by adding functionality
such as classes. C++ has since then become a mature language of its own, but is still largely
compatible with its origin C in terms of compilation [RefH11].

The C/C++ source code files need to be compiled in order to produce executable programs
for a computer. This is a more time-consuming and complicated procedure for the developer
than e.g., interpreting Python source code, which is as simple for the developer as starting a
program. There do, however, exist excellent tools to make the compilation process for the C
languages less time-consuming and even automated. Such a tool is the well-known CMake.

31

CMake is an open-source, cross-platform family of tools designed to build, test, and package
software. CMake provides control of the software compilation process using simple independent
configuration files, labeled as "CMakeLists.txt" [35]. CMake is widely used within the develop-
ment of C/C++ projects, and its popularity has led to it being included as an extension in the
Visual Studio Code editor, which provides a simple user interface for performing builds and
debugging, with the premise that a compiler is installed on the system.

10 Combining Python with C AM | SN

Python can be extended with C and C++ source code to provide greater speed and to take
advantage of C/C++ standard libraries and functionality [31]. There are several ways of doing
this in CPython, both with built-in Python packages and with external solutions. The built-in
way is described in Python’s own documentation [36]. The documentation shows that to in-
tegrate C/C++ source code with a Python program, one must include the "Python.h" header
file in the desired C/C++ source. This is a C-language header file that comes with CPython
by default.

The header file exposes the "Python API", which defines a set of functions, macros, and
variables that provide access to most aspects of the Python run-time system [36]. This API is
then used to bind the C functions/types to callable Python objects. Next, a setup file must
be made that uses the standard Python module "distutils". This file ensures the compilation
of the C/C++ extension module and makes a ".so"-file (see glossary for "shared object") which
provides access to the module [37]. The built-in extension solution is available on practically
every system that has CPython installed and is documented from the official source. It does,
however, cause significant amounts of boilerplate code.

Figure 2.15: Binding a C++ function to CPython via pybind11. Screenshot from the Delirium
source code repository.

Another way of combining C/C++ code with Python is with the external pybind11 library.
The pybind11 library is a lightweight header-only library that exposes C++ types in Python
and vice versa, mainly to create Python bindings of existing C++ code. Its goal is to minimize
boilerplate code compared to the built-in way and other external solutions [38]. The binding
of C++ code to Python with pybind11 is done by including its header file in the desired C++
source code, and then using the functions defined in this header to declare the C++ function-
s/types in Python format, as can be seen in figure 2.15.

32

The pybind11 library provides a CMake function called "pybind11_add_module" which
adds a library target to be built from the listed source files [39]. When this function is used
in a CMakeLists file, a shared object file is produced which exposes the functions/types in the
C++ source file as a Python module, making it available for import statements in CPython
source files.

11 Continuous integration & version control AM | SN

Continuous integration (CI) is a popular software development practice that involves forcing
developers to upload their work to a central repository and integrate their changes to the code
base within it often, perhaps several times a day. This practice has become an industry stan-
dard within software development as it dramatically reduces the time spent on making different
people’s code work together (integration), compared to earlier practices where people would
work individually over long periods and then integrate, which can cause enormous compatibility
issues which can take easily as much time to fix as it took to make the software itself. CI is
usually combined with - or built into - a version control system (VCS) [RefH12][40].

A VCS in the software development context is a software system that manages changes to
software projects and enables inspection of who made changes, when they were made, and what
was changed. A VCS further allows reverting a project to a previous state, among other optional
functionalities [41]. The most popular VCS at the moment is Git, which is a distributed VCS
(DVCS). The feature that makes Git distributed is the fact that once a repository has been
cloned down from e.g. GitHub to a computer, it exists in its entirety on the local machine and
the repository has been completely mirrored [42].

12 Legal restrictions HK | ABS

Jamming, the act of deliberate disruption of communication signals, is strictly regulated and
prohibited by law. According to Paragraph 6-2 of "EKOM-loven" (The Electronic Communi-
cations Act), any transmission that utilizes the electromagnetic frequency spectrum requires
explicit approval from the relevant authorities. This regulation is in place to ensure that the
electromagnetic spectrum is without interference, protecting critical communications. Norwe-
gian Communications Authority (NKOM) highlights aviation, shipping, military and police as
examples of critical use cases of the electromagnetic spectrum. The strict regulation shows the
importance of maintaining reliable and uninterrupted communications in various sectors.

12.1 NKOM Application ABS | SN

For us to be able to test our system/jammer in free-air, we need approval from NKOM. This
involves sending an application at least 2 months prior to testing, including a description of our
signal characteristics, the transmitting power, and the geographical extent of the transmission

33

(all of NKOM’s requirements can be found in appendix O). This is because NKOM needs time
to notify all affected parties, especially emergency authorities, as tampering with navigational
systems can cause dangerous situations. We would also have to notify local emergency services,
as well as send a ”notice to airmen (NOTAM)” if deemed necessary.

As mentioned, the application involves considerations regarding transmitting power. As we
only have been able to test with wired connections, we had to support our conclusions based on
our testing and J/S considerations. The J/S calculations are based on the transmitting power
of our strongest radio (measured while cabled), in addition to information on the signal from
the GPS satellites (i.e. transmitting power, gain, distance). These calculations also include
transmission loss from the satellites down to specified heights (app. O, sec. 4, pt. 5).

In addition to signal strength, NKOM wants a geographical representation of our noise
transmission at our test site. This is again for them to get a better understanding of our test.
The test site of choice is at our team member Helge’s farm, and its belonging gravel pit. The
destination is chosen because the tall walls of the gravel pit will block the transmitted signals in
most directions except upwards, and affect the surroundings as little as possible. With the help
of Matlab, we could make a script that simulates our radio taking terrain into consideration.
However, we could not find the right tool to show this from different heights, from 5 feet to
30000 feet, as NKOM demands.

(The application to NKOM can be found in appendix P.)

34

Chapter 3

Method

In this section, we will provide detailed descriptions of how we have handled the management
of our project. This is an important part of our assignment and a requirement from USN as a
part of our bachelor’s thesis. We will explain how we have approached the assignment and how
it has developed along the way, as well as the foundations of our requirements, design choices,
and our milestones, all put together in our "red thread". Further, all the equipment we have
used will be presented, both hardware and associated software and firmware. In the end, our
development approach will be laid out in detail.

13 Project Management AM | ABS

"Project management is the application of processes, methods, skills, knowledge,
and experience to achieve specific project objectives according to the project

acceptance criteria within agreed parameters" [43].

Project management is something any group of people with a goal of creating something useful
must consider. For us, it meant that we had to establish a work pattern, make use of a known
project model, make use of existing tools, and generally agree upon how we were going to work
to achieve our goals.

13.1 General Work Pattern AM | ABS

It was a requirement and a necessity that we establish a work pattern within our group. In this
way, like in most businesses, we would know what to expect from each other each working day,
which in turn lowers the likelihood of relational friction between group members. We decided
in plenary to work with core working hours so that in the time frame 09:30 to 15:00 on working
days all team members had to be at the office, with 30 minutes granted for lunch. It was also
imperative that we divided the work pattern into two parts; before Easter and after. This had
to be done because we all had an extra discipline-specific course to attend to before Easter.
Our work pattern became:

35

Figure 3.1: Illustration of how we rotated the special roles weekly, created by AM.

• Before Easter: Wednesday to Friday each week, with Scrum sprints lasting 2 regular
weeks granting 6 workdays. Mondays were reserved for the extra course, and Tuesdays
were "joker-days" free to use as one pleased.

• After Easter: Monday to Friday each week, with Scrum sprints lasting 1 regular week.

It was also a requirement that we at any time had appointed the special roles of meeting leader
and a referent. The meeting leader was responsible for inviting supervisors to meetings and
leading the meetings themselves. This was later extended to include all meetings internally.
The referent was responsible for taking notes during the meetings and then sending them out
afterward. These special roles were rotated between group members weekly, as seen in figure
3.1.

13.2 Project Model AM | ABS

A requirement from the faculty was that no matter which project model we chose, we had to
make it "agile". The term agile within this context was made famous by "The Agile Manifesto"
which is a document created by several high-standing software developers in 2001 [44]. Our
group needed either to find a project model that enabled us to work like this or make one fit into
the description. We chose a well-known model that intrinsically supports agile development;
Scrum.

Scrum is a framework for a team’s work pattern which is intentionally simple and lightweight.
It focuses on transparency - everyone in the team can see everything that is being done and
therefore is equipped to take part in meaningful discussions, inspection (enabled by trans-
parency) - everyone is responsible for holding each other responsible by paying attention to
the work that is being done, and adaptation (enabled by inspection) - the ability to adapt to
sudden changes in requirements or other factors [45]. What follows is an explanation of the
artifacts and events that comprise Scrum and how we used these artifacts in our project:

• Sprints - Some number of periodical and fixed workdays in which the team is expected
to complete the sprint goal. We chose 1 regular working week as the sprint’s length to

36

compromise between ensuring enough agility and getting some actual work done.

• The Product backlog - A comprehensive to-do list containing all efforts of work that
must be undertaken to complete the finished product. In our case, this was renamed to
Project backlog because we wanted non-product-related tasks required from the faculty
such as presentations, documentation, and so on to be reflected as work done. Both the
project backlog and the sprint backlog were kept and maintained in the Jira Software
application.

• The Sprint backlog - A smaller to-do list containing the sprint goal, which is the
expected increment of the product during the sprint it is attached to. See the relation
between the backlogs in figure 3.2.

• Daily scrums - Daily meetings set at the beginning of each workday used to provide
oversight and give all developers the chance to provide or get input from other developers.
We had such meetings every workday, lasting a minimum of 10 minutes (due to realizations
made), and ensured that they lasted no more than 15 minutes.

• Sprint planning - A meeting held at the beginning of each sprint where the team decides
which tasks should be included in the sprint backlog. We held such meetings each sprint
and ensured that they never lasted more than 2 hours.

• Sprint review - A meeting held near the end of a sprint with the intention of inspecting
its outcome and adapting future work to any changes that might have come up. Such
meetings were held by our team lasting a maximum of one hour with the inclusion of our
primary stakeholder KDA.

• Sprint retrospective - A meeting held at the very end of a sprint to determine what
went well, what didn’t go so well, and what can be done to make things better. Such
meetings were held internally by our team at the end of every sprint during the entire
project.

The plan for how we implemented Scrum is illustrated in figure 3.3. Although we followed
Scrum quite closely to its definition, some adaptations were made to better suit our needs. The
two special roles within Scrum, namely the Scrum master and the product owner were left out.
This was done because we deemed them unnecessary in our case. The tasks associated with
these roles fell under the responsibilities of each group member. In addition to the backlogs and
task overview which were kept in the Jira Software application, we relied on a separate timeline
for visualizing important delivery dates and events. The timeline can be seen in appendix A.

37

Figure 3.2: Illustration of the backlogs and their relation. Diagram created by AM.

Figure 3.3: Illustration of our project model and work pattern. The days written outside
parentheses are before Easter, and inside parentheses are after Easter. Diagram created by
AM.

38

13.3 Project Management Tools AM | ABS

Several tools were used to keep track of progress, working hours, storage, and so on during the
lifetime of the Delirium project. In this section, we will cover the most important tools used
by us to satisfy our own requirements in regard to oversight, and the faculty’s requirements in
regard to documentation.

13.3.1 Jira ABS | AM

To help organize our project, we applied a tool called "Jira Software". Jira Software is a soft-
ware application developed to help projects organize, improve workflow and for general tracking
of activities. Atlassian (the creators of Jira) originally created Jira for software development
teams, but have over the years been adapted for other types of businesses [46]. KDA use Jira
extensively in their day-to-day affairs and was highly recommended by our external supervisor.
This allowed us to work similar to the way KDA works and was a great way for our external
supervisor to follow our progress.

Within Jira, there are several modules to help manage your project. You can create time-
lines, backlogs, and Kanban boards and then use milestones and issues/tasks to connect them
all together. Every group member can make tasks and enter them into our project backlog,
and in our sprint planning, we will agree on which tasks are most important for the milestone
we are currently working on reaching. In figure 3.4, one can see our timeline with milestones
spread across the calendar as it is displayed in Jira. As our project timeline was based on our
milestones, Jira fit perfectly into our plan. Using the timeline feature we could connect tasks
directly to each milestone and fill them in from our project backlog.

To keep track of tasks we used Kanban-boards for each sprint. We picked tasks from the
backlog and put them into the current sprint. This helped us keep track of what had to be done
and gave us an overview of what each group member was working on. As soon as a sprint was
finished, we could retrieve a report with an overview of which tasks were included, finished, or
not completed. The remaining tasks were then automatically moved to the next sprint, or we
could move them back to the project backlog if that suited our timeline better.

Figure 3.4: Screenshot of our timeline within Jira.

39

13.3.2 Time-tracking AM | ABS

We needed some mechanism for tracking hours spent working on the project as this was a
requirement from our faculty. Based on anecdotal recommendations, we chose to use Clockify.
Clockify is a time-tracking application made for teams. It has very good availability: It can be
used in a web browser, desktop app, or via their smartphone app. It is free of charge, although
one can subscribe to gain more features [5]. We chose to use Clockify as it remained free of
charge for our uses, its availability was more than adequate, time-tracking with it was very
simple (see figure 3.5), but most importantly because of the reports that can be produced with
it in both weekly format and total sum, which made our supervisors very happy.

Figure 3.5: Time-tracking in Clockify [5]

13.3.3 Storage, Communication & Report AM | ABS

Right from the start we agreed on using Microsoft’s OneDrive cloud solution for storing gen-
eral files such as diagrams, pictures, documents, etc. All group members had access to this
platform through their school account and were familiar with it, so this was an easy choice.
The source code for our project was kept on GitHub (see section 16.3 for more on this). Even
though we spent every workday in our office at "Krona" (the USN Kongsberg school building)
together, we needed platforms to communicate with each other in case of unforeseen events
such as sickness or important notifications. Facebook’s Messenger application was chosen for
keeping an informal chat and Microsoft Teams was used in cases where some group members
or supervisors had to work from home. Our customer, KDA, requested a Signal chat to be set
up for informal communication with them (Signal is an encrypted messaging service for instant

40

messaging, voice calls, and video calls [47]).

As sprouting engineers and academics, we needed a platform for writing our report in a
"proper" way and to be able to write simultaneously. Based on the experiences we all shared
from previous projects and recommendations from our supervisor and earlier students, Overleaf
was chosen as our tool for this. Overleaf is an online LaTeX writing and publishing tool that
provides an environment for compiling LaTeX code to PDF, simultaneous writing and spell
checking, etc.

13.4 Lessons Learned AM | ABS

During the lifetime of our project, we made several changes to improve efficiency, communica-
tion, etc. based on emerging thoughts expressed in our retrospective meetings. What follows
are the main lessons learned about project management during the project life cycle.

The special role of meeting leader was initially only intended to lead meetings with super-
visors. Our group leader took the lead on all internal meetings such as scrums, retrospectives,
and so on. This caused notable extra overhead for the leader and made all internal meetings
possibly biased. Therefore it was decided in plenary that all meetings and their respective
preparations should be led by the current week’s meeting leader.

Our Scrums were, from the start, conducted before each working day. However, they were
done sitting down and with no minimum time duration. This caused them to become banal,
short-lived, and uninformative very quickly, plus it allowed distracting screen time. This issue
was taken up during a retrospective meeting and mended by introducing a stand-up policy and
a minimum duration of 10 minutes. After this subtle change, our Scrums became very useful,
we talked to each other’s faces and shared information and plans in a way everyone agreed was
helpful.

We started writing the report early on in the project life cycle. It did not take much time for
"yellow errors" to start popping up in the Logs section in the Overleaf user interface (see figure
3.6). If these errors were not mended immediately, we experienced that the number of errors
soon grew almost exponentially, which caused very time-consuming fixing sessions after some
time had passed. We agreed in plenary that we must compile the report often when writing,
and correct all yellow and red errors immediately.

Figure 3.6: Errors in the Overleaf project

41

14 The Red Thread AM | ABS

In any system engineering project, it is important to retain traceability from what the customer
says it wants to what is contained in the end product. This traceability is what we refer to as
"the red thread". The red thread in our project is the path that is taken from a stakeholder
requirement, through its implementation in the product and with its end in verification. Our
red thread can be seen visualized in appendix B, we recommend the reader to consult with this
diagram as it shows the full picture. The following sections detail the steps of our red thread,
and show how we utilized common systems engineering concepts to achieve traceability and to
ensure customer satisfaction.

14.1 Milestones & MVP AM | ABS

The task we were given was not well defined, it was more of a research task rather than a product
specification. We were advised from early on that we should somehow define certain milestones
so that we had specific goals to reach regarding the end product. It was also important for
both us and the customer that we communicated the iterations of the product frequently. This
led us to define 4 milestones to be placed on our timeline (see appendix A) and to adopt the
concept of the Minimum Viable Product (MVP). By utilizing the concept of MVP, we ensured
that no matter how much research/testing we did, we always had a working product to deliver,
into which discoveries made were iteratively merged. Our MVP can be seen in figure 3.7. The

Figure 3.7: Our MVP No. 1, called "basic jammer", is the simplest product that satisfies the
most important requirements of both faculty and customer. Diagram made by AM.

milestones were made to spread out the system requirements such that we could iteratively
make a working product with increasing complexity. Our milestones can be seen as a diagram
with short explanations in appendix C. The diagram presents our milestones as steps in a stair,
to illustrate how we iterated on Delirium towards our goal; Milestone 4. The diagram further
shows "Low priority/ideal features", which stems from conversations with our customer KDA.
These were not requirements at the beginning of the project, but they became requirements as
we passed Milestone 4.

42

14.2 User Stories ABS | SN

User stories are great aids to any project. They were mostly used in agile software development,
but have in later years become a natural part of any product development. The user stories are
created from the user’s perspective, describing functions and goals in simple everyday language
without any technical details [48]. This provides context to the development team and their
contributions to the end product, as well as creating a framework for the team’s day-to-day
work [48].

14.2.1 How They Work ABS | SN

The foundation stones of a user story are "who", "what" and "why". These are essential when
creating a user story. First of all, one has to know who the user story is for, what the product
shall do, and why the stakeholders want the product. In our case, "who" is a penetration tester
at KDA’s cybersecurity department. A penetration tester wants to test methods of breaking
into their systems to test their security. This can be a firewall, missile system, or in our case a
flight controller. KDA wants our system to test the flight controller and its ability to withstand
attacks through jamming and spoofing, to fix security holes and hinder outsiders from exploiting
them.

When the fundamentals ("who", "what", "why") are in place, we can be more certain that we
have the customer in focus. All features are added because the customer wants it, not because
it is "cool to have", or because features are added just because they can.
Another feature of user stories is the ability to divide the project into interim goals. As the
main goal of our project is quite big, we can use the user stories to dissect the project into
smaller goals. As we generate requirements from the user stories, we can connect them to the
interim goals to give our project stable progress.

To us, the user stories will work as an aid throughout our project. We can with greater
certainty know that we are headed the right way and pick out the correct requirements for our
system.

Figure 3.8: User story template.

14.2.2 Our User Stories ABS | SN

In the figure above (3.8), the template for our user stories is shown. Each user story is given

43

a title, a priority, and a time estimate. These are all directed toward the project and will be
used to establish requirements. The user story is then divided into two sections:

• User story: In the user story field, the who, what, and why are established. Description
of user, functionality, and benefit are described in short sentences, keeping it simple and
easy for everyone to understand, including those without technical knowledge.

• Acceptance criteria: In the acceptance criteria field, the "how" is established. This is
where the action is described and what the desired outcome of said action shall be.

As we intend to work agile during our project, none of the user stories are set in stone. Neither
is there a finite number of user stories. As the project moves forward, new requirements will
present themselves, both from our stakeholders and around the technicalities of our product.
We are then able to create new user stories in cooperation with our stakeholders, to make sure
the framework we have established is preserved. All our user stories can be found in appendix
D.

14.3 System Requirements HK | ABS

The system requirements for Delirium were initially derived through collaborative efforts in
stakeholder meetings, where the user stories played a pivotal role in capturing essential func-
tionalities and ensuring the system aligned with the customer’s specific needs and objectives.
The system requirements for Delirium can be found in their entirety in appendix E along with
their respective derived requirements, our design choices, and the respective technical require-
ments for each of these. This overview serves as the basis for the formal description of Delirium
from the customer and other stakeholder’s statements.

14.3.1 System Requirements Structure AM | ABS

The fields that each requirement consists of can be seen in table 3.1. For some of the items in
the overview (see appendix E), all fields were not deemed necessary. This decision was made
because the design choices and technical requirements serve to realize either a top-level or a
derived requirement, and so they simply inherit the e.g. test plan for that requirement. The
following is an explanation of each requirement’s fields as seen in the overview:

ID: Source: Attached milestone:
Verification method: Compliance status:
"Requirement description"

Table 3.1: System requirement fields, creator: AM

• ID: Identification. Is of one of the following types:

1. "TLRx" = Top-Level Requirement no. x. A direct or translated requirement from a
stakeholder.

44

2. "DRx.y" = Derived Requirement from TLRx number y.

3. "DCx.y" = Design Choice from TLRx number y.

4. "TRx.y" = Technical Requirement from TLRx number y.

• Source: Where the requirement comes from. Can be from a User Story (US) or another
requirement.

• Attached milestone: The milestone for which this requirement is relevant, as seen on
the milestones diagram in appendix C.

• Verification method: How this requirement will be verified. Refers to a test plan,
identified as "Tx" = Test number x.

• Compliance status: Whether or not this requirement is satisfied. "Complies in ..." has
been used in this field. The meaning of this is that the requirement has been satisfied
and verified in a certain passed milestone.

