
Bachelor’s Thesis

Faculty of Technology, Natural Sciences and Maritime
Sciences

Campus Kongsberg

KAFFEKNEKT

Course: TS3000 Bacheloroppgave
Date: May 20, 2025
Title: Kaffeknekt

Project group: 3
Group members:

Sokaina Cherkane
Martin Taraldstad
Didrik Aas Bergan
Mikolaj Marek Szczeblewski
Ivan Bergmann Maronsson
Abdulkadir Kabuk

Internal supervisor: Joakim Bjørk, Zoran Dokic
External supervisor: Sofie Aarnes

Project partner: Semcon Part of Knightec Group

2

KAFFEKNEKT

Acknowledgments

We would like to begin by expressing our deepest gratitude to our supervisor, Joakim Bjørk, whose
support in navigating the project management process has been invaluable. Your guidance helped
us in turning a complex vision into a structured and achievable goal. You made sure we stayed
on track, reflected on our directions and decisions, and moved forward with clarity and confidence
and for that, we are truly thankful.

To Zoran Dokic, our secondary supervisor, we would also like to extend our sincere thanks for their
valuable technical guidance and input, particularly in support of the electrical engineering aspects
of the project. You helped bring our ideas to life, and gave us the confidence to tackle real world
challenges head-on.

All of us are deeply grateful to Semcon Part of Knightec Group, our project partner, for not only
providing resources, but for your engagement, insight and support in areas beyond our own ex-
pertise. On several occasions, when we encountered technical or logistical challenges that put our
project at risk, your guidance helped us move forward, your willingness to engage with our project
contributed in a meaningful difference, and we sincerely appreciate the trust you’ve put into us
and the collaboration extended to us.

To the faculty and staff at the University of South-Eastern Norway, we are grateful for providing
us with the academic environment and resources necessary for the completion of this work.

We are grateful to all of our fellow group members for the shared learning and interdisciplinary
cooperation that made this project rewarding and educational.

This bachelor’s thesis represents not just a technical result, but the culmination of months of
dedication, discovery, problem-solving, cooperation, persistence, and growth. It will remain a
defining milestone in our academic and personal lives.

3

KAFFEKNEKT

Abstract

The lack of real-time feedback in commercial espresso machines creates challenges in achieving
consistent quality. Key variables such as temperature and pressure, which significantly influence
extraction, often remain hidden from the user. Without access to this data, it becomes difficult to
explain variations in results or adjust the brewing process with precision.
To address this issue, this project introduces a smart monitoring system capable of capturing and
visualizing brewing conditions during espresso extraction. The system enhances process trans-
parency and empowers users with insights that traditional machines do not provide, bridging the
gap between manual operation and data-supported brewing.

4

Contents

Acknowledgments . 3
Abstract . 4

List of Figures 10

List of Tables 13
Glossary . 14

1 Introduction 17
1.1 Project Overview . 17
1.2 Bachelor group . 18

1.2.1 Group Members . 18
1.2.2 Initials . 18

1.3 About Semcon Part of Knightec Group . 18
1.4 Project Objective . 19

1.4.1 Coffee and technology . 19

2 Background 20
2.1 The Role of Coffee in Modern Culture . 20

2.1.1 The History of Coffee . 20
2.1.1.1 The espresso method . 21
2.1.1.2 Brewing time . 21
2.1.1.3 Water pressure . 21
2.1.1.4 Percolation . 21
2.1.1.5 Flow rate . 22
2.1.1.6 Water temperature . 22

2.2 Espresso Machines:
From Craft to Engineering . 22
2.2.1 General Overview . 23
2.2.2 Design . 23

2.2.2.1 Single Boiler . 23
2.2.2.2 Heat Exchanger . 24
2.2.2.3 Double Boiler . 24
2.2.2.4 E61 Design . 24

2.2.3 Operation . 25
2.2.3.1 Thermosiphon system . 25

3 Project Management 27
3.1 Planning Phase . 27

3.1.1 Choosing a Methodology . 27
3.1.2 Agile And Why . 28
3.1.3 Scrum . 28
3.1.4 Scrum Activities . 28

3.1.4.1 Sprints . 28
3.1.4.2 Sprint Planning . 28
3.1.4.3 Daily Scrum . 29
3.1.4.4 Sprint Review . 29
3.1.4.5 Retrospective . 29
3.1.4.6 How we started implementing scrum 29
3.1.4.7 How we adapted to these problems 29

3.1.5 Meetings . 32

5

KAFFEKNEKT

3.1.5.1 External supervisor / Company 32
3.1.5.2 Internal supervisor . 32

3.2 Risk Analysis . 33
3.2.1 Agile Risk Management . 33
3.2.2 Risk Assessment Matrix . 33
3.2.3 Consequence Level Matrices For Product And Project 33
3.2.4 Probability Level Matrices For Product And Project 34
3.2.5 Risk Mitigation Strategies . 34
3.2.6 Agile Scrum Integration With Risk Assessment 34

3.3 Tools . 34
3.3.1 Overleaf . 34
3.3.2 Google Scholar . 34
3.3.3 Microsoft Teams . 34
3.3.4 Github . 35
3.3.5 Timeshift . 35
3.3.6 ChatGPT . 35
3.3.7 Discord . 35
3.3.8 KiCad . 35
3.3.9 Azure DevOps . 35
3.3.10 PlatformIO . 36
3.3.11 Qt Creator . 36

3.3.11.1 What is Qt . 36
3.3.11.2 Why use Qt Creator? . 37

3.3.12 Draw.io . 38
3.3.13 Google Sheets . 38
3.3.14 InfluxDB . 38

3.4 Website . 39
3.5 System Requirements . 39

3.5.1 User Stories . 39
3.5.2 Requirements . 39

3.5.2.1 Validation of Our Requirements 40

4 System Development 41
4.1 System Specification and Architecture . 41
4.2 System Architecture . 41

4.2.1 Overall Architecture . 41
4.2.1.1 Defining System Modules . 41
4.2.1.2 Defining System Interfaces . 42
4.2.1.3 Our Solution . 42

4.3 Hardware Overview . 43
4.3.1 Raspberry Pi 5 . 44
4.3.2 ESP-32 . 45
4.3.3 Solid state drive (SSD) . 46
4.3.4 Touch-screen . 46

4.4 Sensor Hardware . 47
4.4.1 Digital Pressure Sensor . 47
4.4.2 Resistance Temperature Detector PT100 . 48
4.4.3 AC Current Sensor . 49

4.5 Electrical Overview . 49
4.5.1 The Espresso Machine . 50

4.5.1.1 Electrical Setup . 51
4.5.1.2 Solenoid Valves . 51

4.6 Embedded Development . 52
4.6.0.1 I2C Protocol . 53

4.7 GUI . 53
4.7.1 What is a GUI? . 53
4.7.2 Relevance to the Project . 53

4.8 Framework and Tools . 54
4.8.1 Framework Selection . 54
4.8.2 Why Qt . 54
4.8.3 Standard C++ and Qt’s OOP Model . 54

6

KAFFEKNEKT

4.9 Development Environment . 55
4.9.1 Qt Creator Overview . 55
4.9.2 GUI design . 55
4.9.3 Tools and Features . 55

4.10 Architecture and Implementation . 55
4.10.1 Overview of System Architecture . 56

4.11 Database Development . 57
4.11.1 InfluxDB . 57
4.11.2 Data Retention . 58

4.11.2.1 Shards . 58
4.11.2.2 Shard Group Duration . 58
4.11.2.3 InfluxDB Data Storage Model . 58
4.11.2.4 Data Layout . 59

4.11.3 Introducing Flux . 60
4.11.3.1 Why Flux? . 60
4.11.3.2 Developing with Flux . 60

5 System Integration 61
5.1 Hardware Integration . 61
5.2 PCB Integration . 61

5.2.1 Threaded Pressure Sensor . 62
5.2.2 Threaded Temperature Sensor . 63

5.3 Software Implementation . 63
5.3.0.1 Data Retriaval from the ESP32 . 64
5.3.0.2 Data Retriaval from the InfluxDB to the GUI 65

5.3.1 Overall Integration Of the GUI . 65
5.3.1.1 Sensor Analytics . 65

5.3.2 Coffee Instructions . 68
5.3.3 Information Button ”i” . 69
5.3.4 Real-Time Data Graph . 70

5.3.4.1 Integration overview of the GUI 70
5.3.5 Data Aggregation and Visualization Hub 70

5.3.5.1 Real Time Socket Solution . 70
5.3.5.2 Time Configuration . 70

5.4 Minimum Viable Product . 71

6 Results and Discussion 72
6.1 Test Procedures . 72

6.1.1 Electrical and Mechanical Testing . 72
6.1.1.1 Pressure . 72
6.1.1.2 Solenoid Valve Coil Continuity . 73
6.1.1.3 ESP32’s Inbuilt ADC . 74

6.1.2 Software testing and Development . 75
6.1.2.1 GUI testing . 75
6.1.2.2 RPI-5 . 75
6.1.2.3 GUI . 75
6.1.2.4 Temperature Reading and Storing tests 75
6.1.2.5 The goal and plans regarding the tests 75
6.1.2.6 Test environment setup . 75
6.1.2.7 Test procedures . 76

6.2 Challenges . 76
6.2.1 Software Challenges . 76

6.2.1.1 Cross-Compiling problem . 76
6.2.1.2 Cmake to qmake . 76
6.2.1.3 Minor Challenges . 77

6.2.2 Technical Challenges . 77
6.2.2.1 Leakage . 77
6.2.2.2 Boiler overfill . 79

6.3 Further Work . 80
6.3.1 GUI Software . 80
6.3.2 PCB Design . 81

7

KAFFEKNEKT

6.3.3 Embedded improvements . 81
6.3.4 Automatic Startup . 81
6.3.5 Additional Features . 81

6.3.5.1 Drip Tray Scale . 81
6.3.5.2 InfluxDB Tasks . 81

7 Conclusion 82

References 83

A Project Management Documentation 89
A.1 Risk Analysis . 90
A.2 User Stories . 99
A.3 Requirements . 104

A.3.1 Non-invasive Requirements . 107
A.3.2 Non-functional requirements . 107

A.4 Test Table . 108
A.5 Traceability Matrix . 114
A.6 Code Documentation Of The Water Pressure Graph 118
A.7 Group Contribution . 121
A.8 Budget & Components List . 135
A.9 Temperature and Database Tests . 138
A.10 AI Usage Documentation . 149

A.10.1 Sokaina - AI Use . 149
A.10.2 Martin - AI Use . 149
A.10.3 Didrik - AI Use . 152
A.10.4 Kadir - AI Use . 153
A.10.5 Ivan - AI Use . 153
A.10.6 Mikolaj - AI Use . 153

B Technical Documentation 155
B.1 Component Procurement Strategy . 156

B.1.1 Threaded sensors . 156
B.2 Power Strategy: Isolated Supply . 157

B.2.1 Power Source . 157
B.2.2 Power Supply . 157

B.3 PCB Design . 159
B.3.1 Component . 160

B.3.1.1 Headers . 160
B.3.1.2 Sensors . 160
B.3.1.3 Dip Switches . 161
B.3.1.4 ADC . 162
B.3.1.5 RTC . 162

B.3.2 Main Schematic . 163
B.3.2.1 ADC Schematic . 164
B.3.2.2 ESP32 and RTD Amplifiers Schematic 165
B.3.2.3 RTC Schematic . 166
B.3.2.4 Analog Region . 167
B.3.2.5 Digital Region . 168
B.3.2.6 Symbols for 3D models . 169

B.3.3 Layout . 170
B.3.3.1 First layer . 170
B.3.3.2 Second layer . 171
B.3.3.3 Third layer . 172
B.3.3.4 Fourth layer . 173

B.3.4 Surface Level Testing . 173
B.3.5 Late Arrival . 173

B.4 Mechanical Integration . 175
B.4.1 Couplings and Adapters . 175
B.4.2 Sealing and Leak Prevention . 175
B.4.3 Pressure . 175

8

KAFFEKNEKT

B.5 Brew-Event Detection . 177
B.5.1 Methods . 177
B.5.2 Implementation . 177

B.5.2.1 Solenoid Valve . 178
B.5.2.2 Non-invasive detection . 179

B.6 Control Board . 181
B.6.1 Schematic . 181

B.7 3D Printing . 183
B.7.1 PCB Container . 184
B.7.2 Touch screen and RPI casing . 185

B.8 GUI Visualization . 186
B.9 System Diagrams . 196

C Code Documentation 199
C.1 ESP32 Development Log . 248
C.2 Setting Clock and Socket Implementation . 279

C.2.1 Clock Setting Code Formulation(Qt Side) 279
C.2.2 Domain Socket Code Formulation . 279

C.3 GUI Doxygen Documentation . 281
C.4 Database Source Files . 334

C.4.1 Data handling Sequence diagram . 340
C.5 First App Example GUI . 359
C.6 Database log . 367

9

List of Figures

2.1.1 DBAT . 22
2.2.1 Basic schematic of a general espresso machine [126]. 23
2.2.2 Notice that there is a switch which can set the temperature for either brewing

or steaming, taken from [14]. 24
2.2.3 Notice the heat exchanger, the tube that crosses the boiler, and allows water

to heat up to the desired temperature for espresso preparation, taken from
[14]. 24

2.2.4 The double boiler . 24
2.2.5 Illustration of Ernesto Valente’s 1960 patent on the thermosiphon system . 25

3.1.1 Epics and Features in Azure Devops . 30
3.1.2 Product Backlog Item in Azure Devops . 30
3.1.3 Description and Acceptance criteria of a PBI 30
3.1.4 Tags to differentiate PBIs . 31
3.1.5 7Pace Timetracker desktop application . 31
3.1.6 7Pace Timetracker mobile application . 32
3.3.1 Importing library. 36
3.3.2 Visual Representation of Signals and Slots Communication in Qt, taken from

[92]. 37

4.2.1 Final Overall System Interface . 43
4.3.1 Raspberry-Pi 5 single-board computer [49]. 44
4.3.2 Firebeetle 2 ESP32-E [20]. 45
4.3.3 Raspberry Pi 256GB SSD [76]. 46
4.3.4 Raspberry Pi compatible 15,6“ HDMI QLED Touchscreen Display [77] . . . 46
4.4.1 NPI-19 I2C Digital Pressure Sensor [25]. 47
4.4.2 Block diagram of the NPI pressure sensor taken from [91] 47
4.4.3 The TSP-1PAG10305MZ Resistance Thermometer, taken from [110]. 48
4.4.4 Limit deviation table for pt100 for both class A and class B. 48
4.4.5 AC Current Sensor 20A, produced by DFrobot, taken from [21]. 49
4.4.6 Illustration of the split core current transformer, taken from [111]. 49
4.5.1 Electrical diagram of the monitoring system, with all components and mod-

ules. Designed in Drawio. Note the blue dotted area which is also on a
printed circuit board layout. 50

4.5.2 Faema Due D92 Espresso Machine, the same model as our own machine [33]. 51
4.5.3 Solenoid valves typically used in espresso machines. 51
4.5.4 Components inside of a solenoid [32]. 52
4.6.1 Concurrency in ESP32. Picture taken from FreeRTOS [81]. 52
4.11.1 Query from a flux script . 59
4.11.2 Zoomed in . 59

5.2.1 New I2C pressure sensor installed with a threaded adapter and sealed with
a teflon tape. 62

5.2.2 PT100 RTD threaded temperature sensor installed inside the grouphead. . 63
5.3.1 Data Flow Diagram of Data Retrieval from ESP32 to GUI. Designed in Drawio. 64
5.3.2 Data Flow Diagram of Data Retrieval from Influx database to the GUI.

Designed in Drawio. 65
5.3.3 Visualization of steps on how to reach the sensor analytics stored values . . 66
5.3.4 Visualization of steps on how to reach the sensor analytics stored values . . 66
5.3.5 Visualization of steps on how to reach the sensor analytics stored values . . 67

10

KAFFEKNEKT

5.3.6 Visualization of steps on how to reach the sensor analytics stored values . . 67
5.3.7 Visualization of steps on how to reach the coffee instructions 68
5.3.8 Visualization of steps on how to reach the coffee instructions 69
5.3.9 Visualization of steps on how to reach the coffee instructions 69
5.3.10 Visualization of steps on how to reach the coffee instructions 69
5.3.11 Visualization of steps on how to reach the coffee instructions 70

6.1.1 Measurement of the coil continuity which outputs a resistance of 630Ω, which
means that the coil is intact. 73

6.2.1 Disassembled boiler water level indicator. 78
6.2.2 Parts numbered 19 and 21 (highlighted by a red arrow) are the parts that

had to be swapped to new ones. 78
6.2.3 Level gaskets for the boiler water level indicator. 79
6.2.4 The aftermath of the incident involved with draining the boiler. 80

A.10.1 ChatGPT answer. 149
A.10.2 ChatGPT answer. 150
A.10.3 ChatGPT query. 151
A.10.4 ChatGPT example solution. 151
A.10.5 ChatGPT Title Suggestion . 152
A.10.6 ChatGPT Install Help . 152
A.10.7 ChatGPT Give Example . 153
A.10.8 Instruction window with a restricted topic focus for the trained ChatGPT

model. 154

B.2.1 Electrical connections on the main switch with a separate cable from the
PSU connected to the corresponding phases. 1) The first phase L1. 2) The
2nd phase L2. 3) Common grounding . 157

B.2.2 LS50-5 Power Supply Unit, taken from [98]. 158
B.3.1 JST male 2.0P SMD Headers . 160
B.3.2 Options For Switching Tracks . 161
B.3.3 Main RTC Components . 162
B.3.4 Schematic for the PCB . 163
B.3.5 Close up of ADC . 164
B.3.6 Close up of the ESP32 and RTD amplifier inputs 165
B.3.7 Close up of RTC . 166
B.3.8 Close up of the Analog Region . 167
B.3.9 Close up of the Digital Region . 168
B.3.10 Close up of the symbols only used for 3D models 169
B.3.11 First Layer - Red Squares = SMD Padstacks, Yellow Lines = Silkscreens,

Red Lines = Traces . 170
B.3.12 Second Layer - Ground . 171
B.3.13 Third Layer - Power . 172
B.3.14 Back Layer - Blue Squares = SMD Padstacks, Blue Lines = Traces 173
B.4.1 Water pressure sensor installed at the heat exchanger output. 176
B.4.2 Brass fitting parts taken from Watski . 176
B.5.1 The solenoid valve (circled in red) is controlling pressure release after brewing178
B.5.2 Schematic of the solenoid valve taken from [59]. (Edited with Sharex) . . . 178
B.5.3 One of the phase wires from a solenoid terminal, clamped with an AC current

sensor (encircled in red). Partly visible cable coming out of the solenoid valve
(encircled in green). 179

B.5.4 Terminal block used for controlling solenoid valves and managing AC power
distribution. Each connection is labelled with their corresponding outputs. 180

B.6.1 HTCCA coffee machine motherboard taken from [107]. 181
B.6.2 Overview of the control board connections, with highlighted information. . 182
B.7.1 Isometric views of the container . 184
B.7.2 Side view with components in place . 184
B.7.3 Exposed electronics on screen. 185
B.7.4 3D-model of final design. 185
B.8.1 Initial real-time plot of ESP32 sensor data displayed in the GUI. 194
B.8.2 Plot of a Test Graph Generating Fake Random Values 195

11

KAFFEKNEKT

B.9.1 System Context Diagram . 196
B.9.2 Activity Diagram of Event Handling . 197
B.9.3 Sequence Diagram of Event Handling . 198

C.1.1 Installation PlatformIO . 248
C.1.2 PlatformIO VSCode Plugin . 248
C.1.3 Terminal readout temperature sensor . 249
C.1.4 Terminal readout dc current sensor . 250
C.1.5 Before calibration. 251
C.1.6 After calibration. 251
C.1.7 Terminal readout. 252
C.1.8 Terminal readout. 254
C.1.9 Terminal readout. 255
C.1.10 RTC-module on testbench. 256
C.1.11 Terminal readout - with load. 257
C.1.12 Terminal readout - Without load. 257
C.1.13 Aborted test - Leakage. 258
C.1.14 Before calibration. 259
C.1.15 After calibration. 259
C.1.16 Local listener. 260
C.1.17 Sending and receiving MQTT . 260
C.1.18 Password protected . 261
C.1.19 MQTT Success . 261
C.1.20 System restoration using Timeshift . 262
C.1.21 Terminal readout: binary sensor data . 263
C.1.22 Terminal readout: Pressure detected. 263
C.1.23 Pressure when brewing. 264
C.1.24 Pressure when pump kicks in. 264
C.1.25 Bluetooth testing. 265
C.1.26 Script simulating sensor readouts. 266
C.1.27 Terminal readout. 267
C.1.28 Crash using leading zero. 268
C.1.29 Using as int. 268
C.1.30 Float issue. 269
C.1.31 Fixed by changing int to float. 269
C.1.32 Correct readouts on Arduino Mega. 270
C.1.33 Discovered SDA is on both sides of ESP32. 271
C.1.34 Temperature showing 30c when it is 24c room temperature. 271
C.1.35 Calibrating by offsetting the readout. 272
C.1.36 ACPower task with static data. 273
C.1.37 Assert error. Unsure how to proceed. 274
C.1.38 Temperature task with static data. 275
C.1.39 Implementation of actual temperature sensor. 275
C.1.40 Pressure task with static data. 275
C.1.41 Assert fail again. Suspecting I2C conflict. 276
C.1.42 Pressure task implemented correctly. 276
C.1.43 Timer skipping a beat. 276
C.1.44 Brewing flag changes when brewing. 277
C.1.45 Correct timer behavior. 278
C.4.1 InfluxDB Sequence Diagram . 340
C.6.1 Task run was a success! . 370
C.6.2 Event sorted data . 370

12

List of Tables

1.2.1 Group members of Kaffeknekt . 18

4.11.1Simple example of an InfluxDB table . 57
4.11.2A MySQL table . 58

13

KAFFEKNEKT

Abbreviations

AC Alternating Current. 157, 177, 179

ADC Analog-To-Digital Converter. 8, 11, 48, 50, 74, 159, 161, 162, 164, 167, 172, 173, 255

CPAF Cross-Platform Application Framework. 36

CSS Cascading Style Sheets. 39

DC Direct Current. 50

ECAD Electronic Computer-Aided Design. 35

Faema Fabbrica Apparecchiature Elettromeccaniche e Affini. 24, 50, 179

GCC GNU Compiler Collection. 76

GPIO General-Purpose Input Output. 44, 73, 159

GUI Graphical User Interface. 19, 37, 53, 55, 65, 77, 268

HDMI High-Definition Multimedia Interface. 44, 46

HTML HyperText Markup Language. 39

I/O Input/Output. 44

I2C Inter-Integrated Circuit. 10, 12, 45, 47, 50, 53, 62, 72, 73, 159–161, 164–166, 168, 254, 276,
278

IC Integrated circuit. 164, 166, 170

IDE Integrated Development Environment. 36, 37

IoT Internet of Things. 19, 45, 57

JSON JavaScript Object Notation. 64

JST Japan Solderless Terminal. 11, 160, 161, 167, 168, 173

MCU Microcontroller. 19, 45, 50, 52, 71, 159

MISO Master Input Slave Output. 160, 165

MOSI Master Output Slave Input. 160, 165

MVP Minimum viable product. 39, 71, 80

PBI Product Backlog Item. 10, 30, 31

PCB Printed circuit board. 7, 9, 11, 35, 61, 72, 81, 159–167, 169–171, 173, 174, 184

PSU Power Supply Unit. 11, 157, 173, 184

RAM Random Access Memory. 44

RPI-5 Raspberry Pi 5. 37, 44, 46, 50, 54, 71, 73, 75, 76, 157

RTC Real Time Clock. 8, 11, 159, 162, 166, 170, 172

RTOS Real-time operating system. 45

SCL Serial Clock Line. 53, 73, 160, 164–166, 168

SDA Serial Data Line. 53, 73, 160, 164–166, 168, 270

14

KAFFEKNEKT

SDIO Secure Digital Input Output. 45

SDK Software Development Kit. 45

SMD Surface-Mounted Device. 11, 159–161, 170, 171, 173

SPI Serial Peripheral Interface. 45, 50, 72, 159, 160, 165

SSD Solid State Drive. 44, 46

SSH Secure Shell. 75

TCP Transmission Control Protocol. 280

UART Universal Asynchronous Receiver / Transmitter. 45

UML Unified Modeling Language. 38

USB Universal Serial Bus. 46, 174

USN University of South-Eastern Norway. 39

VM Virtual Machine. 55, 70, 76, 77

15

KAFFEKNEKT

Terminology

7Pace Timetracker Azure DevOps plugin for timetracking.. 10, 31, 32

BibTeX Bibliographic flat-file database file format and a software program for generating lists of
references [113].. 34

Bluetooth Short-range wireless technology standard for data exchanging between devices [114]..
45

C++ A powerful general-purpose programming language which utilizes both object-oriented and
procedural programming [41].. 36, 44

CERN Short for ”Conseil Européen pour la Recherche Nucléaire”, is an intergovernmental orga-
nization that operates the largest particle physics laboratory in the world [115].. 35

Convection Process involved with carrying heat from one place to another by the bulk movement
of a fluid or gas [116].. 26

Grouphead An assembly of static and dynamic components that receives the portafilter and
delivers brewing water to the coffee bed at a preset temperature and flow rate [85].. 23–25,
52, 77, 80, 175

Heat exchanger System for transferring heat from one medium to another. 24, 26, 77

InfluxDB Database about InfluxDB. 13, 38, 57–60

Kernel The core part of an operating system. Acting as a bridge between some software applica-
tion and the hardware of a computer [36].. 45

Linux An open source operating system, with a Linux kernel maintained by a worldwide commu-
nity [78].. 46

Load cell A device which converts a force such as tension, compression, pressure, or torque into
a signal [120].. 81

Percolation The brewing time/process. 20, 21

Portafilter Removable, handheld component that performs the function of retaining the filter
basket and securing it into the grouphead during the extraction process [85].. 21, 22, 52

Qt An open-source framework for creating cross-platform applications with a graphical user in-
terface [87].. 36, 37, 44, 75

Strain gauge A device which converts a force such as tension, compression, pressure, or torque
into a signal [120].. 81

Thermosiphon A device which utilizes the motive forces of natural convection, creating a cyclic
fluid flow from areas of high heat to low heat and back [5].. 25, 26

Transducer A device that converts energy from one form to another [122].. 156

16

Chapter 1

Introduction

This thesis presents the development of a smart monitoring system for a commercial espresso ma-
chine, focused at visualizing key brewing parameters. The motivation behind the project is the
growing demand for deeper insight into traditionally manual processes, and how real-time mon-
itoring technology can contribute to that insight. The goal is not to automate the process, but
to enable real-time data visualization of the system which provides users and stakeholders with a
deeper understanding of the brewing process and machine behavior.

This project was carried out by an interdisciplinary team of engineering students specialized in
computer and electrical engineering, in collaboration with Semcon, which are interested in show-
casing Industry 4.0 capabilities in new domains. This report introduces the motivation, scope and
constraints that shaped the project, in addition to outlining system design, development method-
ologies and lessons learned throughout the process.

1.1 Project Overview SC | MMS

Coffee, as one of the most valuable agricultural commodities in the world, is a widely consumed
beverage which fuels a vibrant industry, and that industry contributes immensely to the economies
of mostly tropical and developing countries. At a global scale, it is estimated that more than a 100
million farmers benefit from the coffee supply chain in some way, additionally, roughly 2,2 billion
cups of coffee are consumed at a daily basis worldwide [34].

Our project is a coffee monitoring system that will be able to capture data in real time from sen-
sors, and thereafter store the data in a computer, after the data is analyzed it will be displayed on
a multi-touch dashboard. Finally, the data will be displayed in form of graphs and statistics.

This paper will be discussing the project’s process, in order to achieve its final result. The project
goes by the name ”Kaffeknekt”. This highlights the main objective of the project. By developing
a system that operates as a monitoring system for an espresso machine, enabling real-time track-
ing of daily usage and performance. The aim is to showcase Semcon Part of Knightec Group’s
technologies in a subtle yet effective manner that communicates their value to clients.

Initially, this report presents the project’s background and the issue identified for resolution by the
group. It then provides an overview of related work, highlighting how this project builds upon,
what project framework was followed and contributes to existing research. Following this, the
document presents the group’s project methodology, and will eventually conclude with a detailed
description of technical development part both software and electrical-wise employed throughout
the project.

At the end of this report, introduce the risks that both the project an system could’ve experienced,
and also the challenges that were met throughout the entire journey.

17

KAFFEKNEKT

1.2 Bachelor group

1.2.1 Group Members MMS | SC

The Kaffeknekt project consists of an interdisciplinary team of both electrical and software engi-
neering students, a group overview illustration can be found in Fig. 1.2.1

Name Discipline Initials

Sokaina Cherkane Software Engineering Student SC

Martin Taraldstad Software Engineering Student MT

Didrik Aas Bergan Software Engineering Student DAB

Abdulkadir Kabuk Software Engineering Student AK

Mikolaj Marek Szczeblewski Electrical Engineering Student MMS

Ivan Bergmann Maronsson Electrical Engineering Student IBM

Table 1.2.1: Group members of Kaffeknekt

1.2.2 Initials MMS | SC

Throughout this document, the initials of both the author and a proofreader will be presented on
the headings of every section. The document will be written by in total six members of the team,
and it is vital that clarification and verification of every individually contributed text is satisfied,
given that the project is graded individually. The format is of the following scheme: The author’s
initials are in a bold format, following along with a vertical line | which separates the author from
the proofreader’s initials.

1.3 About Semcon Part of Knightec Group SC | MMS

Semcon Part of Knightec Group (now officially, Knightec Group) is an internationally renowned
technology company. Founded in 1980 in Väster̊as, Sweden, the company combines engineering
expertise, digital services, and sustainability know-how to create solutions that prioritize value

18

KAFFEKNEKT

for people and the planet. Semcon operates in various industries, including life sciences, energy,
industry, mobility, and the public sector [88]. Their focus is on product development based on
human behavior which has been integral for multitude of projects. While it would be impractical
to demonstrate every method they have employed in a single case study. Nevertheless, their em-
phasis on human behavior makes it ideal to illustrate these approaches with a product that a user
interacts with daily in one form or another.

In 2024, Semcon merged with Knightec Group, forming the Semcon Part of Knightec Group,
which positions itself as Northern Europe’s leading strategic partner in product and digital service
development. This merger expanded their expertise and delivery capabilities, enabling them to
better support customers across various industries [90]. Through these initiatives and collabora-
tions, Semcon demonstrates its commitment to developing technology that matters, focusing on
sustainable innovation and human-centric solutions [88].

Over the years, Semcon Part of Knightec Group has undertaken numerous projects that exemplify
its multidisciplinary approach. For instance, the company has worked on developing simulations
for more realistic dimensioning of solar panel mounting systems, contributing to more efficient
renewable energy solutions. In the life sciences sector, Semcon has been involved in projects
like OnDosis, which revolutionizes the way patients take their medication by integrating digital
solutions with pharmaceutical treatments. Additionally, Semcon/Knightec has contributed to the
development of automated docking systems for airport equipment, enhancing efficiency and safety
in airport operations [89].

1.4 Project Objective SC | MMS

The aim of this project is to create and deploy a real-time monitoring system for a coffee machine
that continuously gathers key sensor data, specifically water temperature, pressure and power
consumption, and presents these metrics on an intuitive, interactive dashboard. By capturing
and visualizing live operational parameters, the system will allow users to observe the machine’s
performance and detect irregularities early. Serving as a proof of concept for Semcon, this imple-
mentation will illustrate how Industry 4.0 technologies, such as the Internet of Things (IoT), data
analytics, and human-machine interfaces, can be harnessed to boost machine efficiency, improve
the end-user’s brewing experience, and support more sustainable practices through informed re-
source management. For more in depth information about the task description can be found in
2.1.

1.4.1 Coffee and technology SC | MMS

Developing a modern espresso machine involves integrating multiple technologies to improve both
precision and the user’s brewing experience. First, a network of sensors continuously measures
essential parameters such as water temperature, boiler pressure, and flow rate; these signals are
then digitized and sent to a central processing unit. In particular, a Microcontroller (MCU) that
interprets the incoming data, running control algorithms that gives the user insight about the
current state of the espresso machine. In order to maintain optimal extraction conditions. Which
involves typically the temperature at 90–95 °C and a pressure of 9 bar. This will ensure each shot
of espresso delivers consistent flavor and crema [66].
Beyond local control, IoT connectivity links the machine to a back-end server—either on a local
network or in the Cloud—where user profiles, brewing logs, and diagnostic information are stored.
This infrastructure allows users to preset drink strength, temperature profiles, and shot volumes
via a web or mobile application, and to retrieve real-time status updates during operation [12].

An intuitive Graphical User Interface (GUI) is critical. It visualizes live sensor readings, displays
recommended maintenance alerts and guides the user through custom drink recipes. Software
modules manage secure data exchange, and execute real-time adjustments, thereby minimizing
deviations in extraction yield and maximizing energy efficiency.
Altogether, the seamless combination of precision sensing, embedded control, IoT connectivity,
transforms a traditional espresso machine into a smart appliance. This delivers a continuous high
quality espresso while offering insights that contributes to sustainability and ease of maintenance.

19

Chapter 2

Background

The growing influence of Industry 4.0 has made real-time monitoring, data-driven analysis, and
system transparency increasingly relevant, not only in large-scale manufacturing, but also in spe-
cialized domains such as espresso brewing.

Traditional espresso machines, while admired for their mechanical precision and craftsmanship,
often operate as black boxes, systems the user must rely on without fully understanding the un-
derlying brewing conditions. Yet, the espresso brewing process relies on tightly controlled physical
parameters, where small deviations in temperature or pressure can significantly affect quality. By
gaining a deeper understanding of the machine’s thermal and mechanical behavior, the need for a
modernized monitoring solution becomes evident.

This chapter explores the background for the development of a sensor-based monitoring system
tailored to a commercial espresso machine. It presents the limitations of traditional brewing
equipment, identifies the key parameters influencing extraction quality, and highlights the benefits
of sensor integration. Finally, it situates the project within the broader context of Industry 4.0 —
extending digital innovation into a field traditionally dominated by manual expertise.

2.1 The Role of Coffee in Modern Culture SC | MMS

The system will process data in the form of statistics and graphs, representing key factors that
influence the final taste of espresso, e.g. the Percolation process which refers to the movement of
water through the coffee grounds, influenced by key factors such as water temperature, pressure,
and flow rate etc.

Additionally, the system is designed to be user-friendly, ensuring that everyone can easily under-
stand and follow the provided guidance.

In the sections that follow, we will first look at the history of coffee, then explain the espresso
extraction process, examine the ideal brewing time (generally 25–30 seconds), and finally detail
the key parameters—extraction time, average flow rate, and espresso volume—that experts identify
as critical for achieving a balanced, high-quality shot [3].

2.1.1 The History of Coffee SC | MMS

Coffee has been consumed for centuries, with its origins traced back to Ethiopia, where the bean
was originally eaten, and Yemen, where it was first roasted and brewed, before eventually spreading
into Europe [29].

Previously, coffee had a significant impact on several countries. Still, this beverage plant has a huge
influence in all industries in today’s society. Economically, culturally, socially, and nonetheless in
the tech-world.

The coffee quality depends on a significant amount of factors, although for the project its narrowed
down to the focus upon beverage preparation. The preparation process involves using either Ara-
bica or Robusta bean, which are the most prominent coffee species in the market. The beans

20

KAFFEKNEKT

undergo a roasting process and become ground, this increases extraction surface which helps the
water to absorb all the flavors.

Coffee has truly evolved throughout its long history, resulting in a variety of brewing methods
which involve turning beans into beverage. The simple extraction created by heating water and
grounds in a pot over a campfire. The art of brewing coffee is one that demands precision and
finding the ”sweet spot” that is difficult to realize without a visualization of the conditions occur-
ring at the very moment of brewing [52].