• Type: The classification of the requirement in regards to the Systems Engineering Body
of Knowledge (SEBok) wiki page about system requirements (Table 2) [RefH13]. This
classification was used by us to ensure a "full picture" understanding of the scope of our
system. The type also, for technical requirements, specify the discipline for which it is
relevant (Electronics or Software).

• Requirement description: Textual description of the requirement.

To ensure the top-level and derived requirements’ quality during their formulation we made
sure that each of them fulfilled the "system requirement characteristics"-checklist defined on
the SEBoK wiki page regarding stakeholder requirements (at [RefH13] in table 3).

14.3.2 Testing the Requirements HK | ABS

After we had our requirements, we had to create a framework for testing so that we could
verify our system met the requirements. To give us a high confidence level that our testing was
sufficient, it was decided to have some preset fields that could be filled out before the test so
each member of the group could understand the testing methodology. From fig. 3.9 we can see
that this test was done to verify requirement DR1.1. The description is "Using the equipment
without power infrastructure". We then specify the steps to execute, the expected result, who
has conducted the test, and who it has been peer-reviewed by. Finally, there are fields for
actual results, changelog, and comments.

The Changelog field is for specifying changes made to the connected requirements such that
the testing can be updated to follow the new requirements. The actual result is where we filled
in what our observations were, and then we could later compare that to the expected result to
see if there were any discrepancies.

45

Figure 3.9: Our fields for ensuring correct testing

If the expected and actual results matched, we could mark the status field as "complete",
and after peer review "completed and verified".

This testing documentation can be found in full in appendix G. Towards the midpoint of
the project we were at the stage of importing the testing documentation into the report. We
then decided to write subreports into LaTeX, and all testing from that point onwards was only
written into the report, therefore the Excel sheet is not complete. For the updated testing
documentation, review appendix 8.3.

14.4 Risk Assessment HK | ABS

Behind every project lay latent risks that could disrupt or ruin the project should they come
to fruition. Therefore it is crucial to identify and concatenate these risks in a fashion that all
team members can see. Being open to the fact that these risks are present, how likely they are,
and how big of an impact they can have is important to a successful project. After they are
identified, the team can create mitigation strategies and document what actions they take to
avoid being vulnerable to the identified risks.

A risk can be identified using some common identifiers:
• Uncertainty: A common point of risk is uncertainties in the external or internal environ-

ment.

• Dependencies: Projects are often dependent on other factors, like external entities and
components

• Change: Changing the requirements, technology, and regulations among others could
impact the budget, timeline, and overall success of the project

• Human factors: Team dynamics, skill gaps, turnover or inadequate communication are
also potential sources of risk.

46

Figure 3.10: Risk Assessment example

• Financial factors: Budget constraints, fluctuations in financial markets and unexpected
costs can all lead to risks within the project.

Our list of risks can be viewed in appendix F. In the initial iteration of our risk matrix,
we had several additional fields, and our risk factor was divided into effects on health & safety
and the effect it would have on the project. Each of these factors was then scored individually
before being added together to become the score for that risk. We found out that this way
of dividing the factors up made it more time-consuming to evaluate risks, and eventually, it
became ambiguous if the effects could be distinguished from each other. There was a high level
of correlation between the effect on the project and the "HSE"-score in most cases, therefore
we decided to merge the two without losing any significant data.

A crucial field for us was the mitigation strategy (see fig. 3.10), which forced us to look at
possible solutions to these hypothetical situations. Often this made us more aware of the risks
and how to avoid them and forced us to acknowledge them.

14.5 Design Choices ABS | SN

Not all features and functions of a system can be tied to a requirement. There can be several
reasons for this. In our case, the task given from KDA was somewhat open to interpretation
and we could define it the way we understood it. This gave us some challenges regarding
defining what a requirement was and how to distinguish requirements from design. To sepa-
rate requirements from design, we had to establish what the difference between the two was.
The difference can be explained as: "a requirement represents a need, the design represents a
solution" [49]. As mentioned in section 14.2, there has to be a clear separation between what
the customer asks for and extra features. However, given the freedom of the task, we could still
choose some features or solutions we wanted to use. This is what we call ”design choices”. The
design choices enable us to organize the process the way we see best. This doesn’t mean that
we can disregard the requirements, but we can choose which path we use to get there and in
a way work in parallel with the requirements. This also involves deciding what components to
use, what kind of UI to create, and other aspects of the process and finished product.

Although the design choices are not directly connected to requirements through the needs
of the stakeholder, they still share roots with the requirements in the sense that they offer a
solution to a problem. As the work progresses towards our milestones, many problems appear
along the way. The design choices we make help solve these problems, and ensure stable
progression toward our end goal.

The extent of the design choices became bigger towards the last couple of months of the

47

Figure 3.11: Design choices and the "red thread" (Created by ABS).

project. This is due to us realizing that we would reach our milestones and give us more free-
dom to explore options we had earlier set aside, as well as develop the end product itself. It
was important for us that all design choices stayed relevant to the task, were well thought out,
and that they all had a significant contribution to the product. This was to make sure that the
stakeholders were satisfied with what we delivered, as well as giving us more ownership of the
project itself.

The list below presents some of the design choices we have made during the project:
• UI: The requirement from KDA is that the system must have a user interface. The

requirement states no other details, so we decided to go for an easy-to-use graphical user
interface (GUI) to answer their request (section 16.6).

• HackRF One: In conjunction with jamming, we needed a transmitter to send out our
jam signals. The decision fell on the HackRF One. By using two of these, we can both
jam and spoof the Navio 2 (15.2).

• SDR: This choice is connected to the requirement to jam the Navio 2’s GPS signals.
We went for software-defined radio (SDR) to create and configure our radios (jammers)
(section 15.1).

• GPS-SDR-SIM: The requirement says to spoof the Navio 2 flight controller. We utilized
GPS-SDR-SIM to create false GPS signals and send them to the flight controller (section
15.3).

• Portable system: We initially thought of a laptop with a radio transmitter as our
system. However, we went for a system including two HackRFs controlled by a mini-PC
(Raspberry Pi 5) and touchscreen, all packed into a briefcase (section 15.4).

48

(All design choices are explained in detail in their respective sections.)

15 Equipment AM | ABS

This section covers the equipment we used throughout the project, what they are, their capabil-
ities, and why we chose them. Some of the equipment discussed here was not part of Delirium
directly, as we scoped the project down to attacking a specific flight controller (The Navio 2,
starting at section 15.9), which we had to set up and interact with in parallel with Delirium.

15.1 GNU Radio AM | ABS

GNU Radio is a free and open-source software development toolkit that provides signal pro-
cessing "blocks" to implement software-defined radios (SDR). It provides a graphical interface
called "GNU Radio Companion" which reduces the complexity of implementing an SDR down
to placing "blocks" around, much like a flowchart. In GNU Radio jargon, "blocks" are a general
term referring to filters, demodulators, decoders, sources, sinks, etc. which traditionally are
found in radio systems. The "flowgraph" is the basic data structure in GNU Radio, which
represents the connections of the blocks through which a continuous stream of samples flows.
The concept of a flowgraph is an acyclic directional graph with one or more source blocks (to
insert samples), one or more sink blocks (to terminate or export samples), and any processing
blocks in between. A simple example flowgraph can be seen in figure 3.12.

Figure 3.12: An example GNU Radio flowgraph within the GNU Radio Companion GUI [6].

GNU Radio is made to support readily available low-cost external RF hardware, often called
SDR peripherals, or to work without hardware in a simulation environment. It is a popular way
to implement SDRs within academia, among hobbyists, and also commercially [50][51]. GNU
Radio is licensed under the GNU General Public License version 3 (GPL v3), which gives us
permission to copy, distribute and/or modify it under its terms. Integration of HackRF One
into GNU Radio is provided either via the integrated gr-soapy, which is a GNU Radio wrapper
for the Soapy SDR library or via gr-osmosdr, which is a generic GNU Radio SDR I/O block

49

that interfaces with libhackrf [52][53][54].

When a flowgraph has been made in GNU Radio Companion, the flowgraph can both be run
and "generated". When a flowgraph is generated, a runnable Python (or C++, depending on
the block’s compatibility) source file is produced which contains a class definition of the whole
flowgraph with get-and-set-functions for its variables. The flowgraph can then be imported just
like any other Python module and be manipulated at runtime.

15.1.1 Creating Custom Blocks AM | ABS

GNU Radio supports modification to a long extent. It enables the creation of one’s own custom
blocks to be used just like any native blocks within the flowgraph. There are 2 main types of
such custom blocks: embedded blocks and Out Of Tree (OOT) modules. Embedded blocks are
tools to quickly prototype blocks within a flowgraph. They can only be created with Python
and can only be used within the flowgraph it was created. An OOT module can be thought
of as a collection of custom GNU Radio blocks. It is the more permanent alternative to the
embedded blocks and can be created in either Python or C++. The GNU Radio wiki is packed
with tutorials for these subjects, and it suggests the following general steps to create an OOT
module: [55][56][57]

• Create an out-of-tree module using gr_modtool

• Create a new Python/C++ block using gr_modtool

• Modify the Python code or C++ .h and .cc code in a text editor so the block will function

• Modify the YAML file so it can be displayed in GNU Radio Companion (GRC)

• Install and run the block in a flowgraph

15.1.2 Why We Chose GNU Radio AM | ABS

Right from the introductory conversations with our customer, KDA, we were advised to take
a look at Software Defined Radios (SDR) and to assess whether this concept could help us
in the project. After some research, several members of our group simultaneously had found
GNU Radio and its respective GitHub repository and wiki-page. It became clear that GNU
Radio was a commonly used, seemingly beginner-friendly (as much as it could be) way of
implementing SDRs. After some experimenting, it also became clear that the radios produced
with it could be controlled by custom scripts and that the libraries supplied by GNU Radio
could be interfaced with, thanks to them being open-sourced. When we in addition to the
facts quoted here also found an SDR peripheral device that was compatible with GNU Radio
(HackRF One, see section 15.2), we settled with this choice.

15.2 HackRF One AM | ABS

Software Defined Radio (SDR) is - perhaps unsurprisingly - mainly software-based. It is,

50

however, essential for radio communication that there exists a mechanical component capable
of receiving/transmitting the signals, as the signals themselves are physical entities moving
through space. In our case, this component was chosen to be the HackRF One by Great Scott
Gadgets. HackRF One is an SDR peripheral designed to enable test and development of radio
technologies. It can be used as a USB peripheral or programmed for stand-alone operation, is
a continuously developed open-source platform, and is capable of transmission or reception of
radio signals from 1 MHz to 6 GHz [7]. A HackRF One device can be seen in figure 3.13.

Figure 3.13: The HackRF One with its antenna output visible on the left, and clock synchro-
nization inputs/outputs on the right [7].

15.2.1 Software AM | ABS

With the HackRF comes the opportunity and necessity to take advantage of its tailor-made
open-source software. The software made for the device includes command-line utilities, called
tools, which allow interaction with the device. Among the tools lies the hackrf_spiflash program
which is used to update the device’s firmware [58]. The software also includes the low-level
library "libhackrf" which enables a host computer to interface with the device through its USB
ports [59]. Libhackrf is a C-language library consisting of many functions related to polling
connection status, transferring data over USB and settings modification. The software can be
found in its entirety at GitHub [60], all of which is licensed with the GPL 2.0 (GNU General
Public License), which grants us permission to both distribute and modify the software under
its terms [61].

15.2.2 Hardware HK | ABS

The HackRF One is run by an embedded microcontroller that is responsible for managing
various functions of the device, such as USB communication, controlling the transceiver, and
executing user commands. The microcontroller works in conjunction with a Complex Pro-
grammable Logic Device (CPLD) which interfaces with the microcontroller and translates the

51

user commands into functions. It performs tasks such as signal mixing, filtering, and control-
ling the frequency synthesizer. It is a core reason for making the HackRF a suitable peripheral
for software-defined radio usage. Many similar systems use Field-Programmable Gate Arrays
(FPGA) to accomplish the same tasks. FPGA’s are more configurable and usually deliver lower
latency in real-time signal processing. In our usage of the HackRF this does not affect us, and
the CPLD is more than sufficient in this regard. Another advantage of a CPLD is the low-power
usage and cost efficiency of the chip, reducing the overall cost of the HackRF [62].

The HackRF also has an internal clock system, utilizing a 20 PPM oscillator to generate
and manipulate signals. 20 PPM means that for a signal centered around the GPS-L1 center
frequency, we could drift off center by as much as 31.5 kHz. This was not crucial for our MVP-1
but would make spoofing the signal near impossible. Therefore we ordered an oscillator that
has a 0.1 PPM accuracy and is temperature compensated in order to mitigate this risk. The
HackRF has an internal header that the ordered part interfaces with, so no soldering is required
to perform the upgrade.

The radio frequency transceiver on the HackRF One is a half-duplex transceiver, meaning
that it can both receive and send radio frequency signals. Half-duplex means that it is not
capable of doing this simultaneously. For our use case, this is not necessary. Should it become
necessary there is also a remedy to implement two HackRF systems together, one for receiving
and one for sending signals.

For the transmission method of the signals, we had the option of using any passive antenna
with an SMA-M connector. Our HackRF came with an ANT500-antenna, our antenna of choice.
Given the fact that it is highly illegal to send GNSS signals over the air [63], we also acquired
some cabling, which enabled us to test our system outdoors without legal ramifications. This
included a splitter and SMA-MCX couplings to interface with the antenna port on the Navio2
chip.

15.2.3 Why We Chose HackRF One HK | ABS

When we began the project in January, we saw that there had to be a physical radio transmitting
the jamming and spoofing signals. Therefore we began investigating options and saw that there
were several options. In parallel, we increased our understanding of the signals we needed to
emit in order for our system to function properly. There had been mentions of SDR by KDA
before, and we saw that this could be a solution. There was some initial uncertainty as to
which signals we were supposed to interfere with, this being the controller signals or the GPS
signals. Therefore we focused on getting hardware that could accomplish both. This means it
needed to be able to transmit on a frequency in excess of 2.4 GHz. We found several solutions
that could encompass both solutions. The next important attribute of our solution was cost
and availability. This was a main concern, given the constraint of our budget and the short
timeline.

When considering this, we compared the different options in appendix I. Here we found that
with the exception of RTL-SDR, all of the solutions could work. The availability of the AntSDR

52

at the time was not good, and shipping time was high. The Ettus is not fully open-source,
and PlutoSDR was on backorder. We were therefore left with the option of the LimeSDR and
HackRF One. The LimeSDR is a crowd-funded SDR peripheral and quite new. The HackRF
One on the other hand is a well-established solution with good documentation and a GitHub
page where users can post questions about issues and get help [60]. Given that the HackRF
One was cheaper and had a shorter shipping time as well, we decided to use that peripheral.

15.3 GPS-SDR-SIM AM | ABS

GPS-SDR-SIM (Global Positioning System - Software Defined Radio - Simulator) is a C-
language program freely available on GitHub that generates GPS baseband signal data streams
based on a given ephemeris data set. The ephemeris data set must be downloaded from NASA’s
website [64]. The generated data stream can then be converted to radio frequency waves and
broadcast from common SDR peripheral devices such as HackRF One. After the program has
been locally built, the user can run the program "gps-sdr-sim" followed by options to either
specify a user-defined trajectory contained in a local file or specify a static location with coor-
dinates. The position(s) given is then used by the program, together with the GPS ephemeris
data set, to generate the simulated ranges and LNAV data (see section 4.3.1) for the GPS satel-
lites in view. This range data is then used to generate the digital I/Q (In-phase and quadrature
component) samples for the GPS signal [65].

15.3.1 Why We Used GPS-SDR-SIM AM | ABS

If Delirium was to be capable of spoofing GPS signals, we needed a way to generate false sig-
nals with good quality. We chose to use GPS-SDR-SIM because in our thorough preliminary
research, we saw that others had used it for similar purposes with success [RefH14]. Further-
more, it is open-source and licensed with the MIT license which grants us permission to use
and modify it under its terms. The program is also compatible with HackRF One and provides
explicit instructions to work with it.

15.4 Briefcase ABS | AM

Since our design is based around a briefcase to fit our components inside, we had to find a fitting
case. Our choice is based on three main factors: size, price, and quality. The briefcase must be
of good quality, as we want to use our system in remote locations, as well as delivering a good
product to our stakeholders. Another aspect of portability is the size and weight of the brief-
case. The components we use are all quite lightweight, so the main weight will be the briefcase
itself. That makes it important that the case is as light as possible, but at the same time meets
our other requirements. Another aspect of choosing a briefcase is the price of it. Since we are
working on a limited budget, this is quite heavily weighted in the process of choosing a briefcase.

After researching and finding several options, we initially wanted a type called Peli Aircase
(generally known as Pelicase). Pelicase is well-known in the industry, and especially known for

53

Figure 3.14: Jula Protection Case M [8].

being robust and of good quality. Their cases come in a variety of sizes, and we were able to
find several that suit our needs. However, a glance at our budget quickly excluded the Pelicase
from the list, and we had to search for other options. Since our first choice was out of reach,
we further searched for options within our price range. Even though we had to lower the price
range, we still didn’t want to lower our requirements regarding quality. We searched on for
other vendors and brands and found several options with varying quality. Some of the cases
could be excluded merely based on size and others based on quality.

We quickly concluded that our budget simply wouldn’t allow a case with quality like the
Pelicase. This ended with choosing a case from Jula. Jula’s "Protective case M" suited our
needs of both price and size, however at a lower quality than what Pelicase offers. Still, the
looks and quality of the case, as well as the reviews of it made us more comfortable with choos-
ing this case, and it even seemed to outrank some of the pricier options from Opticase/Nuprol.
The case weighs 3,5 Kg and has inside measurements of 425x155x284 mm, which is plenty of
space for our components. The price of the case is 549,- NOK, which suits our budget well.
The inside of the briefcase is filled with three layers of foam that can easily be cut out/removed
(squared pattern) to fit our components. This gives the components extra protection and gives
us the opportunity to arrange the case the way we want. The case is shown in figure 3.14.

In table 3.2, one can see the briefcases we considered using, with price, size, and quality
review. The table is divided by colors, where red is the options that was disregarded, either
because of prize or size. Yellow are options that we could have used but didn’t choose, and
green are the best options. Quality is ranked by medium and high, based on customer reviews
and previous experience with the brands and stores in question.

15.5 Raspberry Pi 5 ABS | SN

54

Name: Vendor: Measurements: Weight: Quality: Price:
Beskyttelseskoffert M Jula 425x155x284 mm 3,5 Kg Med 549,-
Beskyttelseskoffert L Jula 505x350x140 mm 4,5 Kg Med 899,-
Koffert m/hjul, IP65 Clas Ohlson 510x285x195 mm 6,2 Kg Med 998,-

Opticase Fosen Tools 442x355x170 mm - Med 1323,-
Nuprol - M - Utstyrskoffert Game On 463x372x182 mm - Med 1199,-

Peli 1485 Air Case Rufo 451x259x156 mm 2,4 Kg High 4320,-
Peli 1555 Air Case Rufo 584x324x191 mm 4,1 Kg High 5760,-

Peli protector Case 1600 Elfa Distrelec 493x616x220 mm 5,9 Kg High 4992,-
Robust transportkoffert Max Sievert 430x300x170 mm 2,9 Kg Med 1519,-

Table 3.2: Briefcase options.

Figure 3.15: The Raspberry Pi 5 (screenshot from kjell.com).

Since our system is built as a stand-alone product, we needed a computer to control all its
functions. We decided on the Raspberry Pi 5. This mini-PC comes with all the ports we need,
as well as providing enough processing power to run all our peripherals. The most process-
demanding peripheral is the HackRF One. However, with 8 GB of RAM and high-speed USB
15.5, this will be no problem for the Raspberry Pi 5. The Raspberry Pi also comes with
a designated connector for an external display which is specially made for the Raspberry Pi
Touchscreen, and frees the USB ports for other peripherals.

There are other options for PCs to run our system, but the price, form factor, amount of
ports, and the ability to power the Pi through a powerbank make the Pi 5 the best option for
us. Figure 3.15 shows the Raspberry Pi 5 before it is installed on the touchscreen.

15.6 Touchscreen ABS | SN

Since our system includes a user interface, we needed a peripheral to enable the user to interact
with it. With the Raspberry Pi 5 comes a few alternatives: either a keyboard and mouse, a
console controller (or similar), or a touchscreen. Since we would like to keep our system as
compact and portable as possible, we quickly decided to go for a touchscreen.

After deciding what solution to go for, we started researching possible options for touch-
screens. As with the other components like the briefcase, the price was weighted quite heavily
in the process of finding an appropriate screen. With that in mind, we decided to go for the

55

Figure 3.16: a) Raspberry Pi Touchscreen. b) Backside of the touchscreen (screenshot from
elfadistrelec.no).

screen made by the same company as the Raspberry Pi, the "Raspberry Pi Touchscreen". This
is a cheaper, yet optimal screen for our use. The screen is easy to set up with the Raspberry
Pi and the Raspberry Pi can be mounted to the back of the screen for a snug fit.

15.7 Power Management ABS | SN

Since our system must be portable and used in remote locations, we had to find a way
to power all the components in the briefcase. There are a few ways to do this, but the best
solution involves either a battery pack or a powerbank. To decide which solution is best, we
had to take a look at what components we were using. The main component to power is the
Raspberry Pi 5 (section 15.5), the system’s "brain". The other components: HackRF One and
the touchscreen, will be powered via the Pi. All the components will have their requirements
regarding power and power consumption, but the main focus is on the Raspberry Pi. This PC
requires 25 W power input to function the way we want it to. The Pi’s power input can be
reduced to 15 W, but that will limit the amount of peripherals it can power to 600 mA. As one
can see in table 3.3, we will exceed this limit with double the amount of the limited power, so
we had to find a solution that could deliver at least 25 W [66]. The power adapter that comes
with the Raspberry pi 5, is a 27 W USB-PD adapter. So, the desired option was to match this.