Manufacturers noticed an opportunity in this market and responded by implementing profiling of
pressure, thermal stability and flow rate along with its regulation. There is certainly a skepticism
in the coffee world surrounding digital technology implementation in espresso machines, because it
is considered a craft and art which is fueled by a barista’s passion. In spite of that, this addition to
the system would improve the overall user experience, by including the user in the brewing process,
in addition to providing insight and control [63].

2.1.1.1 The espresso method SC | MMS

The espresso brewing method is involved with forcing a small amount of hot water through a tightly
packed coffee-puck using high pressure. This process allows the water to be absorbed within the
coffee grounds, contributing to the extraction of rich flavors, aromatic compounds, and essential
oils. The result is a concentrated and well balanced espresso with its signature depth and intensity
[2]. The process behind how an espresso machine brews by using this method is explained in 2.2.

2.1.1.2 Brewing time SC | MMS

Commercial espresso machines usually brew at a time interval between 20-30 seconds [52]. Like
other brewing parameters, extraction time is influenced by multiple factors beyond just duration.
Variables such as water pressure, temperature from the tank, and coffee grind size. All these
factors play an important role in the final outcome. If the coffee grounds are too fine, the extrac-
tion process will take longer, resulting in an over-extracted espresso with an overly strong or bitter
taste. However, if the grind is too coarse, water will flow too quickly, leading to an under-extracted
espresso that is weaker and more acidic.

2.1.1.3 Water pressure SC | MMS

Water pressure plays a crucial role in determining the final taste of the coffee. For instance, if the
pressure is lower than 9 bars, it can lead to under-extraction, resulting in a weak and unbal-
anced flavor profile. The espresso may taste sour, thin, and lacking in depth. This occurs because
the water passes too quickly through the coffee grounds in the Portafilter, preventing sufficient
extraction of essential flavors and oils.[3] The optimal pressure is at around 9 bar ± 1, [p.2, [3]].
However, if the water travels through the coffee with the correct speed and pressure, this will result
in a balanced extraction of sweetness and acidity, which will serve an aromatic and complete
coffee [3].

However, if the pressure exceeds 10 bars, it can lead to over-extraction, resulting in a burnt
and overly bitter or harshly sour taste. This occurs due to the water forcing too many flavors from
the coffee grounds, extracting undesirable flavors and negatively impacting the overall balance of
the espresso [3].

2.1.1.4 Percolation SC | MMS

Percolation is a process where a liquid such as water slowly runs through a porous material. For
instance, ground coffee extracts soluble substances. In the ”coffee” context, percolation repre-
sents the process where the hot water presses throughout the coffee-puck in order to extract the
taste, aromas and oils that will eventually result in the ”brewed” coffee. The speed of water flow
significantly affects the quality of extraction. If the Percolation is too fast, the coffee will be under-
extracted as mentioned in 2.1.1.2. In contrast, if it is too slow, over-extraction occurs, resulting in
a bitter and overpowering flavor. Achieving the right balance in flow rate is critical for ensuring a

21

KAFFEKNEKT

well-rounded and flavorful espresso.

2.1.1.5 Flow rate SC | MMS

In the context of ”espresso extraction”, the flow rate could be defined as the speed at which water
passes through the compacted coffee puck in the Portafilter, typically measured in grams per sec-
ond (g/s) or milliliters per second (ml/s) [35]. The pump generates higher pressure, which results
in increased flow rate of the water, and conversely, a lower pressure corresponds to slower flow rate.
The permeability of the tamped coffee ground plays a key role in determining the actual operating
pressure and the resulting flow rate through the coffee puck, since it allows the water to easily pass
through it. This in turn, affects the brewing time that the water’s residence time within the coffee
grounds, and also the overall quality of the brewed espresso [35].

It is not easy to define the flow rate among other factors since they, themselves, are dependent on
a chain of parameters, such as the type of the espresso machine, coffee beans, and the grinder.

Figure 2.1.1: DBAT

According to the figure 2.1.1, if the flow rate is less than 0,67 mL/s, it is considered too low. This
could mean that the coffee is too finely ground or packed too tightly, making the water struggle to
pass through.

If the flow rate is between 0.67 and 1,50mL/s it is optimal , which corresponds to the preferable
range. If it is higher than 1.50, this means that the coffee is coarsely ground or not packed enough,
allowing water to rush through too quickly, resulting in a weak espresso.

2.1.1.6 Water temperature SC | MMS

Based on the study done by the Graduate School of Bioresources in MIE University in Japan, their
research focused upon comparing real brewed coffee with an already brewed model, while showing
similar spectral tendencies.

pH alongside with the temperature affects the infrared absorption spectra, in this case the pH
value of the brewed coffee is at 4.7. The spectral shifts occur due to temperature change which is
impacting the molecular interactions within the coffee. The results of the study-test suggests that
the pH, along with temperature, plays a role in how the coffee components interact and how its
characteristics, e.g flavor and aroma, has the ability to change the results in different circumstances
and conditions. [39].

2.2 Espresso Machines:
From Craft to Engineering MMS | IBM

Espresso machines have a long tradition associated with craftsmanship, the kind which relied on
the barista’s intuition, manual control, and of course, years of experience to adjust key parameters
such as temperature, pressure and extraction time. The espresso culture is evolving there is no
doubt about that, but how does this intertwine with newly appearing technologies?

This section will present an overview of the espresso machine technologies – in general and in the
context of the specific machine used in this project. Additionally, we’ll delve into the internal

22

KAFFEKNEKT

structure of them, what type of components contribute in brewing espresso, and their functionali-
ties.

2.2.1 General Overview MMS | IBM

The very definition of what an espresso machine does is the following:

An espresso machine brews coffee by forcing pressurized water near boiling point
through a ”puck” of ground coffee and a filter in order to produce a thick, concen-
trated coffee called espresso [117].

Now, there are different varieties of espresso machines, but in essence, they all brew the same
coffee, although in different ways. Despite some of these machines being highly complex which
include features that do not characterize a traditional espresso machine, the basic mechanism of
all espresso machines is narrowed down to the following schematic illustrated in Fig. 2.2.1.

Figure 2.2.1: Basic schematic of a general espresso machine [126].

2.2.2 Design MMS | IBM

There is a puzzle at the root associated with the espresso machine designer’s dilemma. Two vital
components, espresso and milk, each prepared at different temperatures, how can they be delivered
reliably and quickly? Espresso machines differ based on their Grouphead and boiler designs, and
this is where the root lies.

Over time, various design solutions have emerged to balance performance, speed, and thermal
stability, resulting in distinct categories of espresso machines based on their internal structure.
This section explores the design principles behind these systems, focusing on how boiler types,
Grouphead connections, and heating mechanisms impact usability.

2.2.2.1 Single Boiler MMS | IBM

An espresso machine of this variant has two temperature settings which correspond to either the
brew thermostat or the steam thermostat as can be seen in Fig. 2.2.2. The boiler itself is utilized for
both brewing and steaming, although not simultaneously, therefore for this design, the transition
between brewing and steam temperatures necessitates a moment of waiting [17].

23

KAFFEKNEKT

Figure 2.2.2: Notice that there is a switch which can set the temperature for either brewing or
steaming, taken from [14].

2.2.2.2 Heat Exchanger MMS | IBM

This design is a creative solution to the ”two-temperature problem” associated with frothing milk
and brewing espresso. The boiler as seen in Fig. 2.2.3 is filled up slightly above half of its volume,
the remaining empty vacuum inside serving as the layer of steam. The Heat exchanger, which is
a copper tube passing through the boiler, is responsible for heating fresh water from the reservoir
to a very close brew temperature. The accuracy behind the desired temperature is influenced by
the E61 Grouphead design, and how the temperature inside of it is affected when coupled with a
heat exchanger [40].

Figure 2.2.3: Notice the heat exchanger, the tube that crosses the boiler, and allows water to
heat up to the desired temperature for espresso preparation, taken from [14].

1

2.2.2.3 Double Boiler MMS | IBM

A more expensive solution, includes two separate boilers, each with their corresponding purposes
for steaming and brewing, additionally, they have their own separate temperature controls and can
be viewed in Fig. 2.2.4. This is an ideal candidate for continuous dispensing. Despite being the
most reliable design, the heat exchanger solution usually is preferred as the most balanced one in
terms of price and performance [14].

Figure 2.2.4: The double boiler

2.2.2.4 E61 Design MMS | IBM

In 1961, Carlo Ernesto Valente revolutionized espresso machines when he introduced the Fabbrica
Apparecchiature Elettromeccaniche e Affini (Faema) E61. The machine was fitted with an electric

1Throughout the report, you will see expressions such as either group or grouphead, note that they correspond
to the same entity, check the glossary for more information.

24

KAFFEKNEKT

pump which was operated by a simple on/off switch, this replaced the use of the lever which earlier
corresponded to more manual work and a tiresome process.

Incidentally, the machine was described as ”semi-automatic”, now it was possible for the barista
to maintain control over less in the whole brewing process, and focus instead on both the length
and the parameters of the extraction. Instead of taking the water directly from the boiler, a pump
was now providing it, pressurizing it and passing it through the heat exchanger before it reached
the Grouphead.

The machine therefore was capable of an uninterrupted dispensing, it could produce a espresso
shot after another without the necessity of reheating the boiler – every single espresso is produced
under a pressure of 9 atmospheres, which is the standard today [28].

Some 30 years later, FAEMA’s technical department, initiated along with Giugiaro Design, the
development of an advanced product, the E91. At the time, it featured state-of-the-art technology
such as programming functions for ease of use and yield, but it maintained its tradition which
stretched from the E61 [13].

2.2.3 Operation MMS | IBM

Espresso machines are designed to carry out a time-sensitive and precise brewing process, which
involves water being heated and pressurized before being pushed through finely ground coffee.
Typical brewing cycle works by drawing cold water into the machine, heating it to the desired
temperature, and finally, delivering it at a consistent pressure.
In this subsection, the general mechanical and thermal operation of espresso machines is explained
for context on sensor-based monitoring for the user’s understanding and insight.

2.2.3.1 Thermosiphon system MMS | IBM

While the former summarized explanation captured the basics about how the E61 machine brews
espresso, it overlooked a critical part of the espresso machine which is concerned with heat man-
agement – that is the Thermosiphon system which can be viewed in Fig. 2.2.5.

Figure 2.2.5: Illustration of Ernesto Valente’s 1960 patent on the thermosiphon system
[42].

The Thermosiphon system is relatively comprehensible: Cool water has a lesser density than warm
water. In a closed system, water that is heated rises and water that cools, will sink. The very
first known patent for a Thermosiphon was realized by Thomas Fowler in 1828, he pioneered the
basis for the first central heating systems where they were involved with water being heated in
a basement of a building, rising and delivering heat to radiators in the rooms above. As the
loss of heat energy from the radiators to the air occurs, this results in the cooler water in the sys-
tem becoming denser, sinking back to the basement to restart its loop through the boiler again [10].

25

KAFFEKNEKT

A Thermosiphon is defined as a device that utilizes a method of passive heat exchange based on
natural Convection, this involves circulating a fluid without the necessity of involving mechanical,
or electrical pumps to do all the work of moving the fluid through an open or closed-loop system.
In other terms, a Thermosiphon relies on the varying pressures created by density differences in
the water. The procedure is as such: cold water is pumped into the bottom of the Heat exchanger,
the valve in the group opens. However, because water flows towards the group through both pipes,
both hotter and cooler water combine. Prominently in a lot of espresso machines, specifically our
own, the groupheads are made in part with brass [42].

Brass, which is an alloy of both copper and zinc, has the properties which contribute to brewing
temperature stabilization. As an alloy its durable, but it also has a considerably favorable thermal
conductivity. It is also resistant to corrosion, unlike both aluminum and copper which are prone
to it in wet environments [16].

26

Chapter 3

Project Management

This project represented a complex and interdisciplinary undertaking — combining electrical and
software engineering with mechanical understanding, and requiring a structured yet flexible ap-
proach. The diversity of technical domains involved introduced both challenges and opportunities,
highlighting the need for a project management approach that could adapt to evolving require-
ments while maintaining structure and momentum.

To navigate this complexity, the team employed the Agile Scrum methodology. Its iterative na-
ture allowed the team to work incrementally, respond to uncertainty, and continuously refine both
technical solutions and project goals. Weekly sprints, task boards, and retrospectives provided the
foundation for transparent collaboration and regular progress evaluation.

This chapter describes how the project was managed from planning to execution. It details the
distribution of responsibilities, the evolution of user stories into system requirements, the manage-
ment of risks and dependencies, and the strategies used to align the team’s work with the project’s
broader vision. In a project where both hardware constraints and software logic had to work hand
in hand, the project management strategy became a critical part of the engineering process itself.

3.1 Planning Phase MMS | IBM

The planning phase was essential in shaping a shared direction for the project and creating a struc-
ture that could support interdisciplinary collaboration. At the outset, the project scope was only
partially defined, and several technical unknowns — such as the condition of the espresso machine
and the feasibility of sensor integration — made it clear that flexibility would be critical. To man-
age this uncertainty, the team focused on defining high-level objectives, aligning on expectations
with the task-giver, and outlining a strategy for how the project could evolve over time.

One of the first priorities during planning was to identify the disciplines involved and distribute
responsibility in a way that leveraged each team member’s area of expertise. Parallel to this,
the group held discussions around methodology selection and concluded that an Agile-inspired
approach would best support the project’s iterative nature. This decision allowed the team to
embrace change, test early ideas, and refine the system design incrementally.

The planning phase also included setting up collaborative infrastructure — such as Azure DevOps
for task management and shared documentation environments — and developing a high-level
project timeline. These planning efforts provided the team with enough structure to begin working
efficiently, while leaving room for the system and project model to evolve as needed.

3.1.1 Choosing a Methodology MT | DAB

When it came to selecting a methodology for the project we had some key requirements. We
wanted to have room for failure and have opportunity to experiment and learn from mistakes.
We wanted transparency so we could closely monitor our progress so we could have the ability to
quickly adapt to changing circumstances or new insights. We wanted focus on sustainability to
avoid burnout (this was maybe chasing a dream, but we survived).

These criterias effectively ruled out rigid models like waterfall so we turned our attention towards
agile methodologies.

27

KAFFEKNEKT

3.1.2 Agile And Why MT | DAB

”Agile is a method of project management that focus on dividing tasks into short phases
of work, with frequent reviews of the project and adaption of planning mid-execution
as needed. An agile approach is flexible and less rigid than other methods of project
management.” [96].

This mattered to us because we were learning as we went. We had to perform tests and gather
feedback as the project progressed. It was a collaborate effort in which both our understanding of
the problem domain and our knowledge of various technologies evolved. Doing all the planning up
front would have limited our flexibility, and we would not have been able to adapt if the design
requirements had happened to change.

3.1.3 Scrum MT | DAB

Agile is a broad philosophy. Scrum is a popular implementation of agile philosophy. Scrum provides
a framework for doing agile work. The main pillars of Scrum are:
• Sprints
• Sprint planning
• Daily Scrum/Daily Standups
• Sprint Reviews
• Sprint Retrospective

”Scrum is a lightweight framework that helps people, teams, and organizations generate
value through adaptive solutions for complex problems.” [86]

On our journey to learn Scrum, we initially incorporated a selection of elements of the Scrum
framework while omitting others. Introducing new roles such as Product Owner and Scrum Master
created confusion as we already had an established group structure and a designated group leader.
Maintaining and refining the backlog was a collaborative effort throughout the project.

3.1.4 Scrum Activities

3.1.4.1 Sprints MT | DAB

”Sprints are the heartbeat of Scrum, where ideas are turned into value. They are
fixed length events of one month or less to create consistency. A new Sprint starts
immediately after the conclusion of the previous Sprint. All the work necessary to
achieve the Product Goal, including Sprint Planning, Daily Scrums, Sprint Review,
and Sprint Retrospective, happen within Sprints.” [86]

In our case we chose to have sprint lengths of usually two weeks, sometimes extending to three ie.
exam week and easter holiday. In the start of the project we tried to have a one week sprint, but
since we had other courses to attend and did not work on the project mondays, we effectly had
only four days for a sprint, which was not enough time to get anything meaningful progress done.

3.1.4.2 Sprint Planning MT | DAB

”Sprint Planning initiates the Sprint by laying out the work to be performed for the
Sprint. This resulting plan is created by the collaborative work of the entire Scrum
Team.” [86]

During the sprint planning, we discussed and reviewed which tasks were most imporant and which
tasks that we thought we could complete within the given timeframe (Sprint).

We tried to keep our sprint planning sessions short, but at times they took quite a while and felt
quite unproductive. This was due to lack of clear requirements and user stories, which often caused
the planning sessions to blur into broader discussions focused on defining and refining these. Once
we established clearer goals it was easier to shape a more concise and prioritized backlog. Which
then reduced the time having to be spent planning. This improvement not only made our sprints
planning more efficient but also allowed the team to do actual development and execution of tasks
instead of discussing the time away.

28

KAFFEKNEKT

3.1.4.3 Daily Scrum MT | DAB

”The purpose of the Daily Scrum is to inspect progress toward the Sprint Goal and
adapt the Sprint Backlog as necessary, adjusting the upcoming planned work.” [86]

We have routinely held our Daily Scrum meetings at 9:15. Early in the project, this proved to
be an effective way to ”take the temperature” of our progress and identify problems arising. It
helped us support each other when encountering challenges. Although being contractually obliged
to attend these meetings felt rigid, it ultimately became a good way to update each other and
aligning the teams effort towards what tasks currently has highest priority.

However, as the project progressed and the team members became more independently focused of
their specific tasks, the consistency of our Daily Scrums declined. When each of us knew what we
were going to work on the Daily Scrum felt like a waste of time and instead we just had ad-hoc
check-ins if problems arose. Nonetheless, the early dicipline helped us set a strong collobarative
tone and helped us build a routine of respecting the projects as our job.

3.1.4.4 Sprint Review MT | DAB

”The purpose of the Sprint Review is to inspect the outcome of the Sprint and deter-
mine future adaptations. The Scrum Team presents the results of their work to key
stakeholders and progress toward the Product Goal is discussed.” [86]

We have had regular meetings with Semcon where we have continuously refined the requirements
of the system and how to progress toward the goal of fulfilling these.

3.1.4.5 Retrospective MT | DAB

”The Scrum Team inspects how the last Sprint went with regards to individuals, inter-
actions, processes, tools, and their Definition of Done. Inspected elements often vary
with the domain of work. Assumptions that led them astray are identified and their
origins explored. The Scrum Team discusses what went well during the Sprint, what
problems it encountered, and how those problems were (or were not) solved.” [86]

At the end of each sprint, we had retrospective discussions. These meetings were not always
particularly productive. In the early stages of the project, reflecting on our previous discussions
and planning felt like another opportunity on understanding the tasks at hand. However, as the
project progressed and our task was clearly defined, the retrospectives began to feel like a waste
of time - removing us from focused work just because we had a rule about having a retrospective
every sprint.

3.1.4.6 How we started implementing scrum MT | DAB

The first weeks of getting used to scrum was quite chaotic and unorganized. Partly because we
were still getting used to the ins and outs of scrum, and partly because we didn’t have a properly
structured backlog. The biggest challenge we had was that our tasks was not derived from user
stories and system requirements. This was natural since it was our job to figure out the system
requirements, but we saw that we needed better structure so that none of us would be confused
by what tasks needed to be done and which tasks to prioritize.

Azure DevOps had quite a learning curve in the beginning of the project. We struggled a bit with
finding a way with tracking the time we spent working, and how much time we spent on specific
tasks.

3.1.4.7 How we adapted to these problems MT | DAB

The first step toward organizing this chaos was to introduce the concept of epics and features
in Azure DevOps (Fig. 3.1.1). This allowed us to group related work items under overarching
categories, providing a clearer structure and better visibility into the project’s scope, as well as
organizing other academic related tasks.

29

KAFFEKNEKT

Figure 3.1.1: Epics and Features in Azure Devops

The next change we made was to represent our user stories as Product Backlog Item (PBI) in
Azure DevOps (Fig. 3.1.2). When configuring the PBIs, we were able to add both a description
and acceptance criteria (Fig. 3.1.3), mirroring the information found in our User Stories (Appx.
A.2), Requirements(Appx. A.3), and Requirements Traceability Matrix tables(Appx. A.5.

Figure 3.1.2: Product Backlog Item in Azure Devops

Figure 3.1.3: Description and Acceptance criteria of a PBI

30

KAFFEKNEKT

In our task hierarchy, we have different kinds of PBIs. We have user stories represented as PBIs
and we have work packages represented PBIs (work packages are just collections of tasks which not
necessarily derive directly from user stories, but are tasks needed to be done to work towards the
goal of fulfilling a system requirement). To differentiate these items we configured Azure DevOps
to represent this using tags (Fig. 3.1.4).

Figure 3.1.4: Tags to differentiate PBIs

Our first system of tracking time spent on tasks was based on tracking the time tasks spent inside
any given state (Approved, Started, In Progress, Done). This felt like a clever and innovative way
in the start, but we discovered it had its flaws. For one thing, members of the group forgot to drag
tasks back to the Started state and instead left them in the In Progress state. This whole system
was cumbersome and flawed in many ways so we had to rethink this approach because it became
a root of frustration. After a period of researching different alternatives we found a solution that
suited our needs.

Introducing 7Pace Timetracker, an extension for Azure DevOps.
By installing this extension in our Azure DevOps portal we were able to easily track time spent on
backlog tasks. And we can easily generate statistics and overview of the teams efforts. It integrates
neatly with both a desktop application (Fig. 3.1.5) and a mobile application (Fig. 3.1.6).

Figure 3.1.5: 7Pace Timetracker desktop application

31

KAFFEKNEKT

Figure 3.1.6: 7Pace Timetracker mobile application

Having done these changes, we now feel like we have a robust platform that will keep us on track
towards our goals and provide us with transparency in our work efforts and traceability in the
tasks being done.

3.1.5 Meetings MMS | IBM

Meetings are a frequent and essential aspect of project collaboration. Their purpose ranging from
enabling key decisions to be decided upon in a single session, to providing regular updates on
the progress. It is by no means an understatement that meetings are a cornerstone of all project
management schemes, they ensure that clear communication is maintained, that stakeholders are
being included in the decision-making, such that the end result is in their interest. Without this
scheme, customer’s confidence and trust would be neglected towards the project’s development
and questions would arise in concern of the team’s reliability.

3.1.5.1 External supervisor / Company MMS | IBM

Semcon who is our stakeholder, maintains direct communication with us through Microsoft Teams
3.3.3. Concerns or feedback on the project’s progress are addressed there, the formal meetings
take place on Tuesdays either at Semcon’s offices or at the campus.

3.1.5.2 Internal supervisor MMS | IBM

The meetings with an internal supervisor are concerned with updates on the group’s chemistry,
progress, and how the project management inside the group operates. Weekly meetings are held
every Tuesday.

32

KAFFEKNEKT

3.2 Risk Analysis IBM | MMS

Risk assessment is the processes of determining risks which can occur while working on projects.
Possible risks are shown in Tab. A.1.4, and Tab. A.1.5 for the product. And in Tab. A.1.1, Tab.
A.1.2, and Tab. A.1.3 for the project. These tables are then assessed into categories with varying
levels. The categories include the likelihood (odds of the risk happening), and the consequence of
the risk. Both of these categories span over 5 levels each, ranging from very low and up to very high.

When a risk has been categorized, it will receive a risk rating utilizing Tab. A.1.10, which deter-
mines whether the risk is going to be an actual problem or not. If a risk rating reaches the upper
limit, then the group should re-evaluate the rating that has been given to said risk.

3.2.1 Agile Risk Management IBM | MMS

We’ve tailored our project management to be fitted with an agile risk management scheme. The
scheme is specifically tailored to conduct risk analysis at the iterative level, rather than the incre-
mental level. For elaboration, the incremental level looks at a single significant feature milestone
reached, unlike the iterative which is concerned with smaller releases at the end of every sprint.
The iterative approach is better suited for the early phase of the project, given that there’s insuf-
ficient information to evaluate risks properly. [8]. The iterative approach gives us the opportunity
to edit and change our risk analysis at any time. Making updates to either the probability and
consequences levels update periodically. This being whether we notice that some values were at
unacceptable values, or that new risks were able to be added.

3.2.2 Risk Assessment Matrix IBM | MMS

The risk matrix uses both the consequence level matrices, and the probability level matrix to create
a new table, that cross-references both tables as shown in Tab. A.1.10. Cross-referencing these
tables gives us risk values that span from 1 to 25 (very low - very high). Our risk matrix is divided
into five grades. VERY LOW, LOW, MEDIUM, HIGH, and VERY HIGH. Five grades were se-
lected so that the table could be dealt into a condition, where in theory, it would be more workable.

This is how the grades of the matrix can be defined as:

• Very Low: Mitigation strategies don’t need to be considered.

• Low: Mitigation strategies can but don’t need to be considered.

• Medium: Mitigation strategies should be considered.

• High: Mitigation strategies should be taken.

• Very High: Mitigation strategies must be carried out.

Also seen in Tab. A.1.11. Again the amount of grades and the definition of said grades are all up
for interpretation, since it usually changes between projects.

3.2.3 Consequence Level Matrices For Product And Project IBM | MMS

The utilization of a consequence table is useful when it comes to creating a risk analysis for a
project. The consequence table is used to show what would happen to the project/product when a
certain level is reached. These levels spanning from minimal consequences, and up to catastrophic
consequences. There will be two consequence tables used in this report. One for the final product,
and one for the project, as shown in Tab. A.1.6 & A.1.8. These tables show the level severity,
description, and what we define these descriptions as.

The reason we utilize two different consequence tables is because they operate on different levels
if both probability and risk. For example if our product stops working the project might still be
a success as the product can be replaced, while if the project gets cancelled the product serves
very little purpose. So it made sense to separate them to have better control over the risk and
mitigation we can implement.

33

KAFFEKNEKT

3.2.4 Probability Level Matrices For Product And Project IBM | MMS

The probability matrix is concerned with categorizing the level scale ranging from 1 to 5 (1 being
unlikely, 5 being frequent), it is an essential risk assessment tool for acknowledging likelihoods and
the severity of risks. The most important advantages of this tool are to both enhance safety and
quantify risks. In this document we have created two probability matrices. Product shown in
Tab. A.1.7, and project in Tab. A.1.9. Both tables share the same definition to level values, but
deviate when it comes to the probable frequencies for both project and product. This being that
the frequency of a probability for a functioning product, differs from a team working together, i.e.
the probable frequency for a project, is more likely to happen then the product.

3.2.5 Risk Mitigation Strategies MMS | IBM

We’ve implemented mitigation strategies for our risks related to the project, by utilizing Agile
Scrum for managing deadlines but also ensuring cooperation and cross-discipline knowledge shar-
ing. Risks concerned with security have also been taken into account, it is imperative that we
follow a guideline which protects our files, documentation, and of course our devices which we will
be using for the duration of this project.

3.2.6 Agile Scrum Integration With Risk Assessment MMS | IBM

In Agile Scrum, it is inevitable that new risks will be discovered and identified, therefore it is
necessary to acknowledge and track them on every Sprint planning. Daily-stand ups will be
concerned with addressing immediate risk updates. And finally, at the retrospectives, they will
be reviewed and reassessed, based on tests conducted. Risk assessment in relation to the project
management scheme opens transparency within the group in terms of uncertainties.

3.3 Tools IBM | MMS

Tools are an important factor when it comes to working on projects. The word tools, does not
necessarily mean physical tools. But as a term used to describe what was used to help the project
move on. The tools that were used during this period, varied on whether the whole team used them,
or that few members used them. Here are the software tools that were used during this project.
The Tools span from documentation, software development, figures, design, and communication
between the team.

3.3.1 Overleaf IBM | MMS

Overleaf is a document editor that is based on the usage of LATEX[62]. Overleaf is what we used
to string all parts of the report together. Overleaf can be used online, and multiple people can
work on the same document at the same time if a subscription is paid. Which Semcon Part of
Knightec Group has covered for us. Overleaf is very helpful in its document process, where almost
everything can be labelled and called upon between documents. In Overleaf, there is the possibility
of creating tables and figures, with certain commands. And there are many tools on-line to help
people with commands and how to make the ”perfect” document.

3.3.2 Google Scholar MMS | IBM

Google scholar is a free search engine which stores a vast array of published scholarly literature.
Its index includes peer-reviewed academic journals, books, theses, dissertations, conference papers
and technical reports. It is intuitive to use and has easily accessible BibTeX formats [118]

3.3.3 Microsoft Teams IBM | MMS

Microsoft teams is a messaging application that has multiple uses. But we mostly used it to
communicate with our external supervisor and Semcon Part of Knightec Group team when it
concerned info and certain updates. Microsoft teams has more functions, as in document sharing,
video calls, and calender planning within a team. [56]

34

KAFFEKNEKT

3.3.4 Github MT | DAB

”GitHub is the single largest host for Git repositories, and is the central point of
collaboration for millions of developers and projects. A large percentage of all Git
repositories are hosted on GitHub, and many open-source projects use it for Git hosting,
issue tracking, code review, and other things.” [15]

We have opened a git repository at Kaffeknekt GitHub Repository. This will be our primary way
to store and collaborate on our code-base. We also connected Github to draw.io so we can edit
our diagrams and keep version control of them as-well.
We also use github integration in Overleaf so that we periodically get backups off all tex files and
figures in case Overleaf servers go down.

3.3.5 Timeshift MT | DAB

As a backup solution for both Linux workstations and the Raspberry Pi we used Timeshift.

”Timeshift is a system restore utility which takes snapshots of the system at regular
intervals. These snapshots can be restored at a later date to undo system changes.
Creates incremental snapshots using rsync or BTRFS snapshots using BTRFS tools.”
[50]

This tool proved invaluable throughout the project allowing us to quickly recover from system
failures caused my misconfiguring system files or accidential deletions. (For example: Fig. C.1.20)

3.3.6 ChatGPT SC | AK

ChatGPT is an Artificial Intelligence tool that serves as a source of inspiration for our team. It is
not intended for producing final written content and should not be regarded as an authoritative
nor trustworthy source. It is only meant for refining ideas, offering suggestions, and providing
preliminary guidance. Any information it generates must be supported by citations from reliable
sources [61].

3.3.7 Discord IBM | MMS

Discord is another communication platform. This platform is usually used in the gaming commu-
nity. But is robust enough to be used for everything, we have opted to use discord as one of our
main communication methods when it comes to the project.
In discord you can make ”servers”, and in these servers you can make voice/text channels. Here
we can communicate with one another even though we are not at campus, or when we are at home.
Additionally, we are able to send pictures that are either meant for our social media or our report.
[26]

3.3.8 KiCad MMS | IBM

KiCad is a free and open source program for Electronic Computer-Aided Design (ECAD), which
utilizes both design and simulation of electronic hardware for Printed circuit board (PCB) manu-
facturing. It is used across a large developer base as a hobbyist electronic design program. CERN
noticed the potential of this program and contributed resources to foster open hardware develop-
ment, such that KiCad could be as competitive as the most expensive ECAD programs out there
[119].

This program is chosen by us because it is user-friendly, intuitive to learn and above all, free for
all users. Since the project consists of two electrical engineering students that are eager to further
advance their skills in ECAD design, this is a very powerful tool to realize ambitious projects
involved with that domain.

3.3.9 Azure DevOps MT | DAB

”Azure DevOps supports a collaborative culture and set of processes that bring together
developers, project managers, and contributors to build software. It allows organiza-
tions to create and improve products at a faster pace than they can with traditional
software development approaches [57].”

35

https://github.com/martintara/kaffeknekt/tree/main

KAFFEKNEKT

We used Azure DevOps to manage our backlog and to track our hours spent on backlog items. We
only touched the tip of the iceberg of what Azure DevOps provides. We were only interested in
the project management parts like Boards and Sprints .

3.3.10 PlatformIO MT | DAB

Throughout our education we have primarily used Arduino IDE for developing code on microcon-
trollers. While the Arduino IDE is compatible with ESP32, we wanted to explore a more modern
and flexible alternative.

”PlatformIO is a cross-platform, cross-architecture, multiple framework, professional
tool for embedded systems engineers and for software developers who write applications
for embedded products [65].”

Since much of our development took place directly on a Raspberry Pi, the ability to write code
using a lightweight text editor, flash the ESP32 via the terminal, and monitor the serial output —
proved to be both efficient and refreshing compared to the more clunky Arduino IDE.

We also installed PlatformIO as a plugin in Visual Studio Code (VSCode). This runs quite slow
on the Raspberry Pi put performed good on the linux PC’s. While being able to use PlatformIO
through the command line was beneficial because of its light weight nature a more intuitive way to
use PlatformIO was using the VSCode plugin. This plugin provided all the features we needed and
every member of the team did not have to memorize all the commands needed to get a workflow
going.
The configuration file of PlatformIO project is named ”platformio.ini”. It defines the target plat-
form (in our case ESP32), baud rate and other parameters if needed. The most powerful feature is
the lib deps keyword. This keyword handles the management of libraries, be it external libraries
from github or local files on the development system. For example importing the the library for
DFRobot-DS323X (the rtc module used in the system) - was done by adding the DFRobot’s github
link under the lib deps keyword as shown in Fig. 3.3.1. PlatformIO then handles the importing of
this library automatically and the RTC functionality is available to use.

Figure 3.3.1: Importing library.

3.3.11 Qt Creator SC | AK

Qt Creator is a feature-rich, cross-platform integrated development environment Integrated Devel-
opment Environment (IDE) that supports embedded software development and offers a wide range
of tools for mobile application development [73].

3.3.11.1 What is Qt SC | AK

Qt is a complete development framework that provides a set of tools designed to simplify and
speed up the creation of applications and user interfaces across desktop, embedded, and mobile
platforms [71].
Qt, as a Cross-Platform Application Framework (CPAF), was developed in 1990 by Eirik Chambe-
Eng and Haavard Nord, Norwegian programmers under the company name Trolltech. The frame-
work became later available to the public in 1995. The company changed its name to The Qt
Company and is based in Finland [103].

Qt C++ is the best fit for this project because it is a powerful, cross-platform framework that is
specifically designed for developing graphical user interfaces (GUIs). It offers several advantages
and features [72] such as:

36

KAFFEKNEKT

Performance and Efficiency, C++ is known for its high performance and low level control
over system resources. This is particularly important for real-time applications like your espresso
machine dashboard, where fast data processing and visualization are crucial.

Cross-Platform Development, In Qt, one has the ability to write code once and deploy it
on multiple platforms without significant changes. [46] In this project, it ensures that the same
application code can be used both on the Raspberry Pi 5 and on the Windows PC, making the
development process more efficient.

Rich in GUI Elements, Qt provides a wide range of pre-built components and tools for design-
ing interactive, responsive, and visually appealing user interfaces. This is especially helpful for
creating the real-time dashboards that will display sensor data and statistics in an intuitive way.
For more information about GUI, check this section 5.3.4.1.

Real-Time Capabilities, Since this project involves real-time data, Qt’s efficient handling of
graphical rendering and real-time updates is definitely beneficial. The use of signals and slots in
Qt allows for seamless integration of sensor data updates to the GUI without freezing or lagging
the interface.
In Qt, signals and slots are a safe and flexible way for objects to communicate with each other. A
signal is emitted when something happens (for instance a button is clicked or sensor data updates),
and a slot is a function that reacts to that signal, allowing one part of the program to respond to
changes in another, without the two being tightly connected [92].

Figure 3.3.2: Visual Representation of Signals and Slots Communication in Qt, taken from [92].