The power requirement from the HackRf One and the touchscreen are rather moderate
[67][68]. The touchscreen draws about 250 mA of power (full brightness), and the HackRF one
draws around 500 mA. Our system uses two Hack RF Ones, so the accurate amount is 1000
mA. As mentioned earlier, this exceeds the peripheral power draw on a limited input of 15 W,
which again means that we had to aim for a power supply that could provide at least 25 W.

The Raspberry Pi 5 has several USB ports to use, as well as supporting power input via USB-C.
This facilitates the possibility of using a powerbank to supply the components with power, as
USB is standard on powerbanks. We also found that many other Raspberry Pi projects used a
powerbank as their power supply, so the solution has been proven to work.

To calculate the maximum running time of our system, we first had to find out how much
power we consumed. This is shown in equations 3.1, 3.2 and 3.3. First, we add together the
numbers from table 3.3, which can be used to find the running time in hours in equation 3.3.

56

Component: Consumption: Stanby:
Raspberry Pi 5 2400 mA 1290 mA

Raspberry Pi Touchscreen 7” 200 mA 250 mA
HackRF One 500 mA -

Table 3.3: Power consumption.

Equation 3.1 also takes into account that we use two HakRF Ones. The total consumption
comes to be 3600 mAh. We can now use this number together with the capacity of the desired
powerbank (20000 mAh, 15.7.1)

Total Consumption = 2400 mAh + 200 mAh + (2 × 500) mAh = 3600 mAh, (3.1)

Battery life can then be found by equation 3.2:

Battery Life (in h) = battery capacity (mAh)
load current (mA)

, (3.2)

Battery Life (in h) = 24000 mAh

3600 mA
= 6.66 h∗, (3.3)

*The calculation in equation 3.3 is based on completely draining the powerbank. The Anker
737 can be drained to 0 % battery, but it is not recommended as it reduces the life cycle of the
powerbank. The battery should be kept in the 20-80 % range for the best life expectancy.

As we can see from equation 3.3, we can run our system for 6.66 hours. This is with the
Raspberry Pi 5 and the HackRFs running "under load", and a powerbank with 20000 mAh
capacity. In standby, the running time becomes significantly longer with over 15 hours (15.58
hours).

There are no requirements regarding running time for our system, neither from our stake-
holder, KDA. However, we decided to go for a powerbank with 24000 mAh to get as much
running time as possible. This makes the user able to use the system for quite some time
before needing to recharge.

15.7.1 Powerbank ABS | SN

To power our system we decided to go with a powerbank. The powerbank will be connected
to the Raspberry Pi, and then distributed through the Pi to the other components. Since the
other components will be connected through the Pi, the main requirements for the powerbank
will come from the Pi. The Raspberry Pi 5 requires a 5V/5A input. This translates to an
output of at least 25 W from the powerbank. However, the recommended power delivery is 27
W. This limits our choices to only a few, since most powerbanks either only offer 5V/3A (15
W) outputs, or don’t feature enough USB ports. We could still find a few options that deliver

57

Figure 3.17: Our Powerbank of choice (screenshot from Elkjop’s online store).

Name: Capacity: Power Delivery: Weight: Price: No. of Ports:
Clas Ohlson PB 20000 mAh 27 W 390 g 699,- 1xUSB-A, 1xUSB-C

Samsung EB-P3400 10000 mAh 25 W 210 g 449,- 2xUSB-C
Baseus Bipow 20000 mAh 25 W 425 g 890,- 2xUSB-A, 1xUSB-C

Anker 737 GaN Prime 24000 mAh up to 140 W 630 g 1790,- 1xUSB-A, 2xUSB-C

Table 3.4: Powerbank options.

enough power, which can be seen in table 3.4.
The choice of powerbank fell on the ”Anker 737 GaN Prime”. The reasoning behind this is

the capacity, power delivery, and availability. The powerbank can deliver up to 140 W of power,
well above the desired 27 W, and has a capacity of 24000 mAh. This powerbank weighs 3 times
as much as the Samsung EB-P3400, but we chose power delivery over weight in this case. As
mentioned in section 15.7, we have no requirements regarding the running time of our system,
but we still wanted to go for at least a 20000 mAh powerbank to ensure enough capacity to
run our system for a good amount of time. The Anker 737 features the ability to both charge
and deliver power to other units via its two USB-C ports. This gives it an advantage over for
example the Clas Ohlson powerbank, which only has one USB-C port and is unable to deliver
enough power via the USB-A port (restricted to 15 W).

Other features of the Anker 737 GaN Prime:
• ”Smart temperature monitoring system”.

• Screen with relevant information, such as battery percentage and power draw.

15.8 Attenuator ABS | AM

As an addition to our system, we have looked into attenuators. An attenuator is used to de-
crease the transmitting power of RF transmitters. As mentioned in section 5.1, we want the
J/S-ratio to be as high as possible. However, in some cases we want to decrease our jammer’s

58

signal strength (J). In our case, we will use the attenuator in regards with testing outside. Since
the rules on jamming and spoofing are quite strict, and the calculations on our transmitting
power (appendix P) suggest that we should lower the power when testing in an open environ-
ment, we will use the attenuator to reduce the amount of disturbance on other systems reliant
on GPS. There is also a requirement from NKOM to keep the transmit power to an absolute
minimum (appendix O), with special precautions concerning local emergency services.

As mentioned earlier, the attenuator will be used to decrease the transmitting power of our
jammer/spoofer. The attenuator should be able to lower the transmit power by approximately
20-30 dB. There are several options open to the purchase of attenuators in this range. However,
these are often a "single-stage" attenuator, and the 30dB ones are quite expensive. There is
also an opportunity to buy a cheaper variant, but these are often lower quality and have
a long delivery time. Therefore, we decided to look into making our own attenuator. We
could then make a low-cost variant with "multi-stage" attenuation. Our research on the topic
suggested that making a passive attenuator was a possibility. We first had to decide what
kind of attenuation we wanted, then calculate resistor values and put them in the correct
configuration. The process of doing this is shown in sections 15.8.1 and 15.8.2.

15.8.1 T-pad Attenuator ABS | AM

Figure 3.18 shows the configuration we will use to make the attenuator. This is made out of

Figure 3.18: T-pad configuration.

three resistors in the the shape of a T, hence the name "T-pad". There are other types of con-
figurations that makes an attenuator, such as the PI-pad and the L-pad. However, the T-pad
is a good choice when working with equal impedance on input and output, and is often used
with high frequency.

The T-pad attenuator consists of three resistors, R1, R2, and R3. R1 and R2 are usually of
equal values and form a voltage divider that has the function of ensuring the right amount of
attenuation. R3 is there to help terminate the output signal and minimize signal reflections,
as well as ensure the right attenuation. In the next section, we will take a look at calculating
resistor values for two specific attenuation levels, namely 10 dB and 20 dB.

59

15.8.2 Calculations ABS | AM

To begin the calculations of the resistor values, one first have to calculate the N-factor (also
referred to as K-factor [69]). "The K-factor or value is the ratio of the voltage, current or power
corresponding to a given value of attenuation." [69]. This means that the N-factor will vary
depending on what level of attenuation that is desired. Onwards, calculating R1, R2 and R3

is then dependent on this factor, as shown in equations 3.4, 3.5 and 3.6. To ensure accurate
resistor values for our system, the characteristic impedance, Z0, also has to be accounted for. In
our case, Z0 equals 50 Ω, as the rest of the components in our system have a specified impedance
of 50 Ω.

Calculations of N-factor for X dB attenuation:

N = 10
XdB

20 , (3.4)

Calculations on resistor-values for X dB attenuation, with respect to Z0 and the N-factor:

R1 = R2 = Z0 ×
(

N − 1
N + 1

)
[Ω], (3.5)

R3 = 2 × Z0 ×
(

N

N2 − 1

)
[Ω], (3.6)

Using equations 3.5 and 3.6 for a 10 dB and 20 dB yields the results found in table 3.5. With
the values in the table put in the T-pad configuration, the attenuation will be at the intended
levels.

XdB N R1 R2 R3
10 dB 3.16 25.96 Ω 25.96 Ω 35.16 Ω
20 dB 10 40.90 Ω 40.90 Ω 10.10 Ω

Table 3.5: N-factor and resistor values for 10dB and 20dB attenuation.

15.8.3 Simulations ABS | AM

In addition to calculations, we can use a simulation tool called LTspice. In LTspice we are able
to create analog circuits and simulate their behaviour. We did the same for the attenuator,
where we set up the simulation with our calculated values, and ran the simulation with an
appropriate input source.

In figure 3.19, one can see how the configuration of the T-pad attenuator is set up. In this
schematic, there has been added a 50 Ω resistor on both the input and the output. This is to
get the correct input- and output impedance for the simulation. Figure 3.20 shows a simulation
of two variants of the attenuator with different values on the resistors in the T-pad as in figure
3.19. The blue line is with the resistor values calculated for a 10 dB attenuation, and the red
line shows the simulation where the resistor values have been fine-tuned to get the correct level

60

Figure 3.19: T-pad configuration with impedance match.

Figure 3.20: Tuned vs. untuned resistor values.

of attenuation. The values used in the tuned version is R1 = R2 = 11.24 Ω and R3 = 105.59 Ω.
After fine-tuning, the attenuation comes out to be -9.99 dB (red) instead of -16.03 dB (blue).
In our case, it is not highly important to get exactly 10- and 20 dB. However, we would like to
get as close to the standard level as possible, as attenuators usually come in levels of 3 dB, 6
dB, 10 dB, 20 dB, and so on.

The resistor values from both table 3.5 and the tuned ones are not standard values for
resistors. Therefore one has to find standard values and place them in parallel with each other
to get the correct values. Using the following formula (3.7), one can find standard resistors to
put in the T-pad [70]:

Find closest standard resistor:

Rparallel =
(1

RP 1
+ 1

RP 2

)−1
[Ω], (3.7)

61

Figure 3.21: a) 10 dB attenuator. b) 20 dB attenuator.

Figure 3.22: Simulation results with parallel connections.

Example from the 10 dB-stage, where the targeted values are 11.24 Ω and 105.59 Ω:

Rparallel =
(1

12
+ 1

180

)−1
= 11.25 Ω, (3.8)

Rparallel =
(1

360
+ 1

150

)−1
= 105.88 Ω, (3.9)

From equations 3.8 and 3.9, we find that the resistor values to get 11.24 Ωs can be 12 and
180 Ω i parallel with each other, and 360 and 150 Ω in parallel to get 105 Ωs. We can then put
these values into the T-pad configuration as shown in figure 3.21. The simulation results from
this configuration can be seen in figure 3.22. Here the red line represents the 10 dB stage and
the blue line represents the 20 dB stage. Their attenuation levels come out to -9.98 dB and
-20.034 dB respectively.

15.8.4 Multi-stage Attenuator ABS | AM

As mentioned earlier in this section, we wanted to make a multi-stage attenuator. Until now,
we have looked at 10- and 20 dB attenuators. With these two we can also make a third stage.

62

Figure 3.23: Cascade connection.

Figure 3.24: Cascade simulation result.

By simply connecting these two together we get a 30 dB attenuator. In figures 3.23 and 3.24,
we can see the simulation setup and results for the two attenuators in a cascade connection.
As one can see, the attenuation is now 30 dB (31.96 dB). Another reason for cascading the two
attenuator stages instead of making a 30 dB attenuator, is that attenuators of higher stages (30
and up) tend to become unstable at high frequencies when configured in the T-pad-, L-pad-
and PI-pad forms.

In reality, the connection will look a little different as all the 50 Ω resistors will be replaced
by an SMA-connector. A more realistic configuration is shown in figure 3.25. With this
configuration, we can reach both 10, 20, and 30 dB of attenuation.

63

Figure 3.25: Visual representation of cascading 10 dB and 20 dB attenuators (requires cables)
(Created by ABS).

Figure 3.26: Navio 2 features.

15.9 Navio 2 ABS | AM

The Navio 2 controller is an autopilot HAT that together with a Raspberry Pi turns into a
flight controller. Navio 2 uses several sensors and controllers on board to support every need a
flight controller has. The sensor includes accelerometers, gyroscopes, and magnetometers. The
autopilot HAT is also equipped with the NEO-M8N GNSS-chip which can be read about in
section 15.10. Navio 2 is mainly designed to be used in drones, but can easily be used in other
radio-controlled and autonomous vehicles like planes, cars, and motorbikes. In figure 3.26 some
of Navio 2’s features are shown.

15.10 NEO M8N ABS | AM

As mentioned in section 15.9, the Navio 2 is equipped with a NEO-M8N GNSS chip from
ublox. The NEO-M8N chip utilizes concurrent reception of up to three GNSS systems (GPS
and Galileo together with BeiDou or GLONASS). The following is an overview of the NEO-M8’s
capabilities regarding each GNSS [71]:

• Global Positioning System (GPS, the American GNSS) - receive and track the L1 C/A
signals broadcast at 1575.42MHz

64

• GLONASS (the Russian GNSS) - receive and track the L1OF signals GLONASS provides
at 1602 MHz + k*562.5 kHz, where k is the satellites frequency channel number (k =
-7,..., 5, 6).

• BeiDou (the Chinese GNSS) - receive and track the B1I signals broadcast at 1561.098MHz

• Galileio (the European GNSS) - receive and track the E1-B/C signals centered on the
GPS L1 frequency band. Galileo reception is by default disabled, but can be enabled
by sending a configuration message (UBX-CFG-GNSS) to the receiver. Galileo has been
implemented according to ICD release 1.2 (November 2015) and verified with live signals
from the Galileo in-orbit validation campaign.

In addition to these, NEO-M8N also supports SBAS satellites, which send correctional signals
from geostationary satellites to improve accuracy and quality of the received GNSS signals.
This provides greater positioning accuracy in scenarios like urban environments, where the
signals can be weakened by surrounding buildings and clusters of trees.

Figure 3.27: The NEO M8N GNSS-chip [9].

15.10.1 Anti-jamming and Anti-spoofing Detection ABS | AM

The NEO M8N has integrated jamming and spoofing detection. However, other than the
integrated SAW-filter, there is no other means of stopping jamming or spoofing. The spoofing
detection feature, a spoofing flag, is only usable for notifying the pilot of the drone that there
is an attack currently happening. The chip will check for irregular patterns indicating that
the unit is being spoofed and let the operator know by combining a number of checks on the
received signal looking for inconsistencies [71].

15.10.2 SAW Filter ABS | AM

The NEO M8N GNSS chip does not only feature jamming and spoofing detection. It also offers
a way of trying to stop it. Incorporated onto the GNSS chip, there is a filter called a SAW-
filter. SAW stands for Surface Acoustic Waves and is used together with a low noise amplifier
(LNA) to enhance the signal received from the external antenna. As well as enhancing the

65

Figure 3.28: Building blocks of a SAW-filter [10].

Figure 3.29: SAW-filter bus bars [11].

signal received from the antenna, the SAW-filter also works as an anti-jamming component.
Functioning like a bandpass filter, it lets through signals of the desired frequency as well as at-
tenuating unwanted frequencies. SAW-filters are used in most electrical devices, such as mobile
phones, computers, etc.

A SAW-filter works by turning electrical signals into acoustic waves, sending the waves over
the surface of a Piezoelectric material, then turning the acoustic waves back into an electrical
signal [11]. This is done with the use of an input transducer and an output transducer. The
transducers are composed of an inter-digital electrode connected to a bus bar as shown in figure
3.28. Each electrode will function either as an acoustic source or a detector. The transducers
will exchange energy while the piezoelectric material will absorb radio frequency energy and
function as a transportation medium, turning the acoustic waves back into electric energy.

The operating frequency of the SAW device will be determined by the wavelength of the
electrode and its neighboring spaces as shown in figure 3.29. The amplitude and phase are
decided by the electrodes length and position respectively [11]. After this process, the signal
will then be sent to an LNA, and further processing will be done in the RF block of the GPS
module.

66

Figure 3.30: Frequency response (wide-band) of the EPCOS B7839 SAW-filter [12].

15.10.3 SAW Filter Disadvantages ABS | SN

As NEO-M8N contains a SAW-filter, the jamming will be a little harder to accomplish. How-
ever, SAW-filters have a few disadvantages:

• Temperature sensitivity: Although SAW filters have countermeasures to battle the
effects of temperature variations, their characteristics will still be affected.

• Frequency drift: As the chip ages, its performance will start to decay.

• Tunability: The chip has a static range, so there is no way to tune the frequency range.

• Narrow passband: In coherence with tunability. The passband of the chip is both
static and quite narrow. This can be exploited in the form of being able to concentrate
much energy in the frequency range of the passband.

Typical bandwidth: 2 to 10 MHz for narrow-band and up to several hundred MHz for
wide-band.

• Working area: The filter’s working area is usually from 0 GHz to 3 GHz. However, at
around 1.7-1.8 GHz (depending on the filter), and even more distinctly around 2.2 GHz,
the filter’s frequency response will start to decay, as shown in figure 3.30. This is due
to the wavelength of the acoustic waves will get impractically short at such frequencies,
meaning that the filter will struggle to handle them.

The above-mentioned disadvantages can all be exploited to some degree, depending on what
jamming technique is being used. Both spot- and barrage-jamming can be suitable methods for
exploiting the chips static and narrow passband. With spot-jamming one can concentrate all
energy on a specific frequency, and even if the frequency is around the filters center frequency
where it has the best working conditions, it might not be able to separate the counterfeit signal
from the real one. The same applies to barrage-jamming where the energy is spread across

67

several frequencies. If the jammer can spread its energy across the frequencies in the passband
of the filter, the filter might not be able to distinguish the counterfeit signals from the real
ones. This means that the jamming signals will not be as powerful as with spot-jamming but
can still be a successful method.

15.11 Emlid OS SN | ABS

Emlid is both the name of the creator of the Navio 2 flight controller used in our project and
the name of the operating system designed to run on this flight controller. Although our project
does not require a functional drone, using this OS combined with Emlid’s utilities, available on
their GitHub repository https://github.com/emlid/Navio2, has been extremely useful.
For all testing of Delirium, we use the "U-blox SPI to TCP bridge utility" from this repository.
This utility allows our Raspberry Pi to open a port and share data with a u-center application
on another PC. However, this setup requires both the Raspberry Pi and the u-center PC to be
on the same WiFi network.

15.12 u-center SN | ABS

To be able to see the effect of our work, we have to be able to see what the drones see, and
we can do that through the use of u-center. u-center is a program developed by u-blox, the
same one that developed the NEO M8N GNSS chip. By connecting the flight controller and a
Windows computer to the same wireless 1network u-center can connect to the flight controller
and display all we require.
Through the use of u-center, our group can view positional data, each connected satellite and
its signal strength, the drone’s positional accuracy, and much more (see fig 3.31).
While being able to view data in u-center, we also have some options to control the GNSS chip
of the flight controller, this could help us in our testing of our systems. For example, being able
to cold-start the GNSS chip, i.e. deleting stored information about the estimate of its position,
its speed, nearby satellites, almanac data, and ephemeris data. From u-center, we can choose
from which GNSS-systems we want to receive data, see fig 3.32.

68

Figure 3.31: Screenshot from u-center.

Figure 3.32: Screenshot from u-center. Choosing GNSS systems in the settings menu.

69

16 Software Development AM | SN

This section covers how the software for Delirium was developed and which components and
tools were used. The high-level software architecture for Delirium can be seen in appendix M,
and we recommend the reader to inspect this diagram if doubts occur.

16.1 Modular Approach AM | SN

We chose a modular approach for developing the software of Delirium. Modular software de-
velopment is a software design technique that involves partitioning a program into separate
modules which in turn contain specific functionality of the system [72]. The purpose of using
the modular approach was to achieve a clear division of labor and avoid cumbersome version
control collisions. The modular approach further fulfills a request from our customer regard-
ing the possibility of expanding Delirium in the future. Such an expansion is much simpler if
functionalities are relatively isolated, and thus can be extracted from the source code without
changing much to achieve compatibility.

We established 3 main bodies of work that needed to be done in software; the development of
the SDR’s in GNU radio Companion (which generates Python source code files), a user-friendly
GUI and an API (Application Programming Interface) connecting the two in a seamless way.
The API solution was chosen because not only did we need to divide the labor intensity between
members, but we also needed to divide the research amount fairly, as neither of us had any
experience with the equipment we had chosen.

16.2 Programming Languages Used AM | SN

Delirium was developed mainly in Python 3.10, which was released on October 4, 2021 [73].
An extension module for the Delirium API was written in C++. As we already knew it well,
both Python and C++ development were performed in Microsoft’s Visual Studio Code (VS
Code). It was a requirement for us to use Python as we needed to properly interface with
the generated GNU Radio flowgraphs (see section 15.1). Both GNU Radio and the HackRF
software recommend using Ubuntu, which comes with a default installation of Python 3.10,
and as no other dependencies dictated otherwise, we chose to stick with this [59] [74].

The need to use C++ came from the libhackrf (see section 15.2.1) library, which is imple-
mented in the C-language, which is largely compatible with C++ (see section 9 for more on
this). Therefore, C++ was chosen over C, as we have been taught C++ in several courses at
USN.

16.3 Implementation of CI & VCS AM | SN

Based on past experience, availability of help, cost, and known industry norms/anecdotes, we
chose to use the popular DVCS Git and the web-based GitHub to keep our code repository. The

70

repository was kept in private mode due to the project’s possible non-legal nature (depending
on how it’s used). To enable CI, we used Git in the way described by Martin Fowler in his
article on the topic (see full explanation in appendix: K). This meant that we had to establish
a service that builds the project (including all dependencies), performs critical unit tests, and
alerts us if something went wrong in this process on the main repository on GitHub.

GitHub Actions was chosen to implement this feature. A workflow based on the "Python
Application"-template was made, which consists of a .yml file containing instructions to build
the entire project on a GitHub-hosted Ubuntu Virtual Machine (VM). The .yml-file ensures that
the VM builds the project and all dependencies, checks the Python code for obvious syntactical
errors and runs the specified unit tests with the Python module "pytest". After all, builds and
tests are done, GitHub sends an email to the commit-er if at any stage the build/test failed.

16.4 Development of the Delirium API AM | SN

The purpose of the Delirium API (Application Programming Interface) is to serve as an in-
termediary between the Delirium GUI and the Gnu Radio SDR’s plus gps-sdr-sim (see section
15.3), as can be seen in figure 3.33. It does this by providing control classes and functions
which, when instantiated/called, enable the starting/stopping/manipulating of the underlying
SDR’s. The development of any functionality in the API had its roots in the system require-
ments. After formulating technical requirements from the top-level requirements and design
choices, tentative diagrams were made both for our own sake in terms of keeping oversight, but
also for documentation purposes. A Unified Modelling Language (UML) class diagram of the
Delirium API can be seen in appendix 10.

Figure 3.33: Use cases for the Delirium API, created by AM. Legend can be seen in figure N.1.

In the early planning phase, only one class was proposed, a controlling class for each GNU

71

Radio SDR. After some testing, this proved to be difficult, as the spoofing radio needed special
treatment for both the collection of the user’s options and for the generation of the GPS
baseband data. There also emerged an issue with our implementation of sweep-jamming (see
section 5.1.3) where the actual sweeping did not work in spite of it being proven to work in
an isolated test case. After an exhaustive test (see appendix 7), the cause was speculated
to be a result of Python’s Global Interpreter Lock (GIL, see section 16.2) not allowing the
actual parallel execution of threads. As a remedy for these issues, functions were made which
could then be called using the "multiprocessing.Process" Python package. The multiprocessing
package supports the spawning of processes, with a similar API to the threading library found
in e.g. C++. It effectively side-steps the GIL by creating subprocesses instead of threads.
The multiprocessing module, in this way, allows the programmer to fully leverage multiple
processors on any machine, as these subprocesses can be scheduled in parallel with the main
process [75].

16.4.1 Extending the API with C++ AM | SN

After milestone 4 was deemed a success (see appendix C), the decision was made to further
expand Delirium with the ability to - at runtime - display the status of each HackRF device.
In this way, the user would be able to see both if any of the devices were running or not, and
whether an error existed at runtime. Functions for collecting such information already existed
within the libhackrf software (see section 15.2.1), so for us to utilize these functions, a C/C++
implementation had to be made which could communicate with the C language implemented
libhackrf and then pass the collected information through the Delirium API to the Delirium
GUI. For the Delirium-side implementation, the C++ language was chosen to implement this,
due to experiences the team members had gained with this language in previous courses.

A C++ file with a respective header file ("module.cpp" and "module.h") was made, which
called upon the necessary libhackrf functions to determine the HackRF’s status. The pybind11
library was also called upon within this file to bind the C++ function to CPython. The
source code file structure is illustrated in figure 3.34. Linking the libraries and compilation
was then made possible using a CMakeLists file, which linked the libhackrf’s own CMakeLists
file and the pybind11 library to the resultant target. The pybind11 library’s CMake function
"pybind11_add_module()" was then used in this top-level CMakeLists file to create the target.
The resultant CMake build produced a shared object file, which made the extension callable
from the Delirium API. The CMake build process is illustrated in figure 3.35. The behavior of
the solution is illustrated in the UML sequence diagram in appendix 12.4.

16.4.2 Unit Testing AM | SN

Unit testing was used extensively during the development of the Delirium API. Unit testing
involves testing software code at its smallest functional entities, which is typically a single class,
or perhaps a single function. By testing every such unit individually, most of the errors that

72

Figure 3.34: An overview of the file structure needed to implement the Delirium C++ extension,
created by AM.

Figure 3.35: An overview of the CMake build process for the Delirium C++ extension module,
created by AM.

73

might be introduced into the code throughout a project can be detected early and prevented
from propagating to other parts of the project [RefH15]. The Delirium API unit tests consisted
of isolated functions (contained in their own file) which instantiated the API’s classes and
called its functions to enable verification of the system requirements on an oscilloscope. An
oscilloscope had to be used during these tests, as it was the only way to observe the radio
frequency output of Delirium.

16.5 Creating the Flowgraphs in GNU Radio HK | ABS

When designing the flow graphs for the jamming part of our system we had to ensure that
GNU Radio Companion could communicate with our peripheral. There are two opportunities
to make this happen, the osmocom-block, and the Soapy-sink. Sinks in this context is a virtual
sink to pour the signal into, and then the peripheral transmits it using the settings in the
sink-block. A graphical view of the blocks can be seen in fig.3.36.

Figure 3.36: Osmocom and Soapy blocks.

Then the next task was to generate the signals to send into the sink. This process is different
for each jamming script, but there are several variables that are similar or equal for each script,
therefore we used variable blocks to simplify the building process for each script. The variable
blocks we used are represented in fig. 3.37.

74

Figure 3.37: Variables we used for protocol-aware jamming.

In these variable blocks, there are two options; "ID" and "Value". The "ID" is the name
of the variable and can be called from other blocks such as the sink-blocks. For example, the
"cent_freq"-block is defined as being the same frequency as the carrier frequency of the GPS
L1 signal. This block has a value corresponding to that frequency. We can then retrieve this
information in other blocks that need this setting. When we then need to change this setting,
we only need to change the variable, instead of changing the settings in every block that calls
upon it.

16.5.1 Barrage Jamming HK | ABS

Our first radio was the barrage jammer. This jammer uses a simple flowgraph (as shown in fig.
3.38)

Figure 3.38: Barrage jamming flowgraph

The goal of the barrage jammer was to engulf the entire bandwidth of the GPS signal,
therefore the bandwidth is set to 15.3 MHz [76]. This is set using the variable "samp_rate",
and the value is set to the same as bandwidth.

16.5.2 Spot Jamming HK | ABS

75

The next flow graph we designed were the spot jamming. The idea of spot jamming is explained
in 5.1.2. One limitation we met with this approach is the bandwidth of the HackRF One, which
only goes down to 1 MHz.

Figure 3.39: Spot jamming flow graph

16.5.3 Sweep Jamming HK | ABS

Designing the sweep jammer we had three different approaches. The first approach involved
the saw tooth signal source, but this did not have acceptable results when testing on the signal
analyzer. The range of the sweeper was only within the bandwidth of the HackRF One, which
is smaller than the range we need in order to sweep the other GNSS signals.

Figure 3.40: Sweep jamming flowgraph

76

16.5.4 Protocol Aware Jamming HK | ABS

Protocol-aware jamming was the most sophisticated jamming solution we implemented in the
final system. It takes into account the digital modulation of the GPS signal and simulates a
similar modulation on an array of random binary bits. The first iteration is also the one that got
implemented (see fig. 3.41). Here the "Random Source"-block generates a random set of zeroes
and ones (binary digits), these are in char-format, so they need to be transformed into floats in
order to be processed further. This happens in the aptly named "UChar To Float"-block. From
here the bits are multiplied by two (zero remains zero and ones become twos) before they are
subtracted one. This makes every zero a negative one, and every two a one. Doing this gives
us a set of negative and positive ones, exactly what we need to have a complex signal. The set
is still in float format, however, and we need them to be in a complex format to feed them into
our SDR peripheral. This is done with the "Float To Complex"-block. Here we input the set
of floats and inject a constant source of zeroes to the imaginary part of the complex number.
Then we had the correct format and the correct set to transmit to the HackRF One.

Figure 3.41: Protocol aware jamming flowgraph

To get the full QPSK signal, we iterated on this to create a more accurate modulation, but
through testing, this proved to have the same efficiency (emitted power measured on the signal
analyzer) and demanded more storage. See fig. 3.42. The modulation of the signal had to be
implemented in such a fashion that the phase-shifted component had to have a sample rate of
1/10th the non-phase-shifted signal. We accomplished this by reducing the sample size of the
source feeding into the adder.

Figure 3.42: QPSK jamming flowgraph

77

Our final iteration on this jammer was to use an embedded Python block to make the SDR
peripheral sweep the other GNSS bands with this jammer. This proved to be ineffective as the
embedded Python block only was able to adjust the signal within the bandwidth of the HackRF
One, which is not wide enough. See fig. 3.43 for flowgraph. The signal going into the osmocom
sink is the same as for the QPSK-modulated signal, but it first passes through a frequency
translating finite impulse response filter, where the center frequency (within the bandwidth) gets
determined by an embedded python block, which has a code that takes an array with the center
frequency of the Galileo center frequency and the GLONASS center frequency and switches
between these two frequencies with a polling rate of 1000Hz, the maximum transmission rate
of the UART-connection between the PC and the HackRF One.

To remedy this we replaced the embedded Python block with an option in our API that
enables the same functionality but acts on the variable instead.

Figure 3.43: Protocol jamming with sweep functionality

16.6 Development of Delirium GUI SN | AM

The Delirium Graphical User Interface (GUI) is a pivotal part of our project, created to ease
the use of the underlying system as much as possible without limiting the control the user has.
Developed using Python’s tkinter library, the Delirium GUI provides a way to use our prebuilt
jamming solutions and an integrated spoofing utility using osqzss’s Github repo, gps-sdr-sim,
to generate the radiowaves to be transmitted by the hackrf. The GUI can be seen in fig 3.44.

The GUI in its entirety is contained in the delirium.py file, within this file, there is also
all logic used to start, stop, control, and keep track of the systems SDRs using the Delirium
API. Delirium.py is built in the following structure. Firstly, importing all necessary libraries,
tkinter, ttkthemes, and themedtk to build the GUI and its looks, os, sys and multiprocess, and
deliriumAPI. With deliriumAPI being our library built in-house.

78

Due to the continuous integration approach adopted in our software development process,
the functions and methods have evolved throughout the project. As a result, some functions
and methods have continued to expand in size. At this time, a few days before this document
is finalized, the main function to control starting and stopping jamming is around 70 lines
long. For future work, it is recommended to refactor this function to enhance readability
and maintainability. Future work for the GUI will be discussed more in-depth later in this
document, see section 19.2.

16.6.1 Using tkinter Library to Develop the GUI SN | AM

The GUI was built using tkinter, a popular standard Python library for creating graphical
user interfaces. Tkinter was chosen for its simplicity and effectiveness in rapidly developing
functional interfaces.

16.6.2 Structure of the GUI SN | AM

The GUI is split into different sections using tkinter frames:
• The jamming frame is placed in the top left. It includes a drop-down menu to select the

type of jamming, a start/stop button, and a gain button used to toggle an increase in
signal strength.

• In the top right is the spoofing frame, which only consists of two buttons, a button called
Generate and a button called Control. These buttons can dynamically place another
frame inside the spoofing frame to display the respective usage of spoofing.

• The generate frame, see fig 3.45, gives the user the ability to create the spoofing Bin file
with options the user chooses. These options are choosing an ephemeris file, downloaded
either to the raspberry itself or a USB plugged-in with the file, choosing a location to be
spoofed, the time that is transmitted in the spoofed signal, should be left empty to let
the API choose the current time as this usually gives the best results, and the name for
the bin file.

• The control frame (see fig 3.46) gives the user the ability to start and stop the spoofing.
In this frame, the user is presented with a button to choose the file to be used for spoofing,
and a button to start and stop.

On the bottom part of the GUI is an empty textbox. A feature of Delirium is that stdout, the
standard output of the program is directed to this textbox, this means that all print statements
will appear in this textbox. This is better than the alternative, which is the feedback given in
the terminal used starting Delirium, making the user have to switch between windows or create
a lot more code to place all information manually with Tkinter. This gives us the ability to
give the user feedback on the program, either logging of jamming and spoofing turning on and
off, and errors in edge cases. This works for all print statements even if they are in the API
code or in the flowcharts for the jamming methods.

79

Figure 3.44: Screenshot of Delirium GUI.

Figure 3.45: Screenshot of generate frame in GUI.

80

Figure 3.46: Screenshot of control frame in GUI.

81

Chapter 4

Epilogue

This chapter covers the conclusion of project Delirium. Here we will present our results, the
conclusions that can be drawn from our results, and propose some recommendations for further
expansion of Delirium.

17 Results AM | ABS

This project’s resultant system - Delirium - is a highly capable jammer that provides several
strategies to interfere with the reception of radio frequency signals. Furthermore, it is capable
of simultaneously spoofing GPS signals, providing the user with a simple interface to type in
coordinates, create faux GPS baseband data, and broadcast this data as credible signals to any
GPS receiver. A diagram showing the architecture of Delirium in both software and hardware
can be seen in appendix L, this reference diagram is an overview of the system in terms of the
connections between all the components within it, and schematically shows the system in its
final state. Delirium is also a very portable system capable of deployment in any undeveloped
area. Pictures taken of the actual system in its final physical state can be seen in the figures
starting at 4.1a.

The Delirium GUI is a simple and user-friendly interface which allows the user access to
many of Deliriums functions. It allows the starting/stopping and gain-tuning of our GNU Radio
implemented SDR jammers, which are:

• Barrage jammer

• Spot jammer

• Protocol aware jammer

• Protocol aware jammer with sweeping

The GUI further allows the generation of faux GPS baseband data via the gps-sdr-sim applica-
tion (for more information, see section 15.3), and then the starting/stopping of our "spoofer",
which is it’s own GNU Radio implemented SDR. Previously generated baseband data can also
be loaded in, making Delirium a reliable testing device. Delirium allows the running of both a

82

(a) Delirium with its test-cables connected.

(b) With its antennas connected, Delirium
can interact with radio frequency receivers
through the air.

(c) The front side, showing a simplified 3D-
printed version of our logo.

(d) Delirium from the user’s perspective with
the laptop and powerbank visible. The anten-
nas can be conveniently stored in front of the
laptop.

(e) In the layers below the laptop the HackRF
One’s can be found, along with the USB-hub
needed to connect them to the laptop.

83

spoofer and a jammer simultaneously, enabling an effective attack against GNSS receivers by
e.g., jamming other GNSS’s while spoofing GPS signals. A screenshot of our GUI can be seen
in figure 4.2, and screenshots of it in different states can be found in section 16.6.

Figure 4.2: Screenshot of the Delirium GUI.

Despite many hours of effort, and considerable amounts of research to ensure compatibil-
ity (see sections 15.5 and 15.6), we did not succeed with the intended integration of either the
Raspberry Pi 5 nor the 7" touch screen. We knew that Ubuntu was the recommended operating
system (OS) for the software dependencies Delirium had, so efforts were made to install it on
the Raspberry. When doing this, however, we did not succeed in enabling the touch function-
ality of the screen. The Raspberry Pi official OS was then installed. This enabled the touch
functionality but caused a compatibility error with GNU Radio, which proved itself unsolvable
despite much effort made. Our initial concept of a laptop running the Ubuntu OS was chosen
instead, on which we earlier had verified the requirements of Delirium.

18 Conclusions HK | SN

This was the first attempt at a multi-disciplinary engineering project for the participants. We
realized we had to create a solid development plan and structure our work so that we could
avoid miscommunication and cooperate effectively. We studied different project management
techniques and landed on SCRUM, as discussed in section 13.2. This technique has proved
suitable for us and enabled us to work on our separate prioritized fields, and then integrate our
work.

Then we had to identify our stakeholders’ needs. This resulted in several meetings with KDA
and the user stories in section 14.2. From these, we made a red thread through requirements (see
appendix E) and discussed and noted the risk factors around our project. We feel that although
the task was not precisely defined by our stakeholders, we managed to derive requirements that
matched our stakeholdersť wishes well, and they are satisfied with our current solution.

Given the large scope of our initial project, we decided to divide our project into several

84

milestones, as explained in section 14.1. This enabled us to work on a smaller project and focus
on reaching the goal of our current milestone. This also gave us several alternate goals, should
our progress not enable us to reach the full scope of the project. We could then integrate these
milestones into our timeline which helped us visualize the deadlines we were working with. We
ended up completing milestone 4, which was our end goal.

A central part of our system is the SDR and we did thorough research into which system
would fit our needs best (ref. section 15.2). During this research, we had to take into account
the time of arrival of the components we needed, because of the relatively short timeline (one
semester) of our project. Doing this ensured that we got the HackRF One in good time. We
have been satisfied with how the SDR peripheral have operated, and besides a planned upgrade
to the spoofing HackRF, with an external oscillator, we had no issues with them.

We envisioned early on to test our system outside wirelessly but knew this was illegal and
required explicit consent from NKOM (ref. section 12). Therefore we planned our approach
around wired testing and testing in the basement Faraday cage. We began working on the
application to NKOM in March, see appendix P, but mainly focused on the main project. This
application proved to be more technical and time-consuming than first anticipated, therefore
we did not apply in time, and we have thus not been able to legally test wireless transmission
outside on real-world signals. However, through extrapolation of our wireless testing in the
Faraday cage and our wired testing on the Navio chip and on the signal analyzer, we are
confident that our system would have been successful in the real-world.

To conclude this project we can confidently say that our solution fulfills the task that was
presented to us. Our package is a small container with the capability of jamming and spoofing
GPS signals and is portable and not dependent on any infrastructure. It can be used by our
customer to penetration test their internal systems that are using GNSS receivers and locate
any weaknesses that may be present.

There are some functionalities we did not have time to integrate into our solution, and we
elaborate on these in section 19.

19 Recommendations SN | ABS

As we conclude the development of the Delirium project, several avenues for future enhance-
ment and refinement have been identified. While Delirium successfully integrates radio fre-
quency jamming and GPS spoofing into a portable system, there are specific areas that could
benefit from further development to maximize the system’s potential and usability. This section
outlines key recommendations for future work, focusing on improving the GUI, incorporating
additional features, and performing code cleanup. These enhancements aim to not only stream-
line the user experience but also expand the functional capabilities and maintainability of the
system, ensuring Delirium remains a robust and versatile tool for penetration testing and GNSS
signal interference.

85

19.1 Spoofing a drifting GPS-signal SN | AM

A significant feature for future development of Delirium is the ability to spoof a drifting GPS
signal. This functionality would enable the user to cause the target of Delirium to "drift" in
a specified direction. Implementing this feature in the future should not present significant
difficulties. Currently, we generate the faux GPS signal data through gps-sdr-sim by pass-
ing the "-l" option with a static location in latitude/longitude/height (LLH) format, such as
"30.286502,120.032669,100". Instead, the "-u" option could be used and with a provided CSV
(comma-separated values) file. This CSV file must then contain dynamic location data at a
10Hz frequency, representing ten location entries per second. More information about this fea-
ture can be found on gps-sdr-sim’s GitHub page [65].

This feature could also be implemented as a "CSV generator" in Delirium. The user would
e.g., input three variables: latitude, longitude, and height. They would also specify the drift’s
velocity and the file’s duration in seconds. A Python function could then generate a CSV file
where the location data changes according to the user’s settings.

19.2 Future Work for the Delirium GUI SN | ABS

Several features and potential developments for the Delirium GUI were not completed due to
time constraints.

19.2.1 Cleanup of Codebase SN | ABS

As discussed in section 16.6, a cleanup of the delirium.py code is recommended. Some functions
have become quite lengthy, and code repetition is evident. For example, in the toggle jamming
function, six lines of code are repeated four times to update the GUI when starting or stopping
the jammer. These lines could be refactored into a separate function to improve readability
and reduce technical debt.
Another example of the need for cleanup is the code for creating the GUI elements. In tkinter,
each element requires at least two lines of code: one for creating the element and one for placing
it on the screen. As we added more functionality to the Delirium GUI, the codebase grew
increasingly unorganized. This growth has made it more difficult to keep track of elements and
understand the overall structure intuitively. The lack of organization has resulted in a codebase
that is harder to maintain and extend.