3.3.11.2 Why use Qt Creator? SC | AK

Qt Creator is the official IDE for Qt, and it provides a range of features that make developing Qt
applications easier such as:
1. Integrated Environment, where Qt Creator combines the features of a text editor, compiler,
and debugger in one place, allowing the user to write, compile, and test the code efficiently.
2. Cross-Platform Support, Qt Creator simplifies cross-compiling for platforms such as Rasp-
berry Pi 5 (RPI-5).
3. Code Completion and Debugging, With features like intelligent code completion, error
detection, and step-by-step debugging, Qt Creator assists its user to catch issues early, making
sure that the application runs smoothly. It also selects suitable debugger for each kit based on the

37

KAFFEKNEKT

existing one in each system. This is especially beneficial when working with complex projects that
require precision and efficiency [18].
4. Visual Designer. Qt Creator features a visual design tool that enables users to build user in-
terfaces by dragging and dropping widgets and components directly onto the layout. This simplifies
the process of designing and prototyping the dashboard, reducing the need for extensive manual
coding. It is particularly beneficial when creating an interactive touch interface, as it allows for
intuitive placement and arrangement of elements.

- Qt classes for Qt Widgets 6.8.2 In Qt, the core building blocks for developing applications
are provided as C++ classes. These classes offer the tools necessary for creating windows, respond-
ing to user actions, arranging interface elements, and presenting content on screen. For example,
the core class, QApplication is responsible for running the event loop that keeps the applica-
tion responsive to user input such as mouse clicks, key presses, and window events. [67]. While
QMainWindow is a specialized class designed to create a main window with built-in support for
elements like menus, toolbars, a status bar, and a central display area. [68].
QWidget, however, is the base class for all user interface (UI) objects in Qt. It represents a rect-
angular area on the screen and provides the basic features needed for building graphical elements
in an application. Almost every visible element in a Qt GUI, like windows, buttons, labels, etc, is
either a direct QWidget or its extension. [75]. QWidget, handles painting, event processing such
as keyboard input, and lasso layout management. [75]

- Widgets and Windows in Qt The Qt Widgets Module offers a comprehensive collection of
user interface (UI) elements designed for building traditional desktop-style applications. In Qt,
widgets serve as the foundational components of a user interface. They can display information,
reflect status updates, accept user input, and even act as containers for grouping other widgets
logically. [74] When a widget is not placed inside another widget (i.e., has no parent), it is referred
to as a window. [124] Typically, a window includes standard decorations such as a frame and a title
bar. However, these elements can be customized or removed using specific window flags. Common
examples of top-level windows in Qt include QMainWindow and subclasses of QDialog, which are
often used to create the main application window or dialog boxes, respectively.
In this example from the project’s code:

graphView = new GraphView(this);

GraphView is instantiated with this as its parent, which refers to the MainWindow. This
means GraphView is a child widget, and it will appear inside and be managed by the main
window.

3.3.12 Draw.io SC | AK

Draw.io or now known as diagrams.net is an open source web-based diagramming tool that can be
used for creating flowcharts, network diagrams, Unified Modeling Language (UML) diagrams, ER
diagrams, database schemas, and more. It offers a versatile platform for designing a wide range of
visual representations [27]. In this project Draw.io was used to design and draw several diagrams
that represents the functionalities and the system architecture of our project.

3.3.13 Google Sheets IBM | MMS

Google sheets [37] in short terms is, Microsoft excel but online. The main purpose we use google
sheets is for the tables that we can create easily. These tables being Budget & Component list
Appx. A.8, Requirements Appx. A.3, User Stories Appx. A.2, Test table Appx. A.4, Risk Analysis
Appx. A.1, and Traceability Matrix Appx. A.5.

3.3.14 InfluxDB AK | MMS

InfluxDB is a time-series database that is designed for high ingestion rates of continuous data,
making it well-suited for our operation.

More information about InfluxDB can be found in Sec. 4.11.1

38

KAFFEKNEKT

3.4 Website SC | AK

In order to represent our project, including the stakeholders, the progress and also team members.
A website was designed as a requirement from the university. Therefore, a lightweight site was de-
veloped and deployed on University of South-Eastern Norway (USN)’s servers, as seen in footnote 1.
Where it operates with minimal maintenance. This was the chosen template “2137 barista cafe”
from the available collections on the website [108]. The template was later on modified and adapted
to align with Kaffeknekt’s visual identity by adjusting its HyperText Markup Language (HTML)
structure and Cascading Style Sheets (CSS) styling.
1

3.5 System Requirements DAB | MT

In order to make sure that the product we deliver fulfills as many of our customers’ wishes, we
need to define them into testable requirements so that we know what can achieve within the scope
of this project in terms of time, budget, and acquirable expertise.

3.5.1 User Stories DAB | MT

User stories were made to keep our customer in focus when developing our project and then infer
what our requirements would be as user stories are made by placing ourselves in the shoes of the
user. After doing some research, we also discovered that it is also a proven agile work method for
a self-organized team like ours.

”A self-organizing team, on the other hand, does not have an explicit requirements or
design phase. When a team is self-organizing, it means that they work together to
plan the project (instead of relying on a single person who “owns” the plan), and they
continually come together as a team to revise that plan. A team that works like this
typically breaks the project down into user stories or other small chunks, and starts
working on the ones that deliver the most value to the company first. Only then do
they start thinking about detailed requirements, design, and architecture[97].”

As we started to define our user stories, it soon became apparent that this needed to be a collab-
orative task. Our first attempt where only one member worked on it led to user stories that had
undefined acceptance criteria and were too generic.

Our second iteration worked better as a result of this change, which we then used as the basis for
the first requirements that we had our customer approve.
As the project developed, we realized that our most important user story needed to be broken
down so that we could tackle it in more manageable parts resulting in our third; and smallest,
iteration.(See Appx. A.2)

We could then use the new user stories to formulate a Minimum viable product (MVP) that would
give our customer their most valuable features first before working on our more detailed features.

3.5.2 Requirements DAB | MT

Defining requirements for every project is of vital importance, as making a mistake could lead to
the system we deliver not performing the functions our customer requested.

The first attempt at defining our projects requirements did not utilize the user stories as the group
split their work effort into individual tasks, which predictably led to no cohesion between them.
Realizing that this went against one of the main benefits for defining user stories, the course was
quickly corrected for our next iteration.

After we had iterated on our previous user stories, those were used to further refine our require-
ments before we sent them to our customer for verification.

1The project’s website can be accessed at: (https://itfag.usn.no/grupper/D03-25/)

39

https://itfag.usn.no/grupper/D03-25/

KAFFEKNEKT

Their response was overall positive, but they had some minor changes and wishes that we imple-
mented while also refining our user stories to match our new insight of our end user.

Our final change to our requirements came with our customer wanting a scalable system that would
allow for both visual expansions and physical additions. (See Appx. A.3)

3.5.2.1 Validation of Our Requirements DAB | MT

To assure that our system delivers functionality that fulfills our requirements tests need to be
designed such that they validate one or more of our acceptance criteria.
Test Table: For our test table we opted to organzine them in two ways. The first was by adding
a three letter code so that you can easily identify which module of the system you are looking at,
while the other way was to separate our test into three types.
• The first type are the standard UNIT test, where a single function of a module were to be tested.
• The second type is functional test were the whole functionality of a system, but not any other
modules that can change the result of the test.
• The third type is an integration test where one or more modules are tested together.
(See Appx. A.4 for the Test Table)
Traceability Matrix
To keep track of all requirement artifacts, we decided to create a traceability matrix which con-
nected all artifacts in one clear table giving you a clear thread of which user story and requirement
the test was derived from.
(See Appx. A.5 for the Traceability Matrix)

40

Chapter 4

System Development

This chapter explains how the different parts of the monitoring system were developed before they
were combined into a complete solution. The project was divided into smaller sections, each fo-
cused on one area of the system, such as collecting sensor data, handling data in real time, and
creating a user interface to display information clearly.

Each part was developed separately to make sure it worked as expected before connecting it to
the rest. This approach helped the group work in parallel, reduce errors, and make adjustments
as needed during development. Special care was taken to ensure that the system could collect reli-
able data and show it in a way that gives the user useful insight into what happens during brewing.

This chapter presents the rationale behind the architectural decisions, the selection of hardware and
software technologies, and the methods used to ensure that each component fulfilled its functional
role prior to full system integration.

4.1 System Specification and Architecture DAB | MT

This chapter delves into how we defined and validated our system requirements through user stories,
testable requirements, and test strategies. Furthermore, it also describes the system architecture
through various diagrams, from connections between key components to the entire system as a
whole.

4.2 System Architecture SC | DAB

Software architecture is the high-level, executable description of how a distributed system’s com-
ponents interact, capturing concurrency, synchronization, data flow, and timing relationships, to
enable early simulation, analysis of system behavior, and verification against formal constraints
prior to full implementation. [51]

4.2.1 Overall Architecture DAB | MT

When designing a system, having an understanding of how the system interacts with each element
in its environment is of vital importance. Keeping that in mind will help in terms of scalability
and allow for solutions that tackle problems directly and beneficently.

4.2.1.1 Defining System Modules DAB | MT

As the requirements started to fall into place, the system could now be formulated into modules
that handles specific tasks that our system needs to fulfill those requirements.

Main Modules: As a number of requirements for this system specify the need to measure specific
values some module that handles the retrieval of this data would be needed and the need to store
data locally has been specified so a module that handles this would also be required. Furthermore
a module for displaying the data in some form to fulfill several other requirements.

41

KAFFEKNEKT

Additional Modules: As the project developed some more modules were added. A visualization
module was added to improve the user experience and to improve the clarity of the data represented.
The other module came about as the need for a system that supports scalability so an embedded
module was implemented to handle more sensors as the system expands.

4.2.1.2 Defining System Interfaces DAB | MT

When the modules were defined the next step would be to define how they should communicate
with each other. Defining these interfaces between modules allows our team to work on a module
and not having to gain a full understanding of the other modules it interacts with as long as the
defined interfaces are upheld.

Embedded: The embedded module takes in sensor data of different protocols depending on their
individual make. As for the interfaces between the embedded module and the data handling mod-
ule utilizing a USB connection or wireless seemed like strong contenders. This interface was also
later used by the visualization module.

Data Handling: For the interfaces between the data handling module and the data storage mod-
ule depends on the type of data storage utilized, but the most common type would be a database.
Later in the project a UNIX domain socket interface was utilized. (See Appx. C.2 for more infor-
mation regarding this decision)

Data Storage: As the data storage modules function is to store data that will later be displayed
an interface between these two seems appropriate. And as one of the user stories implies that the
data will need to be accessible after the system is turned off, the device that retains this data
would need to retain this for this situation as well. This would then set the need for some form of
hard drive, further clarifying what specific devices the system needs.

Visualization: This module needs a way to display curated data to a user so an interface to a
device that can fulfill this role and at the same time there should be a device that receives inputs
from the user.

4.2.1.3 Our Solution DAB | MT

With all the interfaces and modules defined a tentative suggestion that evolved as the project
matured. What is seen in figure. 4.2.1 above would be the final version of our system. (See Appx.
B.9 for other diagrams that were used under the development of the system)

42

KAFFEKNEKT

Figure 4.2.1: Final Overall System Interface

4.3 Hardware Overview MMS | IBM

The hardware necessary for the monitoring system consists of following important components
which are involved with visualizing, processing, and storing data.

43

KAFFEKNEKT

4.3.1 Raspberry Pi 5 SC | AK

Figure 4.3.1: Raspberry-Pi 5 single-board computer [49].

The RPI-5 is the latest and most powerful single-board computer in the Raspberry Pi series. It
features a 2.4GHz quad-core ARM Cortex-A76 processor, up to 8GB of LPDDR4X Random Access
Memory (RAM), dual 4K High-Definition Multimedia Interface (HDMI) outputs, and significantly
improved Input/Output (I/O) capabilities compared to its predecessors (Raspberry Pi, 2023). [82].
In this project, the RPI-5 serves as the central processing unit, collecting real-time data from water
pressure and temperature sensors installed in an espresso machine. The data is stored locally
on a Solid State Drive (SSD) 4.3.3 and is simultaneously visualized on a connected 15.6” QLED
touchscreen using a Qt-based graphical dashboard. The RPI-5 upgraded performance makes it ideal
for handling sensor input, local storage, and live graphical rendering without lag. Its compact size,
low power consumption, and General-Purpose Input Output (GPIO) pins for sensor integration
make it a cost-effective and efficient choice for embedded systems. Additionally, its compatibility
with Linux-based environments and support for C++ development aligns perfectly with the goals
of this Qt application. Overall, RPI-5 provides the hardware flexibility, processing power, and
real-time responsiveness required for building an interactive, standalone dashboard system.

44

KAFFEKNEKT

4.3.2 ESP-32 MT | DAB

Figure 4.3.2: Firebeetle 2 ESP32-E [20].

The ESP32 MCU series was first released in September 2016 [31].
ESP32 features a robust design. It is capable of functioning reliably in industrial environments
with an operating temperature ranging from -40◦C to 125◦C [30]. It is engineered for mobile
devices, wearable electronic devices, and IoT applications. Because of this it has very low power
consumption [30].
ESP32 can interface through Serial Peripheral Interface (SPI) / Secure Digital Input Output
(SDIO) or Inter-Integrated Circuit (I2C) / Universal Asynchronous Receiver / Transmitter (UART)
interfaces, and it can interface wirelessly through Bluetooth or Wi-Fi [30].
ESP-IDF (Official IoT Development Framework)
ESP-IDF is Espressif’s official IoT Development Framework for ESP32. It provides self-sufficient
Software Development Kit (SDK) for development using programming languages such as C and
C++ [30].
ESP-IDF supports a large number of software components, including Real-time operating system
(RTOS), peripheral drivers, networking stack and various protocol implementations[30].
The most important aspect for us is that ESP-IDF features a RTOS Kernel (it uses FreeRTOS).

”RTOS is a type of computer operating system designed to be small and determin-
istic. RTOSes are commonly used in embedded systems such as medical devices and
automotive ECUs that need to react to external events within strict time constraints.”
[84]

”FreeRTOS is a real-time Kernel (or real-time scheduler) on top of which embedded ap-
plications can be built to meet their hard real-time requirements. It allows applications
to be organized as a collection of independent threads of execution. On a processor
that has only one core, only a single thread can be executing at any one time. The
kernel decides which thread should be executing by examining the priority assigned to
each thread by the application designer.” [81]

Using an RTOS on a RTOS capable MCU made us able to ensure accurate timing and scheduling
and it ensured synchronization of tasks.

We chose ESP32 since it has a low cost, it has wide availability and it has strong community
support among hobbyists and professionals. Our team is familiar with development on Arduino
and ESP32 is in essence an Arduino with added real time capabilities like tasking and

45

KAFFEKNEKT

4.3.3 Solid state drive (SSD) MT | DAB

Figure 4.3.3: Raspberry Pi 256GB SSD [76].

In pursuit of designing a robust system we had to consider the risk of data getting corrupted.
Sudden power outages when data is getting written to SD-cards can cause corruption of data. This
is currently based on anecdotal evidence and general knowledge that SSDs are able to withstand
a much higher rate of read/write cycles of data. Since our system will continuously read and store
sensor data we decided quite early in the process to go for this solution since the price comparison
between a SSD and a industry grade microSD-card was not much difference. SSDs are also much
faster than microSD-cards.

4.3.4 Touch-screen SC | AK

Figure 4.3.4: Raspberry Pi compatible 15,6“ HDMI QLED Touchscreen Display [77]

The 15.6” HDMI QLED Touchscreen Display for RPI-5 is an excellent choice for this project due
to its size, display quality, and seamless compatibility with the RPI-5. This screen provides a full
HD resolution (1920x1080) with QLED technology, offering vibrant colors, deep contrast, and wide
viewing angles. It is ideal for visualizing detailed sensor data such as pressure and temperature
graphs. Its large 15.6” size allows the dashboard interface, built with Qt, to present clear, readable
graphs and interactive elements without crowding the screen. [109]
In terms of compatibility, the display connects via standard HDMI for video and Universal Serial
Bus (USB) for touch input, making it plug-and-play with the RPI-5, which includes dual micro-
HDMI outputs and USB 3.0/2.0 ports. The display is powered via USB-C, and no special drivers are
required when running RPI-5 OS or other common Linux distributions, ensuring quick integration
with the system.

46

KAFFEKNEKT

4.4 Sensor Hardware MMS | IBM

Our sensor hardware was selected based on the need for accurate and reliable measurements of
key parameters. Each sensor was chosen based on its compatibility, user-friendliness, intuitive
programming and strategic placements inside of the espresso machine.
A summary of the functional role of each sensor is presented below, although a more detailed
account of component choice strategy – which involves among others, costs and redundancy plans,
and can be found in Appx. B.1

4.4.1 Digital Pressure Sensor MMS | IBM

Figure 4.4.1: NPI-19 I2C Digital Pressure Sensor [25].

The NPI-19 I2C Digital pressure sensor is a remarkable component capable of measuring highly
stable, amplified, and calibrated pressure output, and it can be seen in Fig. 4.4.1.

It has an excitation voltage of 3.3V which allows for direct connection without the necessity of
shifting the logic voltage levels down, given that most of the system runs on 3.3V. This type of
sensor delivers digital data on the output in the form of the industry standard I2C protocol, which
is elaborated in more depth in Sec. 4.6.0.1.

Figure 4.4.2: Block diagram of the NPI pressure sensor taken from [91]

47

KAFFEKNEKT

The sensor is equipped with an inbuilt Analog-To-Digital Converter (ADC) with a 14-bit resolu-
tion; this is important as more bit-resolution contributes to more accurate output measurements.
It tolerates temperatures from -40◦C up to 125◦C, which is ideal given that the temperature in
the heat exchangers is above the boiling point.

Our specific sensor model is an NPI-19J-200G2, the operating range of measurement for the pres-
sure is 1378.95 kPa, which roughly corresponds to almost 14 bar.

4.4.2 Resistance Temperature Detector PT100 MMS | IBM

Figure 4.4.3: The TSP-1PAG10305MZ Resistance Thermometer, taken from [110].

The Pt100 seen in Fig. 4.4.3 is a temperature sensor which contains a resistor that changes resis-
tance which is proportional to the temperature change.

Their application is prominent in industrial environments, however, they are suitable wherever high
accuracy is demanded. The measuring accuracy also depends strongly on the accuracy class, since
this one in particular is of Class B. The classes tell what resistance limit deviations are allowed at
certain temperature ranges and can be viewed in Fig. 4.4.4.

Figure 4.4.4: Limit deviation table for pt100 for both class A and class B.

1

1The Pt in Pt100 stands for Platinum, while the ”100” stands for the resistance value at 0 C

48

KAFFEKNEKT

4.4.3 AC Current Sensor MMS | IBM

Figure 4.4.5: AC Current Sensor 20A, produced by DFrobot, taken from [21].

The SEN0211 AC current sensor is a split-core current transformer, a unique design which allows
for the core to be opened and closed around a conductor, without interrupting a circuit. This
component is very user-friendly, non-invasive and easy for both installation and removal. Despite
the hinged mechanism behind this component, air gaps introduced into the core, usually are not
a significant problem, because of secure clamping, which also reduces disruptions to the magnetic
path and the measuring accuracy. Once the core is closed, the primary current induces a magnetic
flux, this in turn induces a proportional current at the secondary winding for the monitoring [111].

Figure 4.4.6: Illustration of the split core current transformer, taken from [111].

4.5 Electrical Overview MMS | IBM

To understand the monitoring system’s function, it is important to look at the electrical system
that connects all the key components. It connects all the components needed to measure, process,
and send data from the espresso machine and can be vied in Fig. 4.5.1. This section gives an
overview of the system using an electrical diagram and explains the role of each component. The
goal is to show how everything is connected and why each part is important for the system to
work.

49

KAFFEKNEKT

Figure 4.5.1: Electrical diagram of the monitoring system, with all components and modules.
Designed in Drawio. Note the blue dotted area which is also on a printed circuit board layout.

The system is powered through a power supply which is connected from the espresso machine’s two
selected phase wires for 230V AC connection, transforming it down to a stable 5V Direct Current
(DC). This further powers both the ESP32 MCU which handles the sensor data, and the RPI-5,
which is the computer that stores that data and visualizes it on a display.

The ESP32’s interface translates both I2C and SPI protocols to their interface-compatible sensors,
additionally, the ESP32 is connected to an ADC with 16-bit resolution, capable of reading very
accurate data from the analog sensors.

The blue dotted area covers the components that are on a designed printed circuit board, which
the layout and design is presented in B.3.

4.5.1 The Espresso Machine MMS | IBM

The espresso machine is a Faema due D92N/A-2H, it can be configured in different electrical
configurations, either single phase, 3-phase 230V or 3-phase 400V. For this project its specifically
configured for a 230V 3-phase connection and can be seen in Fig. 4.5.2.

50

KAFFEKNEKT

Figure 4.5.2: Faema Due D92 Espresso Machine, the same model as our own machine [33].

4.5.1.1 Electrical Setup MMS | IBM

It was discovered that there is an electronic control board which is connected to the button panel
for brewing espresso shots, in addition to other sensors, solenoids, relays, etc. Our customer em-
phasized strongly that despite the team consisting of two electrical engineering students, it is not
worth both the risk and effort to try merging the electronic control board with our own system,
as this may pose hazardous for both the person and the machine itself. More information about
the control board is documented in Appx. B.6.

This particular configuration restricts the system to very specific power outlets which unfortunately
are a rare sight at our university. The only place in the university where 3-phase-230V power outlets
are to be found, are at the workshop.

4.5.1.2 Solenoid Valves MMS | IBM

Solenoid valves are prominent in espresso machines, their purpose to either fill the boiler, relieve
pressure from different connections in the hydraulic system, or overall, control the flow of water.

There are both 3-way and 2-way solenoid valves appearing in espresso machines. They function
nearly the same way, although they are installed at different places.

(a) Three-way parker solenoid valve [32]. (b) Two-way parker solenoid valve [32].

Figure 4.5.3: Solenoid valves typically used in espresso machines.

2-way solenoid valves have only an inlet and outlet, pressurized water is supplied to the inlet when

51

KAFFEKNEKT

the coil activates, the water is allowed to pass and exits through the outlet side. Unlike the 3-way
solenoid, which includes a pressure relief discharge function once the valve deactivates, commonly
used near Groupheads to relieve the pressure before removing the Portafilter [32].

Figure 4.5.4: Components inside of a solenoid [32].

When the coil of a solenoid becomes magnetized, it pulls up the nucleus which allows the liquid to
flow from the inlet to the outlet. The piston which seals the way from inlet to outlet is a nucleus.

4.6 Embedded Development MT | IBM

This section explains the subsystem that is responsible of acquiring sensor data from the different
sensors placed in the coffee machine. The system consists of an ESP32 MCU a RTC module and
different sensors for measuring temperature, pressure etc.

The main responsibility of this subsystem is handling all the sensor data that comes in simultane-
ously and packages the sensor readouts in timestamped packages which then gets sent over USB.
The RTC ensures the system has an accurate reference clock so the timing does not drift.
Developing the embedded software has been an incremental endeavor to ensure the robustness of
the system. We focused on testing one sensor at a time. After confirming the functionality and
accuracy of sensors (and the RTC-module) - we started a system where we combined the sensors.
We integrated one sensor at a time, testing for each step. The tests can be found in the test table
Appx. A.4. The development log of the embedded software can be found in Appx. C.1.

In our system we have multiple sensors gathering data at any given time. We solved this by
implementing multiple tasks running concurrently. Though it appears that tasks are being executed
concurrently, they are in fact executed one at a time. see Fig. C.1.7 . ESP32 with FreeRTOS
uses priority based scheduling preemptive scheduler. When tasks have the same priority it utilizes
round robin scheduling algorithm [81].

Figure 4.6.1: Concurrency in ESP32. Picture taken from FreeRTOS [81].

52

KAFFEKNEKT

The ESP32 also functions as a traffic officer, ensuring the flow of data does not create any conflicts.
FreeRTOS utilizes mutexes to lock down critical sections of the code.

”Any time memory shared between tasks is read or written, it creates a critical section
of code, meaning code that accesses a shared resource (memory or device). The shared
resource must be protected so only one task can modify it at a time. This is called
mutual exclusion, often shortened to mutex. [60]”

The most critical section in the project was during the usage of the I2C bus. We had to lock down
the I2C bus ensuring only one task could utilize it at a time.

4.6.0.1 I2C Protocol MMS | IBM

Under the careful consideration of components to decide on, it was important to find those that
wouldn’t pose difficulties in communication between devices. There are a variety of different com-
munication protocols to choose from, although I2C is one of the most intuitive to use for software
development.

I2C in simple elaboration, is a two-wire serial communication protocol which utilizes both Serial
Data Line (SDA) and Serial Clock Line (SCL) lines. It was developed in 1982 by Phillips Semi-
conductor (now NXP Semiconductor) initially as a low-speed communication protocol. Since the
protocol requires only two lines for communication it is widely used in the industry, in addition
to that, its simple and economical for manufacturers to implement. SCL is the line concerned
synchronous clocking of data either in or out of the target device, unlike SDA which transmits
data to or out of some target device. I2C’s most attractive attribute is its ability to establish
communication between a controller device and a target device through a unique I2C address [125].

4.7 GUI SC | AK

This section presents the concept of a Graphical User Interface (GUI), explains its core functions,
and demonstrates why an intuitive, touch-driven interface is essential for monitoring and controlling
the espresso machine data in this project.

4.7.1 What is a GUI? SC | AK

In order to display the retrieved data, we need a touch screen, and for that we will be using a
GUI.A Graphical User Interface (GUI) is an interactive platform that allows users to communicate
and operate computers or digital systems using graphical elements such as windows, icons, menus,
and touch-sensitive controls, rather than command-line interfaces (CLI) or text-based inputs [9].
A GUI is a user-oriented environment that leverages visual components, such as windows, icons,
menus, buttons, and dialog boxes. This facilitates interaction with software without requiring
knowledge of underlying command syntax or programming details. These elements typically re-
spond to user actions (e.g., mouse clicks or touch gestures) in an event-driven manner, triggering
corresponding functions when activated . In contrast to command-line interfaces, where users must
enter precise textual commands at a prompt, GUIs present a more intuitive, discoverable means
of control, reducing the cognitive load associated with memorizing commands and syntax. By
abstracting low-level operations into graphical widgets, GUIs make complex tasks accessible to a
broader audience and enhance overall usability [54].

4.7.2 Relevance to the Project SC | AK

The multi-touch desktop application’s GUI was implemented in C++ using the Qt framework
within the Qt Creator development environment. For this project, employing a GUI is critically
important. The primary functionality of the application involves real-time visualization of data
such as water pressure and temperature from a FAEMA espresso machine 4.5.2. By leveraging
graphical representations that users can quickly interpret and monitor the performance of the
espresso brewing process.
Additionally, the GUI facilitates various interactive features including an instructional button for
espresso preparation, an informational button, and historical data storage functionalities. This
interactivity, provided through touch-sensitive components, ensures the system is accessible even
for users without technical expertise, thereby improving operational efficiency and user satisfaction.

53

KAFFEKNEKT

4.8 Framework and Tools SC | AK

This section examines the technical foundations and implementation details of the graphical user
interface. It begins with criteria for framework selection and the rationale for choosing Qt and
its C++ binding, including a comparison of standard C++ object-oriented principles versus Qt’s
signal-and-slot model. The discussion then turns to the development environment.
An overview of Qt Creator and its key tools and features before presenting the GUI’s architecture
and implementation. This includes a high-level system architecture diagram, descriptions of the
principal classes and components, an overview of important Qt packages, and a detailed explanation
of how the code operates. Finally, the section concludes by illustrating how the GUI integrates
with the broader system, tying together data acquisition, processing, and presentation.

4.8.1 Framework Selection SC | AK

Selection of an appropriate GUI framework requires careful consideration of four principal criteria.
Functionality and user tasks, usability and accessibility, technical constraints, and overall user-
experience (UX) impact.
Initially, the stakeholders proposed two options. A JavaScript-based solution using React
with Bootstrap UI and a Node.js server on the Raspberry Pi, or a Python implemen-
tation utilizing the Streamlit library. However, because the firmware is written in C/C++
and the development team lacked formal training in JavaScript, both alternatives were deemed
unsuitable. The project’s requirements—real-time visualization of two key coffee parameters, dis-
play of historical data, and a fully touch-enabled interface including instructional, settings, and
information buttons further narrowed the choice. Following an evaluation of cross-platform ca-
pabilities and compatibility with embedded C code, the Qt framework was selected. Its native
support for C++ in the Qt Creator IDE facilitated rapid prototyping, seamless deployment on the
Raspberry Pi as long as the developing environment and the RPI-5 share compatible compilers,
and integration with existing code, leading to the decision to implement the GUI in C++ using Qt
Creator. This approach offers several advantages, including robust event-handling through signals
and slots, rich widget libraries optimized for touch interfaces, and straightforward cross-compilation
for embedded targets.

4.8.2 Why Qt SC | AK

Qt is an open-source available framework designed to develop graphical user interfaces that oper-
ate across multiple platforms.[123]. The Qt framework supports the creation of user interfaces for
desktop, mobile, and embedded devices using a single codebase, which streamlines development
and maintenance.
It ensures backward compatibility between Qt 5 and Qt 6, enabling existing applications to be
upgraded with minimal code changes. By leveraging native C++ execution, Qt delivers high-
performance rendering and reliable control even on hardware with limited resources [100].
The comprehensive widget library, combined with the signal-and-slot mechanism, simplifies the
implementation of event-driven interactions for both touch and pointer input. Moreover, Qt pro-
vides an integrated ecosystem that obviates the need for multiple external UI libraries, reducing
dependency complexity and accelerating the learning curve [106].

4.8.3 Standard C++ and Qt’s OOP Model SC | AK

Qt’s C++ bindings are particularly well suited for both general GUI development and the require-
ments of this project. First, Qt enables true cross-platform deployment from a single codebase,
simplifying the build and maintenance process for desktop, embedded, and touchscreen targets
alike, an advantage demonstrated by its successful use in management systems for distributed sim-
ulation platforms running on Windows, Linux, and macOS solutions [112],[55].
Second, Qt’s signal-and-slot mechanism and extensive widget library streamline event-driven pro-
gramming, which was critical for handling real-time pressure and temperature updates without
resorting to low-level threading or polling hacks. Third, because the ESP32 firmware and exist-
ing backend components were written in C/C++, leveraging a C++-based GUI framework en-
sured seamless code integration and straightforward cross-compilation, sidestepping the toolchain
mismatches encountered with other languages. Finally, Qt Creator’s integrated development en-
vironment including cross-compilation kits, on-board simulators, and real-time debugging tools

54

KAFFEKNEKT

accelerated the iterative design and testing cycle, overcoming the cross-compilation challenges and
Virtual Machine (VM) overhead otherwise associated with deploying to ARM targets[93]. Collec-
tively, these benefits cross-platform consistency, event-driven simplicity, native performance, and
cohesive tooling—make Qt for C++ a robust and fitting solution for the project’s multitouch GUI.

4.9 Development Environment

4.9.1 Qt Creator Overview SC | AK

The development environment for this project is Qt Creator, a cross-platform integrated develop-
ment environment (IDE) specifically designed for creating applications with the Qt framework. Qt
Creator offers an advanced code editor with features such as intelligent code completion, syntax
highlighting, and refactoring tools, which improve code quality and developer efficiency [70].
It supports multiple build systems and toolchains through configurable “Kits”, enabling seamless
cross-compilation for desktop and embedded targets such as the RPI-5 without leaving the IDE
[48]. In addition, Qt Creator integrates debugging and profiling tools, including GDB and perfor-
mance analyzers, alongside built-in simulators for rapid testing of GUI behavior on various form
factors [48]
Context-sensitive help and bundled documentation ensure that developers can quickly access API
references and usage examples during implementation[101]. Collectively, these features streamline
the iterative cycle of coding, testing, and deployment, making Qt Creator an ideal environment
for the development of the project’s multitouch GUI.

4.9.2 GUI design SC | AK

The GUI design process began with a manual requirements analysis and brainstorming to identify
the essential buttons and features mandated by the system’s requirement 3.5. An initial prototype
was then created using the open-source Penpot platform as seen in footnote 2 to establish a visual
template and development roadmap. This prototype served as a reference during implementation,
facilitating alignment between design intent and code. The first draft of the app is on B.8.
Throughout development, the GUI went through continuous changes and adjustments based on
usability testing and additional feedback from Semcon 1.3, ensuring that both functional and aes-
thetic requirements were met.

4.9.3 Tools and Features SC | AK

Qt Creator’s suite of integrated tools greatly accelerated development and debugging of the project’s
GUI. The advanced code editor, complete with semantic highlighting, on-the-fly syntax checking,
and intelligent code completion[102], helped identify typos in custom widget implementations such
as ”the GraphView” class) before compilation, reducing runtime errors. In Design mode, the built-
in Qt Widgets Designer allowed rapid prototyping of the main window layout (mainwindow.ui)
and seamless promotion of custom widgets, ensuring that visual changes immediately reflected the
project’s interaction requirements. Configurable Kits enabled cross-compilation for both desktop
and the RPI-5 target, eliminating manual toolchain setup, while the integrated debugger and per-
formance analyzers were used to trace signal-and-slot connections and resolve latency issues during
real-time data updates[99].Together, these features provided a consistent, efficient environment for
coding, testing, and refining the multitouch GUI entirely within Qt Creator.

4.10 Architecture and Implementation SC | AK

This section details the GUI’s internal structure and how its components interact to fulfill project
requirements. It starts with a high-level overview of the system architecture, then examines the
main classes and components that drive functionality. Next, key Qt packages and custom features
are highlighted, followed by a walkthrough of critical code paths and behaviors.
The section concludes by showing how these elements integrate with external data sources and the
broader application.

55

KAFFEKNEKT

4.10.1 Overview of System Architecture SC | AK

The GUI is structured as a standalone Qt application running on the Raspberry Pi 5, commu-
nicating with both the ESP32 and InfluxDB through distinct channels. Live sensor readings are
streamed from the ESP32 via a local WebSocket server and consumed in the GUI by the ”QWeb-
Socket” client, which parses incoming JSON messages and dispatches them through signals and
slots for real-time chart updates[104].
Historical data is retrieved from InfluxDB using ”QNetworkAccessManager” over , incorpo-
rating token-based authentication and bucket queries to populate trend graphs. Visually, the
interface relies on Qt Widgets, such as ”QMainWindow”, ”QDialog”, ”QGraphicsView”,
and ”QGraphicsScene”, to provide multi-touch-friendly controls and custom plotting areas [99].
This modular design cleanly separates data acquisition (network and socket modules), data mod-
eling (controller classes), and presentation (widget hierarchies), ensuring that each component can
be tested and maintained independently while leveraging Qt’s native C++ performance and event-
driven framework.

2

2penpot: is a design tool for design and code collaboration https://penpot.app/design

56

https://penpot.app/design

KAFFEKNEKT

4.11 Database Development

4.11.1 InfluxDB AK | SC

The bachelor project requires us to efficiently store continuously flowing data so that it is available
for real-time processing. This data will be utilized to generate dynamic graphs, which will be
displayed on a screen for easy human analysis. Since we are dealing with simple, but high-quantity
parameter data such as temperature and pressure caught by sensors, we can use a database that
has high input and write abilities. With this we can generate and update the graphs as the data
flows in, thus achieving the real-time aspect.

This is where InfluxDB comes into play. It is an open-source time series database where data
can be pushed and stored in real time [43].
But what is meant by ”time series”? Here are some key features the database has to offer regarding
its operation and functionality:

• Time series: The data that is input is stamped with the point in time of when it happened,
and the data is then called a ”point”. Collect a set of these points and now you have a
”series” of data. The timestamp of the data is utilized as the primary key of the table for
easy navigation, because when you want to find specific data, you can just filter the search
by which point in time it was collected. Nice wordplay.

• Retention policy: When creating a database in InfluxDB, you have the option to set a
retention policy. This means that you can choose if and when a database will automatically
be deleted, but why would you want this feature? What possible value would deleting data
bring to the table? We need to keep in mind that constantly collecting data over a long
period of time will eventually cause storage issues. Old data that will not be beneficial to
anyone is unnecessary, even counterintuitive to keep in storage. We can then benefit from
this feature to efficiently manage storage space.

• High input and write rates: InfluxDB is designed to handle high rates of data input and
write, and this makes it work well with IoT sensor readings.