86

REFERENCES

References

[1] Comparison of several satellite navigation system orbits. [Online]. Available: https://uplo
ad.wikimedia.org/wikipedia/commons/b/b4/Comparison_satellite_navigation_orbits.svg

[2] L1, l2, l5, l3, and simply l frequency bands. [Online]. Available: https://gnss.store/blog/po
st/l1-l2-l5-l3-and-simply-l-frequency-bands.html

[3] A. M. Palash Choudhari, Varun Karthikeyan. (2018) Electronic warfare - radar noise
jamming. [Online]. Available: http://fullafterburner.weebly.com/next-gen-weapons/elect
ronic-warfare-radar-noise-jamming

[4] Spread spectrum and code modulation of l1 gps carrier. [Online]. Available:
https://www.e-education.psu.edu/geog862/node/1753

[5] Introduction to clockify. [Online]. Available: https://clockify.me/help/getting-started/int
roduction-to-clockify

[6] Your first flowgraph. [Online]. Available: https://wiki.gnuradio.org/index.php/Your_First
_Flowgraph

[7] Hackrf one. [Online]. Available: https://greatscottgadgets.com/hackrf/one/

[8] Beskyttelseskoffert m. [Online]. Available: https://www.jula.no/catalog/bygg-og-maling/
oppbevaring/oppbevaring-av-verktoysmasaker/verktoykasser/beskyttelseskoffert-001594/

[9] Neo-m8n-0. [Online]. Available: https://no.mouser.com/ProductDetail/u-blox/NEO-M8N
-0?qs=zW32dvEIR3unZhZI0KRbew%3D%3D

[10] What is a saw filter. [Online]. Available: https://www.everythingrf.com/community/wha
t-is-a-saw-filter

[11] Apitech, “Introduction to saw filter theory and design techniques,” pp. 1–16, 2018.
[Online]. Available: https://www.spectrumcontrol.com/globalassets/documents/rf2m-us/
white-paper---saw-filter-2018.pdf

[12] Saw components b7839. [Online]. Available: https://www.mouser.com/datasheet/2/136
/B7839-77972.pdf

[13] A. Zaccaron. Digital radio frequency memory drfm for ecm applications. [Online].
Available: https://www.emsopedia.org/entries/digital-radio-frequency-memory-drfm-for
-ecm-applications/

[14] Additive white gaussian noise. [Online]. Available: https://en.wikipedia.org/wiki/Additi
ve_white_Gaussian_noise

[15] Boilerplate code. [Online]. Available: https://en.wikipedia.org/wiki/Boilerplate_code

87

https://upload.wikimedia.org/wikipedia/commons/b/b4/Comparison_satellite_navigation_orbits.svg
https://upload.wikimedia.org/wikipedia/commons/b/b4/Comparison_satellite_navigation_orbits.svg
https://gnss.store/blog/post/l1-l2-l5-l3-and-simply-l-frequency-bands.html
https://gnss.store/blog/post/l1-l2-l5-l3-and-simply-l-frequency-bands.html
http://fullafterburner.weebly.com/next-gen-weapons/electronic-warfare-radar-noise-jamming
http://fullafterburner.weebly.com/next-gen-weapons/electronic-warfare-radar-noise-jamming
https://www.e-education.psu.edu/geog862/node/1753
https://clockify.me/help/getting-started/introduction-to-clockify
https://clockify.me/help/getting-started/introduction-to-clockify
https://wiki.gnuradio.org/index.php/Your_First_Flowgraph
https://wiki.gnuradio.org/index.php/Your_First_Flowgraph
https://greatscottgadgets.com/hackrf/one/
https://www.jula.no/catalog/bygg-og-maling/oppbevaring/oppbevaring-av-verktoysmasaker/verktoykasser/beskyttelseskoffert-001594/
https://www.jula.no/catalog/bygg-og-maling/oppbevaring/oppbevaring-av-verktoysmasaker/verktoykasser/beskyttelseskoffert-001594/
https://no.mouser.com/ProductDetail/u-blox/NEO-M8N-0?qs=zW32dvEIR3unZhZI0KRbew%3D%3D
https://no.mouser.com/ProductDetail/u-blox/NEO-M8N-0?qs=zW32dvEIR3unZhZI0KRbew%3D%3D
https://www.everythingrf.com/community/what-is-a-saw-filter
https://www.everythingrf.com/community/what-is-a-saw-filter
https://www.spectrumcontrol.com/globalassets/documents/rf2m-us/white-paper---saw-filter-2018.pdf
https://www.spectrumcontrol.com/globalassets/documents/rf2m-us/white-paper---saw-filter-2018.pdf
https://www.mouser.com/datasheet/2/136/B7839-77972.pdf
https://www.mouser.com/datasheet/2/136/B7839-77972.pdf
https://www.emsopedia.org/entries/digital-radio-frequency-memory-drfm-for-ecm-applications/
https://www.emsopedia.org/entries/digital-radio-frequency-memory-drfm-for-ecm-applications/
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
https://en.wikipedia.org/wiki/Boilerplate_code

REFERENCES

[16] Ephemeris. [Online]. Available: https://en.wikipedia.org/wiki/Ephemeris

[17] L band. [Online]. Available: https://en.wikipedia.org/wiki/L_band

[18] Ltspice. [Online]. Available: https://www.analog.com/en/resources/design-tools-and-cal
culators/ltspice-simulator.html

[19] E. Ries. Minimum viable product: a guide. [Online]. Available: https://www.startuplesso
nslearned.com/2009/08/minimum-viable-product-guide.html

[20] M. Rouse. Minimum viable product. [Online]. Available: https://www.techopedia.com/d
efinition/27809/minimum-viable-product-mvp

[21] Nanomotion. What is the piezoelectric effect? [Online]. Available: https:
//www.nanomotion.com/nanomotion-technology/the-piezoelectric-effect/

[22] Consumer drone unit shipments worldwide from 2020 to 2030. [Online]. Available:
https://www.statista.com/statistics/1234658/worldwide-consumer-drone-unit-shipments
/#:~:text=The%20total%20number%20of%20consumer,unit%20shipments%20globally%
20by%202030.

[23] European Space Agency. Gnss signal. [Online]. Available: https://gssc.esa.int/navipedia
/index.php/GNSS_signal

[24] Pvt. [Online]. Available: https://gnss-sdr.org/docs/sp-blocks/pvt/#precise-point-positio
ning

[25] Positioning computation. [Online]. Available: https://galileognss.eu/positioning-computa
tion/

[26] Light cones. [Online]. Available: https://en.wikipedia.org/wiki/Satellite_navigation_sol
ution

[27] The global positioning system. [Online]. Available: https://oceanservice.noaa.gov/educat
ion/tutorial_geodesy/geo09_gps.html

[28] European Space Agency. Gps general introduction. [Online]. Available: https:
//gssc.esa.int/navipedia/index.php/GPS_General_Introduction#:~:text=GPS%20Signa
l%20Structure,-GPS%20satellite%20program&text=The%20main%20GPS%20carrier%20s
ignal,military%20and%20authorized%20civilian%20users.

[29] U.S. Space Force. Space segment. [Online]. Available: https://www.gps.gov/systems/gp
s/space/

[30] Gps wiki. [Online]. Available: https://en.wikipedia.org/wiki/GPS_signals

88

https://en.wikipedia.org/wiki/Ephemeris
https://en.wikipedia.org/wiki/L_band
https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/resources/design-tools-and-calculators/ltspice-simulator.html
https://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html
https://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html
https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
https://www.nanomotion.com/nanomotion-technology/the-piezoelectric-effect/
https://www.nanomotion.com/nanomotion-technology/the-piezoelectric-effect/
https://www.statista.com/statistics/1234658/worldwide-consumer-drone-unit-shipments/#:~:text=The%20total%20number%20of%20consumer,unit%20shipments%20globally%20by%202030.
https://www.statista.com/statistics/1234658/worldwide-consumer-drone-unit-shipments/#:~:text=The%20total%20number%20of%20consumer,unit%20shipments%20globally%20by%202030.
https://www.statista.com/statistics/1234658/worldwide-consumer-drone-unit-shipments/#:~:text=The%20total%20number%20of%20consumer,unit%20shipments%20globally%20by%202030.
https://gssc.esa.int/navipedia/index.php/GNSS_signal
https://gssc.esa.int/navipedia/index.php/GNSS_signal
https://gnss-sdr.org/docs/sp-blocks/pvt/#precise-point-positioning
https://gnss-sdr.org/docs/sp-blocks/pvt/#precise-point-positioning
https://galileognss.eu/positioning-computation/
https://galileognss.eu/positioning-computation/
https://en.wikipedia.org/wiki/Satellite_navigation_solution
https://en.wikipedia.org/wiki/Satellite_navigation_solution
https://oceanservice.noaa.gov/education/tutorial_geodesy/geo09_gps.html
https://oceanservice.noaa.gov/education/tutorial_geodesy/geo09_gps.html
https://gssc.esa.int/navipedia/index.php/GPS_General_Introduction#:~:text=GPS%20Signal%20Structure,-GPS%20satellite%20program&text=The%20main%20GPS%20carrier%20signal,military%20and%20authorized%20civilian%20users.
https://gssc.esa.int/navipedia/index.php/GPS_General_Introduction#:~:text=GPS%20Signal%20Structure,-GPS%20satellite%20program&text=The%20main%20GPS%20carrier%20signal,military%20and%20authorized%20civilian%20users.
https://gssc.esa.int/navipedia/index.php/GPS_General_Introduction#:~:text=GPS%20Signal%20Structure,-GPS%20satellite%20program&text=The%20main%20GPS%20carrier%20signal,military%20and%20authorized%20civilian%20users.
https://gssc.esa.int/navipedia/index.php/GPS_General_Introduction#:~:text=GPS%20Signal%20Structure,-GPS%20satellite%20program&text=The%20main%20GPS%20carrier%20signal,military%20and%20authorized%20civilian%20users.
https://www.gps.gov/systems/gps/space/
https://www.gps.gov/systems/gps/space/
https://en.wikipedia.org/wiki/GPS_signals

REFERENCES

[31] D. Kuhlman, “A python book: Beginning python, advanced python, and python exercises.”
[Online]. Available: https://web.archive.org/web/20120623165941/http://cutter.rexx.co
m/~dkuhlman/python_book_01.html#introduction-python-101-beginning-python

[32] S. Cass, “The top programming languages 2023,” aug 2023. [Online]. Available:
https://spectrum.ieee.org/the-top-programming-languages-2023

[33] Python implementations. [Online]. Available: https://wiki.python.org/moin/PythonImp
lementations

[34] Globalinterpreterlock. [Online]. Available: https://wiki.python.org/moin/GlobalInterpret
erLock

[35] About cmake. [Online]. Available: https://cmake.org/about/

[36] Extending python with c or c++. [Online]. Available: https://docs.python.org/3.10/ext
ending/extending.html

[37] Building c and c++ extensions. [Online]. Available: https://docs.python.org/3.10/exten
ding/building.html#building

[38] pybind11 seamless operability between c++11 and python. [Online]. Available:
https://github.com/pybind/pybind11

[39] Build systems. [Online]. Available: https://pybind11.readthedocs.io/en/stable/compiling.
html#pybind11-add-module

[40] Continuous integration. [Online]. Available: https://en.wikipedia.org/wiki/Continuous_i
ntegration

[41] Version control. [Online]. Available: https://en.wikipedia.org/wiki/Version_control

[42] Getting started - about version control. [Online]. Available: https://web.archive.org/we
b/20151225053703/http://git-scm.com/book/en/v2/Getting-Started-About-Version-Con
trol

[43] What is project management? [Online]. Available: https://www.apm.org.uk/resources/w
hat-is-project-management/#:~:text=Project%20management%20is%20the%20applicati
on,a%20finite%20timescale%20and%20budget.

[44] “Manifesto for agile software development.” [Online]. Available: https://agilemanifesto.o
rg/

[45] K. Schwaber and J. Sutherland, “The scrum guide,” 2020. [Online]. Available:
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100

[46] ProductPlan. What is jira? [Online]. Available: https://www.productplan.com/glossary
/jira/

89

https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/python_book_01.html#introduction-python-101-beginning-python
https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/python_book_01.html#introduction-python-101-beginning-python
https://spectrum.ieee.org/the-top-programming-languages-2023
https://wiki.python.org/moin/PythonImplementations
https://wiki.python.org/moin/PythonImplementations
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://cmake.org/about/
https://docs.python.org/3.10/extending/extending.html
https://docs.python.org/3.10/extending/extending.html
https://docs.python.org/3.10/extending/building.html#building
https://docs.python.org/3.10/extending/building.html#building
https://github.com/pybind/pybind11
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module
https://pybind11.readthedocs.io/en/stable/compiling.html#pybind11-add-module
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Version_control
https://web.archive.org/web/20151225053703/http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://web.archive.org/web/20151225053703/http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://web.archive.org/web/20151225053703/http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://www.apm.org.uk/resources/what-is-project-management/#:~:text=Project%20management%20is%20the%20application,a%20finite%20timescale%20and%20budget.
https://www.apm.org.uk/resources/what-is-project-management/#:~:text=Project%20management%20is%20the%20application,a%20finite%20timescale%20and%20budget.
https://www.apm.org.uk/resources/what-is-project-management/#:~:text=Project%20management%20is%20the%20application,a%20finite%20timescale%20and%20budget.
https://agilemanifesto.org/
https://agilemanifesto.org/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100
https://www.productplan.com/glossary/jira/
https://www.productplan.com/glossary/jira/

REFERENCES

[47] Signal (messaging app). [Online]. Available: https://en.wikipedia.org/wiki/Signal_(mess
aging_app)

[48] M. Rehkopf. User stories with examples and a template. [Online]. Available:
https://www.atlassian.com/agile/project-management/user-stories

[49] Is there a difference between requirements and design? [Online]. Available:
https://baknowledgeshare.com/is-there-a-difference-between-requirements-and-design/

[50] What is gnu radio? [Online]. Available: https://wiki.gnuradio.org/index.php?title=What
_is_GNU_Radio%3F

[51] Handling flowgraphs. [Online]. Available: https://wiki.gnuradio.org/index.php/Handling
_Flowgraphs

[52] Gnu radio wiki: Hardware. [Online]. Available: https://wiki.gnuradio.org/index.php?titl
e=Hardware#Great_Scott_Gadgets_HackRF

[53] Github: gr osmos. [Online]. Available: https://github.com/osmocom/gr-osmosdr

[54] Github: gr soapy. [Online]. Available: https://github.com/dicta/gr-soapy

[55] Gnu radio wiki: Creating your first block. [Online]. Available: https://wiki.gnuradio.org/
index.php?title=Creating_Your_First_Block

[56] Gnu radio wiki: Creating c++ oot with gr-modtool. [Online]. Available: https:
//wiki.gnuradio.org/index.php?title=Creating_C%2B%2B_OOT_with_gr-modtool

[57] Gnu radio wiki: Creating python oot with gr-modtool. [Online]. Available:
https://wiki.gnuradio.org/index.php?title=Creating_Python_OOT_with_gr-modtool
#Creating_an_OOT_Module

[58] Updating firmware. [Online]. Available: https://hackrf.readthedocs.io/en/latest/updati
ng_firmware.html

[59] Installing hackrf software. [Online]. Available: https://hackrf.readthedocs.io/en/latest/in
stalling_hackrf_software.html

[60] hackrf github repo. [Online]. Available: https://github.com/greatscottgadgets/hackrf

[61] Gnu general public license, version 2. [Online]. Available: https://www.gnu.org/licenses
/old-licenses/gpl-2.0.en.html

[62] Only-VLSI. Complex programmable logic device. [Online]. Available: https://only-vlsi.bl
ogspot.com/2008/05/complex-programmable-logic-device.html

[63] N. Kommunikasjonsmyndighet. Forbud mot jammere. [Online]. Available: https:
//nkom.no/frekvenser-og-elektronisk-utstyr/jammere-og-repeatere/jammere

90

https://en.wikipedia.org/wiki/Signal_(messaging_app)
https://en.wikipedia.org/wiki/Signal_(messaging_app)
https://www.atlassian.com/agile/project-management/user-stories
https://baknowledgeshare.com/is-there-a-difference-between-requirements-and-design/
https://wiki.gnuradio.org/index.php?title=What_is_GNU_Radio%3F
https://wiki.gnuradio.org/index.php?title=What_is_GNU_Radio%3F
https://wiki.gnuradio.org/index.php/Handling_Flowgraphs
https://wiki.gnuradio.org/index.php/Handling_Flowgraphs
https://wiki.gnuradio.org/index.php?title=Hardware#Great_Scott_Gadgets_HackRF
https://wiki.gnuradio.org/index.php?title=Hardware#Great_Scott_Gadgets_HackRF
https://github.com/osmocom/gr-osmosdr
https://github.com/dicta/gr-soapy
https://wiki.gnuradio.org/index.php?title=Creating_Your_First_Block
https://wiki.gnuradio.org/index.php?title=Creating_Your_First_Block
https://wiki.gnuradio.org/index.php?title=Creating_C%2B%2B_OOT_with_gr-modtool
https://wiki.gnuradio.org/index.php?title=Creating_C%2B%2B_OOT_with_gr-modtool
https://wiki.gnuradio.org/index.php?title=Creating_Python_OOT_with_gr-modtool#Creating_an_OOT_Module
https://wiki.gnuradio.org/index.php?title=Creating_Python_OOT_with_gr-modtool#Creating_an_OOT_Module
https://hackrf.readthedocs.io/en/latest/updating_firmware.html
https://hackrf.readthedocs.io/en/latest/updating_firmware.html
https://hackrf.readthedocs.io/en/latest/installing_hackrf_software.html
https://hackrf.readthedocs.io/en/latest/installing_hackrf_software.html
https://github.com/greatscottgadgets/hackrf
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://only-vlsi.blogspot.com/2008/05/complex-programmable-logic-device.html
https://only-vlsi.blogspot.com/2008/05/complex-programmable-logic-device.html
https://nkom.no/frekvenser-og-elektronisk-utstyr/jammere-og-repeatere/jammere
https://nkom.no/frekvenser-og-elektronisk-utstyr/jammere-og-repeatere/jammere

REFERENCES

[64] Earth data. [Online]. Available: https://urs.earthdata.nasa.gov/

[65] gps-sdr-sim. [Online]. Available: https://github.com/osqzss/gps-sdr-sim

[66] R. P. Foundation/Broadcom. (2023) Raspberry pi 5. [Online]. Available: https:
//datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf

[67] GreatScottGadgets. Minimum host system requirements for hackrf. [Online]. Available:
https://hackrf.readthedocs.io/en/latest/hackrf_minimum_requirements.html

[68] R. P. Foundation/Broadcom. Raspberry pi touch display. [Online]. Available: https:
//www.raspberrypi.com/documentation/accessories/display.html

[69] E. Tutorials. T-pad attenuator. [Online]. Available: https://www.electronics-tutorials.w
s/attenuators/t-pad-attenuator.html

[70] Colour coding and standard resistor values. [Online]. Available: https://www.open.edu/o
penlearn/science-maths-technology/an-introduction-electronics/content-section-2.4

[71] NEO-M8 u-blox M8 concurrent GNSS modules Data sheet, u-blox, 12 2022, rev. 12.
[Online]. Available: https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataS
heet_UBX-15031086.pdf

[72] Modular programming. [Online]. Available: https://en.wikipedia.org/wiki/Modular_prog
ramming

[73] Whats new in python 3.10. [Online]. Available: https://docs.python.org/3/whatsnew/3.1
0.html

[74] Binary package python3 in ubuntu jammy. [Online]. Available: https://launchpad.net/ub
untu/jammy/+package/python3

[75] multiprocessing process-based parallelism. [Online]. Available: https://docs.python.org/
3/library/multiprocessing.html

[76] gps-modulation. [Online]. Available: https://www.e-education.psu.edu/geog862/book/
export/html/1407#:~:text=For%20example%2C%20if%20a%20satellite,the%20P(Y)%20c
ode.

91

https://urs.earthdata.nasa.gov/
https://github.com/osqzss/gps-sdr-sim
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf
https://hackrf.readthedocs.io/en/latest/hackrf_minimum_requirements.html
https://www.raspberrypi.com/documentation/accessories/display.html
https://www.raspberrypi.com/documentation/accessories/display.html
https://www.electronics-tutorials.ws/attenuators/t-pad-attenuator.html
https://www.electronics-tutorials.ws/attenuators/t-pad-attenuator.html
https://www.open.edu/openlearn/science-maths-technology/an-introduction-electronics/content-section-2.4
https://www.open.edu/openlearn/science-maths-technology/an-introduction-electronics/content-section-2.4
https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Modular_programming
https://docs.python.org/3/whatsnew/3.10.html
https://docs.python.org/3/whatsnew/3.10.html
https://launchpad.net/ubuntu/jammy/+package/python3
https://launchpad.net/ubuntu/jammy/+package/python3
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://www.e-education.psu.edu/geog862/book/export/html/1407#:~:text=For%20example%2C%20if%20a%20satellite,the%20P(Y)%20code.
https://www.e-education.psu.edu/geog862/book/export/html/1407#:~:text=For%20example%2C%20if%20a%20satellite,the%20P(Y)%20code.
https://www.e-education.psu.edu/geog862/book/export/html/1407#:~:text=For%20example%2C%20if%20a%20satellite,the%20P(Y)%20code.

REFERENCES OF HIGH REGARD

References of high regard

[RefH1] NAVSTAR GPS Space Segment/Navigation User Segment Interfaces, Space Systems
Command (SSC), 2022, rev. N. [Online]. Available: https://www.gps.gov/technical/
icwg/IS-GPS-200N.pdf

[RefH2] B. Kahanwal, “Abstraction level taxonomy of programming language frameworks,”
11 2013.

[RefH3] M. Vogel, Handbook of Space Engineering, Archaeology, and Heritage, edited by A.G.
Darrin and B.L. O’Leary. Contemporary Physics, 2009.

[RefH4] G. Lykou, D. Moustakas, and D. Gritzalis, “Defending airports from uas: A survey
on cyber-attacks and counter-drone sensing technologies.” Sensors, 2020.

[RefH5] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. Q’Hanlon, and P. M. Kintner,
“Assessing the spoofing threat: Development of a portable gps civilian spoofer,”
Proceedings of the 21st International Technical Meeting of the Satellite Division of
the Institute of Navigation, 2008.

[RefH6] R. V. Karpe and S. Kulkarni, “Software defined radio based global positioning system
jamming and spoofing for vulnerability analysis,” Institute of Electrical and Electron-
ics Engineers, 2020.

[RefH7] R. Ferreria, J. Gaspar, P. Sebastiao, and N. Souto, “Effective gps jamming techniques
for uavs using low-cost sdr platforms,” Wireless Personal Communications, 2020.

[RefH8] A. Hussain, N. A. Saqib, U. Qamar, M. Zia, and H. Mahmood, “Protocol-aware
radio frequency jamming in wi-fi and commercial wireless networks,” JOURNAL OF
COMMUNICATIONS AND NETWORKS VOL. 16 NO. 4, pp. 397–406, 2014.

[RefH9] W. Stallings, Data and Computer Communications. Pearson Education Limited,
2014.

[RefH10] J. R. van der Merwe, X. Zubizarreta, and A. Rügamer, “Classification of spoofing
attack types,” Institute of Electrical and Electronics Engineers, 2018.