• Flexible table design: When creating a table, there are variables that will be needed to be
wary of: Tag set and Field set. They are used to label data appropriately, and contain tag
key and tag value, and field key and field value, respectively. Essentially, the tag set specifies
where the data is coming from(e.g. which sensor), and the field set specifies what kind of
data is being inputted (e.g. temperature) [47]. Here is is an example of a pair of tag set and
field set:

Timestamp Position T.Celsius
1747469053 Upper 27.1

Table 4.11.1: Simple example of an InfluxDB table

The table does miss default columns, such as an index column and a time column. A real example
from our tests is available in A.9.7.
In a potential future scenario where we decide that one thermometer will be enough, the tag set
will not be required, as we will not need which thermometer our only thermometer is.

The data that is stored, is done so by essentially taking time as reference, or ”time stamping”
it, and storing the data accordingly. What is cool about it is that you can more easily make
graphs or charts out of those databases, something other database tools such as MySQL are less
supportive of. InfluxDB is also designed for storing large amounts of data and does so at a higher
rate, which is another attribute that, in addition to the support of graph setup, complements our
operation.

To get started, you choose which version you would like to use (typically 2.7.x, or newer), and
download and install the packages in the terminal. Then type this URL: https://localhost:8086
(local server) to open InfluxDB, and enter credentials for the following: Username, password, or-
ganization name, and bucket name. A bucket is another word for database, this one is the initial
bucket that is made upon user creation and has no ”retention policy”, meaning it will never be

57

KAFFEKNEKT

deleted no matter how old.

After creating a user, a token will pop up on the screen, which is extremely important to copy to
the clipboard as it will be used for a number of authorization areas.
These credentials will be used later for identification in scripts, commands and queries, thus it is
best practice to save them somewhere.

4.11.2 Data Retention AK | SC

A bucket is where the data will be stored for later use, and data retention is how long data is re-
tained in that bucket. The user can choose the duration of data retention upon creating a bucket,
or updating an already existing one. When data becomes older than the set retention period, it
gets deleted by the retention enforcement service , which by default runs every 30 minutes.

4.11.2.1 Shards AK | SC

InfluxDB stores data in shards, the fundamental unit of time-based data storage in InfluxDB.
Shards partition the data within a bucket by time, making data storage and retrieval efficient.
Each shard contains data within a specific time range, and stored in its own separate file. The
duration is set automatically based on the duration of a shard group. Depending on the time range
of a query, shards that fall out of bounds are then efficiently dismissed.

4.11.2.2 Shard Group Duration AK | SC

The shard group duration determines how much time a shard will cover. The duration, by default,
is set based on the retention period of the corresponding bucket, but can be altered when creating
or updating the bucket. Shard groups are what is being looked at when deleting data. As an
example, of the bucket retention period is set to 7 days, and the shard group duration to 1 day,
meaning the data is cut up in 1-day slices, then the data that gets deleted will be 7-8 days old, no
more no less. It is calculated by the minimum retention period being the retention period itself,
and the maximum is the retention period + the shard group duration. In shorts terms, the entire
shard needs to be older than the retention period for it to get deleted
Shard group duration that is too large in comparison to the retention period might cause hick-ups
and performance issues when data is deleted, since the bucket suddenly loses a big chunk of its
data. It is recommended to have the shard group duration as default, or set around that duration.

4.11.2.3 InfluxDB Data Storage Model AK | SC

InfluxDB uses its own method to store data, which is significantly different than the relational
MySQL tables we all are familiar with. In order to work with InfluxDB and the data that is
stored, it is essestial to understand what data looks like, and how to effectively work with them.
A typical MySQL table consists of a group key that never holds the same value twice, column
names explaining what kind of values they hold, and the rows that contain all inserted data from
a single record, e.g. an environment reading. Ever:

ID Temperature (C) Humidity (%)
1 22 55
2 23.5 60

Table 4.11.2: A MySQL table

InfluxDB, on the other hand, stores data in time-series model and writes data in time-series points,
as mentioned before. Each point must consist of a timestamp, a measurement name (similar to a
table), and a field set; optionally, a tag set may be included. Every data writing operation will
follow this schema - the line protocol:
measurement, tag key=tag value field key=field value timestamp

58

KAFFEKNEKT

Figure 4.11.1: Query from a flux script

Figure 4.11.2: Zoomed in

Each field is stored in its own table of rows, instead of the typical columnar value identifica-
tion we are used to seeing as a visualization from SQL queries. Below is an example of what a
query of time-series data looks like:

4.11.2.4 Data Layout AK | SC

At the core of the InfluxDB data layout is the concept of a measurement, which is similar to a table
in relational databases. Each measurement contains many series, and a series is uniquely defined
by a combination of tag keys and values. Tags are string-based metadata used for identifying
and grouping data; for example, in a telemetry system, tags might include values like device id,
location, or sensor type. These tags are indexed by InfluxDB to make queries that filter or group
by them highly efficient.
In contrast, fields represent the actual data values being recorded, such as temperature, CPU usage,
or error rate, and are not indexed. This is an important detail in the data structure design, because
indexing fields would reduce write performance. Since field values are often high frequency and
constantly changing, InfluxDB instead focuses on efficiently storing and retrieving them in bulk.

Storage Engine
On disk, InfluxDB uses its own custom storage engine based on ”Time-Structured Merge Tree”

59

KAFFEKNEKT

files. These are columnar storage files made for compression and quick retrieval of time-series data.
When data is first written to the database, it is temporarily stored in a ”Write-Ahead Log”, which
acts as a buffer and helps ensure data durability. Over time, these writes are compacted and moved
into immutable TSM files as part of InfluxDB’s internal compaction process. [45]

4.11.3 Introducing Flux AK | SC

Flux is a powerful, functional, and dynamic query language developed by InfluxData for working
with time-series data in InfluxDB 1.8+ and 2.x. It offers a flexible and consistent method to
querying, transforming, and analyzing time-series data, making it optimal for use cases such as
monitoring, alerting, and reporting.

4.11.3.1 Why Flux? AK | SC

Unlike traditional SQL-based languages, which are largely associated with fixed relational opera-
tions, Flux utilizes a functional programming model, allowing queries to be constructed as pipelines
of several sequential operations. This design makes it particularly powerful for use cases that re-
quire dynamic filtering and data transformations.

The first lines of a Flux script
A Flux query begins by specifying a data source, but we will refer to a bucket as it is widely accepted
as the typical data type. From there, the query defines a time range using the range() function,
which is a required component in most Flux scripts. After that, we can start applying operations
in sequence using the pipe-forward operator (—¿), which passes the result of one function into the
next. This makes queries highly readable and modular, making them easier to edit in the future.
For example, a simple query might filter for a specific measurement and tag, aggregate values
over five-minute intervals, and compute a mean, all expressed as a chain of transformations in an
understandable format.

4.11.3.2 Developing with Flux AK | SC

From a scripting perspective, Flux supports variable declarations, function definitions, and control
points such as conditionals, which gives user the ability to create reusable and dynamic queries.
This makes Flux not just a query language, but a lightweight scripting environment for building
data flows. For example, users can define alerting logic that checks incoming data for thresholds
and triggers events, or create tasks that select and transform data within custom time ranges at
every given interval.

Flux Tasks
Flux also supports tasks, which are scheduled queries made to run automatically at defined inter-
vals. Tasks are a core feature in InfluxDB 2.x, offering the user to be able to perform automated
data processing, alerting, or downsampling without the need for external schedulers that call the
scripts. A task is essentially a Flux script equipped with a scheduling plan, typically defined using
a fixed time interval. For example, a task might run every 10 minutes to calculate averages, detect
anomalies that fall out of expected value zones, or write downsampled data into another bucket for
long-term storage. This allows for data flow automation, reduced storage costs, and maintaining
performance by offloading compute-heavy operations outside of query time.

60

Chapter 5

System Integration

Once the individual parts of the monitoring system were developed and tested, the next step was
to connect them into a complete and functioning whole. This chapter focuses on how the different
parts from sensor hardware, embedded software to the graphical user interface – were connected
and configured to work as a single unit.
System integration involved solving both practical and technical challenges. Sensors had to be
installed inside the espresso machine such that it preserved safety and accuracy, data needed to
flow smoothly between devices, and of course, the interface had to reflect real-time system behavior
in a clear and reliable way.
In this chapter, the steps taken to combine hardware and software are described, how the system
was tested during and after integration, and the adjustments made along the way. The result is a
working monitoring system that provides insight into the espresso brewing process as it happens.

5.1 Hardware Integration MMS | IBM

This section focuses on putting the physical system together, connecting the sensors, powering
them and making sure everything fit and functioned inside the espresso machine.

Both electrical and mechanical work had to be carried out, tasks included figuring out how to
integrate new components into a modified system. Safe power distributiion, proper wiring, and
reliable communication had to be ensured.

5.2 PCB Integration IBM | MMS

Integrating a PCB into the system had its own little hurdles. The idea of a PCB was set as a low
priority in our requirements in the beginning. After time, we realized that we needed to make a
system that was scalable, and the PCB was a good contender for this. The design principles of
the PCB were simple, create a design that would fit into the system, communicate with the other
electronics, and would be designed well enough so that it does not need any major redesigns when
it comes to upgrading the system. With this reasoning, the priority of the PCB got increased, and
we started the design process. The entirety of the PCB design process can be seen in Appx. B.3.
This followed by the hurdles that came along with it.

61

KAFFEKNEKT

5.2.1 Threaded Pressure Sensor MMS | IBM

Once the correct threaded reduction couplings and adapters were acquired, the sensor could be
installed inside the heat exchanger output. The first water pressure sensor actually never was tested
under the espresso machine’s brewing operation, since it was rated for a much lower temperature
range than the temperature conditions occurring in the heat exchanger which are also influenced
by the temperature inside the boiler, which rises up above 120◦C.

(a) First pressure sensor installed early in the
first component procurement phase.

(b) First pressure sensor, discarded from the
system because of its non-functional require-
ments not being satisfied.

Figure 5.2.1: New I2C pressure sensor installed with a threaded adapter and sealed with a teflon
tape.

62

KAFFEKNEKT

5.2.2 Threaded Temperature Sensor MMS | IBM

(a) Terminals 1 and 4 which correspond to the
2-wire configuration of the RTD, are only being
used. At room temperature, approximately out-
putting 110Ω.

(b) Fully assembled RTD connector.

Figure 5.2.2: PT100 RTD threaded temperature sensor installed inside the grouphead.

The PT100 RTD sensor was screwed inside a thread tapped and drilled plug, tightly wrapped with
teflon tape to seal it and ensure no leakage occurring. The sensor has a probe length of roughly
30mm, which ensures measurements as close as possible to the brewing temperature.

More information concerning the installation of these threaded adapters and couplings is evaluated
in more depth in Appx. B.4.

1

5.3 Software Implementation DAB | SC

When the initial components and software architecture fell in place, we could then start to de-
velop software that would be able to satisfy our customers’ requirements while working under the
restriction our choices gave us, but still keeping in mind an agile work method so we can step back
and reassess if the need arises.

1Special thanks to Joel from Semcon, who has been absolutely instrumental in providing mechanical expertise,
especially related to threaded sensors, in addition to helping with providing the necessary threaded reduction
couplings, both through suppliers and by own design.

63

KAFFEKNEKT

5.3.0.1 Data Retriaval from the ESP32 SC | AK

Figure 5.3.1: Data Flow Diagram of Data Retrieval from ESP32 to GUI. Designed in Drawio.

Real-time pressure and temperature readings are streamed from the ESP32 to the GUI through a
Unix-domain socket acting as a lightweight WebSocket channel. On application startup, the Web-
SocketClient class (running in its own QThread) connects to /tmp/socket and continuously
calls recv() to gather newline-terminated JSON objects containing the fields ”flag”, ”pressure”,
and ”temperature”. Whenever the signals the start of a brewing cycle (flag == 1), each
parsed JavaScript Object Notation (JSON) message triggers the dataReceived(double, dou-
ble, QString) signal, which is connected to the onDataReceived slot in graphDialog. Inside
this slot, elapsed time is computed relative to the dialog’s launch, and the new sensor values are
appended to the GraphWidget via appendPressurePoint() and appendTempPoint().
A subsequent call to refresh() repaints the plotting surface, producing an up-to-date line graph of
both parameters with minimal latency, fully leveraging Qt’s event-driven architecture for smooth,
responsive visualization.

64

KAFFEKNEKT

5.3.0.2 Data Retriaval from the InfluxDB to the GUI SC | AK

Figure 5.3.2: Data Flow Diagram of Data Retrieval from Influx database to the GUI. Designed
in Drawio.

This figure 5.3.2 illustrates the flow of historical sensor data from the InfluxDB server into the
graphical user interface. When the user selects a time interval in the SensorAnalyticsDialog,
the dialog emits an intervalSelected(secs) signal to the DataFetcher component. DataFetcher then
invokes two routines, fetchPressureWindow() and fetchTempWindow(), each of which issues
an HTTP POST request containing a Flux query and an authorization token to the InfluxDB
REST endpoint. The server responds with CSV-formatted data rows, each comprising ” time”
and ” value” fields. DataFetcher parses these rows into a QVector¡DataPoint¿ for pressure and
temperature, respectively, and passes the vectors to the GraphWidget in the main window via
its appendPressurePoint() and appendTempPoint() methods. This design cleanly separates
user actions, data retrieval logic, and presentation, ensuring that the GUI can display historical
trends efficientlly and responsively.

5.3.1 Overall Integration Of the GUI SC | AK

In this subsection, there will be provided a visual explanation of how the app works, each func-
tionality and feature based on the 3.5.

5.3.1.1 Sensor Analytics SC | MT

To access historical sensor data within the application, the user first taps the hamburger menu
icon in the upper left corner of the main window, revealing the side navigation panel.

65

KAFFEKNEKT

Figure 5.3.3: Visualization of steps on how to reach the sensor analytics stored values

From this panel, selecting “Sensor Analytics” opens a modal dialog that lists available parameters.

Figure 5.3.4: Visualization of steps on how to reach the sensor analytics stored values

Water Temperature, Water Pressure, and Power Consumption, each represented by a clearly la-
beled button.

66

KAFFEKNEKT

Figure 5.3.5: Visualization of steps on how to reach the sensor analytics stored values

After choosing a parameter, the user then selects one of the pre-defined time intervals (one minute,
one hour, or one day) displayed on the dialog’s right side. Once both parameter and interval have
been specified, a dedicated QFrame overlays the main window, presenting the retrieved data as a
time-series graph. This workflow ensures that users can intuitively navigate to and visualize past
performance metrics without leaving the primary interface.

Figure 5.3.6: Visualization of steps on how to reach the sensor analytics stored values

67

KAFFEKNEKT

5.3.2 Coffee Instructions SC | AK

Selecting the “Coffee Instructions” button opens a modal dialog presenting step-by-step guidance
for beginner users on operating the espresso machine. This dialog contains simple text and illustra-
tive icons to guide the user through the brewing procedure, such as coffee grinding and making sure
the coffee is evenly distributed. Thereby ensuring that the users can quickly familiarize themselves
with the brewing workflow without external references.

Figure 5.3.7: Visualization of steps on how to reach the coffee instructions

68

KAFFEKNEKT

5.3.3 Information Button ”i” SC | AK

Activating the “Info” button reveals an overlay QFrame containing an introductory overview of
the the project and the system’s functionality.

Figure 5.3.8: Visualization of steps on how to reach the coffee instructions

At the bottom of this frame, a “Here” button transitions the user to a more detailed dialog, which
includes explanatory text alongside electronic schematics, sequence and activity diagrams.

Figure 5.3.9: Visualization of steps on how to reach the coffee instructions

Navigation within this dialog is facilitated by a “Back” button on the right and a “Home” button
on the left, both of which return the user either to the previous screen or directly to the main
window, preserving a coherent and reversible navigation structure.

Figure 5.3.10: Visualization of steps on how to reach the coffee instructions

69

KAFFEKNEKT

5.3.4 Real-Time Data Graph SC | AK

After starting the Python data-acquisition script, the user must manually launch the Qt appli-
cation, which then presents a QDialog plotting live ESP32 sensor readings. When the flag value
equals 1, indicating an active brewing cycle, the dialog displays water temperature in blue and
pressure in red on a real-time graph. This dynamic visualization persists until the flag resets to 0 or
the Python script is stopped, offering continuous feedback on the extraction process and enabling
immediate parameter monitoring.

Figure 5.3.11: Visualization of steps on how to reach the coffee instructions

The initial real-time data retrieval is illustrated in figure B.8.1

5.3.4.1 Integration overview of the GUI SC | AK

The final application was assembled through a stepwise, iterative process in which each interface
element was introduced and validated before moving on to the next. Initially, the MainWindow
layout was created manually in the Qt Designer .ui file, establishing the overall structure and visual
style. Most of the Qt code was then developed on a VM as a solution to the cross-compilation
challenges6.2.1.1, allowing for consistent builds across architectures. Thereafter, individual com-
ponents such as buttons, frames, and dialogs were added one at a time. After each addition, the
interface was compiled and tested to verify correct placement, appearance, and behavior. Once
the core functionality was stable, the remaining development and testing were conducted directly
on the Raspberry Pi 5 to ensure proper interaction with both the ESP32 device and the InfluxDB
server. Any issues discovered during testing were immediately addressed, and the component
was refined before proceeding. This disciplined, component-by-component approach—combined
with targeted VM use for cross-compilation and on-device validation, ensuring that every element
worked as intended and fit into the overall design, giving a robust and well-integrated graphical
application.

5.3.5 Data Aggregation and Visualization Hub

5.3.5.1 Real Time Socket Solution DAB | MT

As the project developed, we realized that our current idea which was for the Qt Desktop to
continuously query the database to check if our ”trigger” was active would lead to undesirable
delays in the system. It would be better if the Qt Desktop could get the information without
querying the database, but trying to take the data directly from the ESP32 could lead to multiple
processes trying to access the same serial port.
Our solution was to expand the script that handles the data from ESP32 to the database by having
it work as a socket server that sends data over an UNIX domain socket on which the Qt Desktop
”listens” in. It can then use the data directly when it sees that the ”trigger” has been activated.

5.3.5.2 Time Configuration DAB | MT

As the ESP32 needs to know the time and the system should also be operational without internet
it was only natural that our system should be able to set the time from the touch screen. As we
already had an interface that communicates with the ESP32 (i.e. a JSON format) it was natural
that we would use the same format.

70

KAFFEKNEKT

5.4 Minimum Viable Product MMS | IBM

Along the journey, the scope of the project and the user stories which we identified early, revealed
a necessity to define a realistic and achievable MVP. Its intention to reflect the core functionality
of the envisioned monitoring system, with key functionalities such as data acquisition and visual-
ization of brewing-related parameters.

During the hardware implementation phase, it was brought to our attention that the espresso ma-
chine – while central to the project concept – was not in a fully operable state. As a result, several
user stories connected to real brewing scenarios and machine interaction could not be realized at
this particular stage.

As a mitigation strategy, a test-bench environment was set up to simulate sensor behavior and to
validate the components themselves independently of the espresso machine.

Consequently, the MVP’s definition was restricted to the following functionalities as of this moment:

• ”The measurement of both temperature and pressure data using selected sensors interfaced with
either an MCU or RPI-5.”

• ”The storing of collected sensor data in some local database for analysis.”

• ”The visualization of data in real-time through some dashboard or screen interface for user in-
sight.”

Despite the espresso machine being inoperable under the development of an MVP, we’ve developed
one that validates the proof of concept for a viable system architecture. The group responded in a
proactive manner to the limitations met in relation to the espresso machine by mobilizing efforts
around the design, testing and validation of the monitoring system through a test-bench environ-
ment.

This approach ensured that the group didn’t neglect the progress and mitigated a meaningful
approach to realize the project’s primary objective, which is to develop insight through a monitoring
system.

71

Chapter 6

Results and Discussion

This chapter presents the results of the project and reflects on how well the system met its intended
goals. It examines whether the monitoring solution was able to deliver accurate and timely data,
how the graphical interface supported user insight, and how well the system functioned as a whole
during testing.

The results are discussed in relation to the initial requirements and user stories, evaluating to
what extent the monitoring system delivers meaningful insight into the espresso brewing process.
Challenges encountered during implementation and integration are also revisited here, with focus
on how they were resolved or what limitations remained.

Finally, the chapter reflects on broader lessons learned by the team throughout the project, such
as, the collaboration across disciplines, the trade-offs involved in balancing precision, usability and
complexity of the system and design considerations.

6.1 Test Procedures MMS | IBM

This section outlines a presentation of our test planning, methodologies, and strategies involved
with validation to verify the requirements so far realized of our monitoring system. It needs to
be emphasized that this is a project of a vast interdisciplinary nature, both embedded software,
mechanical and electrical subsystems intertwine in this project, this required a tailored testing
approach which aligned with the specific requirements earlier defined.

The testing procedure follows a scheme where structure had to be established to ensure that each
individual subsystem was performing within its required or expected boundaries before it finally
would be integrated. The systems engineering principles follow us even to this stage as we have to
assess at all times whether the requirements and implementation correspond to user needs, these
are validated through the testing results that we strive for.

6.1.1 Electrical and Mechanical Testing MMS | IBM

Most of the electronics that we have to acquaint ourselves with are sensors, some of them are very
delicate and operate on incredibly small currents. Our responsibility is to set up the environment
on which the components can communicate. Eventually, a PCB will be designed with capability of
expanding on further sensors. Now, to prepare ourselves for the design and layout of a PCB, it is
vital to comprehend the capabilities of the sensors that we will be implementing into the system.
These capabilities have been tested and validated for further integration into a hydraulic system
under pressure.

6.1.1.1 Pressure MMS | IBM

Our first pressure sensor became obsolete for our system in that it could not correspond to our
non-functional requirements. It was deemed that a better solution could be found and that was
for an NPI-19 I2C Digital Pressure Sensor as seen in Sec. 4.4.1.
Since the communication protocol is both I2C and SPI, naturally we chose to utilize the I2C
protocol since it works on the basis of finding a built-in addressing scheme which is elaborated in
more depth in Sec. 4.6.0.1.

72

KAFFEKNEKT

On the first test, the I2C address was not detected on the RPI-5, initially the thought was that it
needed some sort of additional amplification circuitry, although that was quickly disregarded since
the datasheet for the sensor is clear on that the sensor is capable of transmitting its I2C address
without any difficulty whatsoever.

After a while, the sensor started smoking, the sensor was quickly disconnected from the circuit.
Next, we’ve had to determine why it started to smoke despite that certainty that it was connected
correctly.

After some troubleshooting, we’ve measured the voltages directly between the 3.3 V and GND
GPIO pins on the RPI-5. The multimeter did not read 3.3 V, in fact it read 5 V. This was
contradicting in relation to the expansion board connected to the RPI-5, it was connected the
other way around so the GPIO markings on the board were reversed the other way around.

An important thing to note is the sensor’s specifications, it should operate on a supply current
at 3 mA. Since connecting the sensor directly to the 3.3 V would power it with slightly more
than that, we’ve decided on connecting a resistor to current-sink the 3.3 V pin. We’ve measured
approximately 2.7 mA when connecting a 1.2 kΩ in series with it.

The SDA and SCL pins do not require any resistors to be joined in series with them as they
are already equipped with 1.8 kΩ pull-up resistors inside the RPI-5 circuit board, these sink the
current adequately enough that the sensor would not be in danger of significant currents.

Finally, the sensor worked and by testing the I2C detection script on the RPI-5, we obtained the
I2C address corresponding to the sensor as 28. The test was linked to establishing contact with
the pressure sensor, which translates to T-1.3 from the Test Table A.4.

6.1.1.2 Solenoid Valve Coil Continuity MMS | IBM

Late in the project, it was discovered that solenoid valves are indeed vital components in terms of
brewing, but also relieving pressures, and that their behavior can be mapped to a test associated
with brew-event detection, which is linked to T-1.7 from the Test Table A.4.

To actually investigate this further and verify it, firstly, a coil continuity had to be determined,
this is nothing more than just finding the resistance of the coil between two terminals, in this case
1 and 2.

Figure 6.1.1: Measurement of the coil continuity which outputs a resistance of 630Ω, which
means that the coil is intact.

1

1More information about how the solenoid valve was manipulated as a brew-event detector is explained in more
depth in Appx. B.5.

73

KAFFEKNEKT

6.1.1.3 ESP32’s Inbuilt ADC MMS | IBM

Under one of the tests with the AC current sensor shown in Fig. 4.4.5, it was discovered that
by utilizing the inbuilt ADC pins from the ESP32 to monitor the sensor, the results were not
desirable, in fact, they weren’t corresponding to anything of sense.

Instead, an ADS1115 ADC breakout module was used for the same test, the measurements instantly
were much more realistic. ESP32’s reputation behind the ADC capabilities are unfortunately poor,
since an external ADC was supplied to us, it wasn’t encouraged to work on a solution by making
the inbuilt ADC of the ESP32 work. There are a variety of factors contributing to this inevitable
limitation here are some of them:

WiFi enabled: Since the ADC2 pins can’t be used when the Wi-Fi is enabled, only ADC1 instead
is the only candidate for sensor use.

ADC Input range: The ESP32’s ADC measures voltages which range from 0 to 3.3V and not
beyond that value, like 5V.

ADC Accuracy: ADCs ideally have a linear behavior, although this is not the case for the ESP32,
these are non-linear. This means that the ESP32 is incapable of distinguishing between say 3.2V
and 3.3V, and the measured value will still be the 4095, or it won’t distinguish between 0 and
0.13V signals as both correspond to a measured value of 0 [53].
2

2More information about the ESP32’s ADC inaccuracy issues are discussed on a github issue: https://github.
com/espressif/arduino-esp32/issues/92

74

https://github.com/espressif/arduino-esp32/issues/92
https://github.com/espressif/arduino-esp32/issues/92

KAFFEKNEKT

6.1.2 Software testing and Development

6.1.2.1 GUI testing SC | AK

This section outlines the steps and components that were implemented to conduct an initial test
of the graphical user interfaces.

6.1.2.2 RPI-5 SC | AK

To facilitate agile development and parallel task execution, the group utilized two separate RPI-5
devices. Following the setup of the RPI-5, which included downloading the needed packages and
programs on the RPI-5. The RPI-5 was connected to a personal Windows-based laptop via Secure
Shell (SSH) for remote access and control. The development of the Qt application was carried
out on the Windows laptop, allowing for efficient coding and testing. Concurrently, a Python
script was deployed on the RPI-5 to establish communication with the water pressure sensor, with
plans to later extend this to the water temperature sensor as well. Successful sensor detection
is indicated when the address “28” appears within the expected range of “20” to “40” on the
screen. However, during testing, no response was detected, which was attributed to an electrical
connection issue. Consequently, the group proceeded with an alternative solution, which is detailed
in the next subsection.

6.1.2.3 GUI SC | AK

After all the required installations on both the MacBook, Windows laptop and the RPI-5, the tests
and development could start.
The development of the GUI proceeded in several iterative stages. Initially, it started by creating
a classic ”Hello World” QDialog, by clicking a QPushButton triggered a QDialog displaying the
text “Hello World.” Thereafter, design and implementation progressed in parallel. On the design
side, the visual layout and widget hierarchy were implemented in Qt Designer (.ui files), while
concurrently a prototype plotting module was coded in C++. Pressing the “D” key caused a test
graph to appear, displaying random values, and repressing the same key swapped to an alternate
dataset, as shown in figure ??. The subsequent phase integrated real historical data by querying
the InfluxDB server via HTTP, with token and bucket parameters, to retrieve the sensor data
measurement. Initially, the returned values were displayed as raw numbers in a QDialog, and later
they were displayed as a graph. Finally, real-time data acquisition from the ESP32 was added, the
WebSocketClient component explained in 5.3.0.1, establishes a UNIX-domain socket connection,
parses incoming JSON packets, and emits signals to append live pressure and temperature points
to the on-screen graph whenever the machine enters a brewing cycle, (when the Flag == 1).

6.1.2.4 Temperature Reading and Storing tests AK | SC

The requirements state that the system shall measure the water temperature, and to satisfy them,
we need an IoT temperature sensor that can seamlessly communicate with the Raspberry Pi (RPI).
For this test, we have selected a sensor, DS18B20 from DFRobot, capable of providing continuous
temperature readings, enabling smooth monitoring of water temperature.

6.1.2.5 The goal and plans regarding the tests AK | SC

To validate the system’s functionality, we do a couple of tests to verify the accuracy and per-
sistence of the captured temperature values. The data collected will be stored in an InfluxDB
database, enabling real-time visualization through graphs and charts. In a future test, we will test
the precision of the temperature sensor against a reference thermometer, which is presumed to be
much more effective at its task. We then plan to calibrate the sensor to match its more equipped
counterpart, thus achieving a more accurate reading.

6.1.2.6 Test environment setup AK | SC

The sensor will be connected to the RPI using 1-Wire communication protocol, which will then col-
lect, process, and store the temperature data for further data processing. To establish the 1-Wire

75

KAFFEKNEKT

communication, we will first open the terminal in RPI and type this command: Sudo raspi-config.
This will open the RPI’s configuration menu, and from here we select: Interface −→ 1-wire −→ enable
−→ finish.

For the connection between the sensor and the RPI, we simply connect the 3 wires from an adapter
the sensor is already connected to upon arrival, avoiding extra steps with connecting to a resis-
tor. The 3 wires are: one Data wire, Voltage(3.3V) wire, and one Ground wire, hence the name
”1-Wire communication”. The data wire will be plugged into the RPI’s GIPO4-pin/pin 7, which
is the default configured 1-Wire pin.

6.1.2.7 Test procedures AK | SC

The procedure for the tests, ranging from terminal commands to other actions, as well as python
scripts are available in the list of Appendices ”Temperature and Database Tests: A.9.1

6.2 Challenges MMS | IBM

Over the course of the project so far, the group encountered several challenges which slowed down
the pace of development, to the extent of where some user stories couldn’t be realized. The
challenges that emerged in both technical, software and project management aspects, played a
significant role in shaping the current state of the system.

6.2.1 Software Challenges

6.2.1.1 Cross-Compiling problem SC | AK

Cross-compilation is the process of building software on one machine, which is the host, for ex-
ecution on another machine, that is considered the target, often necessary when the target has
limited resources or a different CPU architecture [95]. In this project, attempts to compile the
Qt-based GUI on macOS (ARM64) and Windows (x86 64) hosts for the ARM-based Raspberry Pi
5 resulted in numerous toolchain and binary-format errors, reflecting the challenges documented by
developers cross-compiling for RPi on M1 Macs[79]. To overcome these issues, an Ubuntu virtual
machine was deployed via VMware Fusion on macOS, providing a Linux environment compatible
with the Pi’s native toolchain. Within this VM, Qt Creator was configured with AArch64 GNU
Compiler Collection (GCC) compilers and dedicated “Kits” for both the VM and the the RPI-5,
enabling successful cross-compilation of test code such as a placeholder graph-plotting module,
before deploying the same binaries directly to the RPI-5. [105]. This VM-based approach gave a
consistent and reproducible build environment that resolved architectural mismatches and elimi-
nated cross-compilation errors, thereby streamlining development of the embedded GUI.

6.2.1.2 Cmake to qmake SC | AK

The migration of the ESP32 WebSocket client from a CMake-based build into a QMake-driven Qt
GUI project revealed fundamental incompatibilities between the two meta-build systems. CMake
is a cross-platform tool that interprets CMakeLists.txt files to generate native build files (e.g.,
Makefiles, Visual Studio solutions), offering powerful commands such as find package() and tar-
get link libraries() to manage dependencies and link libraries [11]. On the contrary, QMake is a
Qt-specific meta-build utility that processes .pro and .pri files to produce Makefiles tailored for
Qt’s moc, rcc, and platform requirements [121].
Because QMake cannot parse CMake’s domain-specific language, CMakeLists.txt cannot be au-
tomatically included or executed in a QMake project. Their syntaxes, variables, and build-time
workflows differ fundamentally. [69].
Hence, the WebSocket client’s build instructions—originally declared via CMake’s add executable()
and target link libraries(), had to be manually re-expressed in a .pri file listinng SOURCES,
HEADERS, QT += core thread, unix: LIBS += -lpthread, and INCLUDEPATH ad-
justments. This conversion underscores how CMake’s separate configuration phase and hierarchical
CMakeLists.txt include mechanism diverge from QMake’s direct project-file processing model,

76

KAFFEKNEKT

and why unifying on a single build system is often preferable in Qt-centric applications to avoid
such laborious interoperability workarounds.

6.2.1.3 Minor Challenges SC | AK

Throughout the development of the GUI, ensuring a truly responsive MainWindow grid layout
showed challenging due to conflicting hard-coded sizing directives. The dozens of setFixedSize calls
and manual addWidget invocations prevented the left menu, center graph frame, and right panel
from resizing in unison. The solution entailed refactoring the layout to a single QGridLayout
employing setColumnStretch and setRowStretch, in combination with appropriate QSizePolicy
settings that is expanding for the central widget and fixed for the side panels, thus allowing the
center section to grow dynamically while preserving the intended widths of the flanking panels.
Positioning and sizing QLabel static widgets (such as the logo, QR code, and “Semcon” image) re-
peatedly resulted in disappearing or distorted images every time the layout was adjusted. This was
addressed by applying setFixedSize(...) to lock each label’s dimensions, disabling scaledContents
where necessary, and entrusting the layout manager, rather than manual widget repositioning, to
handle placement. This approach eliminated erratic stretching and ensured consistent presentation
across window resizes.

Another minor challeng was to transfer files from the VM to the Macbook. In order to secure file
and folder transfer between the macOS host and Linux VM was initially impeded by the absence of
an SSH server on the VM. After installing and enabling OpenSSH (sudo apt install openssh-server
sudo systemctl enable –now ssh), files such as images could be pushed/sent from macOS using
SCP in a single step, for example,

scp ~/Downloads/kaffeknekt_logo.webp sokcher@172.16.80.133:/home/sokcher/

This command opens an encrypted SSH session, transfers the file, and closes the connection[6],
[94].

6.2.2 Technical Challenges MMS | IBM

The most significant setback in the project was the in-operability of the espresso machine during
critical stages of development. A lot of our tailored user stories were directly tied to the requirement
which emphasized real-time brewing conditions and monitoring. This limited the team’s ability
to implement, test and validate these stories as initially planned. Within our agile approach, this
had a cascading effect on verification of our system, and progress tracking.

A vast portion of time was devoted to researching and comprehending the espresso machine’s in-
ternal systems, these being the likes of Heat exchangers, Groupheads, and other key components.
The research was necessary to accurately satisfy the requirements when the integration was be-
ing implemented into the system, for the sake of accuracy and environmental conditions. Despite
this, the research extended beyond the expected scope of the group, and it delayed the technical
progress. In particular, the electrical engineers couldn’t establish the ideal sensor placements, as
these decisions couldn’t be made in isolation from physical constraints or unknown parameters in
the machine.

The lack of early clarity did pose difficulties for the group to finalize choices on hardware and
validation of integration strategies, although the group was required to explore domains outside of
engineering disciplines, it contributed to making informed design decisions. The interdisciplinary
aspect of the project made it all the more exciting to face as a challenge, as it added valuable
insight and broadened the horizon for grasping the problem domain.

The group adapted to these obstacles by shifting their focus away from the espresso machine and
rather focusing on the monitoring system, in the image of a test-bench.

6.2.2.1 Leakage MMS | IBM

Initially, the espresso machine provided had a leakage from the boiler water level indicator, which
can be seen in disassembled in Fig. 6.2.1. The testing of the machine could not begin until a
reservoir was set up, so in parallel, it was decided that the leakage should also be repaired, while
deciding on a solution for a reservoir for pumping water.

77

KAFFEKNEKT

Figure 6.2.1: Disassembled boiler water level indicator.

The machine was brought to our customer’s workshop, where it was examined thoroughly, and after
the examination, it was decided that a gasket needed to be swapped, as the former one corroded
and couldn’t further keep the isolation. The gasket assembly can bee seen in Fig. 6.2.2, and what
was found in our machine shown in Fig. 6.2.3b

Figure 6.2.2: Parts numbered 19 and 21 (highlighted by a red arrow) are the parts that had to
be swapped to new ones.

78

KAFFEKNEKT

(a) Level gasket part, taken from [7]. (b) Corroded and broken level gasket.

Figure 6.2.3: Level gaskets for the boiler water level indicator.

After reassembly, the indicator was once again holding the water isolated.

6.2.2.2 Boiler overfill MMS | IBM

Under one of the tests, the boiler managed to overfill past its preset 60% threshold of the water
volume inside the boiler, the boiler overfilled up to almost visible 90% on the level gauge, the
reason why this is not desirable is because boilers need to have water at some preset threshold
level, to make room for the layer of steam for the remaining empty space, for this espresso machine
specifically, it is preset at a 60%, after that, a solenoid which is involved with providing the water
to the boiler, locks itself and stops further flow. In terms of safety measures, a high water level
inside the boiler would contribute to dangerous pressure building up inside the boiler under use.

Since this was the first time that this situation occurred, another examination of the internal
connections was made, attempts were made to drain the boiler of water by loosening a pipe con-
nected between the input to the boiler and the pump. This was draining too slowly, luckily, there
is a drain valve underneath the boiler, we disconnected the plug and placed a funnel right un-
derneath it inside a drain hose. The draining was too abrupt and it overfilled the funnel almost
instantly, spreading the water all around our workstation, and encroaching towards the electronics.

Luckily, we reacted fast, disconnected all sensors from the machine, and moved the machine towards
the floor drain in the workshop for the rest of the water to release. The aftermath of the incedent
can be seen in Fig. 6.2.4.

79

KAFFEKNEKT

Figure 6.2.4: The aftermath of the incident involved with draining the boiler.

The reason why the boiler overfilled must have been because of earlier tests done without the plug
screwed inside the Grouphead, air being introduced inside the system, this could have fooled the
electrical components, solenoids among these, and led to the water filling solenoid forgetting to
lock down.

After draining the boiler, another attempt was made to fill the boiler and the solenoid stopped at
approximately 60% boiler water volume, which ensured us that it wasn’t damaged.

6.3 Further Work MMS | IBM

For further development, several key areas have been identified in preparation for the upcoming
project milestone. The current stage has primarily been concentrated onto validating the core
functionality of our MVP through a test-bench, the next stage aims to extend the system’s capa-
bilities in the actual brewing conditions.

These advancements will further serve as a framework for validating additional user stories and
potentially exploring higher-level functionalities such as the assessment of the system’s reliability
and the possibility of expanding it with additional sensors.

6.3.1 GUI Software SC | AK

Future work will concentrate on refining the ’s responsiveness and improving its overall robustness
and aesthetic quality. One priority is to resolve the warning dialog issue. Currently, once twenty
brewing cycles complete, the “Washing Required” Qdialog may appear repeatedly until the user
dismisses each instance by clickong on ”ok” button, which can disrupt workflow. Implementing
a state check to ensure the warning is shown only once, this will address this bug. Additionally,
optimizing layout and styling of various QFrames and dialogs, such as improving spacing, typog-
raphy, and color consistency etc. This will enhance visual appeal and user experience. Continued
user testing and feedback collection will guide these enhancements, ensuring that the interface not
only functions reliably but also presents information in a clear and engaging manner.

80

KAFFEKNEKT

6.3.2 PCB Design IBM | MMS

Some further work is needed when it comes to the PCB. This being that the PCB has been
manufactured, and has arrived to us. But we do not have the components that are needed to
complete the PCB. This can be read read more in Appx. B.3 Sec. B.3.5

6.3.3 Embedded improvements MT | DAB

A full restructuring of the code using classes to enable abstraction and data protection would
increase the robustness of the code. At the moment any task could reach any of the data in the
shared structure.
The current version of the code has a flaw. Both power sensors are incorporated in the same task
(TaskPower). While this is not critical for the functionality of the system, an improvement to the
system would be separating this task out into two tasks. This would be beneficial since one of
the power sensors acts as the trigger that indicates when brewing starts and stops. Giving this
task a higher priority would make the system detect the brewing status faster. At the moment
there is a slight delay (about 0.5 second). The algorithm itself could also be optimized by taking
fewer measurements. Another improvement that can be done to the current system is analyzing
adjusting the timing of task.

6.3.4 Automatic Startup DAB | MT

For a more pleasant user experience, the system should run by itself at startup. To enable this a
simple shell script was made that started the necessary operations (i.e. the virtual environment,
the data handling script and the Qt Desktop application), but because of time restraints it could
not be tested with the whole system.

6.3.5 Additional Features MMS | IBM

As the focus shifted towards milestones which were in our grasp, it was inevitable that more
ambitious additions to our system would be too time-consuming and of course, less prioritized
in relation to the requirements set for our project. Some of the features will be presented and
argumented for their potential use in future expansions of the system.

6.3.5.1 Drip Tray Scale MMS | IBM

The addition of a drip tray scale was motivated mainly by the necessity of having a component
linked with brew-event detection capabilities. A scale deemed itself a suitable candidate, although
the amount of work it required to fully implement into the system was too overwhelming, given our
other prioritized requirements. A drip tray scale requires a Load cell, it consists of an incredibly
sensitive resistance array, in other words called a Strain gauge, the inspiration was taken from a
project showcased in [38].

6.3.5.2 InfluxDB Tasks AK | MMS

As a system that is mainly to monitor, transform and visualize real-time data taken from an
operated machine, an addition of several more of sophisticated Flux tasks, where every one of
them carry out their unique operations. This aims for more custom data analytics availability,
ensuring that the user has a better grasp of e.g. machine operation and its cost. An example of
a future flux task can be one that compares current aggregated data with last week’s aggregated
data, which in and of itself should offer realistic suggestions to the user.

81

Chapter 7

Conclusion

In summary, this project started with a simple, although, challenging idea: how can a user get
insight into the brewing process of an espresso machine, without taking away the craft that makes
it so special? Along the way, we’ve dealt with technical limitations, time pressure, unexpected
problems, and the interesting journey through the eyes of a barista.

The result isn’t a finished product, although a working prototype that demonstrates the capa-
bilities of real-time monitoring with cutting-edge technology from Industry 4.0 principles. The
prototype is capable of collecting real-time data from key parameters, storing it and visualizing
it in a way that is useful and accessible for the user. It’s purpose is to be a tool meant to sup-
port the user, and not replace them, and that’s been an important principle throughout the project.

More importantly, the process of building a system of this scale has taught us a lot, not only
about sensors, code or even circuits, however how key is collaboration, adaptation, and learning
from each other’s strengths. Our achievement is the outcome of shared effort, our curiosity, and a
contribution in the technologies of Industry 4.0 principles.

82

References

[1] Adafruit. Adafruit MAX31865 RTD PT100 or PT1000 Amplifier. Accessed: 2025-05-17.
2016. url: https://learn.adafruit.com/adafruit-max31865-rtd-pt100-amplifier/.

[2] Susana Andueza et al. “Influence of water pressure on the final quality of arabica espresso
coffee. Application of multivariate analysis”. In: Journal of agricultural and food chemistry
50.25 (2002), pp. 7426–7431.

[3] Daniele Apiletti and Eliana Pastor. “Correlating espresso quality with coffee-machine pa-
rameters by means of association rule mining”. In: Electronics 9.1 (2020), p. 100.

[4] ArduinoJson. JsonVariant::as¡T¿() — ArduinoJson v6 API Reference. Accessed: 2025-05-
17. n.d. url: https://arduinojson.org/v6/api/jsonvariant/as/.

[5] Arrow Electronics. How Does a Thermosiphon Work. https://www.arrow.com/en/research-
and-events/articles/how-does-a-thermosiphon-work. Accessed: 2025-03-28.

[6] Ask Ubuntu Community. How to scp a file from Mac (Ubuntu VirtualBox). Accessed: 2025-
05-18. 2011. url: https://askubuntu.com/questions/48436/how-to-scp-a-file-from-mac-
ubuntu-virtualbox.

[7] Astram Group. FAEMA FA14. Accessed: 2025-05-18. 2025. url: http://www.astramgroup.
com/EspressoMachines/Faema/FAEMA FA14.htm.

[8] Alan Moran (auth.) Agile Risk Management. 1st ed. SpringerBriefs in Computer Science.
Springer International Publishing, 2014. isbn: 978-3-319-05007-2,978-3-319-05008-9.

[9] Ronald M Baecker. Readings in human-computer interaction : toward the year 2000. Morgan
Kaufmann Publishers, , Elsevier Inc, 1995. isbn: 9780080515748; 0080515746; 1558602461;
9781558602465. url: libgen.li/file.php?md5=808878175d7ea703b826d8b887dbace8.

[10] Barista Hustle. EM 3.03 The First Thermosyphons. https://www.baristahustle.com/lesson/
em-3-03-the-first-thermosyphons/. Accessed: 2025-03-28.

[11] Jörg Bornemann. Qt and CMake: The Past, the Present and the Future. Accessed: 2025-05-
18. 2021. url: https://www.qt.io/blog/qt-and-cmake-the-past-the-present-and-the-future.

[12] Peter Burggräf et al. “Sensor retrofit for a coffee machine as condition monitoring and
predictive maintenance use case”. In: (2019).

[13] cafelifestyle. Feama E91 A Diplomat. Accessed: 2025-05-12. 2012. url: https://cafelifestyle.
wordpress.com/2012/01/23/feama-e91-a-diplomat/.

[14] Caffè Italia. Single Boiler - Multi Boiler versus Heat Exchanger Coffee Machines. Accessed:
2025-05-18. 2025. url: https://www.coffeeitalia.co.uk/single-boiler-multi-boiler-versus-
heat-exchanger-coffee-machines/.

[15] Scott Chacon and Ben Straub. Pro Git. Apress, 2014.

[16] Cliff Pebble. The Role of Temperature Stability in Espresso: How the E61 Group Head
Keeps Your Shots Consistent. Accessed: 2025-03-28. 2023. url: https : //cliffandpebble .
com/blogs/our-blog/the- role-of- temperature- stability- in-espresso-how-the-e61-group-
head-keeps-your-shots-consistent.

[17] Clive Coffee. Espresso Machine Types, by Boiler. Accessed: 2025-05-12. 2017. url: https:
//clivecoffee.com/blogs/learn/espresso-machine-types-by-boiler.

[18] Debugging in Qt. url: https://doc.qt.io/qtcreator/creator- debugging.html (visited on
03/26/2025).

[19] DFRobot. Fermion: DS3232 Precise RTC (SKU: DFR0821). Accessed: 2025-05-17. n.d.
url: https://wiki.dfrobot.com/Fermion DS3232 Precise RTC SKU DFR0821.

83

https://learn.adafruit.com/adafruit-max31865-rtd-pt100-amplifier/
https://arduinojson.org/v6/api/jsonvariant/as/
https://www.arrow.com/en/research-and-events/articles/how-does-a-thermosiphon-work
https://www.arrow.com/en/research-and-events/articles/how-does-a-thermosiphon-work
https://askubuntu.com/questions/48436/how-to-scp-a-file-from-mac-ubuntu-virtualbox
https://askubuntu.com/questions/48436/how-to-scp-a-file-from-mac-ubuntu-virtualbox
http://www.astramgroup.com/EspressoMachines/Faema/FAEMA_FA14.htm
http://www.astramgroup.com/EspressoMachines/Faema/FAEMA_FA14.htm
libgen.li/file.php? md5=808878175d7ea703b826d8b887dbace8
https://www.baristahustle.com/lesson/em-3-03-the-first-thermosyphons/
https://www.baristahustle.com/lesson/em-3-03-the-first-thermosyphons/
https://www.qt.io/blog/qt-and-cmake-the-past-the-present-and-the-future
https://cafelifestyle.wordpress.com/2012/01/23/feama-e91-a-diplomat/
https://cafelifestyle.wordpress.com/2012/01/23/feama-e91-a-diplomat/
https://www.coffeeitalia.co.uk/single-boiler-multi-boiler-versus-heat-exchanger-coffee-machines/
https://www.coffeeitalia.co.uk/single-boiler-multi-boiler-versus-heat-exchanger-coffee-machines/
https://cliffandpebble.com/blogs/our-blog/the-role-of-temperature-stability-in-espresso-how-the-e61-group-head-keeps-your-shots-consistent
https://cliffandpebble.com/blogs/our-blog/the-role-of-temperature-stability-in-espresso-how-the-e61-group-head-keeps-your-shots-consistent
https://cliffandpebble.com/blogs/our-blog/the-role-of-temperature-stability-in-espresso-how-the-e61-group-head-keeps-your-shots-consistent
https://clivecoffee.com/blogs/learn/espresso-machine-types-by-boiler
https://clivecoffee.com/blogs/learn/espresso-machine-types-by-boiler
https://doc.qt.io/qtcreator/creator-debugging.html
https://wiki.dfrobot.com/Fermion_DS3232_Precise_RTC_SKU_DFR0821

KAFFEKNEKT

[20] DFRobot. FireBeetle 2 ESP32-E IoT Microcontroller. https://www.dfrobot.com/product-
2195.html. Accessed: 2025-03-28.

[21] DFRobot. Gravity: Analog AC Current Sensor (SKU: SEN0211). Accessed: 2025-05-17. n.d.
url: https://wiki.dfrobot.com/Gravity Analog AC Current Sensor SKU SEN0211 .

[22] DFRobot. Gravity: I2C ADS1115 16-Bit ADC Module (Arduino & Raspberry Pi Compat-
ible) (SKU: DFR0553). Accessed: 2025-05-17. n.d. url: https://wiki.dfrobot.com/Gravity
I2C ADS1115 16-Bit ADC Module Arduino %26 Raspberry Pi Compatible SKU DFR0553.

[23] DFRobot. Gravity: I2C Digital Wattmeter (SKU: SEN0291). Accessed: 2025-05-17. n.d.
url: https : / /wiki . dfrobot . com/Gravity :%20I2C%20Digital%20Wattmeter%20SKU :
%20SEN0291.

[24] DFRobot. Terminal Sensor Adapter V2 - DFR0055. Accessed: 2025-05-17. n.d. url: https:
//wiki.dfrobot.com/Terminal sensor adapter V2 SKU DFR0055.

[25] Digi-Key Electronics. Amphenol Advanced Sensors NPI-19J-200G2 Pressure Sensor. https:
//www.digikey.no/en/products/detail/amphenol- advanced- sensors/NPI- 19J- 200G2/
15789382. Accessed: 2025-03-28.

[26] Discord. Group chat that’s all fun games. Available: https://discord.com/. 2025.

[27] drawio. url: https://app.diagrams.net/ (visited on 03/26/2025).

[28] Earthstoriez. History and evolution of the Italian espresso machine. https://earthstoriez.
com/history-and-evolution-of-the-italian-espresso-machine. Accessed: 2025-03-28.

[29] Murray Esler. “Coffee drinking then and now: research continues to better understand this
ubiquitous beverage”. In: Clinical Autonomic Research 33 (2023). Accessed: 2025-05-19,
pp. 613–615. doi: 10.1007/s10286-023-00981-7. url: https://link.springer.com/article/10.
1007/s10286-023-00981-7.

[30] ESP32 Wi-Fi & Bluetooth SoC | Espressif Systems. Espressif Systems. url: https://www.
espressif.com/en/products/socs/esp32 (visited on 03/24/2025).

[31] Espressif Announces the Launch of ESP32 Cloud on Chip and Funding by Fosun Group.
Accessed: 2025-03-24. Espressif Systems. 2016. url: https://www.espressif.com/en/media
overview/news/20160907-esp32briefing.

[32] Espresso Parts. Solenoid Valves for Espresso Machine: What to Know. Accessed: 2025-05-
19. 2025. url: https://www.espressoparts.com/blogs/barista-basics-tutorials/solenoids.

[33] EspressoExperts. Faema Due D92 Espresso Machine. https : / / www . ebay . com / itm /
186630072362. Seller refurbished, listed on eBay. Accessed: 2025-03-28.

[34] Maria Amélia G Ferrão et al. “Genomic-assisted breeding for climate-smart coffee”. In: The
Plant Genome 17.1 (2024), e20321.

[35] Britta Folmer. The craft and science of coffee. Academic Press, 2016.

[36] GeeksforGeeks. Kernel in Operating System. Accessed: 2025-03-28. 2025. url: https : //
www.geeksforgeeks.org/kernel-in-operating-system/.

[37] Google. Online, collaborative spreadsheets. Available: https : / / workspace . google . com /
products/sheets/. 2025.

[38] Jan Goolsbey. Clue Coffee Scale. Accessed: 2025-05-19. 2024. url: https://www.digikey.
no/en/maker/projects/clue-coffee-scale/2fa95462a8cc4fd19fbe014377b6597b.

[39] Atsushi Hashimoto et al. “Influences of pH and temperature on infrared spectroscopic fea-
tures of brewed coffee”. In: Procedia Food Science 1 (2011), pp. 1132–1138.

[40] Home-Barista.com. Espresso Machines 101. Accessed: 2025-05-18. 2005. url: https://www.
home-barista.com/espresso-machines/espresso-machines-101-t368.html.

[41] how.dev. What is C++? Accessed: 2025-03-28. url: https://how.dev/answers/what-is-cpp.

[42] Barista Hustle. EM 3.04 How the E61 Thermosyphon Works. Accessed: 2025-03-28. 2025.
url: https://www.baristahustle.com/lesson/em-3-04-how-the-e61-thermosyphon-works/.

[43] InfluxData. InfluxDB OSS v1 Documentation. Accessed: 2025-03-28. url: https://docs.
influxdata.com/influxdb/v1/.

[44] InfluxDB. InfluxDB bucket retention. 2025. url: https://docs.influxdata.com/influxdb/v2/
reference/cli/influx/bucket/update//#update-the-shard-group-duration-of-a-bucket.

84

https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html
https://wiki.dfrobot.com/Gravity_Analog_AC_Current_Sensor__SKU_SEN0211_
https://wiki.dfrobot.com/Gravity__I2C_ADS1115_16-Bit_ADC_Module_Arduino_%26_Raspberry_Pi_Compatible__SKU__DFR0553
https://wiki.dfrobot.com/Gravity__I2C_ADS1115_16-Bit_ADC_Module_Arduino_%26_Raspberry_Pi_Compatible__SKU__DFR0553
https://wiki.dfrobot.com/Gravity:%20I2C%20Digital%20Wattmeter%20SKU:%20SEN0291
https://wiki.dfrobot.com/Gravity:%20I2C%20Digital%20Wattmeter%20SKU:%20SEN0291
https://wiki.dfrobot.com/Terminal_sensor_adapter_V2_SKU_DFR0055
https://wiki.dfrobot.com/Terminal_sensor_adapter_V2_SKU_DFR0055
https://www.digikey.no/en/products/detail/amphenol-advanced-sensors/NPI-19J-200G2/15789382
https://www.digikey.no/en/products/detail/amphenol-advanced-sensors/NPI-19J-200G2/15789382
https://www.digikey.no/en/products/detail/amphenol-advanced-sensors/NPI-19J-200G2/15789382
https://discord.com/
https://app.diagrams.net/
https://earthstoriez.com/history-and-evolution-of-the-italian-espresso-machine
https://earthstoriez.com/history-and-evolution-of-the-italian-espresso-machine
https://doi.org/10.1007/s10286-023-00981-7
https://link.springer.com/article/10.1007/s10286-023-00981-7
https://link.springer.com/article/10.1007/s10286-023-00981-7
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/media_overview/news/20160907-esp32briefing
https://www.espressif.com/en/media_overview/news/20160907-esp32briefing
https://www.espressoparts.com/blogs/barista-basics-tutorials/solenoids
https://www.ebay.com/itm/186630072362
https://www.ebay.com/itm/186630072362
https://www.geeksforgeeks.org/kernel-in-operating-system/
https://www.geeksforgeeks.org/kernel-in-operating-system/
https://workspace.google.com/products/sheets/
https://workspace.google.com/products/sheets/
https://www.digikey.no/en/maker/projects/clue-coffee-scale/2fa95462a8cc4fd19fbe014377b6597b
https://www.digikey.no/en/maker/projects/clue-coffee-scale/2fa95462a8cc4fd19fbe014377b6597b
https://www.home-barista.com/espresso-machines/espresso-machines-101-t368.html
https://www.home-barista.com/espresso-machines/espresso-machines-101-t368.html
https://how.dev/answers/what-is-cpp
https://www.baristahustle.com/lesson/em-3-04-how-the-e61-thermosyphon-works/
https://docs.influxdata.com/influxdb/v1/
https://docs.influxdata.com/influxdb/v1/
https://docs.influxdata.com/influxdb/v2/reference/cli/influx/bucket/update//#update-the-shard-group-duration-of-a-bucket
https://docs.influxdata.com/influxdb/v2/reference/cli/influx/bucket/update//#update-the-shard-group-duration-of-a-bucket

KAFFEKNEKT

[45] InfluxDB. InfluxDB storage engine. 2025. url: https://docs.influxdata.com/influxdb/v2/
reference/internals/storage-engine/.

[46] Introduction to Qt. url: https://doc.qt.io/qt-6/qt-intro.html (visited on 03/26/2025).

[47] Ippon Technologies. A Beginner’s Guide to InfluxDB: A Time-Series Database. Accessed:
2025-03-28. url: https://blog.ippon.tech/a-beginners-guide- to- influxdb-a- time- series-
database.

[48] Seth Kenlon. Getting started with Qt Creator. Accessed: 2025-05-18. 2021. url: https://
opensource.com/article/21/6/qtcreator.

[49] KjellCompany. Raspberry Pi 5 Ettkortsdatamaskin Model B 4 GB. https://www.kjell.com/
no/produkter/data/raspberry - pi/ raspberry - pi - 5 - ettkortsdatamaskin -model - b - 4 - gb-
p88382. Accessed: 2025-03-28.

[50] Linux Mint Community. Timeshift - System Restore Utility. Accessed: 2025-05-16. 2024.
url: https://community.linuxmint.com/software/view/timeshift.

[51] David C. Luckham et al. “Specification and analysis of system architecture using Rapide”.
In: IEEE transactions on software engineering 21.4 (1995), pp. 336–354.

[52] Lux Cafe Club. The Definitive Guide to Optimal Coffee Brewing Time. Accessed: 2025-01-
26. 2024. url: https://www.luxcafeclub.com/blogs/news/the-definitive-guide-to-optimal-
coffee-brewing-time.

[53] Khaled Magdy. ESP32 ADC – Read Analog Input in Arduino IDE. Accessed: 2025-05-
20. 2023. url: https://deepbluembedded.com/esp32-adc- tutorial- read-analog-voltage-
arduino/.

[54] Wendy L Martinez. “Graphical user interfaces”. In: Wiley Interdisciplinary Reviews: Com-
putational Statistics 3.2 (2011), pp. 119–133.

[55] Ivan Mezei. “Cross-platform GUI for educational microcomputer designed in Qt”. In: 2017
IEEE East-West Design Test Symposium (EWDTS). 2017, pp. 1–4. doi: 10.1109/EWDTS.
2017.8110109.

[56] Microsoft. Get ready for the future of work with Microsoft Teams. Available: https://www.
microsoft.com/en-us/microsoft-teams/group-chat-software. 2025.

[57] Microsoft Corporation. What is Azure DevOps? Accessed: 2025-05-19. 2024. url: https:
//learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-
devops.

[58] NovaSensor NPI-19 Digital I2C Pressure Sensor. Tech. rep. AAS-920-699F. Accessed: 2025-
05-17. Amphenol Advanced Sensors, 2022. url: https://www.amphenol-sensors.com/hubfs/
AAS-920-699F-NovaSensor-NPI-19-I2C-061322-web.pdf.

[59] Nuova Ricambi. Faema 02. Accessed: 2025-05-14. 2025. url: https://nuovaricambi.net/en/
draw/85.

[60] Vedat Ozan Oner. Developing IoT Projects with ESP32: Automate Your Home or Business
with Inexpensive Wi-Fi Devices. Packt Publishing, 2021. isbn: 978-1-83864-116-0 978-1-
83864-280-8.

[61] OpenAI. Introducing ChatGPT. Available: https://openai.com/index/chatgpt/. 2025.

[62] Overleaf. Why latex. Available: https://www.overleaf.com/about/why-latex. 2025.

[63] Perfect Daily Grind. What’s the future for espresso machine technology? 2024. url: https:
//perfectdailygrind.com/2024/11/future-for-espresso-machine-technology/.

[64] Zachariah Peterson. What Is a Solder Bridge Jumper? Best Practices in PCB Design. url:
https://resources.altium.com/p/solder-bridge-jumper-best-practices-pcb-design.

[65] PlatformIO. What is PlatformIO. Accessed: 2025-05-16. 2024. url: https://docs.platformio.
org/en/latest/what-is-platformio.html.

[66] Deeksha Prahallad and Kamalraj R. “IoT Coffee Machine”. In: International Journal of
Research Publication and Reviews 5.3 (2024). Accessed: 2025-05-19, pp. 1295–1299. doi:
10.55248/gengpi.5.0324.0658. url: https://ijrpr.com/uploads/V5ISSUE3/IJRPR23451.
pdf.

[67] QApplicationclass. url: https://doc.qt.io/qt-6/qapplication.html (visited on 03/26/2025).

[68] QMaiWindow. url: https://doc.qt.io/qt-6/qmainwindow.html (visited on 03/26/2025).

85

https://docs.influxdata.com/influxdb/v2/reference/internals/storage-engine/
https://docs.influxdata.com/influxdb/v2/reference/internals/storage-engine/
https://doc.qt.io/qt-6/qt-intro.html
https://blog.ippon.tech/a-beginners-guide-to-influxdb-a-time-series-database
https://blog.ippon.tech/a-beginners-guide-to-influxdb-a-time-series-database
https://opensource.com/article/21/6/qtcreator
https://opensource.com/article/21/6/qtcreator
https://www.kjell.com/no/produkter/data/raspberry-pi/raspberry-pi-5-ettkortsdatamaskin-model-b-4-gb-p88382
https://www.kjell.com/no/produkter/data/raspberry-pi/raspberry-pi-5-ettkortsdatamaskin-model-b-4-gb-p88382
https://www.kjell.com/no/produkter/data/raspberry-pi/raspberry-pi-5-ettkortsdatamaskin-model-b-4-gb-p88382
https://community.linuxmint.com/software/view/timeshift
https://www.luxcafeclub.com/blogs/news/the-definitive-guide-to-optimal-coffee-brewing-time
https://www.luxcafeclub.com/blogs/news/the-definitive-guide-to-optimal-coffee-brewing-time
https://deepbluembedded.com/esp32-adc-tutorial-read-analog-voltage-arduino/
https://deepbluembedded.com/esp32-adc-tutorial-read-analog-voltage-arduino/
https://doi.org/10.1109/EWDTS.2017.8110109
https://doi.org/10.1109/EWDTS.2017.8110109
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://www.amphenol-sensors.com/hubfs/AAS-920-699F-NovaSensor-NPI-19-I2C-061322-web.pdf
https://www.amphenol-sensors.com/hubfs/AAS-920-699F-NovaSensor-NPI-19-I2C-061322-web.pdf
https://nuovaricambi.net/en/draw/85
https://nuovaricambi.net/en/draw/85
https://openai.com/index/chatgpt/
https://www.overleaf.com/about/why-latex
https://perfectdailygrind.com/2024/11/future-for-espresso-machine-technology/
https://perfectdailygrind.com/2024/11/future-for-espresso-machine-technology/
https://resources.altium.com/p/solder-bridge-jumper-best-practices-pcb-design
https://docs.platformio.org/en/latest/what-is-platformio.html
https://docs.platformio.org/en/latest/what-is-platformio.html
https://doi.org/10.55248/gengpi.5.0324.0658
https://ijrpr.com/uploads/V5ISSUE3/IJRPR23451.pdf
https://ijrpr.com/uploads/V5ISSUE3/IJRPR23451.pdf
https://doc.qt.io/qt-6/qapplication.html
https://doc.qt.io/qt-6/qmainwindow.html

KAFFEKNEKT

[69] Qt Centre Community. The simple form, What is the difference between cmake and qmake?
Accessed: 2025-05-18. 2014. url: https://www.qtcentre.org/threads/60165-The-simple-
form-What-is-the-difference-between-cmake-and-qmake.

[70] Qt Company. Qt Development Tools. Accessed: 2025-05-18. 2025. url: https://www.qt.io/
product/development-tools.

[71] Qt Documentation. url: https://doc.qt.io/qt-6.7/ (visited on 03/27/2025).

[72] Qt Features. url: https://www.qt.io/product/features (visited on 03/27/2025).

[73] Qt Overview. url: https ://doc.qt . io/qtcreator/creator- overview.html#:∼ : text=Qt%
20Creator%20is%20a%20cross-platform%2C%20complete%20integrated%20development,
interfaces%20once%20and%20deploy%20them%20to%20many%20platforms. (visited on
03/26/2025).

[74] qWidget. url: https://doc.qt.io/qt-6/qwidget.html (visited on 03/26/2025).

[75] qWidgetClass. url: https://doc.qt.io/qt-6/qwidget.html (visited on 03/26/2025).

[76] RASPBERRY PI. 256GB SSD for Raspberry Pi. https://www.tme.eu/no/en/details/
sc1439/raspberry-pi-acessories/raspberry-pi/256gb-ssd/. Accessed: 2025-03-28.

[77] RaspberryPi.dk. 15,6 HDMI QLED Touchscreen Display til Raspberry Pi. https://raspberrypi.
dk/no/produkt/156-hdmi-qled-touchscreen-display-til-raspberry-pi/?currency=NOK. Ac-
cessed: 2025-03-28.

[78] Red Hat. What is Linux? Accessed: 2025-03-28. url: https://www.redhat.com/en/topics/
linux/what-is-linux.

[79] Reddit Community. Cross-compiling for Raspberry Pi on M1 Macs. Accessed: 2025-05-18.
2021. url: https : / /www . reddit . com/ r / osdev / comments / or8kch / crosscompiling for
raspberry pi on m1 macs/.

[80] Cadance Resources. What Is A Solder Bridge. url: https://resources.pcb.cadence.com/
blog/2022-what-is-a-solder-bridge.

[81] Barry Richard. Mastering the FreeRTOS Real Time Kernel: A Hands-On Tutorial Guide.
Pre-release 161204 Edition. 2016. url: https://github.com/FreeRTOS/FreeRTOS-Kernel-
Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf.

[82] rpi5. url: https://www.raspberrypi.com/news/introducing- raspberry-pi-5/ (visited on
03/26/2025).

[83] RS. What is a DIP switch. url: https://no.rs-online.com/web/generalDisplay.html?id=
ideas-and-advice/dip-switches-guide.

[84] RTOS Fundamentals. Accessed: 2025-03-27. FreeRTOS. url: https://www.freertos.org/
Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/01-RTOS-fundamentals.

[85] SCA Standard 350-2021: Semi-automatic and Automatic Espresso Machines – Specifications
and Test Methods. Tech. rep. Accessed: 2025-05-17. Specialty Coffee Association, 2022. url:
https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/627a7d67ebc1285ef2453497/
1652194663312/SCA Standard 350-2021 Dev03.pdf.

[86] Ken Schwaber and Jeff Sutherland. The Scrum Guide. Nov. 2020. url: https://scrumguides.
org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf.

[87] Scythe Studio. What is Qt and how to create GUIs using it? Accessed: 2025-03-28. url:
https://scythe-studio.com/en/blog/what-is-qt-framework-and-how-to-create-gui-with-it.

[88] semcon. hoved nettsiden semcon. Available: https://www.semcon.com/about-us. 2024.

[89] Semcon. Semcon. Available: https://www.semcon.com/projects/cases?utm source. 2025.

[90] semcon. semcon’s merge with knightec. Available: https://www.semcon.com/news/semcon-
and-knightec-merge-to- form-northern-europes- leading-consulting-firm-in-product-and-
digital-service-development. 2024.

[91] amphenol sensors. NPI-19 I2C Digital Pressure Sensor Application Guide. Accessed: 2025-
05-20. url: https ://www.amphenol - sensors .com/hubfs/I2C%20NPI- 19%20product%
20application%20Note.pdf.

[92] Signals and Slots in Qt. url: https ://doc .qt . io/qt- 6/signalsandslots .html (visited on
03/26/2025).

86

https://www.qtcentre.org/threads/60165-The-simple-form-What-is-the-difference-between-cmake-and-qmake
https://www.qtcentre.org/threads/60165-The-simple-form-What-is-the-difference-between-cmake-and-qmake
https://www.qt.io/product/development-tools
https://www.qt.io/product/development-tools
https://doc.qt.io/qt-6.7/
https://www.qt.io/product/features
https://doc.qt.io/qtcreator/creator-overview.html#:~:text=Qt%20Creator%20is%20a%20cross-platform%2C%20complete%20integrated%20development,interfaces%20once%20and%20deploy%20them%20to%20many%20platforms.
https://doc.qt.io/qtcreator/creator-overview.html#:~:text=Qt%20Creator%20is%20a%20cross-platform%2C%20complete%20integrated%20development,interfaces%20once%20and%20deploy%20them%20to%20many%20platforms.
https://doc.qt.io/qtcreator/creator-overview.html#:~:text=Qt%20Creator%20is%20a%20cross-platform%2C%20complete%20integrated%20development,interfaces%20once%20and%20deploy%20them%20to%20many%20platforms.
https://doc.qt.io/qt-6/qwidget.html
https://doc.qt.io/qt-6/qwidget.html
https://www.tme.eu/no/en/details/sc1439/raspberry-pi-acessories/raspberry-pi/256gb-ssd/
https://www.tme.eu/no/en/details/sc1439/raspberry-pi-acessories/raspberry-pi/256gb-ssd/
https://raspberrypi.dk/no/produkt/156-hdmi-qled-touchscreen-display-til-raspberry-pi/?currency=NOK
https://raspberrypi.dk/no/produkt/156-hdmi-qled-touchscreen-display-til-raspberry-pi/?currency=NOK
https://www.redhat.com/en/topics/linux/what-is-linux
https://www.redhat.com/en/topics/linux/what-is-linux
https://www.reddit.com/r/osdev/comments/or8kch/crosscompiling_for_raspberry_pi_on_m1_macs/
https://www.reddit.com/r/osdev/comments/or8kch/crosscompiling_for_raspberry_pi_on_m1_macs/
https://resources.pcb.cadence.com/blog/2022-what-is-a-solder-bridge
https://resources.pcb.cadence.com/blog/2022-what-is-a-solder-bridge
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf
https://github.com/FreeRTOS/FreeRTOS-Kernel-Book/releases/download/V1.1.0/Mastering-the-FreeRTOS-Real-Time-Kernel.v1.1.0.pdf
https://www.raspberrypi.com/news/introducing-raspberry-pi-5/
https://no.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dip-switches-guide
https://no.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dip-switches-guide
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/01-RTOS-fundamentals
https://www.freertos.org/Documentation/01-FreeRTOS-quick-start/01-Beginners-guide/01-RTOS-fundamentals
https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/627a7d67ebc1285ef2453497/1652194663312/SCA_Standard_350-2021_Dev03.pdf
https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/627a7d67ebc1285ef2453497/1652194663312/SCA_Standard_350-2021_Dev03.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scythe-studio.com/en/blog/what-is-qt-framework-and-how-to-create-gui-with-it
https://www.semcon.com/about-us
https://www.semcon.com/projects/cases?utm_source
https://www.semcon.com/news/semcon-and-knightec-merge-to-form-northern-europes-leading-consulting-firm-in-product-and-digital-service-development
https://www.semcon.com/news/semcon-and-knightec-merge-to-form-northern-europes-leading-consulting-firm-in-product-and-digital-service-development
https://www.semcon.com/news/semcon-and-knightec-merge-to-form-northern-europes-leading-consulting-firm-in-product-and-digital-service-development
https://www.amphenol-sensors.com/hubfs/I2C%20NPI-19%20product%20application%20Note.pdf
https://www.amphenol-sensors.com/hubfs/I2C%20NPI-19%20product%20application%20Note.pdf
https://doc.qt.io/qt-6/signalsandslots.html

KAFFEKNEKT

[93] Barry R. Smith. “Cross-platform GUI development”. In: IUCr Computing Commission
Newsletter 1 (2003). Accessed: 2025-05-18. url: https://www.iucr.org/resources/commissions/
computing/newsletters/1/cross-platform-gui-development.