[RefH11] B. I. Tuleuov and A. B. Ospanova, Beginning C++ Compilers : An Introductory
Guide to Microsoft C/C++ and MinGW Compilers. Imprint: Apress, 2024.

[RefH12] M. Fowler. (2024) Continuous integration. [Online]. Available: https://martinfowler
.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration

[RefH13] A. Faisandier and G. Roedler, “Stakeholder requirements definition,” the relevant
content are tables 2 and 3; respectively requirements classification and characteristics
conformity. [Online]. Available: https://sebokwiki.org/wiki/Stakeholder_Requireme
nts_Definition

92

https://www.gps.gov/technical/icwg/IS-GPS-200N.pdf
https://www.gps.gov/technical/icwg/IS-GPS-200N.pdf
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://sebokwiki.org/wiki/Stakeholder_Requirements_Definition
https://sebokwiki.org/wiki/Stakeholder_Requirements_Definition

REFERENCES OF HIGH REGARD

[RefH14] X.-C. Zheng and H.-M. Sun, “Hijacking unmanned aerial vehicle by exploiting civil
gps vulnerabilities using software-defined radio,” Sensors and Materials, vol. 32, p.
2729, 08 2020.

[RefH15] D. Huizinga and A. Kolawa, Automated Defect Prevention: Best Practices in Software
Management. Wiley-IEEE Press, 2007.

93

Appendices

94

Appendix A

Project Timeline

The following page shows the timeline for project Delirium. It was tentatively updated, and
was used as an overview for planning our efforts.

95

9. jan. 13. jun.
15. jan.15. jan. 22. jan.22. jan. 29. jan.29. jan. 5. feb.5. feb. 12. feb.12. feb. 19. feb.19. feb. 26. feb.26. feb. 4. mar.4. mar. 11. mar.11. mar. 18. mar.18. mar. 25. mar.25. mar. 1. apr.1. apr. 8. apr.8. apr. 15. apr.15. apr. 22. apr.22. apr. 29. apr.29. apr. 6. mai.6. mai. 13. mai.13. mai. 20. mai.20. mai. 27. mai.27. mai. 3. jun.3. jun.

13. jun.

CLOSING CEREMONY

13. jun.

CLOSING CEREMONY

13. jun.

CLOSING CEREMONY

9. jan.

PROJECT START

9. jan.

PROJECT START

9. jan.

PROJECT START

30. jan.

DIDRIK 1
FORMØTE: ÅKERN 09:30

PRESENTASJON: ROM 5119 10:00

30. jan.

DIDRIK 1
FORMØTE: ÅKERN 09:30

PRESENTASJON: ROM 5119 10:00

11. mar.

DIDRIK 2
FORMØTE: ÅKERN KL 09:00

PRESENTASJON: 5119 KL 09:30
ETTERMØTE: ÅKERN

11. mar.

DIDRIK 2
FORMØTE: ÅKERN KL 09:00

PRESENTASJON: 5119 KL 09:30
ETTERMØTE: ÅKERN

3. jun.

DIDRIK 3
KAN HENTE “BEVERTNING” I KANTINA 07:45

FORMØTE: 08:00 ROM 1217
PRESENTASJON: 08:30 ROM OKSEN

ETTERMØTE

3. jun.

DIDRIK 3
KAN HENTE “BEVERTNING” I KANTINA 07:45

FORMØTE: 08:00 ROM 1217
PRESENTASJON: 08:30 ROM OKSEN

ETTERMØTE

21. mai.

INNLEVERING:
FYSISK INNEN KL 12:00 TIL “IDA”
PÅ WISEFLOW INNEN KL 14:00

21. mai.

INNLEVERING:
FYSISK INNEN KL 12:00 TIL “IDA”
PÅ WISEFLOW INNEN KL 14:00

21. mai.

INNLEVERING:
FYSISK INNEN KL 12:00 TIL “IDA”
PÅ WISEFLOW INNEN KL 14:00

23. mai.

USN EXPO

23. mai.

USN EXPO

23. mai.

USN EXPO

28. mar. - 1.
apr.

PÅSKEN

28. mar. - 1.
apr.

PÅSKEN

26. jan.

GENERALPRØVE M TINA KL 10:30 ROM 5119

26. jan.

GENERALPRØVE M TINA KL 10:30 ROM 5119

26. jan.

GENERALPRØVE M TINA KL 10:30 ROM 5119

31. jan. - 9. feb.

SPRINT 1

31. jan. - 9. feb.

SPRINT 1
14. feb. - 23. feb.

SPRINT 2

14. feb. - 23. feb.

SPRINT 2

28. feb. - 8. mar.

SPRINT 3

28. feb. - 8. mar.

SPRINT 3
13. mar. - 22. mar.

SPRINT 4

13. mar. - 22. mar.

SPRINT 4

8. mar.

GENERALPRØVE
ROM 5129 RESERVERT FRA KL 11

TINA KOMMER 12:15

8. mar.

GENERALPRØVE
ROM 5129 RESERVERT FRA KL 11

TINA KOMMER 12:15

8. mar.

GENERALPRØVE
ROM 5129 RESERVERT FRA KL 11

TINA KOMMER 12:15

21. mar.

DATA EKSAMEN

21. mar.

DATA EKSAMEN

22. mar.

ELEKTRO EKSAMEN

22. mar.

ELEKTRO EKSAMEN

2. apr. - 5. apr.

SPRINT 5

2. apr. - 5. apr.

SPRINT 5

8. apr. - 12. apr.

SPRINT 6

8. apr. - 12. apr.

SPRINT 6

15. apr. - 19. apr.

SPRINT 7

15. apr. - 19. apr.

SPRINT 7

22. apr. - 26. apr.

SPRINT 8

22. apr. - 26. apr.

SPRINT 8

29. apr. - 3. mai.

SPRINT 9

29. apr. - 3. mai.

SPRINT 9
6. mai. - 10. mai.

SPRINT 10

6. mai. - 10. mai.

SPRINT 10

13. mai. - 17. mai.

FINISHING THE REPORT

13. mai. - 17. mai.

FINISHING THE REPORT

17. MAI17. MAI

3. mai.

MILESTONE 4 COMPLETE

3. mai.

MILESTONE 4 COMPLETE

8. mar.

MILESTONE 1 COMPLETE

8. mar.

MILESTONE 1 COMPLETE

27. mar.

MILESTONE 2 COMPLETE

27. mar.

MILESTONE 2 COMPLETE

6. mar.

INNLEVERING AV DOKUMENTASJON

6. mar.

INNLEVERING AV DOKUMENTASJON

6. mar.

INNLEVERING AV DOKUMENTASJON

19. apr.

MILESTONE 3 COMPLETE

19. apr.

MILESTONE 3 COMPLETE

27. mai.

PRESENTERE "DET SOM ER KULT" FOR KCSC
DIGITALT, FRA KL 12:00-13:00

27. mai.

PRESENTERE "DET SOM ER KULT" FOR KCSC
DIGITALT, FRA KL 12:00-13:00

10. mai.

LEVERE RAPPORTEN TIL VEILEDERNE

10. mai.

LEVERE RAPPORTEN TIL VEILEDERNE

10. mai.

LEVERE RAPPORTEN TIL VEILEDERNE

16. mai.

LEVERE ALT FYSISK OG VIRTUELT

16. mai.

LEVERE ALT FYSISK OG VIRTUELT

16. mai.

LEVERE ALT FYSISK OG VIRTUELT

Appendix B

The Red Thread

The following diagram shows our red thread - the path which is taken from a stakeholder
requirement, through its implementation in the product and with its end in verification (see
section 14 for more information). This diagram was used to illustrate both internally and to
our stakeholders how we should relate the systems engineering artifacts we produced to each
other.

97

Milestone N

User stories

System requirements
& respective derived

requirements

Implementation &
integration

Verification through
testing

Design choices

Technical
requirements

(discipline specific)

Legal limitations

Stakeholders

Risk factors

Project requirements

• KDA
• USN/our faculty
• The Norwegian law
• Private/Public users of

GNSS

• NKOM
• Ekomloven

• Website
• EXPO
• Report
• Presentations
• Etc.

For each requirement:
• Minimum one test with

a set of acceptance
criteria

• Software unit tests

Appendix C

Milestones

The following page shows our milestones diagram containing our iterative goals for the project
in ascending order. It was widely used as a reference for the team in regards to planning and
progress tracking, and was approved by our customer, KDA, and our internal supervisor.

99

Components
working

MVP 1:
Basic jammer

MVP 2:
“Advanced” jammer

Finished product:
Jammer & spoofer

We can verify that:
• The MVP components

are working together
• The HackRF One

produces reasonable
output

We have:
• GNU Radio SDR

jammer verified to
be capable of
denying the Navio 2's
GPS L1 C/A reception

• Simple start/stop UI

• GNU Radio SDR
jammers capable of
denying reception of
all GNSS’s with
different strategies
(called «advanced»
jamming)

• Python GUI with
options to perform
advanced jamming in
a user-friendly way

• GNU Radio SDR
spoofer utilizing gps-
sdr-sim to create GPS
baseband spoofing
payload

• GNU Radio SDR
jammers capable of
denying reception of
all GNSS’s with
different strategies

• GUI with options to
spoof/jam and
related suboptions

Milestone 1 Milestone 2 Milestone 3 Milestone 4

Embed the system within a “tactical” suitcase
with:
• Powerbank
• Small computer (e.g., Rasp.Pi 5)
• Touch screen To display the GUI
• 2 HackRF’s; one for spoofing, one for

jamming (can be used simultaneously)

Low-priority/ideal features

Appendix D

User Stories

101

Title:

Jamming GPS signals

Priority:

High

Estimate:

3 months

User story:

As a penetration tester

I want to jam the GPS-signals received by the drone

So that the drone no longer has communication with GPS-satellites

Acceptance criteria:

Given that the drone is within visible reach, and the jammer is set to function on the

correct frequency

When the jammer starts

Then the drone shall be unable to communicate with GPS-satellites

Title:

Position spoofing

Priority:

High

Estimate:

5 months

User story:

As a penetration tester

I want to spoof the drone’s position

So that the drone thinks it is somewhere else than its actual position

Acceptance criteria:

Given that I am able to send credible fake packets of information to the drone

When a command is prompted from my system to spoof the drone

Then the drone will receive the false signals, and perceive them as real

Title:

Location-specific spoofing

Priority:

Medium -> High

Estimate:

5 months

User story:

As a penetration tester

I want to spoof the GNSS-receiver by tricking it into thinking it is at a specific location

decided by me (an airport, a different country, etc.)

So that I can give my system the ultimate test against spoofing

Acceptance criteria:

Given that the jamming of the drone’s GPS signals is successful, and I am able to send

credible fake packets of information to the GNSS-receiver

When the system starts to jam GPS-signals, and send credible fake packets of information

to the GNSS-receiver

Then the GNSS-receiver shall receive the fake packets of information, perceive them as

real, and “believe” it is at the location decided by my system

Title:

Portability

Priority:

High

Estimate:

3 months

User story:

As a penetration tester

I want a portable system

So that I can easily bring it to remote locations

Acceptance criteria:

Given high focus on a compact and portable design

When developing our system

Then the system will be portable and easy to handle

Title:

Navio 2/NEO-M8N

Priority:

High

Estimate:

6 months (end goal)

User story:

As a penetration tester

I want to test the flight controller, Navio 2 and its GPS-chip NEO-M8N's ability to

withstand attacks through jamming and spoofing

So that I can use this information to prevent similar attacks from intruders/outsiders

Acceptance criteria:

Given the outcome of testing the Navio 2 flight controller

When testing its ability to prevent attacks

Then the results from the test will decide the future use of said component

Title:

User interface

Priority:

Medium -> High

Estimate:

5-6 months

User story:

As a penetration tester

I want a simple user interface

So that I can easily control my system

Acceptance criteria:

Given that a UI is available

When operating the system

Then I have a simple user interface

Appendix E

System Requirements

The following overview show the system requirements for Delirium, made by AM. Coloring has
been used to make it easier to separate the types:

• Dark blue - Top-level system requirements

• Light blue - Derived requirements

• Red - Legal requirements

• Orange - Design choices

• Gray - Technical, discipline-specific requirements

The Derived requirements and so on relating to a single top-level requirement are shown on the
same page. For more information about their contents and coherence, see section 14.3.1.

104

ID: TLR1 Source: US "Portability" Attached milestone: M2, M3, M4

Verification: T2.1.1 Type: Top-Level Physical
Compliance status: Complies in M2,
M3, M4

ID: DR1.1 Source: TLR1 Attached milestone: M2, M3, M4

Verification: T2.1.1 Type: Derived Functional
Compliance status: Complies in M2,
M3, M4

ID: TR1.1 Source: TLR1 Attached milestone: M2, M3, M4

Verification: - Type: Technical Electronics
Compliance status: Complies in M2,
M3, M4

ID: DC1.1 Source: TLR1 Attached milestone: Beyond M4

Verification: - Type: Design choice Compliance status: Integration failed

ID: TR1.2 Source: DC1.1 Attached milestone: Beyond M4

Verification: - Type: Technical Electronics Compliance status: Integration failed

There must be aquired and integrated a powebank which fulfills the new configuration's needs in regards to power.

The system must have the ability to be deployed in an undeveloped area. Definition of undeveloped area: "An
undeveloped place or piece of land has not been built on or used for farming". -
https://dictionary.cambridge.org/dictionary/english/undeveloped

The system must consist of a laptop containing a battery which is capable of running the system by itself.

We will expand the system with a powerbank capable of powering the entire new configuration consisting of a
Raspberry Pi 5 with a touch screen instead of the laptop.

To enable the required system portability, the system must be self-sufficient in regards to power.

ID: TLR2 Source: US "Portability" Attached milestone: M2, M3, M4

Verification: T2.1.1 Type: Top-Level Physical
Compliance status: Complies in M2,
M3, M4

ID: DR2.1 Source: TLR2 Attached milestone: M2, M3, M4

Verification: T2.1.1 Type: Derived Physical
Compliance status: Complies in M2,
M3, M4

ID: DC2.1 Source: TLR2 Attached milestone: Beyond M4

Verification: - Type: Design choice Compliance status: -

ID: TR2.1 Source: DC1.1, DC2.1 Attached milestone: Beyond M4

Verification: - Type: Technical Electronics Compliance status: Integration failed

ID: TR2.2 Source: DC2.1 Attached milestone: Beyond M4

Verification: - Type: Technical Electronics
Compliance status: Complies
beyond M4

The "tactical suitcase" must fit the entire system within it including:
The powerbank

Laptop
2x HackRF One
2x RF antennas

The system must have the ability to be carried in an undeveloped area. Definition: undeveloped areas are not used
for farming or industry, or do not have any buildings on them -
https://dictionary.cambridge.org/dictionary/english/undeveloped

To enable the required portability, the system must fit entirely into an average student's backpack, along with an
average-sized laptop and its charger

The "tactical suitcase" must fit the entire "Beyond M4"-system within it including:
The powerbank

Raspberry Pi 5 with touch screen
2x HackRF One
2x RF antennas

We will expand the system with a "tactical suitcase" which will fit the entire system within it.

ID: TLR3 Source: US "Jamming GPS signals " Attached milestone: M2, M3, M4

Verification: T3.1 Type: Top-Level Functional
Compliance status: Complies in M2,
M3, M4

ID: DR3.1 Source: TLR3, TLR4 Attached milestone: M2, M3, M4

Verification: T1.1.1 Type: Derived Functional
Compliance status: Complies in M2,
M3, M4

ID: DR3.2 Source: TLR3, TLR4 Attached milestone: M2, M3, M4

Verification: T1.1.1 Type: Derived Functional
Compliance status: Complies in M2,
M3, M4

ID: DR3.3 Source: TLR3, TLR4 Attached milestone: M2, M3, M4

Verification: T3.2.1 Type: Derived Functional
Compliance status: Complies in M2,
M3, M4

ID: DC3.1 Source: TLR3, DR3.*, DR4.2 Attached milestone: M2, M3, M4

Verification: - Type: Design choice Compliance status: -

ID: TR3.1 Source: DC3.1 Attached milestone: M2, M3, M4

Verification: - Type: Technical Electronics
Compliance status: Complies in M2,
M3, M4

We will use use GNU Radio as the means to create several Software Defined Radios (SDR) which satisfy the
source requirements.

At the very least, there must be implemented one SDR which is capable of jamming GPS-signals and one which is
capable of transmitting GPS-signals.

The system must be able to jam the Navio 2 flight controller's reception of GPS-signals. As long as the system is
jamming, the Navio 2 cannot determine its location using the GPS. Jamming is interpreted as "the deliberate

blocking of or interference with wireless communications" -https://en.wikipedia.org/wiki/Radio_jamming

To be able to jam the Navio 2 flight controller's GPS-signal reception and spoof its location, the system must be
able to transmit radio frequency waves at 1575.42MHz, which is the GPS L1 C/A singal's carrier frequency.

The system must emit a signal centred around the GPS-L1 frequency with a bandwidth of atleast 15,3 MHz.

The signal strength must be adjustable and atleast 30 dBm over background noise.

ID: TLR4 Source: US "Position spoofing" Attached milestone: M4

Verification: T4.1 Type: Top-Level Functional Compliance status: Complies in M4

ID: DR4.1 Source: TLR4 Attached milestone: M4

Verification: T4.1 Type: Derived Functional Compliance status: Complies in M4

ID: DR4.2 Source: TLR4 Attached milestone: M4

Verification: T4.1 Type: Derived Functional Compliance status: Complies in M4

ID: DC4.1 Source: DR4.1 Attached milestone: M4

Verification: - Type: Design choice Compliance status: -

ID: TR4.1 Source: TLR4, DR4.1, DC4.1 Attached milestone: M4

Verification: - Type: Technical Data Compliance status: Complies in M4

ID: TR4.2 Source: DR4.2 Attached milestone: M4

Verification: - Type: Technical Data Compliance status: Complies in M4

To be able to broadcast GPS data, the system must include a GNU Radio SDR specific for this functionality.

We will use use the gps-sdr-sim program to produce credible GPS baseband data

The system must implement the gps-sdr-sim program such that the user can specify an exact position in
lat/long/height-coordinates, so that gps-sdr-sim produces the baseband data accordingly.

The system must be able to tell the Navio 2 flight controller where it is by location-specific GPS spoofing. Definition
of spoofing: "A global positioning system (GPS) spoofing attack attempts to deceive a GPS receiver by

broadcasting fake GPS signals, structured to resemble a set of normal signals" -paraphrased from

The system must be able to produce a credible GPS-baseband data stream

The system must be able to broadcast a stream of GPS baseband data

ID: TLR5 Source: US "User Interface" Attached milestone: M2, M3, M4

Verification: User feedback Type: Top-Level Useability
Compliance status: Complies in M2,
M3, M4

ID: TR5.1 Source: TLR5, TLR6 Attached milestone: M2

Verification: - Type: Technical Data Compliance status: Complies in M2

ID: DC5.1 Source: TLR5, TLR6 Attached milestone: M3, M4

Verification: - Type: Design choice Compliance status: -

ID: TR5.2 Source: DC5.1, TLR5, TLR6 Attached milestone: M3, M4

Verification: - Type: Technical Data
Compliance status: Complies in M3,
M4

A simple start/stop program capable of starting the desired SDR must be made.

A GUI must be made using the Python language and the tkinter package.

The system must provide a User Interface (UI) which is simple to use. "Simple to use" is interpreted as being
possible for a non-expert to use without confusion with the premise that they understand what they are hoping to

achieve with the system.

We will make a Python Graphical User Interface (GUI) with the tkinter Python package. The intention of this is to
make usage of the system as easy as possible for the user.

ID: TLR6 Source: US "User Interface" Attached milestone: M2, M3, M4

Verification method: T6.1 Type: Top-Level Functional
Compliance status: Complies in M2,
M3, M4

ID: DR6.1 Source: TLR6, DC5.1 Attached milestone: M2, M3, M4

Verification: T6.1 Type: Derived Functional
Compliance status: Complies in M2,
M3, M4

ID: TR6.1 Source: DR6.1, DR3.3, DC4.1 Attached milestone: M3, M4

Verification: - Type: Technical Data
Compliance status: Complies in M3,
M4

ID: DC6.1 Source: DR6.1 Attached milestone: Beyond M4

Verification: - Type: Design choice Compliance status: -

ID: TR6.2 Source: DC6.1 Attached milestone: Beyond M4

Verification: - Type: Technical Data
Compliance status: Integration with
GUI failed; ran out of time

There must be implemented a program which uses the C-implemented libhackrf API to poll each SDR peripheral
about their status

The GUI must provide the following abilities to the user:
-Start/stop any implemented SDR

-Control the gain on each SDR
-In M4; pass user options to gps-sdr-sim

We will implement the ability for the user to verify the state of each peripheral device without the need of an
external oscilloscope or the indicators on each HackRF. Possible states include "idle", "N/A" and "transmitting".

The system must provide a User Interface (UI) which itself provides - to the user - the ability to utlize the required
functionality of the system at any point in time.

Through the UI the user must have the ability to both start and stop an SDR (The user must easily be able to start
an SDR, as this is the whole concept of our product and will grant the user its value. The SDR must quit when told

to do so, as NKOM stricly forbids jamming of any kind)

ID: TLR7 Source: NKOM (EKOM-loven §6-2) Attached milestone: All

Verification: - Type: Legal Requirement Compliance status: -

ID: TLR8 Source: NKOM (EKOM-loven §6-2) Attached milestone: All

Verification: - Type: Legal Requirement Compliance status: -

ID: TR7.1 Source: TLR7, TLR8 Attached milestone: All

Verification: - Type: Technical Electronics Compliance status: Aquired

By Norwegian law it is strictly forbidden to perform any radio freqency jamming in the public or private space.

By Norwegian law it is strictly forbidden to perform spoofing of GNSS signals, this is regarded as malicious
behavior as it could interfere with critical systems.

The project group must aquire and use cables (SMA/MCX) for all testing regarding spoofing or jamming in public or
private space, the only exception being when the tests are performed within the Faraday cage at USN Kongsberg.

Appendix F

Risk Assessment

This appendix shows the main functionalities of the SDRs we considered, except for price, as
they vary based on currency exchange rates, and availability and shipping time. The figure was
gathered from: from https://www.crowdsupply.com/microphase-technology/antsdr-e200.

112

Figure F.1: Our list of risks that were determined to be likely or have a high impact.

113

Appendix G

Testing Excel

This appendix shows the testing documentation we filled out in excel, before we decided to
directly fill it out in LaTeX to save some overhead on later implementing it into the report.

114

Figure G.1: Testing documentation in Excel

115

Appendix H

Test reports

The following pages show the test reports made for the tests performed to verify the Delirium
system against its requirements.

116

1. TEST REPORT: T1.1.1

1 Test Report: T1.1.1

Report conducted by:HK, ABS

Report written by:HK

Date:10.04.2024

1.1 Pre-condition:

System must be connected to a powerbank or laptop

1.2 Method:

• Make sure the USB-interface is fully seated

• The laptop/powerbank is charged and is powered up

• The program is loaded and ready to run

1.3 Hypothesis:

System operates as normal and sends out signals on the frequency determined by the software

1.4 Equipment used:

• Ubuntu Laptop with GNU Radio

• HackRF One

• USB cable

• Keysight CXA Signal Analyser

1.5 Results:

Using the Ubuntu laptop and the signal analyzer, we tested the system wired and found the
HackRF sent out a 20MHz wide signal at 1.57548GHz. See fig.H.1.

117

1. TEST REPORT: T1.1.1

Figure H.1: CXA Keysight signal analyzer showing signal peak in middle of spectrum.

1.6 Conclusions:

The delta central frequency between the signal we sent out, and the central frequency reported
by the signal analyzer was 60KHz, this was unexpected, but could be down to measurement
inaccuracies. The other reason could be the lackluster oscillator in the HackRF One which is
20ppm, meaning that at 1.57542GHz it could deviate by as much as 31.5KHz.

118

2. TEST REPORT: T2.1.1

2 Test Report: T2.1.1

Report conducted by:HK

Report written by:HK

Date:10.03.2024

2.1 Pre-condition:

System must be contained in its entirety in the backpack of one of the students in the bachelor
group

2.2 Method:

• Backpack must be present

• The laptop and HackRF One must be placed inside

• The weight of the backpack must be less than 20 kg.

2.3 Hypothesis:

System operates as normal and sends out signals on the frequency determined by the software

2.4 Equipment used:

• Ubuntu Laptop with GNU Radio

• HackRF One

• USB cable

2.5 Results:

The system fit inside the backpack easily and the weight was approximately 5 kg.

2.6 Conclusions:

The portability of the system has been proven.

119

3. TEST REPORT: T3.1

3 Test Report: T3.1

Report conducted by:HK, SN, AM, ABS

Report written by:HK

Date:01.03.2024

3.1 Pre-condition:

System must be connected to a powerbank or laptop.

3.2 Method:

• Make sure the USB-interface is fully seated

• The laptop/powerbank is charged and is powered up

• The program is loaded and ready to run

3.3 Hypothesis:

When we activate the system the GPS-reception in the receiver is disrupted and the GPS lock
is disabled.

3.4 Equipment used:

• Ubuntu Laptop with GNU Radio

• HackRF One

• USB cable

• Navio2 Flight Controller with ucenter open and monitoringing enabled

3.5 Results:

Using the Ubuntu laptop and the HackRF One without the external oscillator. We tested
outside with the HackRF One being connected to the receiver with the GNSS-antenna via an
SMA T-connector. Then we waited until the receiver had good GPS-lock and activated our
protocol aware jammer. Within half a second the GPS reception was totally blocked, and the
receiver lost its position bearing.

120

3. TEST REPORT: T3.1

3.6 Conclusions:

We saw that our solution succsessfully blocks the GPS-signals from reaching the receiver when
we activate our protocol aware jammer.

121

4. TEST REPORT: T3.2.1

4 Test Report: T3.2.1

Report conducted by:HK

Report written by:HK

Date:10.03.2024

4.1 Pre-condition:

System must be powered up and connected to measuring device.

4.2 Method:

• System must be powered up and ready to transmit signals to the measuring device

• Start the transmission and read out the signal strength from the measuring device

• Compare the strength of the signal to the strength of the GPS L2-signal

4.3 Hypothesis:

Expected signal strength is 50-60 dB higher than the original signal.

4.4 Equipment used:

• Ubuntu Laptop with GNU Radio

• HackRF One

• USB cable

• CXA Signal Analyser

4.5 Results:

The signal strength with the amplifier enabled is -39 dBm, compared to the -140 dBm of the
GPS-L1 signal.

122

4. TEST REPORT: T3.2.1

Figure H.2: CXA Keysight signal analyzer showing signal peak in middle of spectrum.

4.6 Conclusions:

The signal strength is 100 dB stronger, meaning we do not need the amplification in order to
reach our estimated range, we rather would need an attenuator to not exceed it by a factor of
10.

123

5. TEST REPORT: T4.1

5 Test Report: T4.1

Report conducted by: HK, AM, SN, ABS

Report written by:HK

Date:01.05.2024

5.1 Pre-condition:

System must be connected to a powerbank or laptop, test must be conducted either cabled or
inside a Faraday cage.

5.2 Method:

• Make sure the USB-interface is fully seated

• The laptop/powerbank is charged and is powered up

• The program is loaded and ready to run

• Only start the spoofer once the door to the Faraday cage is fully sealed

5.3 Hypothesis:

When we activate the system the receiver starts locating our faux GPS satellites and eventually
locks on to them.

5.4 Equipment used:

• Ubuntu Laptop with GNU Radio

• HackRF One

• USB cable

• Faraday cage

• Navio2 Flight Controller with ucenter open and monitoringing enabled

5.5 Results:

Using the Ubuntu laptop and the HackRF One with the external oscillator. We tested with the
HackRF One transmitting to the receiver with the GNSS-antenna via the ANT500-antenna.
Then we saw the satellites pop up in ucenter, but were not accepted due to the mismatch in
time/date and location of the cached data within the receiver. After two minutes the our signal

124

5. TEST REPORT: T4.1

was accepted as genuine and we saw the receiver change its time and date in ucenter. It then
displayed the time and date parameters we designated in the spoofing .bin-file.

Figure H.3: Picture showing ucenter where the receiver believes it is in the middle of the ocean.

5.6 Conclusions:

When the receiver was hot started (meaning it retains the cached data about its location and
time from the previous GNSS-lock) the time it took for our signal to be perceived as authentic
was longer than when we did a cold start of the receiver. This backs up the claim that a spoofer
with accurate time and location of the receiver will be locked onto faster, and can then diverge
from the real signal slowly, to invalidate the real signal.

125

6. TEST REPORT: T6.1 - GUI/API INTEGRATION TEST

6 Test Report: T6.1 - GUI/API Integration test

Conducted by: HK, AM, ABS, SN

Report written by: AM

Date: 15.04.2024

6.1 Hypothesis:

Delirium complies with the milestone 3 description (see appendix: C).

6.2 Equipment used:

• One of USN’s Oscilloscope’s (KEYSIGHT CXA Signal Analyzer)

• Our test-computer (Lenovo laptop running Ubuntu)

• Two HackRF One’s and their respective USB cables

• An SMA male-to-male cable

6.3 Method:

We connected one HackRF One to the laptop using USB (for power and data transfer), then
connected the SMA cable to the HackRF and the oscilloscope. The GUI was then opened and
each SDR started then stopped in turn. All radios were tested, including the spoofing-sdr. We
have bound each radio to one of the HackRF’s serial numbers, the jamming radios are run on
one, the spoofer is run on the other. This is why we needed both devices.

6.4 Results:

Each SDR started when told to, and quit running when told to, we observed this clearly on the
oscilloscope. We observed that the oscilloscope produced the expected results for each SDR in
terms of bandwidth, centre frequency and gain.

6.5 Conclusions:

The test proves that we have accomplished our goals for milestone 3, meaning a successful
integration of advanced jamming features and that the GUI-API relationship is working.

126

7. TEST REPORT: MULTIPLE RADIOS IN PARALLEL

7 Test Report: Multiple Radios in Parallel

Report conducted by: AM

Report written by: AM

Date: 24.04.2024

7.1 Hypothesis:

It is possible to run both our spoofing radio and any of our jamming radios in parallel with
Delirium

8 Equipment used:

• One of USN’s Oscilloscope’s (KEYSIGHT CXA Signal Analyzer)

• Our test-computer (Lenovo laptop running Ubuntu)

• Two HackRF One’s and their respective USB cables

• USB hub and two USB cables

• SMA T-connector and cables connecting both HackRF One’s to the oscilloscope

• Python test-scripts

8.1 Method:

Both HackRF’s were connected to the oscilloscope via SMA and to the laptop via the USB
hub. The test-scripts were then run in sequence. The test-scripts tested the running of our
sweep-jamming radio and spoofing radio in parallel, spoofing radio on its own, sweep-jamming
on its own, and finally barrage-jamming and spoofing in parallel.

8.2 Results:

Sweep-jamming by itself: When start was called, the radio started jamming at the right
centre frequency. The sweeping did not happen, and no errors occurred, so it seemed as if
the sweeping-method was not run at all. The assumption was made that the GIL (Global
Interpreter Lock) present in the Python language was keeping the method from executing. A
hot-fix was attempted using the "threading.Thread" and "threading.timer" modules without
success.
Spoofing by itself: Works exactly as intended. Output from the generation of the .bin-file
is shown in the terminal and we could verify on the oscilloscope that the underlying radio is

127

8. EQUIPMENT USED:

transmitting at the right centre frequency when started. It also stops when told to, as could
be observed on the oscilloscope
Spoofing and barrage jamming at the same time: Works exactly as intended. Both
radios were started then stopped individually before they were run at the same time. When
run at the same time it is clear that the barrage-jamming is interfering with the spoofing,
meaning that both radios must be active.

Figure H.4: CXA Keysight signal analyzer showing signal peak of both sweep jamming and
spoofing signals.

8.3 Conclusions:

This test was crucial for understanding Delirium’s needs regarding scheduling. GNU Radio is
implemented in C++ with a Python-wrapper on top for interfacing with the underlying radios.
The radios are created in C++ and threaded individually, so running two radios at the same
time should not be - and has been proven here to not be - an issue. The issues faced here are
probably the results of Pythons GIL which does not allow for actual C-like threading to occur.
The sweep-functionality is implemented in Python, and thus will not be run.

128

Appendix I

SDR Components

This appendix shows the main functionalities of the SDRs we considered, except for price, as
they vary based on currency exchange rates, and availability and shipping time. The figure was
gathered from: from https://www.crowdsupply.com/microphase-technology/antsdr-e200.

129

Figure I.1: Comparison of different hardware solutions

130

Appendix J

Delirium Budget

This appendix shows the budget of Delirium, and the costs associated with acquiring the tools
needed to build Delirium. Costs were calculated without VAT. The budget was made using
Microsoft Excel. Made by HK.

131

Figure J.1: Delirium budget

132

Appendix K

Martin Fowler’s CI Model

The following is a collage made by AM containing figures used by Martin Fowler on his web-page
to describe a simple Continuous Integration (CI) model [RefH12].

133

134

Appendix L

Delirium Diagram; Hardware &
Software

The following diagram is the result of our tentative system decomposition. It was used as a
reference for keeping track of all system components, and can be used by the reader for the
same purpose. The diagram shows the system schematically in its final state. Created by AM.

135

Target device – Navio 2 flight controller

Delirium – within the pelicase

Radio antenna

Laptop – Ubuntu OS

Gps-sdr-sim

libhackrf

User

HackRF One 1 (spoofer)

TCXO Oscillator

Raspberry Pi 3

Laptop
SSH-connection

GNSS antenna
Navio 2 flight controller

NEO M8 GNSS chip

WiFi

Delirium

• Mains power

• User input

• Ephemeris files

• Modulated/

unmodulated

electromagnetic

waves

• Status messages

Input Output

USB-A ports

HackRF One 2 (jammer) Radio antenna

Electromagnetic waves

Delirium GUI

GPS baseband binary file

Delirium API

GNU Radio SDR’s

Powerbank USB-C port

Protocol aware jammer Barrage jammer

Spot jammer GPS Spoofer

Mains power (230V) Power

USB stick

Contains the most recent GPS

ephemeris data downloaded

from NASA’s CDDIS website

Ephemeris file

Legend

Hardware component

Software component

External actor

Output from Delirium

Input to Delirium

Arrows with other colors

show general data

transfer flow

Legend

Hardware component

Software component

External actor

Output from Delirium

Input to Delirium

Arrows with other colors

show general data

transfer flow

Appendix M

Software Architecture

This diagram shows Deliriums software architecture on a high level of abstraction. Its purpose
is to serve as a reference for the the logical coherency between the software components in the
system. The diagram was developed by AM.

137

Python API

HackRF One 1
Jamming-specific

HackRF One 2
Spoofing-specific

Individual jamming
SDR’s

Internally within
the flowgraph

User input
(text/button-presses)

Terminal messages and
status field updates

GNU Radio
Osmocom sink (gr-

osmosdr)

Status info

Class method calls
and

function calls

GPS-SDR-SIM

Create baseband
data

GPS-SDR-SIM

Create baseband
data

Spoofing SDR

Python GUI

lIbhackrf
(the HackRF’s host

software)

Binary file containing
GPS baseband data

Produces Is used by

Python method calls

Start application, return progress info

Connects and transfersConnects and transfers

Outputs binary data

Internally within
the flowgraph

Legend

Hardware component

Software component

Output from Delirium

Input to Delirium

General data flow

Legend

Hardware component

Software component

Output from Delirium

Input to Delirium

General data flow

Delirium status-
module (C++ Python
extension module)

Function call in Python

Function calls in C++

Appendix N

Delirium UML Diagrams

The following diagrams show different aspects of the software architecture of Delirium from
different perspectives. Their intention is to provide context for the implementation, both as a
guideline for the developers and for documentation purposes.

9 Activity Diagram - GUI

The following UML activity diagram shows the behavior of the Delirium GUI after the user
has chosen spoofing. It was made during the planning phase before the implementation took
place. Made by AM.

139

User chooses
options by ticking

boxes/writing

Generate or choose
existing baseband data

file

START:
Spoofing chosen

User browses local
files and chooses

User presses
“Generate”

Notify user
that errors
occurred

Generate Choose

User presses “Start
spoofing”

Start-spoofing-
button

activated

Stop-spoofing-
button

activated

After file
chosen

User presses “Stop
spoofing”

Show user the
options

Stop-spoofing-
button

deactivated

Start-spoofing-
button

deactivated

Start-spoofing-
button

activated

INTERNAL:
Any errors
occurred?

No Yes
INTERNAL:
Any errors
occurred?

No Yes

Legend

Decision

User activity

System internal
activity

Legend

Decision

User activity

System internal
activity

10. CLASS DIAGRAM - API

10 Class Diagram - API

The following is a UML class diagram which shows the functions/types provided by the Delirium
API and how it associates with other software components within the system.

141

class SpoofingControlclass SpoofingControl

class JammingControlclass JammingControl

class spot_jamming(gr.top_block)class spot_jamming(gr.top_block)

class spoofing_script(gr.top_block)class spoofing_script(gr.top_block)

class protocol_aware(gr.top_block)class protocol_aware(gr.top_block)

class
barrage_jamming(gr.top_block)
class
barrage_jamming(gr.top_block)

class top_block(hier_block2)class top_block(hier_block2)

Function GenerateBin (opts: list)

Handles options and runs gps-sdr-sim as a subprocess. Is designed to be
run as an individual process to prevent GIL-blocking.

Function GenerateBin (opts: list)

Handles options and runs gps-sdr-sim as a subprocess. Is designed to be
run as an individual process to prevent GIL-blocking.

Application GPS-SDR-SIM

Compiled and executable program

Application GPS-SDR-SIM

Compiled and executable program AssociationAssociation

Function SweepJam (radio: JammerControl,
freqVals=[1602000000, 1561098000], hopFreq=0.5)

Sweeps the given jammer’s center frequency at a certain frequency. Is
designed to be run as an individual process to prevent GIL-blocking.

Function SweepJam (radio: JammerControl,
freqVals=[1602000000, 1561098000], hopFreq=0.5)

Sweeps the given jammer’s center frequency at a certain frequency. Is
designed to be run as an individual process to prevent GIL-blocking.

class SweepingControlclass SweepingControl

Association – A
relationship; A uses/

Influences B in some way

Inheritance – The arrow
head points to the

parent

LegendLegend

Association – A
relationship; A uses/

Influences B in some way

Inheritance – The arrow
head points to the

parent

Legend

- __init__(radiotype: str)

+ startSdr()

- __init__()

+ stopSdr()

+ startSdr(filename: str)

+ stopSdr()

+ setGain (gain: int)

- __init__()

+ get-methods and set-methods

- __init__(dummyBinPath: str)

+ get-methods and set-methods

- __init__()

+ get-methods and set-methods

- __init__()

+ get-methods and set-methods

- __init__(name: str, catch_exeptions:
bool)

+ __repr__()

+ start()

+ __str__()

+ stop()

+ run()

+ wait()

Control-classes
found in the
Delirium API

“Top-level
hierarchical block

representing a
flow-graph.” The

class from which all
generated Python

flowgraphs in GNU
Radio inherits from

Control functions
found in the
Delirium API

+ set_cent_freq (freq: float)

+ set_bandwidth (bandwidth: int)

+ setGain(gain: int)

The stand-alone
GPS-SDR-SIM
application

- __init__(freqVals: list, hopFreq: float)

+ startSweeping()

+ stopSweeping()

Flowgraph-classes
generated by GNU
Radio Companion

11. USE CASE DIAGRAMS

11 Use Case Diagrams

The following are UML use case diagrams which were developed to supplement our user stories
and to gain insight before implementation began.

Figure N.1: Legend explaining the Delirium use case notation

Figure N.2: Use case diagram for Delirium as a whole. Created by AM

143

11. USE CASE DIAGRAMS

Figure N.3: Use case diagram for the Delirium API. Created by AM

Figure N.4: Use case diagram for the Delirium GUI when jamming is chosen. Created by AM

144

11.
U

SE
C

A
SE

D
IA

G
R

A
M

S

Figure N.5: Use case diagram for the Delirium GUI when spoofing is chosen. Created by AM

145

12. SEQUENCE DIAGRAMS

12 Sequence Diagrams

The following are UML sequence diagrams which show the behavior of Delirium in certain
scenarios. The legend for these diagrams can be seen in figure N.6.

Figure N.6: Legend for the Delirium sequence diagrams, created by AM.

146

12. SEQUENCE DIAGRAMS

12.1 Sequence Diagram - Barrage Jamming

The following diagram shows the sequence of events from when a user starts Delirium, then
starts a barrage jammer, and then finally stops it. The sequence of events presented in it are
the same for all jammers except for the sweep jammer, which is presented later. Created by
AM.

147

HackRF One:
Jammer

HackRF One:
Jammer

Delirium API
JammerControl object

Delirium API
JammerControl object

UserUser
barrage_jamming

object
barrage_jamming

object

Start Delirium

Display GUI

Start barrage
jamming

Instantiate

startSdr()

Instantiate

start()

Print status to stdout

Show stdout
message

libhackrflibhackrf

Call libhackrf to
start transfer

Stop barrage
jamming

Send data from
barrage_jamming

object through
libhackrf

Initialize and
get status

Status: OK

Send data
via USB

Status: OK

stopSdr()

stop()

wait() close connection

Stop
transmitting

Print confirmation
message to stdout

Show stdout
message

delete object

Delirium
GUI

Delirium
GUI

The barrage_jamming object is a
GNU Radio SDR.

12. SEQUENCE DIAGRAMS

12.2 Sequence Diagram - Spoofing

The following diagram shows the sequence of events that must take place for the user to create
a new GPS baseband data file using gps-sdr-sim (see section 15.3) and then start an SDR which
broadcasts it. Created by AM.

149

GPS-SDR-
SIM

GPS-SDR-
SIM

GenerateBin
(opts: list)

Delirium
GUI

Delirium
GUI

Delirium
API

Delirium
API

UserUser

Create
baseband data
with options

Start program
with options

Print progress to stdout

Delirium API
SpoofingControl object

Delirium API
SpoofingControl object

Instantiate

Choose
baseband data

file

startSdr(chosen_file)

Show files

Chooses file

Start spoofing

Spoofing_script
object

Spoofing_script
object

Instantiate

start()

The Spoofing_script object is a
GNU Radio SDR, just like the

barrage_jamming object.
Therefore, the sequence of events

after starting it is the same for
both, and is omitted in this

diagram for that reason.

12. SEQUENCE DIAGRAMS

12.3 Sequence Diagram - Sweep Jamming

The following diagram shows the sequence of events that must take place for the user to sweep
jam (see section 5.1.3 for more information) using Delirium. Created by AM.

151

protocol_aware_no_qt
object

protocol_aware_no_qt
object

Delirium API
SweepJamming object

Delirium API
SweepJamming object

Delirium
GUI

Delirium
GUI

Delirium
API

Delirium
API

UserUser

Start sweep
jamming with

options
Instantiate with arguments

startSweeping()

Start SweepJam
subprocess

Instantiate

start()

Stop sweep
jamming

stopSweeping()

send stop signal
to subprocess

stop()

delete object

set_cent_freq(freq_value)

Create subprocess
using SweepJam()

as its target
with arguments

Return SweepJam
function as member

set_cent_freq(freq_value)

...