[94] Stack Overflow Community. Copying a local file from Mac to an SSH session in Terminal.
Accessed: 2025-05-18. 2016. url: https://stackoverflow.com/questions/39457759/copying-
a-local-file-from-mac-to-an-ssh-session-in-terminal.

[95] Stack Overflow Community. What is cross compilation? Accessed: 2025-05-18. 2009. url:
https://stackoverflow.com/questions/897289/what-is-cross-compilation.

[96] Jack C. Stanley and Erik D. Gross. Project Management Handbook Simplified Agile, Scrum
and DevOps for Beginners. The Tech Academy, 2020.

[97] Andrew Stellman and Jennifer Greene. Learning Agile: understanding Scrum, XP, Lean, and
Kanban. en. First edition. Sebastopol, CA: O’Reilly Media, 2015. isbn: 978-1-4493-3192-4
978-1-4493-6385-7.

[98] TDK-Lambda. TDK-Lambda Switching Power Supply, LS50-5, 5V dc, 10A, 50W, 1 Output,
125–373 V dc, 88–264 V ac Input. Accessed: 2025-05-20. 2025. url: https://no.rs-online.
com/web/p/switching-power-supplies/6802748.

[99] The Qt Company. Getting Started with Qt 5. Accessed: 2025-05-18. 2025. url: https://doc.
qt.io/qt-5/gettingstarted.html.

[100] The Qt Company. Introduction to Qt. Accessed: 2025-05-18. 2025. url: https://doc.qt.io/
qt-6/qt-intro.html.

[101] The Qt Company. Qt Creator Manual. Accessed: 2025-05-18. 2025. url: https://doc.qt.io/
qtcreator/qtcreator-toc.html.

[102] The Qt Company. Qt Creator Overview. Accessed: 2025-05-18. 2025. url: https://doc.qt.
io/qtcreator/creator-overview.html.

[103] The Qt Company. Qt History. Accessed: 2025-05-18. 2025. url: https://wiki.qt.io/Qt
History.

[104] The Qt Company. QWebSocket Class Reference. Accessed: 2025-05-18. 2025. url: https:
//doc.qt.io/qt-6/qwebsocket.html.

[105] The Qt Company. Raspberry Pi Quick Start Guide. Accessed: 2025-05-18. 2025. url: https:
//doc.qt.io/Boot2Qt/b2qt-qsg-raspberry.html.

[106] The Qt Company. The Perfect Framework for Industrial Applications. Tech. rep. Accessed:
2025-05-18. The Qt Company, 2018. url: https://www.qt.io/hubfs/Resource%20Center%
20migration/white-paper-the-perfect-framework-for-industrial-applications.pdf.

[107] TIFATECH Co., Ltd. HTCCA Control Board for CIME, FAEMA, CASADIO Coffee Ma-
chines. Accessed: 2025-05-15. 2024. url: https://tifatech.vn/en/htcca-control-board.

[108] Tooplate. Tooplate Free HTML Templates. https://www.tooplate.com/. Accessed 2025-05-
19. 2025.

[109] touchscreen. url: https://raspberrypi.dk/no/produkt/156-hdmi-qled-touchscreen-display-
til-raspberry-pi/ (visited on 03/26/2025).

[110] TSP-1PAG10305MZ Resistance Thermometer. Tech. rep. Accessed: 2025-05-19. SICK AG,
2023. url: https://www.farnell.com/datasheets/4248426.pdf.

[111] Understanding Split Core Current Transformer Design, Operation, Applications. Tech. rep.
Accessed: 2025-05-19. Yokogawa Test Measurement, 2025. url: https://tmi.yokogawa.com/
no/library/resources/application-notes/split-core-current-transformers/.

[112] Xibao Wang, Ge Li, and Peng Wang. “Qt-Based Cross-platform Design of Management
System for Distributed Real-time Simulation Platform”. In: Proceedings of the 5th Inter-
national Conference on Computer Sciences and Automation Engineering (ICCSAE 2015).
Accessed: 2025-05-18. 2016, pp. 856–860. doi: 10.2991/iccsae- 15.2016.159. url: https :
/ /www . researchgate . net / publication / 314641157 Qt - Based Cross - platform Design of
Management System for Distributed Real-time Simulation Platform.

[113] Wikipedia contributors. BibTeX — Wikipedia, The Free Encyclopedia. [Online; accessed
28-March-2025]. 2025. url: https://en.wikipedia.org/w/index.php?title=BibTeX&oldid=
1274908574.

87

https://www.iucr.org/resources/commissions/computing/newsletters/1/cross-platform-gui-development
https://www.iucr.org/resources/commissions/computing/newsletters/1/cross-platform-gui-development
https://stackoverflow.com/questions/39457759/copying-a-local-file-from-mac-to-an-ssh-session-in-terminal
https://stackoverflow.com/questions/39457759/copying-a-local-file-from-mac-to-an-ssh-session-in-terminal
https://stackoverflow.com/questions/897289/what-is-cross-compilation
https://no.rs-online.com/web/p/switching-power-supplies/6802748
https://no.rs-online.com/web/p/switching-power-supplies/6802748
https://doc.qt.io/qt-5/gettingstarted.html
https://doc.qt.io/qt-5/gettingstarted.html
https://doc.qt.io/qt-6/qt-intro.html
https://doc.qt.io/qt-6/qt-intro.html
https://doc.qt.io/qtcreator/qtcreator-toc.html
https://doc.qt.io/qtcreator/qtcreator-toc.html
https://doc.qt.io/qtcreator/creator-overview.html
https://doc.qt.io/qtcreator/creator-overview.html
https://wiki.qt.io/Qt_History
https://wiki.qt.io/Qt_History
https://doc.qt.io/qt-6/qwebsocket.html
https://doc.qt.io/qt-6/qwebsocket.html
https://doc.qt.io/Boot2Qt/b2qt-qsg-raspberry.html
https://doc.qt.io/Boot2Qt/b2qt-qsg-raspberry.html
https://www.qt.io/hubfs/Resource%20Center%20migration/white-paper-the-perfect-framework-for-industrial-applications.pdf
https://www.qt.io/hubfs/Resource%20Center%20migration/white-paper-the-perfect-framework-for-industrial-applications.pdf
https://tifatech.vn/en/htcca-control-board
https://www.tooplate.com/
https://raspberrypi.dk/no/produkt/156-hdmi-qled-touchscreen-display-til-raspberry-pi/
https://raspberrypi.dk/no/produkt/156-hdmi-qled-touchscreen-display-til-raspberry-pi/
https://www.farnell.com/datasheets/4248426.pdf
https://tmi.yokogawa.com/no/library/resources/application-notes/split-core-current-transformers/
https://tmi.yokogawa.com/no/library/resources/application-notes/split-core-current-transformers/
https://doi.org/10.2991/iccsae-15.2016.159
https://www.researchgate.net/publication/314641157_Qt-Based_Cross-platform_Design_of_Management_System_for_Distributed_Real-time_Simulation_Platform
https://www.researchgate.net/publication/314641157_Qt-Based_Cross-platform_Design_of_Management_System_for_Distributed_Real-time_Simulation_Platform
https://www.researchgate.net/publication/314641157_Qt-Based_Cross-platform_Design_of_Management_System_for_Distributed_Real-time_Simulation_Platform
https://en.wikipedia.org/w/index.php?title=BibTeX&oldid=1274908574
https://en.wikipedia.org/w/index.php?title=BibTeX&oldid=1274908574

KAFFEKNEKT

[114] Wikipedia contributors. Bluetooth — Wikipedia, The Free Encyclopedia. [Online; accessed
28-March-2025]. 2025. url: https ://en.wikipedia .org/w/index.php?title=Bluetooth&
oldid=1282286790.

[115] Wikipedia contributors. CERN — Wikipedia, The Free Encyclopedia. [Online; accessed 28-
March-2025]. 2025. url: https://en.wikipedia.org/w/index.php?title=CERN&oldid=
1280754673.

[116] Wikipedia contributors. Convection — Wikipedia, The Free Encyclopedia. [Online; accessed
28-March-2025]. 2025. url: https://en.wikipedia.org/w/index.php?title=Convection&
oldid=1269012706.

[117] Wikipedia contributors. Espresso machine — Wikipedia, The Free Encyclopedia. https :
//en.wikipedia.org/w/index.php?title=Espresso machine&oldid=1278627644. [Online;
accessed 1-May-2025]. 2025.

[118] Wikipedia contributors. Google Scholar — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 27-March-2025]. 2025. url: https://en.wikipedia.org/w/index.php?title=Google
Scholar&oldid=1280805544.

[119] Wikipedia contributors. KiCad — Wikipedia, The Free Encyclopedia. [Online; accessed 26-
March-2025]. 2024. url: https://en.wikipedia.org/w/index.php?title=KiCad&oldid=
1266273887.

[120] Wikipedia contributors. Load cell — Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=Load cell&oldid=1288643076. [Online; accessed 14-May-2025].
2025.

[121] Wikipedia contributors. Qmake – Wikipedia, The Free Encyclopedia. Accessed: 2025-05-18.
2025. url: https://en.wikipedia.org/wiki/Qmake.

[122] Wikipedia contributors. Transducer — Wikipedia, The Free Encyclopedia. https : / / en .
wikipedia.org/w/index.php?title=Transducer&oldid=1253199242. [Online; accessed 12-
May-2025]. 2024.

[123] Jakub Wincenciak. What is Qt Framework and How to Create GUI with It. Accessed: 2025-
05-18. 2025. url: https://scythe-studio.com/en/blog/what-is-qt-framework-and-how-to-
create-gui-with-it.

[124] window and dialog widgets. url: https://doc.qt.io/qt-6/application-windows.html (visited
on 03/26/2025).

[125] Joseph Wu. “A basic guide to I2C”. In: Application Note (2022).

[126] MOSS Zack. “Open Source Espresso Machine for Makers”. PhD thesis. University of Sheffield,
2019.

88

https://en.wikipedia.org/w/index.php?title=Bluetooth&oldid=1282286790
https://en.wikipedia.org/w/index.php?title=Bluetooth&oldid=1282286790
https://en.wikipedia.org/w/index.php?title=CERN&oldid=1280754673
https://en.wikipedia.org/w/index.php?title=CERN&oldid=1280754673
https://en.wikipedia.org/w/index.php?title=Convection&oldid=1269012706
https://en.wikipedia.org/w/index.php?title=Convection&oldid=1269012706
https://en.wikipedia.org/w/index.php?title=Espresso_machine&oldid=1278627644
https://en.wikipedia.org/w/index.php?title=Espresso_machine&oldid=1278627644
https://en.wikipedia.org/w/index.php?title=Google_Scholar&oldid=1280805544
https://en.wikipedia.org/w/index.php?title=Google_Scholar&oldid=1280805544
https://en.wikipedia.org/w/index.php?title=KiCad&oldid=1266273887
https://en.wikipedia.org/w/index.php?title=KiCad&oldid=1266273887
https://en.wikipedia.org/w/index.php?title=Load_cell&oldid=1288643076
https://en.wikipedia.org/w/index.php?title=Load_cell&oldid=1288643076
https://en.wikipedia.org/wiki/Qmake
https://en.wikipedia.org/w/index.php?title=Transducer&oldid=1253199242
https://en.wikipedia.org/w/index.php?title=Transducer&oldid=1253199242
https://scythe-studio.com/en/blog/what-is-qt-framework-and-how-to-create-gui-with-it
https://scythe-studio.com/en/blog/what-is-qt-framework-and-how-to-create-gui-with-it
https://doc.qt.io/qt-6/application-windows.html

Appendix A

Project Management
Documentation

89

KAFFEKNEKT

Risk Analysis

90

K
A
F
F
E
K
N
E
K
T

Table A.1.1: Risk Analysis Project 1

91

K
A
F
F
E
K
N
E
K
T

Table A.1.2: Risk Analysis Project 2

92

K
A
F
F
E
K
N
E
K
T

Table A.1.3: Risk Analysis Project 3

93

K
A
F
F
E
K
N
E
K
T

Table A.1.4: Risk Analysis Product 1

94

K
A
F
F
E
K
N
E
K
T

Table A.1.5: Risk Analysis Product 2

95

KAFFEKNEKT

Table A.1.6: Consequences For Product

Table A.1.7: Probability Level Matrix For Product

96

KAFFEKNEKT

Table A.1.8: Consequences For Project

Table A.1.9: Probability Level Matrix For Project

97

KAFFEKNEKT

Table A.1.10: Risk Matrix

Table A.1.11: Risk Matrix Legend

98

KAFFEKNEKT

User Stories

99

ID S-1.1
Title Instructions
User Story As a user

I want instructions on how to operate an esspresso machine.

So that I can make a delicious and satisfying cup of espresso.

Acceptance criteria Given that the user can press the "Guide" button.

Then the user gets access the instructions screen.

ID S-1.2
Title Machine Usage
User Story As a user

I want to be able to receive discrete and detailed data regarding machine usage.

So that I can monitor and understand how the machine is used over time

Acceptance criteria Given that the system detects machine usage

And updates relevant data

When the user navigates to the statistics dashboard.

Then the user shall be able to see statistics reflecting the machine usage over time.

ID S-1.3
Title Parameters
User Story As a user

I want to in real-time monitor key parameters during brewing time.

So that I can assess and ensure the quality of the espresso.

Acceptance criteria Given that the system collects real-time sensor data,

And presents the data on the dashboard

Then they will see:
 - Numerical values updated in real-time.

ID S-1.3.1
Title Temperature Parameter
User Story As a user

I want to in real-time monitor the water temperature during brewing time.

So that I can assess and ensure the quality of the espresso.

Acceptance criteria Given that the system collects real-time sensor data from the temperature sensor,

And presents the data on the dashboard

Then they will see:
 - Numerical values or graphs updated in real-time.

ID S-1.3.2
Title Pressure Parameter
User Story As a user

I want to in real-time monitor the water pressure during the espresso-making process

So that I can assess and ensure the quality of the espresso.

Acceptance criteria Given that the system collects real-time sensor data from the pressure sensor,

And presents the data on the dashboard

Then they will see:
 - Numerical values updated in real-time.

ID S-1.3.3
Title Timestamp Parameter
User Story As a user

I want to know the brewing time of each espresso made.

So that I can assess and ensure the quality of the espresso.

Acceptance criteria Given that the system knows when the espresso starts to brew

And knows when the espresso is finished brewing

And presents the data on the dashboard

Then they will see:
 - Numerical values updated in real-time.

ID S-1.4
Title Cleaning Notifications
User Story As a user

I want to be informed of when the machine needs cleaning

So that I can maintain the machine over time

Acceptance criteria Given that the machine usage threshold has been reached since it was last cleaned

Or approprate time has passed since last cleaning

Then notification outputs will be showcased on the dashboard

ID S-1.5
Title Parameter Deviations
User Story As a user

I want to be notified when key parameters deviate from optimal conditions.

So that I can take appropriate action to resolve the issue

Acceptance criteria Given that the detected parameters fall out of bounds

Then relevant notifications will be displayed to the dashboard

ID S-1.6
Title Mobility
User Story As a user

I want to be able to move the espresso machine to different locations without requiring an internet
connection

So that I can continue using the machine without losing functionality.

Acceptance criteria Given that all data is stored locally.

When we power off the machine

And power it back on again.

Then all saved data should still be available locally in the machine.

ID S-1.7
Title Coffee Report
User Story As a user

I want a report detailing the quality of espresso over a period of time

So that I can take action to improve the overall espresso quality if needed

Acceptance criteria Given that relevant data is collected,

When the user navigates to the report screen

Then the user will be able to view reports detailing the espresso quality over a period of time

ID S-1.8
Title Main Screen
User Story As a user

I want to interact with the system through an interactive-display,

So that I can select and view relevant data.

Acceptance criteria Given that the system architecture supports displaying different data types and formats,

When the user navigates to the information selection screen,

Then the user shall be able to select their preferred data to be shown on the main screen.

ID S-1.9
Title Power Usage
User Story As a user

I want to in real-time monitor the power usage of the espresso machine

So that I can know the power consumption of the espresso machine.

Acceptance criteria Given that the system collects real-time sensor data from the power sensors,

And presents the data on the dashboard

Then they will see:
 - Numerical values updated in real-time.

ID S-1.10
Title Graph Visualization
User Story As a user

I want sensor data visualized as graphs.

So that I can more efficiently understand the information delivered to me.

Acceptance criteria Given that the system collects sensor data,

When real-time data is presented on the dashboard

Then they will see:
 - Live graphs of temperature, pressure and/or power usage.

ID S-1.11
Title Scalability
User Story As a user

I want the system to support new sensors and visual elements with minimal effort

So that it can support future needs without needing a major redesign

Acceptance criteria Given that the design of the system is scalable

When a new sensor or visual element is implemented

Then the system's architecture shall allow its implementation with minimal change

ID S-1.12
Title Time Setting
User Story As a user

I want to be able to ajust the time of the system

So that the system operates accurately according to my local time or schedule, even when it is not
connected to the internet

Acceptance criteria Given that the system operates without the need of an internett connection

And the system has an "Adjust Time" functionality available on the dashboard

When the user manually sets the system time

Then the system updates its internal clock accordingly and continues to operate using the set time

KAFFEKNEKT

Requirements

104

Requirement Sub-requirement Priority
R-1.1
Use sensors to collect
relevant data.

R-1.1.1
Measure the water temperature of the coffee machine.

A

R-1.1.2
Measure the water pressure of the coffee machine.

R-1.1.3
Detect when a cup of coffee starts brewing and when it
stops.

R-1.1.4
Measure the power used by the coffee machine.
R-1.1.5
Count the amount of coffe cups made, and record the
point in time that they are made.

R-1.2
Display relevant
information to the user.

R-1.2.1
Display warning when water temperature is out of range
(90-96°C)

A

R-1.2.2
Display warning when water pressure is out of range (8-
10 bar)

R-1.2.3
Display a warning when the coffee machine requires
cleaning if either a week has passed or 120 cups have
been brewed since the user last indicated that cleaning
was performed.

R-1.2.4
Display real-time info reguarding temperature and
pressure

R-1.2.5
Display amounts of coffee cups made.
R-1.2.6
Display the power usage of the coffee machine

R-1.3
Save all collected data
to a server.

R-1.3.1
To a local server

A

R-1.4
Have a user interface.

R-1.4.1
The user interacts with the system through a display. A

R-1.5
Analyze collected data
and make a report.

R-1.5.1
Using theoretical coffee principles to determine the
coffee’s quality. B

R-1.6
Give instructions

R-1.6.1
On the coffee making process using premade
instructions.

A

R-1.6.2
On the coffee making process using users preference. C

R-1.6.3
On the development of the system. B

R-1.7
Be scaleable.

R-1.7.1
The architecture of the system shall allow additional
sensors to be integrated into the system without
compromising real-time performance.

B
R-1.7.2
The architecture of the system shall allow additional
visual elements to be integrated into the system.

R-1.8
Have a timesetting
functionality

R-1.8.1
The system shall allow the user to manually set the
system time through a user interface B

KAFFEKNEKT

A.3.1 Non-invasive Requirements MMS | IBM

Early in the project, it was emphasized that one of the system-level requirements for the moni-
toring system was that it should not be designed such that it would be invasive to the espresso
machine’s internal components. In other words, no modifications would be made to the internal
structure or any other pathways already existing in the espresso machine.

The constraint introduced by our customer was in the concern of preserving the integrity of the
existing hardware, and to not introduce risks of damaging commercial components.

As the project progressed, it became evident that strict adherence to this requirement would sig-
nificantly limit the technical feasibility of accurate sensor placements, scalable features for future
work, and of course the ambitions and potential for innovation of the team.

To truly capture and evaluate accurate readings for monitoring of the parameters presented for
our requirements, they had to allow for some form of invasive modifications to the system. This
brings us back to the very fundamental essence of what needs to be evaluated, that is, the quality
of espresso, and this requirement demands a strict measuring precision.

The non-invasive constraint associated with the requirements, hindered the team’s component
procurement early in the project, although the constraint was lifted by our customer as soon
as it became clear at one of the meetings when we requested permission to install controlled
modifications into the espresso machine, this change allowed for a broader range of technical
solutions for us to explore in the development of our monitoring system.

A.3.2 Non-functional requirements MMS | IBM

Although no explicit requirements were provided by the customer concerned with the accurate
monitoring of key parameters, we recognized the need to define such constraints to guide ourselves
through quality, usability and of course, expectations concerned with performance of the monitor-
ing.

Given that the customer’s goal is to showcase the system as a demonstration of Industry 4.0 tech-
nologies, we prioritized precision of data and visual responsiveness of the monitoring system as
crucial attributes.

The selection of components, specifically with regard to precise sensors and other components, was
influenced by our self-imposed constraints. Although more cost-effective sensors were certainly
considered, the decision to implement and invest in higher quality and precision components was
influenced by our desire to minimize error margins, while at the same time creating a more trust-
worthy result of the final product.

The rationale for the selection of specific components, their specifications and interfaces are pre-
sented in Appx. B.1

107

KAFFEKNEKT

Test Table

108

Test Case ID: Test Type: Test Description: Precondition: Test Steps: Result: Status: Assigned To: Comments:

T-FUNC-1.0 FUNC Functionality of the ESP32

1. ESP32 properly connected to each sensor
2. All sensors individually tested
3. Connection to the Raspberry Pi
4. Program capable of reading the interface

See ESP32 Dev log Fullfills wanted functionality. Complete Martin All unit tests described in
ESP32 dev log

T-FUNC-1.1 FUNC Functionality of the Database

1. Database correctly installed on Raspberry Pi
2.An InfluxDB user set up
3. A bucket defined and configured
4. Python library packages installed in virtual
environment
5. virtual environment activated

1. Activate virtual environment
2. Run "temperatur_influx.py", a script that reads data
from a One-Wire temperature sensor and inputs to
InfluxDB
3. Run command 'influx v1 shell', type 'use
"sensor_data", 'select * from "Temperature" '
4. Observe the screen and verify that data has been
saved in a measurement

Data is being stored in a bucket Complete Kadir

T-FUNC-1.2 FUNC Functionality of the Graphical User Interface 1. Application available on the Raspberry Pi
2. TBD

T-FUNC-1.3 FUNC Functionality of the Data Handling Script

1. Data Handling Scrip available on the Raspberry Pi
2. An input from a data source
3. Virtual environment activated to use library
packages
4. Socket client script ready to be run

1. Successfully run, then terminate instance of a data-
generating Esp32 script with platformio
2. Activate virtual environment
3. Run 'Data Handling Script'
4. Run the client script

Data shown in Data Handling Script
saved in bucket, simultaneously
transferred to the client script

Complete Kadir

T-FUNC-1.4 FUNC Functionality of the Printed Circuit Board TBD

T-INT-1.0 INT Data from the ESP32 gets stored in the database TBD

T-INT-1.1 INT Data from the ESP32 triggers a graph shown on a dispaly
that uses real-time data TBD

T-INT-1.2 INT Data from the Database is used to show graphs shown on
a dispaly TBD

T-INT-1.3 INT User sets time from dispay and it sets the RTC TBD
T-INT-1.4 INT Full system test TBD

T-ESP32-1.0 UNIT Temperature sensor testing See ESP32 Dev log See ESP32 Dev log Sensor works. Complete Martin
Temperature changes when
we touch the probe. Cannot
conclude if accurate.

T-ESP32-1.1 UNIT DC current sensor testing See ESP32 Dev log See ESP32 Dev log Sensor works. Complete Martin

Values are changing. Cannot
conclude if accurate.
Datasheet mentions
calibration.

T-ESP32-1.2 UNIT DC current sensor calibration See ESP32 Dev log See ESP32 Dev log Sensor is now calibrated. Complete Martin
Cannot conclude if accurate.
Datasheet mentions
calibration.

T-ESP32-1.3 UNIT AC current sensor testing See ESP32 Dev log See ESP32 Dev log Not expected readouts. Failed Martin

T-ESP32-1.4 UNIT USB communication testing See ESP32 Dev log See ESP32 Dev log Successful communication Complete Martin

The idea is to structure the
data being sent over usb by
using JSON format since it is
easy to read and understand.

T-ESP32-1.5 UNIT Combining two sensors See ESP32 Dev log See ESP32 Dev log Successfully combined two tasks Complete Martin

Need to start planning how to
structure the code. Using ai to
combine the tasks is allready
starting to get a bit messy.
Also: The system is not
connected to the internet - In
this current iteration the
esp32 gets the time sent from
the Raspberry Pi. This is a bad
idea since it can cause the
time to drift and have to be
revised.

T-ESP32-1.6 UNIT Pressure sensor testing See ESP32 Dev log See ESP32 Dev log Sensow works. Readouts makes sense. Complete Martin I notice a sporadic i2c error
once in a while.

T-ESP32-1.7 UNIT AC current sensor 2nd test See ESP32 Dev log See ESP32 Dev log Readouts doesnt makes sense. Failed Martin

Looks like 0.04 A means the
sensor is disconnected. It is
not disconnected so
something is going on.

T-ESP32-1.8 UNIT RTC-module testing See ESP32 Dev log See ESP32 Dev log Setting and recieving time works. Complete Martin

T-ESP32-1.9 UNIT AC current sensor 3rd test See ESP32 Dev log See ESP32 Dev log Sensor works. Complete Martin

These readouts makes sense,
but we want to confirm this
with using ampere meter
later.

T-ESP32-2.0 UNIT Calibrating AC current sensor See ESP32 Dev log See ESP32 Dev log Current sensor gives accurate readouts. Complete Martin
T-ESP32-2.1 UNIT MQTT communication testing See ESP32 Dev log See ESP32 Dev log Takes too much time. Failed Martin Not optimal. See dev log.
T-ESP32-2.2 UNIT Pressure sensor 2nd test See ESP32 Dev log See ESP32 Dev log Sensor works. Complete Martin

T-ESP32-2.3 UNIT Bluetooth communication test See ESP32 Dev log See ESP32 Dev log Established connection. Complete Martin
Putting this on hold until USB
communication version is
complete

T-ESP32-2.4 UNIT RTC interface test See ESP32 Dev log See ESP32 Dev log Date got sent and registered. ESP32
keeps sending data. Complete Martin

T-ESP32-2.5 UNIT RTC leading zeros test See ESP32 Dev log See ESP32 Dev log Leading zero works now Complete Martin

No need to consider any more
validation o fthe string since
the values will be set from the
gui.

T-ESP32-2.6 UNIT Combining sensors test See ESP32 Dev log See ESP32 Dev log Bug fixed. Complete Martin

T-ESP32-2.7 UNIT New temperature sensor test See ESP32 Dev log See ESP32 Dev log Sensor now works. Complete Martin See ESP32 Dev log, too much
info

T-ESP32-2.8 UNIT Combined test with static data See ESP32 Dev log See ESP32 Dev log Successfully added new field in
readouts. Complete Martin

T-ESP32-2.9 UNIT Implementation of AC current sensor See ESP32 Dev log See ESP32 Dev log Unsure how to proceed. Failed Martin Getting mutex errors. See
ESP32 dev log

T-ESP32-3.0 UNIT Implementation of temperature sensor as static data. See ESP32 Dev log See ESP32 Dev log Static data shows up in JSON structure. Complete Martin

T-ESP32-3.1 UNIT Implementation of temperature sensor as task See ESP32 Dev log See ESP32 Dev log Getting expected readouts in JSON
structure Complete Martin

T-ESP32-3.2 UNIT Implementation of static pressure data See ESP32 Dev log See ESP32 Dev log Static data shows up in JSON structure. Complete Martin
T-ESP32-3.3 UNIT Implementation of pressure sensor See ESP32 Dev log See ESP32 Dev log Getting readouts but crashes suddenly. Failed Martin

T-ESP32-3.4 UNIT Implementation of pressure sensor take 2 See ESP32 Dev log See ESP32 Dev log Getting expected readouts in JSON
structure Complete Martin

Still noticing timing issue.
Multiple readings within same
second, and sometimes it
skips a beat. Must look into
this.

T-ESP32-3.5 UNIT Testing of brewing trigger See ESP32 Dev log See ESP32 Dev log Flag = 1 when brewing, Flag = 0 when not Complete Martin Look into the timing skipping
a beat next!

T-ESP32-3.6 UNIT Testing new timer functionality See ESP32 Dev log See ESP32 Dev log Milliseconds works now. Complete Martin

T-PCB-1.0 UNIT Visual Inspection
1. PCB

Inspect the PCB and refer to drawings of the design
PCB looks good, and no signs of solder-
bridges Complete Ivan

T-PCB-1.1 UNIT Connection between 3.3V pads
1. PCB
2. Multimeter Connect multimeter probes, to certain pads on the PCB

and double check with the schematic.

Pads that should have 3.3V are
connected, and other pads that should
not, are not connected

Complete Ivan

T-PCB-1.2 UNIT Connection between 5v pads
1. PCB
2. Multimeter Connect multimeter probes, to certain pads on the PCB

and double check with the schematic.

Pads that should have 5V are connected,
and other pads that should not, are not
connected

Complete Ivan

T-PCB-1.3 UNIT Connection between Battery pads
1. PCB
2. Multimeter Connect multimeter probes, to certain pads on the PCB

and double check with the schematic.
Pads related to the battery work. Complete Ivan

T-PCB-1.4 UNIT Connection between GND
1. PCB
2. Multimeter Connect multimeter probes, to certain pads on the PCB

and double check with the schematic.
Ground is Grounded Complete Ivan

T-INT-1.0 UNIT clock_time: Time is set and displayed in terminal test 1 1. Raspberry Pi

1. Start clock_time
2. Verify that the set time widget is properly shown and
functions
3. Change time
4. Verify that the changed time is displayed on terminal

Changed time is displayed in the terminal
and in expected format Complete Didrik

Was done for only HH:mm:ss,
needed yyyy:MM:dd:HH:mm:
ss

T-INT-1.1 UNIT clock_time: Time is set and displayed in terminal test 2 1. Raspberry Pi

1. Start clock_time
2. Verify that the set time and date widget is properly
shown and functions
3. Change time
4. Verify that the changed time is displayed on terminal

Changed time is displayed in the terminal
and in expected format Complete Didrik Tested for yyyy:MM:dd:HH:

mm:ss

T-INT-1.2 UNIT SocketData: Connects to Data Handling Script and reads
values from random script

1. Raspberry Pi
2. ESP32

1. Activate virtual environment
2. Start Data Handling Script
3. Start SocketData
4. See that values mimic values from random script

Got errors on single lines on both sides. Failed Didrik & Kadir Changed code for both sides,
will retry test

T-INT-1.2 UNIT SocketData: Connects to Data Handling Script and reads
values from random script

1. Raspberry Pi
2. ESP32

1. Activate virtual environment
2. Start Data Handling Script
3. Start SocketData
4. See that values mimic values from random script

No errrors, displays correct values Complete Didrik & Kadir

T-MAC-1.0 UNIT Examine the inner circuit
1. Solenoid
2. Multimeter

Find out how the solenoid works, determine
where the coil continuity is between terminals

Measurement done. 630 ohm between
terminals 1 and 2. Complete Mikolaj

T-MAC-1.1 UNIT Test the solenoid 1. Solenoid
2. Multimeter

Determine if the solenoid is NC or NO.
After, determine when the solenoid is turned
on (230V)

The solenoid is NO (Normally open).
230V when the brewing begins. Complete Mikolaj

T-MAC-1.2 UNIT
Examine the control board inside the espresso machine. 1. Multimeter

Determine where the 230V(AC) phases are connected
inside the control board.

230V between every phase, verified that
it is an
IT-network 3-phase 230V system.

Complete Mikolaj

T-MAC-1.3 UNIT Connect the 5V power supply to the espresso machine. 1. Multimeter
2. Wiring

Investigate if the power supply will output the 5V when
choosing 2 phases and connecting them to L and N
inputs to the Power supply.

Stable 5V output signal measured. Complete Mikolaj

T-MAC-1.4 UNIT Connect the 12V power supply to the espresso machine. 1. Multimeter
2. Wiring

Investigate if the power supply will output the 12V when
choosing 2 phases and connecting them to their
corresponding inputs.

Almost stable 12V (11.81V) Complete Mikolaj

T-MAC-1.5 UNIT Connect the threaded pressure sensor inside the hydraulic
system of the espresso machine. 1. Threaded reduction couplers

2. Threaded adapters
Investigate where the threaded pressure sensor can be
connected to measure the brewing pressure.

Threaded pressure sensor connected to
the output
of the left heat exchanger, connected to
the left
grouphead.

Complete Mikolaj

T-MAC-1.6 UNIT Connect the threaded temperature sensor to the
grouphead.

1. Thread drill
2. Thread tap

Investigate where the threaded temperature sensor
(RTD) can be installed inside the grouphead for most
precise
temperature measurements.

M20 screw unplugged and a new one
designed, thread
tapped and drilled by Semcon for
threading
compatibility with the PT100 RTD
sensor.

Complete Mikolaj

T-MAC-1.7 UNIT Define the control board connections, confirm wiring from
the control board to the solenoids, and terminal block
connections. 1. Multimeter

Determine if the wires connected in the control board
are connected according
to a schematic found on the website.

Terminal block connections mapped,
Solenoid (Group 1), Solenoid (Group 2),
Solenoid (boiler fill), identified.
Button panel + flow meter, identified.

Complete Mikolaj

T-MAC-1.8 UNIT Comprehend the design and operation of the espresso
machine.

1. Research
2. Manual
3. Parts manual

Determine what kind of espresso machine it is, single
boiler, double boiler, or heat exchanger.
Get acquainted with the inner key components of the
machine.

Two heat exchangers, one boiler,
identified. Complete Mikolaj

T-MAC-1.9 UNIT Connect the AC current clamp sensor at the correct
conductor to relate it to a "trigger" from the solenoid.

1. Multimeter
2. Examination

Determine which wire is connected to the solenoid
control board. Wire identified, clamped around. Complete Mikolaj

T-GUI-1 UNIT Qt “Hello World” QDialog build & run Qt Creator installed; project template in place

1. Pull/checkout GUI repo.
2. Open “HelloWorld” dialog project in Qt Creator.
3. Build & Run → no compile errors.
4. Click button → “Hello World” message appears

Hello World Dialog pops up successfully Complete Sokaina

T-GUI-2 UNIT

InfluxDB read/write via standalone Python InfluxDB running on RPi2; test bucket & user created

1. Run Python script to write a sample point.
2. Query InfluxDB CLI for that point.
3. Run Python script to read it back.
4. Verify values match.

Got data from esp32 to the database Complete Sokaina

T-GUI-3

UNIT Graph module pops up on “D” key with fake data Graph code in project; no ESP32 required

1. Load graph module in isolation.
2. Feed it a fake data array.
3. Simulate “D” key press.
4. Verify graph window opens and plots data.

Graph pop up when "D" key is pressed
and changes into 3 different graphs
when the same key is pressed.

Complete Sokaina

T-GUI-4 FUNC
MainWindow skeleton (buttons, widgets, labels) GUI built and launched on RPi/VM

1. Launch the full GUI.
2. Verify MainWindow opens with all expected buttons,
widgets & labels visible and correctly laid out.

Mainwindow opens up when code is built
and run, the entire app woks as wanted. Complete Sokaina

T-GUI-5 FUNC Button & dialog end-to-end responsiveness MainWindow open
1. Click each top-level button.
2. Verify the correct dialog/widget appears and can be
closed without error.