Print stop
confirmation

to stdout

The protocol_aware_no_qt object
is a GNU Radio SDR, just like the

barrage_jamming object.

After it has been started, the
subprocess changes the center

frequency of the SDR constantly
(red messages), at a rate

determined by the users initial
arguments.

12. SEQUENCE DIAGRAMS

12.4 Sequence Diagram - Status Polling

The following diagram shows the sequence of events that must take place for the Delirium GUI
to poll a single HackRF’s status using the C++ extension module (see section 16.4 for more
information). Created by AM.

153

Shared library:
hackrfstat

Shared library:
hackrfstat

GetStatus(int)

libhackrflibhackrf
Delirium

GUI
Delirium

GUI
Delirium

API
Delirium

API

getStatus(int)

hackrf_init()

hackrf_open_by_serial
(serialnum, device_handle)

Poll status

libusblibusb

Return status

Return status

Poll status

Return status indication and handle on the device

hackrf_is_streaming
(device_handle)

Are you streaming?

Response

Response

Response

Interpret
response

Update
status
field

Any HackRF OneAny HackRF One

The “int” argument says which
HackRF to poll.

0 = Spoofer, 1 = Jammer

libusb is a C library that provides
generic access to USB devices.

Every red function call can result in
a return-statement in the

getStatus function, thereby closing
the communication. In this case,

that doesn’t happen.

Appendix O

NKOM Application Procedure

155

Nasjonal
kommunikasjonsmyndighet
Besøksadresse:
Nygård 1, Lillesand

Postadresse:
Postboks 93
4791 LILLESAND

Tel: 22 82 46 00
Fax: 22 82 46 40
firmapost@nkom.no

NO 974 446 871
www.nkom.no

Til.: GNSS samordningsforum
Kopi:

Fra: Nkom

Arkiv ref:

Notat
Dato: 16.06.21

Søknadsrutiner GNSS støysendinger

1. Introduksjon

All bruk av frekvenser i Norge krever tillatelse fra Nasjonal kommunikasjonsmyndighet (Nkom).

Støysendinger1 i frekvensbånd avsatt til satellittnavigasjonssystemer har potensielt store

konsekvenser for berørte brukere som er avhengig av korrekt tids- og navigasjonsinformasjon.

Det krever at informasjonen i søknader om tillatelse til GNSS-støysendinger gir et godt bilde av

planlagt frekvensbruk, utstyr som skal brukes, geografisk lokasjon samt teoretisk beregning av

påvirkning for andre brukere av GNSS-signalene. Denne informasjonen blir brukt til å vurdere

de potensielle samfunnsmessige påvirkningene som støysendingene vil gi, samt til å gi

informasjon om hvem Nkom skal varsle om støysendingene. Dette notatet beskriver

søknadsrutinene.

1 Frekvensbruk som har til hensikt å hindre, påvirke og manipulere elektronisk kommunikasjon.

2

2. GNSS-frekvenser

Rutinene gjelder for alle GNSS-frekvenser, det vil si frekvenser brukt i

satellittnavigasjonssystemer under RADIONAVIGATION-SATELLITE allokering i RR (1164-

1300 MHz / 1559-1610 MHz).

3. Søknadsfrister

For å få tilstrekkelig tid til saksbehandling og høring hos berørte myndigheter/aktører må

søknaden være mottatt av Nkom senest 8 uker før planlagt støysending. Dette gir nok tid til

utarbeidelse av vilkår i samarbeid med berørte aktører, varsling gjennom etablerte kanaler og

tilstrekkelig tid for tillatelsesinnehaver til å gjennomføre eventuelle pålagte varslingsrutiner minst

1 uke før aktiviteten (for eksempel i form av «Notice to airmen» (NOTAM) og 2 uker før for

«Etterretninger for sjøfarende»).

4. Krav til søknad

Søknaden må minst inneholde informasjon om:

- Testens formål.

- Geografisk plassering av støysendingsutstyr.

- Tidsperiode for testing, samt aktuelle tidsrom innenfor perioden hvor testing vil foregå

- Teknisk informasjon om utstyr og støysignal, herunder minst:

o Antennekarakteristikk

o Utgangseffekt/EIRP

o Båndbredde

o Signalkarakteristikk

- Konservativ vurdering av støysignalets geografiske utbredelse i form av påvirkning på

kommersiell GNSS-mottaker (J/S-betraktninger) ved maks utsendt effekt fra bakkenivå

og opp til 30.000 fot. Det skal vises utbredelse for 5 fot (AGL), 100 fot (AGL), 1.000 fot

(MSL), 5.000 fot (MSL), 10.000 fot (MSL) og 30.000 fot (MSL).

o Utbredelsen av signalet skal presenteres i form av kart for de ulike høydene

nevnt i punktet over.

- Kontaktinformasjon til testleder for å kunne ivareta muligheten til å avbryte støysending

umiddelbart om det oppstår livstruende situasjoner.

5. Fareområde

Søker må selv vurdere om aktiviteten er til fare for lufttrafikk i utbredelsesområdet for

støysignalene, og om nødvendig søke om opprettelse av fareområde i luftrommet etter forskrift

om luftromsorganisering. Søknad om opprettelse av fareområde sendes til Luftfartstilsynet.

6. Høringsrutiner

Når søknaden er mottatt vil Nkom vurdere behovet for høring av søknaden og vilkår med andre

myndigheter, spesielt Luftfartstilsynet og Kystverket. Ved potensiell påvirkning av luftfart vil

også Avinor Flysikring bli kontaktet. Det vil bli gitt 2 ukers frist for tilbakemeldinger til Nkom med

3

en vurdering av om påvirkning i aktuell sektor er akseptabel og eventuelle tilleggsvilkår som bør

være i tillatelse.

7. Tillatelse

Tillatelse blir utstedt senest 3 uker før start av omsøkt støysending.

Tillatelsen vil som standard ha vilkår om:

- Varsling av lokale nødetater i god tid før øvelsen starter.

- Varsling ved oppstart av øvelse til Nkom for videre varsling inn i samordningsforum for

GNSS.

- Varsling av lokale flyklubber som kan bli berørt samt Norges Luftsportsforbund 1 uke før

oppstart av øvelse.

- Varsling av Norsk Luftambulanse på grunn av mulig påvirkning av innflygingsrutiner

basert på GPS til baser og sykehus uten tradisjonell flynavigasjon.

Tillatelsen vil gjelder for eller flere spesifikke geografiske lokasjoner for test samt mulige

restriksjoner på tidspunkt for testing innenfor omsøkt periode.

Tillatelse kan inneholde spesifikke vilkår som følge av krav fra høringsinstanser.

Nkom kan avslå søknad etter en helhetsvurdering, eller dersom søknaden ikke inneholder

nødvendig informasjon etter punkt 3.

8. Annet

De som får tillatelse til støysending, skal unngå at støysendinger kan berøre tjenester i

naboland. Støysendinger som har potensiale til å påvirke andre lands luftrom, land- eller

havområder vil som utgangspunkt bli avslått fordi det normalt vil kunne kreve en

nabolandskoordinering, med mindre den samfunnsmessige nytten anses som stor nok.

Utsendt effekt og tidsperiode for testing skal holdes til et absolutt minimum.

Det skal så langt det er mulig søkes om støysendinger i geografiske områder hvor potensialet

for påvirkning på luftfart og sjøfart er minst mulig. Det er nødvendig med tilstrekkelig avstand til

flyplasser, havner, skipsleder og større byer

Søker må også argumentere for at tester som gjennomføres i friluft ikke kan gjøres i skjermet

rom (ekkofritt rom), eller gjøres som kablede tester.

Appendix P

NKOM Application

159

Fag: Bachelorprosjekt

Søknad: GNSS støysendinger

Helge Kopland, Andreas B. Sørensen

16/5-2024

Sammendrag

Vi ønsker i forbindelse med v̊art bachelorprosjekt å sende støysignaler og egenprodu-
serte GPS-signaler for å verifisere v̊art portable anti-drone system.

Side 1 av 9

Søknad GPS støysending

Innhold
1 Testens form̊al 3

2 Geografisk plassering av støysendingsutstyr 3

3 Tidsperiode for testing 3

4 Teknisk informasjon om utstyr 4
4.1 Antennekarakteristikk . 4

5 Utgangseffekt/EIRP 5
5.1 Målte resultater: effekt og b̊andbredde . 5

6 Konservativ vurdering av støysignalets geografiske utbredelse 5
6.1 Beregninger . 6

6.1.1 EIRP . 6
6.1.2 J/S betrakninger . 6

6.2 Geografisk fremstilling: . 7

7 Kontaktinformasjon 8

8 Fareomr̊ade 9

9 Annet 9

Side 2 av 9

Søknad GPS støysending

1 Testens form̊al
I forbindelse med v̊art bachelor-prosjekt har vi f̊att i oppgave av v̊ar oppdragsgiver, Kongsberg
Defence & Aerospace, å teste flight-controlleren Navio 2 og dens evne til å motst̊a angrep via
jamming og spoofing. Systemet er rettet mot GPS-signaler, og test i friluft vil gi oss ekte signaler
å teste mot. Testen vil g̊a ut p̊a å jamme de ekte GPS-signalene dronen (Navio 2) mottar, for
s̊a å sende egne GPS-signaler til den (spoofing).

2 Geografisk plassering av støysendingsutstyr

Figur 1: Plassering av støysendingsutstyr.

3 Tidsperiode for testing
Vi ønsker å gjennomføre testing den 31. mai, fra 1000-1600.

Side 3 av 9

Søknad GPS støysending

4 Teknisk informasjon om utstyr
Utstyret vi bruker er en HackRF One [1], sender og mottaker, med konfigurering ved hjelp av
software defined radio (SDR). Systemet inneholder to stk. HackRF One, slik at vi kan sende
støysignaler og egne GPS-signaler samtidig.

Informasjon om HackRF One fra produsent (Great Scott Gadgets) [1]:

• 1 MHz to 6 GHz operating frequency

• Half-duplex transceiver

• Up to 20 million samples per second

• 8-bit quadrature samples (8-bit I and 8-bit Q)

• Compatible with GNU Radio, SDR, and more

• Software-configurable RX and TX gain and baseband filter

• Software-controlled antenna port power (50 mA at 3.3 V)

• SMA female antenna connector

• SMA female clock input and output for synchronization

• Convenient buttons for programming

• Internal pin headers for expansion

• Hi-Speed USB 2.0

• USB-powered

• Open source hardware

(Vi vil i tillegg bruke en attenuator (demper) for å senke styrken p̊a signalene vi sender.)

4.1 Antennekarakteristikk
ANT500: omnidirectional (rundstr̊alende), dipol

Antennen vi skal bruke er en teleskopisk antenne designet for operasjon mellom 75 MHz og
1 GHz. Total lengde er justerbar fra 20 til 88 cm. Antennen er konstruert av rustfritt st̊al og
best̊ar av SMA-konnektor, roterende skaft og justerbar ”albue” [2].

Side 4 av 9

Søknad GPS støysending

Figur 2: karakteristikk for rundstr̊alende dipol antenne.

5 Utgangseffekt/EIRP
Støysignalet vi sender er i form av additive white gaussian noise (AWGN), med unntak av
”Protocol Aware jamming”, hvor vi sender en ”tilfeldig streng av bits (random stream of bits)”
som er faseforsøvet 90◦ i forhold til det originale GPS-signalet.

5.1 Målte resultater: effekt og b̊andbredde
Tabell 1 viser resultater fra måling med signalgenerator for alle v̊are støysendere. Testen foregikk
med kablet forbindelse mellom signalgenerator og HackRF One.

Type støysending: Peak (dBm)* Quasi peak (dBm) EMI average (dBm) B̊andbredde:
Spot -35.99 -35.50 -42.00 1 MHz

Sweep -35.00 -42.01 -58.91 15.3 MHz**
Barrage -44.84 -44.52 -52.23 14 MHz

Protocol Aware -36.11 -36.34 -44.95 15.3 MHz
Spoofing -29.03 -29.25 -32.84 2.6 MHz

Tabell 1: Målinger med signalgenerator (kablet).

*EIRP = Peak

**B̊andbredden er 15,3 MHz, men flyttes mellom de forskjellige senter-frekvensene for GPS,
GLONASS, Beidou og Galileo.

6 Konservativ vurdering av støysignalets geografiske ut-
bredelse

Tabell 2 viser resultatene av beregninger for maks utsendt effekt (J/S) fra v̊ar sterkeste støysender.
Beregningene tar hensyn til GPS-satellittenes høyde, effekt og siktlinje tap. Beregningene kan
ses i sin helhet i formlene 3, 4, 5 og 6.

Side 5 av 9

Søknad GPS støysending

Avstand: J/S
5 fot: 52.94 dB

100 fot: 26.57 dB
1000 fot: 6.57 dB
5000 fot: -7.41 dB
10000 fot: -13.43 dB
30000 fot: -22.98 dB

Tabell 2: Maks utsendt effekt ved forskjellige høyder.

6.1 Beregninger
6.1.1 EIRP

EIRP = PT − LC + GA, (1)
hvor EIRP (Effective Isotropic Radiated Power) er utgangssignalet til et signal n̊ar det blir
konsentrert inn p̊a et bestemt omr̊ade av antennen, der PT er utgangseffekten til senderen
(output power of transmitter), LC er tap i kabel (cable-loss) og GA er antenne forsterking
(antenna gain).

I v̊art tilfelle vil peak utsendt effekt (ref. tabell 1) være lik EIRP, da alle målinger er gjort
p̊a signalgenerator, med neglisjerbart tap i kabel og uten gain.

EIRP = PT (peak), (2)

6.1.2 J/S betrakninger

Fra Friis formler for overføring i fri sikt (free space):

J

S
=

PJ GJ GRλ2

(4πdJ)2

PT GT GRλ2

(4πdS)2

, (3)

Forenklet:
J

S
= PJGJd2

s

PT GT d2
J

, (4)

Omregning til desibel:
J

S
= PJ + GJ − PT − GT + 20 log(dS) − 20 log(dJ), (5)

hvor J/S st̊ar for jammer til signal (GPS) rate,
PJ = jammerens utgangseffekt [dBW],
GJ = jammerens forsterking [dBi],
ds = avstand fra sender til mottaker [m],
PT = senders utgangseffekt [dBW],
GT = senders forsterking [dBi]
dJ = avstand fra jammer til mottaker [m].

Effekt: Forsterking: Siktlinje tap: Høyde:
GPS-satellitt 44 dBm 13 dBi -182 dB ca. 20200 km

Tabell 3: Informasjon om GPS.

Side 6 av 9

Søknad GPS støysending

For 30000 fot med v̊ar sterkeste støysender:

J

S
= −62 + 0 − 14.08 − 13 + 20 log(20190000) − 20 log(10000) = −22.98 dB, (6)

6.2 Geografisk fremstilling:
Figur 3 og 4 viser geografisk utbredelse av v̊ar støysending. Som man kan se av figur 4 er
signalet svært begrenset av terrenget rundt, da støysenderen er plassert p̊a laveste punkt i et
grustak. Dette begrenser signalet til en mindre del av grustaket, og signalet vil ha høyest effekt
oppover. Ved denne plasseringen begrenses signalets effekt p̊a omkringliggende bygninger (og
annet) til et absolutt minimum.

Figur 3: Begrensning av signal for mottakere p̊a bakkeplan rundt støysender.

Side 7 av 9

Søknad GPS støysending

Figur 4: Beregning av signalutbredelse for mottakere p̊a bakkeplan rundt støysender. Her er
det tatt hensyn til obstruksjoner (sand, trær osv)

7 Kontaktinformasjon
Testleder:

• Navn: Helge Kopland

• Telefon/mobil: 47636548

• Mail: helge.kopland@gmail.com

Øvrige medlemmer:

• Navn: Andreas Bondal Sørensen

• Telefon/mobil: 99026026

• Mail: andreas.bondal@gmail.com

Øvrige medlemmer:

• Navn: Stian Nordholm

• Telefon/mobil: 90556447

• Mail: stiannordholm@gmail.com

Øvrige medlemmer:

Side 8 av 9

Søknad GPS støysending

• Navn: Anders Minde

• Telefon/mobil: 40031757

• Mail: anders.minde@gmail.com

8 Fareomr̊ade
Vi ser det ikke nødvendig å opprette fareomr̊ade for v̊ar testing, grunnet lokasjon og effekt-
betraktninger.

9 Annet
Vi har gjort testing i Faraday-bur og kablet inn mot receiveren, dette for å verifisere effekten
av v̊art system. Kablet testing utendørs har vi verifisert at vi kan jamme og spoofe ekte GPS-
signaler. Testing i Faraday-bur har vist oss at vi kan jamme eller spoofe tr̊adløst. Vi f̊ar derimot
ikke testet begge deler, ettersom vi ikke har ekte signaler inn til receiveren i Faradayburet. Det er
derfor behov for å teste effekten av v̊art system utendørs (hvor vi kan f̊a inn ekte GPS-signaler)
uten kabling, for å se om virkningen er som vi ønsker. Det er ogs̊a eneste reelle mulighet for å
teste rekkevidden slik systemet er satt opp n̊a.

Referanser
[1] G. S. Gadgets, “HackRF One.” https://greatscottgadgets.com/hackrf/one/.

[2] G. S. Gadgets, “ANT500.” https://greatscottgadgets.com/ant500/.

Side 9 av 9

Appendix Q

Digital Frequency Radio Memory

13 Digital Frequency Radio Memory ABS | SN

We mentioned in section 5.1 that there are two main jamming techniques: noise-jamming and
repeater-jamming. This appendix focuses on repeater-jamming. The most used method of
repeater-jamming is Digital Frequency Radio Memory or DFRM. DFRM is a jamming method
where a jammer will send fake signals to a radar. This is done by the jammer receiving a signal
from a radar, modulating the signal by frequency, phase, or amplitude, and then sending the
signal back to the radar. Since the "only" reason for the radar to get a hit will be reflections
from a material (significantly different than air) [13], the radar will perceive the fake signal as
a real "target". The jammer can then send multiple fake targets to the radar, and flood the
radar with fake targets, the radar will then make false assumptions about material, velocity,
and range.
In figure Q.1 below, one can see the operation of the DFRM. The signal is converted from an
analog to a digital signal to make use of the RAM and slice repeater. The slice repeater is
capable of making a jamming signal from only a part of the received signal [13]. The new signal
is then reconstructed into an analog signal ready to be transmitted back to the radar.

Figure Q.1: Digital Frequency Radio Memory operation [13].

169

	Acknowledgements
	Abstract
	Introduction & Scope
	Introduction
	Group Members
	Initials

	Problem Statement
	Previous Work

	Background Theory
	Global Navigation Satellite Systems
	Generally About GNSS Signals
	Determining the Position
	The GPS Example

	Jamming
	Jamming Methods

	Modulation Techniques
	Spoofing
	The Python Language
	The C & C++ languages
	Combining Python with C
	Continuous integration & version control
	Legal restrictions
	NKOM Application

	Method
	Project Management
	General Work Pattern
	Project Model
	Project Management Tools
	Lessons Learned

	The Red Thread
	Milestones & MVP
	User Stories
	System Requirements
	Risk Assessment
	Design Choices

	Equipment
	GNU Radio
	HackRF One
	GPS-SDR-SIM
	Briefcase
	Raspberry Pi 5
	Touchscreen
	Power Management
	Attenuator
	Navio 2
	NEO M8N
	Emlid OS
	u-center

	Software Development
	Modular Approach
	Programming Languages Used
	Implementation of CI & VCS
	Development of the Delirium API
	Creating the Flowgraphs in GNU Radio
	Development of Delirium GUI

	Epilogue
	Results
	Conclusions
	Recommendations
	Spoofing a drifting GPS-signal
	Future Work for the Delirium GUI

	References
	References of high regard

	Appendices
	Project Timeline
	The Red Thread
	Milestones
	User Stories
	System Requirements
	Risk Assessment
	Testing Excel
	Test reports
	Test Report: T1.1.1
	Pre-condition:
	Method:
	Hypothesis:
	Equipment used:
	Results:
	Conclusions:

	Test Report: T2.1.1
	Pre-condition:
	Method:
	Hypothesis:
	Equipment used:
	Results:
	Conclusions:

	Test Report: T3.1
	Pre-condition:
	Method:
	Hypothesis:
	Equipment used:
	Results:
	Conclusions:

	Test Report: T3.2.1
	Pre-condition:
	Method:
	Hypothesis:
	Equipment used:
	Results:
	Conclusions:

	Test Report: T4.1
	Pre-condition:
	Method:
	Hypothesis:
	Equipment used:
	Results:
	Conclusions:

	Test Report: T6.1 - GUI/API Integration test
	Hypothesis:
	Equipment used:
	Method:
	Results:
	Conclusions:

	Test Report: Multiple Radios in Parallel
	Hypothesis:

	Equipment used:
	Method:
	Results:
	Conclusions:

	SDR Components
	Delirium Budget
	Martin Fowler's CI Model
	Delirium Diagram; Hardware & Software
	Software Architecture
	Delirium UML Diagrams
	Activity Diagram - GUI
	Class Diagram - API
	Use Case Diagrams
	Sequence Diagrams
	Sequence Diagram - Barrage Jamming
	Sequence Diagram - Spoofing
	Sequence Diagram - Sweep Jamming
	Sequence Diagram - Status Polling

	NKOM Application Procedure
	NKOM Application
	Digital Frequency Radio Memory
	Digital Frequency Radio Memory