Correct dialog oppens when buttons are
clicked Complete Sokaina

T-GUI-6 FUNC “Hamburger” menu QFrame MainWindow open
1. Click hamburger icon.
2. Verify a QFrame slides out containing three buttons: Coffee Instructions, Sensor Analytics, Statistics.

QFrame shows up with correct button
when hamburger button is clicked Complete Sokaina

T-GUI-7 FUNC Coffee Instructions dialog Hamburger menu open
1. Click “Coffee Instructions”.
2. Verify its dialog appears with expected instructions
and can be closed.

Correct dialog oppens when buttons are
clicked Complete Sokaina

T-GUI-8 FUNC

Sensor Analytics nested QFrame

Hamburger menu open

1. Click “Sensor Analytics”.
2. Verify a nested QFrame appears with three buttons:
Water Temperature, Water Pressure, Power
Consumption.

Correct frame oppens when buttons are
clicked Complete Sokaina

T-GUI-9 FUNC

Water Temperature dialog

Sensor-Analytics QFrame open

1. Click “Water Temperature”.

2. Verify temperature-readout widget/dialog opens and
displays a placeholder or live value.

Correct dialog oppens when buttons are
clicked Complete Sokaina

T-GUI-10 FUNC
Water Pressure dialog

Sensor-Analytics QFrame open
1. Click “Water Pressure”.
2. Verify pressure-readout widget/dialog opens and displays a placeholder or live value.Correct dialog oppens when buttons are

clicked Complete Sokaina

T-GUI-11
FUNC

Power Consumption dialog
Sensor-Analytics QFrame open

1. Click “Power Consumption”.
2. Verify power-readout widget/dialog opens and displays a placeholder or live value.Correct dialog oppens when buttons are

clicked Complete Sokaina

T-GUI-12 FUNC Statistics (history) graph dialog

Hamburger menu open

1. Click “Statistics”.

2. Verify history-graph dialog opens with date-range
selectors.

Correct dialog oppens when buttons are
clicked Complete Sokaina

T-GUI-13

FUNC

Settings dialog

MainWindow open

1. Click “Settings”.

2. Verify settings dialog appears with expected controls
(DB credentials, ESP32 port, etc.).

Correct dialog oppens when buttons are
clicked Complete Sokaina

T-GUI-14 FUNC

Info dialog & “Here” link MainWindow open

1. Click “Info”.
2. Verify info dialog appears.
3. Click “Here” link/button.
4. Verify help text or external page loads.

Correct dialog and frame oppens when
buttons are clicked Complete Sokaina

T-GUI-15
FUNC GUI ↔ ESP32 connectivity ESP32 attached or stub server running; GUI open

1. Click “Connect ESP32”.
2. Verify status indicator shows “Connected”.
3. Click “Fetch Real”; confirm no errors if stub present.

Failed Complete Sokaina

T-GUI-16

FUNC

GUI ↔ InfluxDB connectivity

InfluxDB running; GUI open

1. Click “Connect DB”.
2. Verify status indicator shows “DB OK”.
3. Click “Write Sample”; use CLI to confirm it landed in
the bucket.

Correct graphs pop up Complete Sokaina

T-GUI-17 UNIT
Real-time graph (fake data)

T-GUI-3 passed; GUI connected to DB & ESP32 stub
1. Press “D” in MainWindow.
2. Verify real-time graph window opens and fake data
streams in.

Fake data streams and real time graph
pops up successfully Complete Sokaina

T-GUI-18
FUNC Real-time graph (live ESP32 data) ESP32 streaming live; GUI connected

1. Press “Fetch Real” or “D”.
2. Verify graph window opens and plots live sensor
data.

Graph plots in the correct Dialog Complete Sokaina

T-GUI-19

FUNC Historical graph from InfluxDB

InfluxDB populated with ≥30 points; GUI open

1. Open “Statistics” dialog.
2. Select date range.
3. Click “Load”.
4. Verify historical graph renders and pan/zoom works.

Correct graphs pop up when clicked on
spesific button (time range) in Qframe Complete Sokaina

T-GUI-20 FUNC GUI ↔ ESP32 connectivity ESP32 attached or stub server running; GUI open
1. Click “Connect ESP32”.
2. Verify status indicator shows “Connected”.
3. Click “Fetch Real”; confirm no errors if stub present.

Data is fetched succesfully Complete Sokaina

T-GUI-21 FUNC Python app launches and shows main buttons Python app code checked out; all dependencies installed

1. Run the Python GUI (python main.py).
2. Verify the main window opens with at least “Start
Brewing” and “Warning” buttons visible.
3. Close the app without errors.

App runs corectly. Complete Sokaina

T-GUI-22

FUNC “Start Brewing” button triggers brew workflow T-GUI-21 passed; (hardware stub or simulator attached)

1. Launch the app.
2. Click “Start Brewing”.
3. Verify a brewing progress indicator/dialog appears.
4. Simulate (or wait for) brew completion; confirm a
“Done” or similar success message is shown.

App runs corectly and displays water
temp and pressure values in "real-time"
with fake values

Complete Sokaina

T-GUI-23 FUNC

“Warning” button displays warning dialog T-GUI-21 passed

1. Launch the app.
2. Click the “Warning” button.
3. Verify a warning dialog or pop-up appears with the
correct warning text.
4. Close the warning dialog and ensure the main
window remains responsive.

Warning dialog pops up as iintended with
an "ok" and "ignore" button Complete Sokaina

T-DTB-01 UNIT Flux query test 1. Data available in selected bucket
2. Flux query script available

1. Save query script in a file
2. Follow syntax for executing an influx query file
command in terminal
3. Observe command results

Correct data shown, compared with
queried data from 'influx v1 shell' Complete Kadir Flux queries drop rows that

include null values

T-DTB-02 UNIT Event logging task 1. Data within set range of task script available
2. Script written with correct syntax and logic

1. Log into InfluxDB UI
2. Save event logging script in 'Tasks* section
3. Activate the task
4. Observe sequential run statuses
5. Verify by querying data from new bucket

Given conditions in the task script,
correct data has been moved to the new
bucket

Complete Kadir

T-DTB-03 UNIT Readable time logic 1. 'Datetime' library package included in the data handling scriptSee Database Dev Log
Logic that converts incoming UNIX
timestamps into readable time with date
and clock

Complete Kadir Cannot overwrite default
_time column in InfluxDB

T-DTB-04 UNIT Data handling scalability
1. An expanding JSON line
2. Virtual Environment activated
3. Available bucket

1. Run the data handling script
2. Feed JSON lines into the script
3. Add a new key-value to subsequent JSON lines
4. Verify that the script does not return any error
5. Confirm smooth data line size transition using print()
6. Query data from bucket to verify that new data has
been written without any issues

Script and database can handle change
in JSON line size Complete Kadir

Table rows before addition of
new item are expectedly
registered as <null>

KAFFEKNEKT

Traceability Matrix

114

REQUIREMENTS TRACEABILITY MATRIX
Req #

Unique ID
SubReq #
Unique ID

Scope Deliverable or
Feature US or WP ID User Story or Work Package Assigned To Test Case Current Status

R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-1.0 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-1.1 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-1.2 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-1.3 Failed
R-1.3 R.1.3.1 Real-Time Monitoring S-1.3 User Story: Parameters Martin T-ESP32-1.4 Complete
R-1.1 N/A Real-Time Monitoring S-1.3 User Story: Parameters Martin T-ESP32-1.5 Complete
R-1.1 R-1.1.2 Real-Time Monitoring S-1.3.2 User Story: Pressure Parameter Martin T-ESP32-1.6 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-1.7 Failed
R-1.8 R-1.8.1 Real-Time Monitoring S-1.12 User Story: Time Setting Martin T-ESP32-1.8 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-1.9 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-2.0 Complete
R-1.8 R-1.8.1 Real-Time Monitoring S-1.12 User Story: Time Setting Martin T-ESP32-2.1 Failed
R-1.1 R-1.1.2 Real-Time Monitoring S-1.3.2 User Story: Pressure Parameter Martin T-ESP32-2.2 Complete
R-1.8 R-1.8.1 Real-Time Monitoring S-1.12 User Story: Time Setting Martin T-ESP32-2.3 Complete
R-1.8 R-1.8.1 Real-Time Monitoring S-1.12 User Story: Time Setting Martin T-ESP32-2.4 Complete
R-1.8 R-1.8.1 Real-Time Monitoring S-1.12 User Story: Time Setting Martin T-ESP32-2.5 Complete
R-1.1 N/A Real-Time Monitoring S-1.3 User Story: Parameters Martin T-ESP32-2.6 Complete
R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-2.7 Complete
R-1.1 N/A Real-Time Monitoring S-1.3 User Story: Parameters Martin T-ESP32-2.8 Complete
R-1.1 R-1.1.4 Real-Time Monitoring S-1.10 User Story: Power Usage Martin T-ESP32-2.9 Failed
R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-3.0 Complete
R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-3.1 Complete

R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-3.2 Complete
R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-3.3 Failed
R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Martin T-ESP32-3.4 Complete
R-1.1 R-1.1.5 Real-Time Monitoring S-1.2 User Story: Machine Usage Martin T-ESP32-3.5 Complete
R-1.8 R-1.8.1 Real-Time Monitoring S-1.12 User Story: Time Setting Martin T-ESP32-3.6 Complete
R-1.7 R-1.7.1 Real-Time Monitoring S-1.11 User Story: Scalability Ivan T-PCB-1.0 Complete
R-1.7 R-1.7.1 Real-Time Monitoring S-1.11 User Story: Scalability Ivan T-PCB-1.1 Complete
R-1.7 R-1.7.1 Real-Time Monitoring S-1.11 User Story: Scalability Ivan T-PCB-1.2 Complete
R-1.7 R-1.7.1 Real-Time Monitoring S-1.11 User Story: Scalability Ivan T-PCB-1.3 Complete
R-1.7 R-1.7.1 Real-Time Monitoring S-1.11 User Story: Scalability Ivan T-PCB-1.4 Complete

 Not started
R-1.2 R-1.2.1 UI Development S-1.5 User Story: Parameter Deviations Sokaina T-GUI-5 Complete
R-1.2 R-1.2.2 UI Development S-1.5 User Story: Parameter Deviations Sokaina T-GUI-10 Complete
R-1.2 R-1.2.3 UI Development S-1.4 User Story: Cleaning Notifications Sokaina T-GUI-5 Complete

R-1.2 R-1.2.4 UI Development

S-1.3; S-1.3.1;
D-1.3.2; S-
1.10

User Story: Parameters
User Story: Temperature Parameter
User Story: Graph Visualization Sokaina

T-GUI-17, T-GUI-18, T-
GUI-11, T-GUI-10, T-
GUI-9 Complete

R-1.2 R-1.2.5 UI Development S-1.2 User Story: Machine Usage Sokaina T-GUI-12 Complete
R-1.2 R-1.2.6 UI Development S-1.9 User Story: Power Usage Sokaina T-GUI-11 Complete
R-1.4 R-1.4.1 UI Development S-1.8 User Story: Main Screen Sokaina T-GUI-4 Complete
R-1.5 R-1.5.1 UI Development S-1.7 User Story: Coffee Report Sokaina T-GUI-7 Complete
R-1.6 R-1.6.1 UI Development S-1.1 User Story: Instructions Sokaina T-GUI-14 Complete
R-1.6 R-1.6.2 UI Development S-1.1 User Story: Instructions Sokaina T-GUI-14 Failed
R-1.6 R-1.6.3 UI Development S-1.1 User Story: Instructions Sokaina T-GUI-14 Complete

R-1.1 R-1.1.3
Data Handling
Developement S-1.3.3 User Story: Timestamp Parameter Abdulkadir T-DTB-02 Complete

R-1.1 R-1.1.3
Data Handling
Developement S-1.3.3 User Story: Timestamp Parameter Abdulkadir T-DTB-03 Complete

R-1.7 R-1.7.1 Database Developement S-1.11 User Story: Scalability Abdulkadir T-DTB-04 Complete

R-1.3 R-1.3.1 Database Developement S-1.6 User Story: Mobility Abdulkadir T-FUNC-1.1 Complete
R-1.8 R-1.8.1 UI Development S-1.12 User Story: Time Setting Didrik T-INT-1.0 Complete
R-1.8 R-1.8.1 UI Development S-1.12 User Story: Time Setting Didrik T-INT-1.1 Complete
R-1.2 R-1.2.4 UI Development S-1.3 User Story: Parameters Didrik T-INT-1.2 Failed
R-1.2 R-1.2.4 UI Development S-1.3 User Story: Parameters Didrik T-INT-1.3 Complete
R-1.1 R-1.1.1 Real-Time Monitoring S-1.3.1 User Story: Temperature Parameter Mikolaj T-MAC-1.6 Complete
R-1.1 R-1.1.2 Real-Time Monitoring S-1.3.2 User Story: Pressure Parameter Mikolaj T-MAC-1.5 Complete

R-1.1 R-1.1.3 Real-Time Monitoring S-1.3.3 User Story: Timestamp Parameter Mikolaj
T-MAC-1.0, T-MAC-1.1,
T-MAC-1.7 Complete

R-1.1 R-1.1.4 Real-Time Monitoring S-1.9 User Story: Power Usage Mikolaj T-MAC-1.9 Complete
R-1.1 R-1.1.5 Real-Time Monitoring S-1.2 User Story: Machine Usage Mikolaj T-MAC-1.3, T-MAC-1.4 Complete
R-1.7 R-1.7.1 Real-Time Monitoring S-1.11 User Story: Scalability Mikolaj T-MAC-1.8 Complete

KAFFEKNEKT

Code Documentation Of The
Water Pressure Graph

118

The goal of this document: explanation of the code (I did not use doxygen this time).

This Qt-based application is designed to visually display predefined espresso machine
pressure data in the form of a line graph.It is a well-structured example of a Qt GUI program
designed for data visualization.

The primary goal is to simulate how water pressure readings can be presented in a real-time
dashboard environment. The user interface is built using the Qt 6 framework, employing
object-oriented programming in C++. Core components include the QApplication and
QMainWindow classes to define the application structure, and a custom GraphView class
derived from QGraphicsView, which handles the visual display of the graph. The graph
updates when the user presses the "D" key.

1. The GraphView class:

 This class is defined in graphview.h and implemented in graphview.cpp, is a subclass of
QGraphicsView. It serves as a custom widget that manages and displays pressure graphs
using a QGraphicsScene. In the constructor, a new graphics scene is created and attached
to the view using setScene(). The window and drawing area are fixed to a size of 600x500
pixels to maintain layout consistency.

The class overrides the keyPressEvent() method to handle keyboard input. When the user
presses the 'D' key, the method triggers generatePressureGraph(), which is responsible for
rendering the graph. This function clears any existing graphics from the scene and selects a
dataset from three predefined pressure data sets. These datasets represent different
pressure scenarios, such as irregular readings caused by blockages or consistent values
indicating optimal machine performance. The data is mapped to screen coordinates using
QPointF, and lines are drawn between each data point using scene->addLine().
Additionally, the graph includes labeled X and Y axes, where the X-axis shows time labels
from 07:00 to 17:00(which represents when the employees mostly consume/uses the
espresso machine, this is just an assumption), and the Y-axis displays pressure values
ranging from 3 to 12 bar(where a good espresso coffee ranges between 8 and 10 bars)

2. MainWindow Class:

The MainWindow class is defined in mainwindow.h and implemented in mainwindow.cpp.
It inherits from QMainWindow, a Qt class specifically designed to represent the main
window in a GUI application. Within the constructor, the UI elements generated by
mainwindow.ui are initialized using ui->setupUi(this). The central widget of the main
window is then set to an instance of the GraphView class using setCentralWidget(). This
embeds the custom graph view directly into the application’s main window interface, making
it the focal point of the user interface. The destructor of the class ensures that resources are
properly released by deleting the ui pointer. This helps prevent memory leaks and maintains
clean application behavior.

3. Application Entry Point:

The application’s entry point is defined in main.cpp, which follows the standard structure of
a Qt GUI program. The function begins by creating a QApplication object, passing in the
command-line arguments to initialize the application environment. This object is responsible
for managing the GUI application's lifecycle and event loop. A MainWindow instance is then
created, representing the primary window of the application. Before displaying it, the window
title is set to “Trykkgraf – Espresso” using setWindowTitle(), which gives context to the
interface. The show() method is called to render the main window on the screen. Finally, the
app.exec() call starts Qt’s main event loop, allowing the application to remain responsive to
user input such as keyboard events and window interactions. This setup ensures that the
GUI remains active and functional until the user closes the application.

4. Project Configuration with CMake:

The build configuration is handled using CMakeLists.txt, which specifies the project
requirements and build instructions. The file sets a minimum required CMake version of 3.19
and specifies that the project uses C++ with Qt 6.5. Required Qt components include the
Core and Widgets modules. The executable, named TestGraf, includes source and header
files such as main.cpp, mainwindow.cpp, graphview.cpp, and their corresponding headers
and UI files.

The CMake script also links the application to necessary Qt libraries e.g. (Qt::Core and
Qt::Widgets) and sets up installation paths using standard variables. Deployment scripts
are generated with qt_generate_deploy_app_script(), which helps automate distribution,
particularly on platforms like Windows or Linux(for RPI).

KAFFEKNEKT

Group Contribution

121

Project Management

Responsible: Martin Taraldstad

Task Performed By

Research On The Agile Method Martin

Foundational Support For
Scrum Martin

Processing And Documentation
Of The Projectmodel Martin

Management of Azure DevOps Martin

Requirements Formulation

Responsible: Didrik Aas Bergan

Task Performed By

First Draft Of User Stories Kadir

Current User Stories Didrik, Martin, Sokaina

Requirements Didrik, Martin, Sokaina

Tests Didrik, Martin, Sokaina

Documentation Of
Requirements Didrik

Risk Management

Responsible: Ivan Bergmann Maronsson

Task Performed By

Research, Matrices, And
Templates Ivan

First Draft Of The Risk Analysis Ivan

Risk Analyses For Product And
Project Ivan w/Group

Mitigation Strategies Group

Documentation Ivan, Mikolaj

Revaluation Of Risk Ivan

Updating Risks Ivan

Software Architecture

Responsible: Martin Taraldstad/Didrik Aas Bergan

Task Performed By

System Diagrams Martin, Sokaina

GUI Diagrams Sokaina

Brainstorm & Planning Didrik, Sokaina

Overall Context Diagrams Didrik, Kadir, Sokaina, Martin

System Architecture

Responsible: Sokaina Cherkane

Task Performed By

Brainstorming, Collaboration
And Planning Group

Design Of System Architecture Sokaina, Martin

Tables

Responsible: Group

Task Performed By

Budget Ivan, Mikolaj

Components Mikolaj, Ivan

Requirements Didrik w/Group

Test Didrik, Martin

Traceability Martin, Didrik

User Stories Didrik, Kadir

Risk Management Ivan

Administrative Documents

Responsible: Sokaina Cherkane

Task Performed By

Group Contract Group

Templates Group

Time Lists Martin w/ Group

Date Planner Sokaina

Meeting Referral Didrik, Sokaina w/Group

Meeting Agenda Sokaina

Components And Technical Reaserch

Responsible: Mikolaj Szczelewski

Task Performed By

Espresso Machine Mikolaj, Ivan

Raspberry Pi 5 Martin

Microcontroller/ESP32 Martin, Mikolaj

Sensors Mikolaj, Martin, Ivan

Data Base

Responsible: Abdulkadir Kabuk

Task Performed By

Enviroment Setup Kadir, Sokaina

Sensor Testing without ESP32 Kadir, Didrik

Sensor Testing with ESP32 Kadir, Martin

Database Architecture Kadir

Sequence Diagram Kadir

Data Logging Kadir

Socketing Didrik, Kadir

Espresso Machine

Responsible: Mikolaj Szczelewski

Task Performed By

Disassembly Mikolaj, Ivan

Documentation Mikolaj

Part Schematics Mikolaj

Inspection Mikolaj

Observational Testing Martin, Sokaina, Didrik, Mikolaj

PCB

Responsible: Ivan Bergmann Maronsson

Task Performed By

Design Ivan

Footprints & Symbols Mikolaj, Ivan

Schematic Ivan, Mikolaj

Layout Ivan

Datasheets & Reaserch Mikolaj, Ivan

DRC Mikolaj, Ivan

Ordering Ivan

Testing without compoents Ivan

Social Media

Responsible: Martin Taraldstad

Task Performed By

Instagram Martin

Bilder Martin W/group

Marketing

Responsible: Sokaina Cherkane

Task Performed By

Website Sokaina

Merch Mikolaj, Sokaina

Promotional Material Mikolaj, Sokaina

Posters Sokaina

Software

Responsible: Martin Taraldstad

Task Performed By

GIT Repository Setup Martin

Raspberry Pi 5 Setup Martin

InfluxDB NR 1 Setup Kadir

InfluxDB NR 2 Setup Sokaina

QT Creator Program Sokaina

QT Creator Kit Setup On Two
Raspberry PI5's Sokaina

ESP32/FreeRTOS setup Martin

Testing

Responsible: Martin Taraldstad

Task Performed By

Sensor Testing Martin, Mikolaj

Microcontroller Testing Martin

Integration Testing Martin w/Group

PCB Testing Ivan

Interface Testing Martin w/Group

Main Report

Responsible: Ivan Bergmann Maronsson

Task Performed By

Basic LaTeX Setup Mikolaj, Ivan

First Draft Report Structure Mikolaj

Overall Report Structure Ivan, Mikolaj, Sokaina

LaTeX Support Ivan, Mikolaj

Error Decoding & Problem
Solving Ivan, Mikolaj

Figures, Tables, And Appendix
Support Ivan, Mikolaj

Doxgen/Sphinx Responsible Didrik, Sokaina

Final product

Responsible: Group

Task Performed By

Espresso Machine Mikolaj

Sensors Mikolaj, Martin, Ivan

DataBase AbdulKadir

GUI Sokaina, Didrik

PCB Ivan, Mikolaj

ESP32 Martin

System Architecture Didrik

Version Control Martin

KAFFEKNEKT

Budget & Components List

135

Component: Model: Description: Supplier: URL: Price in NOK: Quantity: Cost in NOK: Did We Get Covered:Status:
Electronics

Analog AC Current Sensor SEN0211

For measuring the power consumption
of
the espresso machine. Farnell https://no.farnell.com/dfrobot/sen0211/analogue-ac-current-sensor-arduino/dp/3517919220.67 kr 1 220.67 kr Semcon Delivered

I2C Digital Wattmeter, I2C/UART 4-Pin Sensor
Wire SEN0291

For measuring the power consumption
of
the monitoring system. Farnell https://no.farnell.com/dfrobot/sen0291/i2c-digital-wattmeter-arduino/dp/3769910167.40 kr 2 334.80 kr Semcon Delivered

ANALOG WATER PRESS SENSOR, ARDUINO BRD SEN0257

Grunnet at vi skal måle vanntrykk, blir
det nødvendig med en vanntrykksensor,
denne skal måle trykket i
varmeveksleren. Farnell https://no.farnell.com/dfrobot/sen0257/analog-water-press-sensor-arduino/dp/4308257195.37 kr 1 195.37 kr Semcon Delivered

Precise RTC Module DFR0821

A real-time clock module, with the
capability of storing progammable time-
of
-day alarms, "event reminders" and
(notifications / warnings) Farnell https://no.farnell.com/dfrobot/dfr0821/ds3232-precise-rtc-module-arduino/dp/3879679166.23 kr 1 166.23 kr Semcon Delivered

I2C ADS1115 16-Bit ADC Module DFR0553

Analog-to-digital-converter, ideal for
precise sensor
measurements, such as thermocouples,
RTDs or NTC and PTC thermistors. Farnell https://no.farnell.com/dfrobot/dfr0553/i2c-16-bit-adc-module-arduino/dp/3517946170.41 kr 1 170.41 kr Semcon Delivered

Ettkortsdatamaskin 2,4GHz 4 Kjerne 8GB RAM
Broadcom BCM2712 Arm Cortex-A76 SC1112

For drifting av skjerm, gode
tilkoblingsmuligheter,
USB/I2C/Bluetooth/Wi-Fi/UART Digikey https://www.digikey.no/en/products/detail/raspberry-pi/SC1112/21658257909.60 kr 1 909.60 kr Semcon Delivered

K-type Temperatursensor -73°C – 482°C
Ledningsterminal 240-080

Måling av temperatur, dataen blir lest fra
signalomformeren (DFR0553) Digikey https://www.digikey.no/no/products/detail/digilent-inc/240-080/5418219113.59 kr 1 113.59 kr Semcon Delivered

M.2 HAT (tilkoblingsenhet for m.2 SSD) 2648-SC1166-ND
Expansion board for Rpi 5, SSD-
compatible Digikey https://www.digikey.no/no/products/detail/raspberry-pi/SC1166/23350779136.44 kr 1 136.44 kr Semcon Delivered

256GB SSD til raspberry pi (SC1439) 2648-SC1439-ND SSD storage Digikey https://www.digikey.no/no/products/detail/raspberry-pi/SC1439/25323451341.10 kr 1 341.10 kr Semcon Delivered

Kjølevifte for raspberry pi 5(SC1148) 2648-SC1148-ND Cooling fan for the raspberry pi Digikey https://www.digikey.no/en/products/detail/raspberry-pi/SC1148/2165825556.85 kr 1 56.85 kr Semcon Delivered
Spesialisert Festeplater For bruk med
Termoelement-spisser 5425-XE-3599-001-ND Festeplate til temperatursensoren Digikey https://www.digikey.no/no/products/detail/labfacility-ltd/XE-3599-001/24770977?s=N4IgTCBcDaIC4AsCmAnAtgewAQEM5xwGME0kA7OLABxwBMBnEAXQF8g75.16 kr 1 75.16 kr Semcon Delivered
Pt100 Temperatursensor -50°C – 250°C 2-
ledersystem Eksponerte ledningstråder 5425-XE-5586-001-ND Digikey https://d.digikey.com/dc/mn-w0iJh4uEE_bUitNCuXkF_RUrT-5q1_jdhHfoGNt3-bRnW7dIAY55dgn8qTXjKNu3fXJs9Mn-UW6_oRnb0f02goBjG-qea1aV8yT4ayBrCWMd2YBNMqRtHvdkskwUecd8TLbwjohnmodL06ksnFeDVutMetO_04LRf7y7M_YY=/MDI4LVNYSy01MDcAAAGYxA-Ucc5fvUzuuykfwTzK_eUADrlif0quDfFXLPAq4q_GkCCWlj37WjRMmmIHKfQKoYJY6dY=386.01 kr 1 386.01 kr KaffeKnekt Delivered

MAX31865 Motstand-til-digital-omformer
Grensesnitt Evalueringskort 1528-1804-ND

RTD-to-digital converter amplifier,
includes
the amplification and conversion of the
signal from the RTD. Digikey https://www.digikey.no/no/products/detail/adafruit-industries-llc/3328/6562952?so=91169908&content=productdetail_NO&mkt_tok=MDI4LVNYSy01MDcAAAGYxA-UcYKZLPweHjcpZsHAJkR3WE3uDBb_KlhFOc0ULfWO6vMvs6-MfYHtcu4gZ4vk3s-SH8-gS06av_5I7eAZ-6GA2e0GWN8X3gJ_lXMp3Q169.98 kr 1 169.98 kr KaffeKnekt Delivered

Termiske plater Hvit 1,14m x 27,00mm
Rektangulær Lim - på begge sider 1168-2060-ND Digikey https://www.digikey.no/no/products/detail/t-global-technology/LI98-1140-27-0-25/4251963?so=91169908&content=productdetail_NO&mkt_tok=MDI4LVNYSy01MDcAAAGYxA-UceB44zye6n_fFV9GtQfUFTo62-Y1fPPLj9JJswvzqUb2G70o0NnX_wY_TgHzmipdsFokKXgm7_ypcjKCxAoKdl0EzQTs7889Ik9d0g69.02 kr 1 69.02 kr KaffeKnekt Delivered

Analog AC Current Sensor SEN0211 DFRobot https://www.dfrobot.com/product-1486.html222.17 kr 1 222.17 kr KaffeKnekt Delivered

Gravity: Water Pressure Sensor SEN0257 DFRobot https://www.dfrobot.com/product-1675.html177.52 kr 1 177.52 kr KaffeKnekt Delivered

Precise RTC DFR0821 DFRobot https://www.dfrobot.com/product-2304.html133.97 kr 2 267.94 kr KaffeKnekt Delivered

Digital Wattmeter SEN0291 DFRobot https://www.dfrobot.com/product-1827.html77.03 kr 3 231.09 kr KaffeKnekt Delivered

ADC Programmable Gain Amplifier DFR0316 DFRobot https://www.dfrobot.com/product-1182.html133.97 kr 1 133.97 kr KaffeKnekt Delivered

Analog Steam Sensor SEN0121 DFRobot https://www.dfrobot.com/product-798.html22.22 kr 4 88.88 kr KaffeKnekt Delivered

ACS712 Analog Hall Current Sensor SEN0214 DFRobot https://www.dfrobot.com/product-1570.html99.36 kr 1 99.36 kr KaffeKnekt Delivered

Waterproof DS18B20Temperature Sensor Kit KIT0021 DFRobot https://www.dfrobot.com/product-1354.html83.73 kr 1 83.73 kr KaffeKnekt Delivered

Digital Capacitive Touch Sensor DFR0030 DFRobot https://www.dfrobot.com/product-78.html39.08 kr 1 39.08 kr KaffeKnekt Delivered

I2S MEMS Microphone(Breakout) SEN0526 DFRobot https://www.dfrobot.com/product-2637.html54.71 kr 2 109.42 kr KaffeKnekt Delivered

FireBeetle 2 ESP32-E(N16R2) DFR1139 DFRobot https://www.dfrobot.com/product-2837.html144.02 kr 2 288.04 kr KaffeKnekt Delivered

Electrolytic Capacitor Pack 100PCS FIT0117 DFRobot https://www.dfrobot.com/product-430.html43.54 kr 1 43.54 kr KaffeKnekt Delivered

M3*6Nylon Screws FIT0065 DFRobot https://www.dfrobot.com/product-209.html15.63 kr 1 15.63 kr KaffeKnekt Delivered

M3*20 Hex Standoff Mounting Kit FIT0183 DFRobot https://www.dfrobot.com/product-608.html32.38 kr 1 32.38 kr KaffeKnekt Delivered

M3*30 Nylin Standoff FIT0194 DFRobot https://www.dfrobot.com/product-639.html22.33 kr 1 22.33 kr KaffeKnekt Delivered

I2S Microphone Module SEN0327 DFRobot https://www.dfrobot.com/product-1954.html39.08 kr 2 78.16 kr KaffeKnekt Delivered

PCB Engineering Ruler DWG0014M DFRobot https://www.dfrobot.com/product-2219.html39.08 kr 2 78.16 kr KaffeKnekt Delivered

Boks Plast, ABS Svart Deksel inkludert,
lokk 7,700" L x 4,300" B
(195,58mm x 109,22mm)

DKS-PB40-87 Digikey https://www.digikey.no/no/products/detail/digikey-standard/DKS-PB40-87/20193278216.37 kr 1 216.37 kr Semcon Delivered

SENSOR 200PSIG 1/8"NPT 14BIT NPI-19J-200G2 Digikey https://www.digikey.no/no/products/detail/amphenol-advanced-sensors/NPI-19J-200G2/15789382?s=N4IgTCBcDaIHIAUCSBaAjATgFIrABjwHEIBdAXyA880,49kr 1 880,49kr Semcon Delivered

AC/DC CONVERTER 5V 50W LS50-5 Digikey https://www.digikey.no/no/products/detail/tdk-lambda/LS50-5/1918835271,35 kr 1 271,35 kr Semcon Delivered

TEST LEAD 18AWG BLACK/RED FIT0585 Digikey https://www.digikey.no/no/products/detail/dfrobot/FIT0585/9559254?s=N4IgTCBcDaIGIEkAqAGArADjSAugXyA34,73 kr 2 69,46 kr Semcon Delivered

RPI 5 DISPLAY CABLE 200MM SC1131 Digikey https://www.digikey.no/no/products/detail/raspberry-pi/SC1131/21658264?gclsrc=aw.ds&&utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMAX%20Shopping_Product_High%20Performers&utm_term=&productid=21658264&utm_content=&utm_id=go_cmp-19563198364_adg-_ad-__dev-c_ext-_prd-21658264_sig-CjwKCAiAiaC-BhBEEiwAjY99qD8EseBl3U1tjw29NAzdJJEzm3IUwAwKhQ08ptpdWJ8lMYP5VO4tthoCLCgQAvD_BwE&gad_source=1&gclid=CjwKCAiAiaC-BhBEEiwAjY99qD8EseBl3U1tjw29NAzdJJEzm3IUwAwKhQ08ptpdWJ8lMYP5VO4tthoCLCgQAvD_BwE&gclsrc=aw.ds11.13 kr 2 22.26 kr Semcon Delivered

27W USB-C PSU EU, BLACK SC1408 Digikey https://www.digikey.no/no/products/detail/raspberry-pi/SC1408/21658273?srsltid=AfmBOoq-lUfWTKj_RiRoUCz-WToW9ObLpVafwElUWcENy9vGBawhWsX5133.56kr 1 133.56kr Semcon Delivered

STACKING HEADER 40PIN 2223 Digikey https://www.digikey.no/no/products/detail/adafruit-industries-llc/2223/5629433?gclsrc=aw.ds&&utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMAX%20Shopping_Product_High%20Performers&utm_term=&productid=5629433&utm_content=&utm_id=go_cmp-19563198364_adg-_ad-__dev-c_ext-_prd-5629433_sig-CjwKCAiAiaC-BhBEEiwAjY99qN3BFhy0bs_nUOYoCGOg7scBczRZxP-6AW5E-l0WPgCQQzsODpWmyxoC0RgQAvD_BwE&gad_source=1&gclid=CjwKCAiAiaC-BhBEEiwAjY99qN3BFhy0bs_nUOYoCGOg7scBczRZxP-6AW5E-l0WPgCQQzsODpWmyxoC0RgQAvD_BwE&gclsrc=aw.ds27,83 kr 3 83.49kr Semcon Delivered

Maestrini Rørvinkel Messing, Inv/Utv 1/4" 116843 Watski https://www.watski.no/maestrini-rrvinkel-messing-inv-utv-1-4--11KfW69 kr 1 69.00 kr KaffeKnekt Delivered

Maestrini Reduksjonsnippel utv. 1/4" inv. 1/8" Messing116886 Watski https://www.watski.no/maestrini-reduksjonsnippel-messing-11mNr39 kr 1 39.00 kr KaffeKnekt Delivered

PCB JLC PCB https://jlcpcb.com/ 1,280.84 kr 1 1,280.84 kr Ivan Delivered

230V 3-fase skjøtekabel Biltema https://www.biltema.no/bygg/elinstallasjoner/cee-kontakter/skjotekabel-16-a-20000231081998kr 2 1998kr KaffeKnekt Delivered

RES 10K OHM 1% 1/4W 1206 Digikey https://www.digikey.no/en/products/detail/yageo/RC1206FR-0710KL/7284835.02kr 27 5.02kr Semcon In transit

RES SMD 300 OHM 1% 3/4W 1206 Digikey https://www.digikey.no/en/products/detail/vishay-dale/CRCW1206300RFKEAHP/222769318.77kr 12 18.77kr Semcon In transit

SWITCH SLIDE SPDT 100MA 6V Digikey https://www.digikey.no/en/products/detail/nidec-components-corporation/CAS-120TA/341661126.81kr 10 126.81kr Semcon In transit

IC REG LINEAR 3.3V 250MA SOT23-5 Digikey https://www.digikey.no/en/products/detail/texas-instruments/LP5907MFX-3-3-NOPB/3906441?s=N4IgTCBcDaIKwE44FoAyAFRAGA7AWQDEANZAZgDpSA5dAIRAF0BfIA23.30kr 5 23.30kr Semcon In transit

PH2.0 CONNECTOR KIT 2.0MM 0.079" Digikey https://www.digikey.no/en/products/detail/dfrobot/FIT0299/7398881?s=N4IgTCBcDaIGIEkAqAGMBOdIC6BfIA92.20kr 1 92.20kr Semcon In transit

FIREBEETLE ESP32-E IOT MICROCONT Digikey https://www.digikey.no/en/products/detail/dfrobot/DFR0654/13978504204.72kr 2 204.72kr Semcon In transit

CAP CER 1UF 100V X7R 1206 Digikey https://www.digikey.no/en/products/detail/samsung-electro-mechanics/CL31B105KCHNNNE/388749616.22kr 18 16.22kr Semcon In transit

CAP CER 10UF 25V X7R 1206 Digikey https://www.digikey.no/en/products/detail/samsung-electro-mechanics/CL31B106KAHNNNE/38874625.20kr 5 5.20kr Semcon In transit

CAP CER 0.1UF 50V X7R 1206 Digikey https://www.digikey.no/en/products/detail/kyocera-avx/KGM31BR71H104KT/56366410.20kr 12 10.20kr Semcon In transit

BATTERY HOLDER COIN 12MM SMD Digikey https://www.digikey.no/en/products/detail/harwin-inc/S8411-45R/3131055?utm_campaign=buynow&utm_medium=aggregator&utm_source=snapeda50.67kr 3 50.67kr Semcon In transit

ADAFRUIT NAU7802 24-BIT ADC - ST Digikey https://www.digikey.no/en/products/detail/adafruit-industries-llc/4538/16584123123.28kr 2 123.28kr Semcon In transit

STRAIN GAUGE LOAD CELL - 4 WIRES Digikey https://www.digikey.no/en/products/detail/adafruit-industries-llc/4540/1232356981.84kr 2 81.84kr Semcon In transit

IC ADC 16BIT SIGMA-DELTA 10VSSOP Digikey https://www.digikey.no/en/products/detail/texas-instruments/ADS1115IDGSR/2231567?s=N4IgTCBcDaIIIBEDKBGNBWAkgg4kgSiALoC%2BQA181.52kr 4 181.52kr Semcon In transit

DIODE ZENER 3.6V 200MW SOD323F Digikey https://www.digikey.no/en/products/detail/onsemi/MM3Z3V6C/16267684.35kr 3 4.35kr Semcon In transit

TERM BLK 2POS SIDE ENT 3.5MM PCB Digikey https://www.digikey.no/en/products/detail/w%C3%BCrth-elektronik/691214110002/250851624.54kr 3 24.54kr Semcon In transit

EVAL BOARD FOR MAX31865 Digikey https://www.digikey.no/en/products/detail/adafruit-industries-llc/3328/6562952464.64kr 3 464.64kr Semcon In transit

CONN SOCKET 18POS 0.1 GOLD PCB Digikey https://www.digikey.no/en/products/detail/preci-dip/801-87-018-10-001101/375745668.70kr 3 68.70kr Semcon In transit

CONN SOCKET 14POS 0.1 GOLD PCB Digikey https://www.digikey.no/en/products/detail/preci-dip/801-87-014-10-001101/375745154.69kr 3 54.69kr Semcon In transit

CONN SOCKET 8POS 0.1 GOLD PCB Digikey https://www.digikey.no/en/products/detail/preci-dip/801-87-008-10-012101/375744126.73kr 3 26.73kr Semcon In transit

15,6″ HDMI QLED Touchscreen Display til Raspberry PiTouchscreen RaspberryPI.dk https://raspberrypi.dk/no/produkt/156-hdmi-qled-touchscreen-display-til-raspberry-pi/?currency=NOK2,610.00 kr 1 2,610.00 kr Semcon Delivered

JST PH 2mm 3-pin Plug-Plug Cable - 100mm long Kiwi Electronics https://www.kiwi-electronics.com/nl/jst-ph-2mm-3-pin-plug-plug-cable-100mm-long-11206?search=JST%20PH%202mm%203-pin%20Plug-Plug%20Cable%20-%20100mm%20long69,37kr 8 69,37kr Mikolaj Delivered

STEMMA Cable - 150mm Long 4 Pin JST-PH Cable–Female/Female Kiwi Electronics https://www.kiwi-electronics.com/nl/stemma-cable-150mm-long-4-pin-jst-ph-cable-female-female-10392?search=STEMMA%20Cable%20-%20150mm%20Long%204%20Pin%20JST-PH69,37kr 8 69,37kr Mikolaj Delivered
Sum Of Electronics: 9,355.47 kr

Miscellaneous

Latex Subscription N/A We Use Latex to write our bachelor Overleaf https://www.overleaf.com/ 650.00 kr 1 650.00 kr Semcon Delivered

Merch Skjorter med LOGO Kai Hansen AS https://www.kai-hansen.no/ 828.00 kr 6 4,968.00 kr Ivan Delivered

Cleaning Supplies Varries 300.00 kr 1 300.00 kr KaffeKnekt Delivered
Sum Of Miscellaneous: 5,918.00 kr

KAFFEKNEKT

Temperature and Database
Tests

138

KAFFEKNEKT

Table A.9.1: Initial temperature reading

Table A.9.2: Temperature reading with script, code in A.3.2

139

KAFFEKNEKT

Table A.9.3: Temperature in warm water

140

KAFFEKNEKT

Table A.9.4: Temperature from warm to cold water. We can observe the rapid temperature drop
at the upper lines.

141

KAFFEKNEKT

Table A.9.5: Temperature data forwarded to InfluxDB database

Table A.9.6: InfluxDB table queries

142

KAFFEKNEKT

Table A.9.7: InfluxDB table page 1 (the first half of values are from a previous test)

Table A.9.8: InfluxDB table page 2

143

The following script covers the step-by-step procedure in setting up a line of
communication for the raspberry pi to import real-time data from the DS18B20
temperature sensor. To accomplish this, we use terminal commands, raspberri pi
configuration operations, as well as creating an InfluxDB user in the browser. Comments
for every "action" will be available, highlighted in italic format and an indent in their
respective line for easier distinguishment from their corresponding "action."

Sudo raspi-config

-> Interface -> 1-wire -> enable -> finish

➢ This enables communication between the raspberry and sensor using 1-Wire. The
sensor supports communication with 1-Wire only.

Sudo restart

Sudo modprobe w1-therm

➢ Force add module for the sensor to avoid any problems where the sensor is not
being detected properly

➢ To ensure proper communication setup, we will edit the config file.

Sudo nano /boot/config.txt

➢ At the very bottom, add:

dtoverlay=w1-gpio, gpiopin=4

➢ to ensure that the assigned pin matches the one the sensor is plugged into

dtoverlay=w1-therm

Cd /sys/bus/w1/devices

➢ Look for a directory “28-xx…”

Cd 28-xx…

➢ The data received from the sensor is stored in the w1_slave file.

Cat w1_slave

➢ The ‘YES’ at the end of the first line means that data is being successfully
received. At the end of the second line the temperature is shown in millicelsius.
The data being displayed is the most recent data cached at the moment the
command was run – in order to repeatedly display data we need to set up a loop
for it, that reads the file every given timeframe.

This section covers the installation and configuration of InfluxDB, a time-based
database service system, as well as compliance commands that ultimately allow us to
send data.

curl -O https://dl.influxdata.com/influxdb/releases/influxdb2_2.7.5-1_arm64.deb

sudo apt update

sudo dpkg -i influxdb2_2.7.5-1_arm64.deb

➢ Download and install InfluxDB

sudo systemctl start influxdb

sudo systemctl enable influxdb

sudo systemctl status influxdb

➢ Enable and verify its status

sudo apt install influxdb2-cli

sudo apt update

➢ this allows us to use influx commands in the terminal

➢ On the browser, hit this URL: http://localhost:8086
➢ After logging in by typing username, password, organization and bucket name, a

token will pop up that we will need, so we make sure to copy paste it somewhere.
➢ Now that we have created an influxdb account, we go back to the terminal

influx config create --config-name my-config --host-url http://localhost:8086 --org [the
org name] --token [the token] --active

➢ set up the token as default token for future uses

python3 -m venv influx_env

source influx_env/bin/activate

pip install influxdb-client

deactivate

➢ We must create a virtual environment and install the influxdb-client library in it to
use in the python script. This is because the installations would collide with the
system-managed python environment

➢ Within this environment we have developed a python script that both reads the
temperature from the “w1_slave” file and sends the data to a designated InfluxDB
database.

import glob
import time
from influxdb_client import InfluxDBClient, Point

#Specify identification keys
URL = 'http://localhost:8086'
ORG = 'Kaffeknekt'
TOKEN = 'ETV_6VBhkfF7HzNGfOjN6F7nTvX0ye_tblcGObcB1OVJDLYxQXUWpt8NU84PJmrn6R6IV921X2eWLLJDg1wgdQ==' #token skal limes inn her
BUCKET = 'sensor_data'

#set up client between python script and influxdb
client = InfluxDBClient(url=URL, token=TOKEN, org=ORG)
API = client.write_api()

#Find the file containing the temperature data
path = glob.glob('/sys/bus/w1/devices/28*')[0] + '/w1_slave'

#Reads the contents of the file
def file_data():
 with open(path, 'r') as data:
 return data.readlines()

def temp_data():
 temp = file_data()

 #Checks and waits for the validity of the data
 while 'YES' not in temp[0]:
 time.sleep(0.2)
 temp = file_data()

 #Finds the temperature value and converts to celsius
 t = temp[1].split('t=')
 c = float(t[1])/1000
 return c

#sends the temperature data every 3 seconds
while True:
 celsius = temp_data()

 #create datapoint to send
 p = Point('Temperature').field('temperature_C', celsius)

 API.write(bucket=BUCKET, org=ORG, record=p)
 print(f'{celsius:.5f}°C')

 time.sleep(3)

import glob
import time

#Find the file containing the temperature data
path = glob.glob('/sys/bus/w1/devices/28*')[0] + '/w1_slave'

#Reads the contents of the file
def file_data():
 with open(path, 'r') as data:
 return data.readlines()

def temp_data():
 temp = file_data()

 #Checks and waits for the validity of the data
 while 'YES' not in temp[0]:
 time.sleep(0.2)
 temp = file_data()

 #Finds the temperature value and converts to celsius
 t = temp[1].split('t=')
 c = float(t[1])/1000
 return c

#Prints the temperature every 0.21 seconds
while True:
 celsius = temp_data()
 print(f'{celsius:.5f}°C')
 time.sleep(0.21)

KAFFEKNEKT

AI Usage Documentation

AI tools were selectively used across different aspects of the project to enhance productivity, brain-
storming ideas and clarification of technical concepts. AI supported development, documentation,
problem-solving and research. The aim of it, to promote the transparency in how AI supplemented
the work, while at the same time not replacing original thinking, additionally, to ensure that all
contributions strictly are guided by the academic integrity standards which have to be respected.

A.10.1 Sokaina - AI Use

During the development, I used ChatGPT as an AI tool, spesifically in the project’s early stages.
It provided structured guidance, always accompanied by source references of course that were im-
mediately verified to make sure that the info is reliable and trustworthy before proceeding.
The model also helped with brainstorming by suggesting different ideas, and was also a good help
when it came to suggesting for example what open-sources I can use for designing the GUI instead
of doing the long process of googling it. In the cases where I met unfamiliar errors not addressed
by online resources such as the Qt-Forum or StackOverflow, ChatGPT occasionally helped with
debugging, although at times its suggestions became repetitive, then I know it is useless and I had
to do it on my own.
It helped for instance with ”override problem”, A custom widget’s ”resizeEvent” handler was never
invoked at runtime, even though it was reimplemented it in a subclass of QWidget. No compiler
errors or warnings appeared. so it suggested a solution:

Figure A.10.1: ChatGPT answer.

A.10.2 Martin - AI Use

During the development process of the code running on ESP32 I have often used AI to get a quick
insight into how to set up unit tests. I have also used it when debugging errors which I have never
seen. Explaining the situation by for example pasting error codes has often lead me in the right
direction.

Though using AI to assist in the development had its’ moments of success. When the complexity
of the program increased, AI was useless. This is documented in the ESP32 development logC.

Example query:

149

KAFFEKNEKT

Figure A.10.2: ChatGPT answer.

150

KAFFEKNEKT

Figure A.10.3: ChatGPT query.

Figure A.10.4: ChatGPT example solution.

I used Chat GPT to help me comment my code in Doxygen conventions. I also used Chat GPT
to instruct me how to install the tools needed generate Doxygen pdf.

151

KAFFEKNEKT

A.10.3 Didrik - AI Use

During this project I used AI to help me come up with fitting titles for sections as seen in A.10.5.

Figure A.10.5: ChatGPT Title Suggestion

I also used chatGPT to quickly help install a missing package like you see in A.10.6.

Figure A.10.6: ChatGPT Install Help

Finally if I was unfamiliar with certain libraries (like Qt) and the documentation felt lacking I would
as chatGPT to give me an example so I could get a grasp on its general setup like you see in A.10.7.

152

KAFFEKNEKT

Figure A.10.7: ChatGPT Give Example

A.10.4 Kadir - AI Use

I use AI to confirm my understanding of newly acquired knowledge from trustable sources such
as influxdata.com. That way I can more easily think of plans on how I will approach the task at
hand and start carving a path to the solution.

It was also helpful in discovering new functions that I would otherwise never find, to solve my code
problems by asking vague questions on how to do something.

Not to mention was it helpful in installing applications and dependency programs so I could set
up work environments.

A.10.5 Ivan - AI Use

AI was rarely used, but was used to point in the right direction when it came to formatting the
LATEXdocument, giving better words and spelling. AI tools helped occasionally, but would usually
end in a tangent where a solution was not found.

A.10.6 Mikolaj - AI Use

AI usage on my part was involved with ChatGPT, where i consulted on the following topics:

Vocabulary and grammar: Some of the texts in the document had a too informal approach of
reflection and explanation of different topics. Additionally, there was always room to improve the

153

KAFFEKNEKT

Figure A.10.8: Instruction window with a restricted topic focus for the trained ChatGPT model.

grammar, i’ve used ChatGPT for help in relation to this.

Trained model: A trained ChatGPT chat model was developed by me, which was focused on
the bachelor’s thesis and its problem domain. ChatGPT allows you to implement instructions to
a chat which restrict the model to the specific topic you’d like expertise or brainstorming on.
Better understanding of user stories and requirements: I’ve used ChatGPT for brainstorm-
ing around real-world scenarios of user stories and requirements connected to espresso machine
technology domains. To better understand, analogy was used.

154

Appendix B

Technical Documentation

155

KAFFEKNEKT

Component Procurement
Strategy MMS | IBM

The choice of components was made with a strong emphasis on scalability, risk mitigation, and
flexibility for integration. To reduce risk for the project and accommodate iterative development,
multiple quantities of key components were ordered during the procurement phase. This approach
not only compensated for potential hardware failures or damages, however, also enabled the team
to explore alternative applications of the same components when unexpected challenges arose.

The strategy behind the procurement relied heavily on extensive research into the design and
functioning of espresso machines, which is presented in the main body of the report. We explored
brewing dynamics, thermodynamics of heat exchangers, and industry standards for espresso prepa-
ration, by delving into these factors, the theoretical and practical aspects of espresso machine
functionality directly informed and set the argument for every critical hardware decision.

B.1.1 Threaded sensors MMS | IBM

To establish the system’s purpose as a real-time monitoring system for espresso brewing, it was
essential to obtain both accurate and reliable pressure and temperature data directly from within
the espresso machine’s hydraulic system. The parameters are central to our system insight above
all things, although explicitly linked to one of the core user stories:

”As a user, i want to in real-time, monitor the parameter during the brewing time, so
that i can assess and ensure the quality of the espresso A.2.”

While it doesn’t define specific accuracy constraints, the intent behind it clearly implies the neces-
sity of measurements that truly reflect the conditions at the point of extraction. For parameters
such as brew pressure, this rules out completely non-invasive implementations, as external sensors
wouldn’t be able to capture spontaneous dynamics of pressure, in addition to not being in direct
contact with the fluid pathway.

To satisfy the requirements, we utilized threaded sensors, both for pressure and temperature, these
Transducers specifically designed for direct mechanical integration into the system, in conjunction
with both threaded adapters and sealing methods.

The implementation of threaded sensors contributed to following key advantages:

· Direct fluid contact established accurate and fast pressure and temperature readings.

· Stable mounting, which hinders potential measurement errors.

· Repeatability, testing results were consistent with comparable over time data.

This approach certainly necessitated some form of invasiveness into the hydraulic system, although
it was justified mainly by the commitment to deliver credible insights of the brewing conditions.

156

KAFFEKNEKT

Power Strategy: Isolated Supply
During the phase of system design, a possibility arose which was considered although wasn’t
encouraged, that was to source the power from the electronic control board in the espresso machine
to the monitoring system. However, as is common with commercial espresso machines, especially
those manufactured by Faema, any detailed schematics or electrical documentation of the board
are almost certainly proprietary and protected, making them unavailable to the public. Without
the certainty of current limitations, voltage levels, and internal circuitry, this posed unacceptable
risks for integration to the system. An isolated supply approach was therefore decided upon and
this aligned with our responsible engineering practice under uncertain conditions.

B.2.1 Power Source MMS |

The espresso machine is connected to the 3-phase IT-network at the workshop, it utilizes 240V
Alternating Current (AC) voltage. To power the monitoring system, two phases had to be selected
and connected to the Power Supply Unit (PSU)’s input terminal as shown in Fig. B.2.1

Figure B.2.1: Electrical connections on the main switch with a separate cable from the PSU
connected to the corresponding phases. 1) The first phase L1. 2) The 2nd phase L2. 3) Common
grounding

B.2.2 Power Supply MMS | IBM

There are a variety of factors that contributed to the final decision on selecting a suitable power
supply, these being:

5V output: Since both the RPI-5 and ESP32 have to be powered by a stable 5V, the output of
the power supply has to be rated for that specific voltage.

Resistance to input surge voltage: The power supply itself is rated for operation at 88 - 264V
(AC), however for a whole 5 seconds, it can sustain a surge of 300V (AC).

Power: For powering the whole monitoring system, not a lot of power was needed, in fact, by
approximation we determined that 50W is more than enough, besides, this was already the lowest

157

KAFFEKNEKT

power rating for an ideal power supply candidate.

Figure B.2.2: LS50-5 Power Supply Unit, taken from [98].

158

KAFFEKNEKT

PCB Design IBM | MMS

The project is about monitoring data and information from sensors that have been placed on the
espresso machine. These sensors all have inputs/outputs and follow certain criteria and protocols
(I2C, SPI, GPIO). We figured that it would be better that a PCB would be designed, to minimize
the cable management in a way. Going for the PCB approach, we limit the wiring/cables that exit
the machine, to just one cable, or potentially no cable, depending on whether the system is going
to be fully wireless.
The PCB is going to be powered from an internal transformer that is going to be housed in the
espresso machine. This transformer is going to convert 240V taken from the internal 3-phase 240V
system. Over to 5V to supply the PCB with ground and voltage to power everything the PCB is
interfacing with.

Designing the PCB was a back and forth process, where discussions between the electrical members
and some of the data students led to certain design choices. The components being the sensors,
Real Time Clock (RTC), ADC, Filters, MCU ESP-32.

The PCB for this project was designed on KiCad, with its default library, and some components
were found online to satisfy our vision. This being either a footprint, symbol, 3D model, or all 3
combined. The 3D models were not necessary for the design, but were a nice feature to have in
the design process, to visualize the progress. Some of the footprints that were found online were
altered using data-sheets to expand certain footprints to fit more pins.

Nearing the end of the design process, we encountered an obstacle when it came to ordering the
PCB. Involving the PCB being designed with hidden/buried vias in mind. We sent our design to
JLCPCB to be quoted, and then a couple of hours later, received a notification that JLCPCB does
not currently support hidden/buried via’s. Reading this, we thought to ourselves ”we should have
checked that”. We gauged our options, either of which to redesign the PCB and change all of the
hidden/buried via’s over to regular vias, or, ordering the PCB from another distributor. We went
first with the latter and checked other distributors whether they supported hidden/buried vias and
the price for manufacturing our board. We found that PCBWay supports hidden/buried vias, but
at an increased cost, around two times the price as JLCPCB. We eventually chose to redesign the
board, replacing all the vias and changing the sizes of the Surface-Mounted Device (SMD) resistors
and SMD capacitors, from 0603 to 1206 SMD resistors and 0603 to 1206 SMD capacitors.1 After
the redesign the PCB got accepted by JLCPCB and then manufactured.

1This was after we had a meeting Ole Eirik Solberg Seljordslia where he commented that we should change the
size of the components so that we could be able to solder the SMD’s by hand, if we needed, and that we should go
for regular via’s

159

KAFFEKNEKT

B.3.1 Component IBM | MMS

This section is about the components that are utilized by the PCB as following.

B.3.1.1 Headers IBM | MMS

The board utilizes Japan Solderless Terminal (JST) Male 2.0P SMD Headers in 3 pin and 4 pin
formats. The JSTs are the main inputs/outputs from the PCB that let the PCB gather information
from our sensors. 3D models of these headers can be seen in Fig. B.3.1a, B.3.1b, B.3.1c, and B.3.1d

(a) 4 pin Male SMD Header back view (b) 4 pin Male SMD Header front view

(c) 3 pin Male SMD Header back view (d) 3 pin Male SMD Header front view

Figure B.3.1: JST male 2.0P SMD Headers

The PCB also uses ”regular” female headers so that an ESP32 can be connected directly on the
PCB and is designed with three female headers specifically for the thermal amplifiers, and a single
2 port screw-block terminal, for the input voltage of the PCB.

B.3.1.2 Sensors IBM | MMS

The PCB is designed to have 10 sensor inputs. All these sensors have different purposes, signal
types, and protocols. Digital sensors and amplifiers are placed on the first layer shown in Fig.
B.3.11, while analog sensors are placed on the bottom layer of the PCB, shown in Fig. B.3.13.

Digital Sensors:

The PCB is designed to take in three digital sensors that utilize an I2C protocol, where all of them
share the same SCL and SDA from the ESP32. Using the properties of the I2C protocol we are able
to assign addresses to each sensor so that none of them overlap each other. The sensors that we
are talking about are the accelerometer SEN0409, Pressure Sensor NPI-19J-200G2, and Wattmeter
SEN0291. The PCB is also designed for three digital sensors that are connected to amplifiers that
utilize SPI protocol. And just like the I2C share certain pins from the ESP32. This time being
Serial Clock (SCK), Master Output Slave Input (MOSI), and Master Input Slave Output (MISO).
From there the ESP32 becomes the Master, and the three amplifiers become slaves, if the system
requires it.

160

KAFFEKNEKT

Analog sensors:

The PCB is also designed with 4 analog sensor inputs in mind. All of the analog inputs utilize a 3
pin JST Male 2.0P SMD Headers and are connected to an ADC that is integrated into the PCB,
which then connects directly into the I2C line of the ESP32. Currently the PCB only has a need
for two analog inputs, but is designed so that if it ever has need for more analog inputs, we have
it covered. Or up to four in total analog inputs that utilize a 3 pin JST input as shown in Sec.
B.3.1.1

B.3.1.3 Dip Switches IBM | MMS

During the planning phase of the PCB, a discussion came about, whether it would be better to
utilize a solder bridge shown in Fig B.3.2a or a dip switch shown in Fig. B.3.2b. Using a dip switch
for the ADC works, on the grounds that it is used to change the slave address on the ADC, by
either sending a high signal or no signal. The discussion was mainly about the RC filters. Where
the signal output of a analog sensor would either be directly sent to the ADC, or to pass through a
RC filter first, then to the ADC. The design started with solder bridges in mind. Since the design
principle of the solder bridge is to bridge two solder pads together with solder, or a 0 Ω resistor [80]
to close the circuit, alternatively to cut the pad if it is a NC solder bridge. This soldering technique
is used in some PCBs to re-route the circuit in certain circumstances or to cut certain function
off [64]. Theoretically, the solder bridges are big enough to house resistors and capacitors, so they
could be interchanged if their values did not meet the requirement for the RC filter. It is also not
recommended to unsolder the bridges to many times since this might lead them to deteriorate, and
cutting a NC solder bridge is only recommended if you don’t plan on using that channel again,
since it is not recommended to solder over a cut NC solder bridge.

(a) Solder Bridge (b) Dip Switch

Figure B.3.2: Options For Switching Tracks

In the end, dip switches were selected to toggle between sending an analog signal through a filter
or to directly go to the ADC, and then the ESP32. Using dip switches gives the possibility to
toggle between the states, [83] and change the components of the LP filters values when needed.
The analog filters and dip switches can be seen more in Sec. B.3.2.4.

161

KAFFEKNEKT

B.3.1.4 ADC MMS | IBM

Initially, the ADC was tested through an ADS1115 module, because of its impressive capabilities
and accuracy measurements, it was decided that the very same ADC could be designed on the
PCB, and traced out accordingly.
DFRobot has designed their own components and their datasheets and schematics are open for
the public. Ideally it was to implement the very same schematic integrated in the PCB.

B.3.1.5 RTC IBM | MMS

While developing the PCB a DS3232 Precise RTC was used. The RTC worked, but considering
that this would just be an extra module hanging of the ESP32, why not just just implement it
into the board. All the components of the DS3232 were found from the datasheet that came from
the distributor and then implemented into the design. The RTC consists of a DS3232SN Crystal
oscillator shown in Fig. B.3.3a, two decoupling capacitors, two pull-up resistors, and a button-cell
battery holder (S8411-45R) shown in Fig. B.3.3b. The symbols of these components can be seen
in Fig. B.3.7.

(a) RTC - DS3232SN (b) Button-cell battery holder - S8411-45R

Figure B.3.3: Main RTC Components

162

KAFFEKNEKT

B.3.2 Main Schematic IBM | MMS

The schematic section of PCB design is one of the first steps when it comes to designing a PCB.
In the design, symbols are placed for components, and connection points are added between com-
ponents. The symbols can be formatted to have footprints and 3D models assigned to them for a
later phase, as shown in Sec. B.3.3. Here lies the schematic of the PCB as shown in Fig. B.3.4.
It is hard to see but the schematic is divided into parts and sections, and we will go over them
individually.

Figure B.3.4: Schematic for the PCB

163

KAFFEKNEKT

B.3.2.1 ADC Schematic IBM | MMS

In Fig. B.3.5 is an ADC which utilizes an I2C protocol. During the design we thought about having
an ADC module that the sensors connect into and then into the PCB, but we figured that we could
implement an ADC into the PCB itself. In this schematic block we have a dip switch that changes
the I2C slave address of the ADC, this switch alters between a voltage and no voltage. A voltage
regulator that is connected to 5V and regulates the voltage to 3.3V. Both the voltage regulator
and ADC have decoupling capacitors to act as voltage reservoirs and prevent voltage spikes. These
decoupling capacitors should be placed as close as possible to their Integrated circuit (IC)’s. The
ADC has a couple of pull up resistors aswell. Being 300 Ω resistors for analog inputs.(AIN0, AIN1,
AIN2, AIN3). And two 10k Ω resistors between the voltage regulator and I2C lines (SDA, SCL).
The entirety of the ADC ensemble is located on the analog layer.

Figure B.3.5: Close up of ADC

164

KAFFEKNEKT

B.3.2.2 ESP32 and RTD Amplifiers Schematic IBM | MMS

In Fig. B.3.6 is the ESP32 labeled as the Central Hub, and the inputs for the RTD amplifiers.
The RTD amplifiers (MAX31865 RTD PT100) have an SPI interface and are connected to the
PCB using 8 pin headers. All three of the amplifiers share the same VCC, GND, CLK, MOSI, and
MISO from the ESP32 except for the chip selects on the amplifiers. These chip selects have been
assigned to their own pins on the ESP32.
The symbol for the ESP32 can be ignored, since it was only used as a reference for the pin
inputs/outputs. The ESP32 has two sets of headers, an 18 pin header, and a 14 pin header. The
14 pin header only takes the VCC and GND from a screw-block terminal that is connected to a
voltage supply. While the 18 pin header connects to most, if not all the other components. Here
the ESP32 interfaces with SPI and I2C. Where SCL and SDA connect to all of the I2C components,
while SCK, MOSI and MISO connect to the SPI components.

Figure B.3.6: Close up of the ESP32 and RTD amplifier inputs

165

KAFFEKNEKT

B.3.2.3 RTC Schematic IBM | MMS

We had the option of using an RTC that could have been connected into the PCB, but we decided
to implement an RTC directly into the board. In Fig. B.3.7 lies the RTC which utilizes an I2C
protocol. The main component in this schematic is the DS3232SN crystal Oscillator. This IC is
used to keep and track time in case of an power outage, so that the system does not lose track of
time. The RTC is connected to a 3V VCC under normal operation, but schematic also includes
a SMT Coin Cell Holder, that houses a battery that powers the RTC if the system would ever go
offline. This battery is only meant to be a backup for the RTC, so that the RTC will keep counting
the date and time, when the entire system is not connected to power.
This part of the schematic also includes a decoupling capacitor. One for the battery and one for
the RTC, IC, and again should be placed as close to the component as possible. The design also
utilizes 10k Ω pull-up resistors for the I2C lines (SCL, SDA).

Figure B.3.7: Close up of RTC

166

KAFFEKNEKT

B.3.2.4 Analog Region IBM | MMS

The analog Region shown in Fig B.3.8. The reason we call it the analog region is because this
part of the schematic is located on the last layer of the PCB. The analog region comprises mostly
of 3 pin JST male connectors seen in B.3.1c, resistors, capacitors, and dip switches. All four of
the analog inputs are designed in the same way, where a JST male port receives sensor data, and
sends it directly to the ADC to convert the data. Alternatively, through a Low-pass filter to filter
out noise and then to the ADC. This is toggled by using a dip switch on the board.

Figure B.3.8: Close up of the Analog Region

167

KAFFEKNEKT

B.3.2.5 Digital Region IBM | MMS

The Digital Region shown in Fig B.3.9 are the simplest schematic blocks here. They consist only
of three 4 pin JST male connects shown in Fig. B.3.1a. These headers only have two purposes, to
provide VCC and GND to external sensors, and send back information from sensors utilizing I2C
interfaces (SCL, SDA).

Figure B.3.9: Close up of the Digital Region

168

KAFFEKNEKT

B.3.2.6 Symbols for 3D models IBM | MMS

This schematic block is only used for 3D models. The symbol marked as DFR0654 is the ESP32,
and the three unmarked symbols are all MAX31865 RTD amplifiers. This is for the 3D viewer of
the PCB and helps visualize the process. Most if not all components used in the schematic have 3D
models assigned to them, but these components are going to be physically soldered on the board.
While the ESP32 and MAX31865 RTD amplifiers are going to be mounted on headers and then
held down with screws.

Figure B.3.10: Close up of the symbols only used for 3D models

169

KAFFEKNEKT

B.3.3 Layout IBM | MMS

The layout section of PCB design, is the final stretch of the design process. In KiCad, the design
was selected to have four layers. Where the first layer is designated as a digital layer where
silkscreens, footprints pad-stacks, and traces, are placed to determine where the components are
placed on the final PCB. Second layer is designated as the ground plane, Third layer is designated
as the power plane, and fourth layer is designated as the analog layer. The reasoning for why there
are distinct layers is so that the process is streamlined, and routing traces around components on
the first and fourth layers is simpler, since the utilization of ground and power planes simplifies
the process.

B.3.3.1 First layer IBM | MMS

The first layer can be seen in Fig B.3.11. Shown in the figure are ”red lines”, these lines are known
as traces and are used to bridge between connection points and currently have a width of 0.2 mm.
The red squares are SMD pad-stacks and either used for soldering points between components and
or mounting pads for components, a closer look can be seen in Fig B.3.1. On the board there are
four mounting holes labeled as ”REF**” for the PCB, and ten mounting holes for an ESP32 and
RTD Amplifiers. The first layer utilizes vias to connect to the second layer as seen in Sec B.3.3.2,
and third layer as seen in Sec. B.3.3.3 to provide components power and ground, as mentioned
in Sec. B.3.2.3, some components have to be placed a certain distance from specific components.
This being the RTC IC and its decoupling capacitor. After all, the components are placed in the
desired area, an ”edge cut” function can be used to set the board dimension, giving the final form
of the first layer.

Figure B.3.11: First Layer - Red Squares = SMD Padstacks, Yellow Lines = Silkscreens, Red
Lines = Traces

170

KAFFEKNEKT

B.3.3.2 Second layer IBM | MMS

The main purpose of the second layer is grounding all the components. A ground plane is made,
visualized as a green square in Fig. B.3.12 usually on the second layer of a four layered PCB. This
layer is connected to the first and fourth layer using vias. These vias are not placed directly under
the solder pads, since this could increase manufacturing costs. Instead, they are placed at the sides
of the solder-pads and then using traces to connect to their required destinations. This is only for
the SMD, but the through hole mounts work differently. Since the component is going through
the entire board, making certain layers avoid certain through holes and connecting some through
holes to the layer itself.

Figure B.3.12: Second Layer - Ground

171

KAFFEKNEKT

B.3.3.3 Third layer IBM | MMS

The third layer is generalized as the Power layer. It has the same function as the second layer
shown in Sec. B.3.12 although, with power planes. This layer is concerned with diverting volt-
age/amperage around the board, connecting to the first layer, and the fourth layer. Unlike the
ground layer, this layer has 3 planes which can be seen in Fig. B.3.13. Starting with the smallest
plane, is the battery power plane. This plane is only connected to the RTC and can be seen in Sec.
B.3.2.3. The second largest plane is the 5V plane. It’s only connected to two components. This
being the input screw-block-terminal and the input voltage of the ESP32 as seen in Sec. B.3.2.2,
and the voltage regulator in the ADC schematic as seen in Sec. B.3.2.1. The third and largest
plane is the 3V plane that is powered by the ESP32, this plane powers most of the components,
such as amplifiers, sensors, and the main voltage source of the RTC.

Figure B.3.13: Third Layer - Power

172

KAFFEKNEKT

B.3.3.4 Fourth layer IBM | MMS

The fourth and final layer seen in Fig. B.3.14 is the analog layer. This layer contains the ADC
schematic seen in Sec. B.3.2.1 and the analog schematic seen in B.3.2.4. This layer has multiple
dip switches, resistors, capacitors, and four JSTs. The ”layout” principle of this layer is the same
as the first layer shown in Sec. B.3.11, however, colored blue. The square rectangles are SMD
pad-stacks, and the blue lines are traces used to connect between the components, and the trace
width is at 0.2 mm.

Figure B.3.14: Back Layer - Blue Squares = SMD Padstacks, Blue Lines = Traces

B.3.4 Surface Level Testing IBM | MMS

After retrieving the PCB from the distributor JLCPCb, a week after ordering. The PCB was set
to the side, since the design of the container was currently a higher priority. More of the container
can be read in Sec. B.7.1. Because the PCB arrived during printing. After fitting to see whether
the PCB would fit into the container that was designed to for the PCB and the PSU, which it
did. Then it came to testing, and the reason why this section only covers surface level testing
that can be read more in Sec. B.3.5. The only tests that were able to be done to the PCB, was
a standard connection confirmation as shown in Appx. A.4 (T-PCB1.0 - T-PCB1.4). This being
that a multimeter was used to see whether the pads on the PCB had connections to one another.
In other words, if the four layers of the PCB were connected properly through vias. The layers
can be seen in Sec. B.3.3. All the pins that should have been grounded, were grounded, and all
the different power planes were connected to their desired pins.

B.3.5 Late Arrival IBM | MMS

There was an issue during the later phase of the project when it came to the PCB. This problem
being that the components for the PCB haven’t arrived. This can be matched to a risk that we

173

KAFFEKNEKT

could unfortunately encounter during the bachelor period that can be seen in Appx. A.1 (RU-26.0)
The team was notified by Semcon Part of Knightec Group that the components got ordered a week
before the deadline. Because of this inconvenience, a full test of the PCB can not be done, until
after the deadline.2

2The finished product of PCB with components and tests will be added to the USB stick after the deadline. If
the components arrive on time

174

KAFFEKNEKT

Mechanical Integration MMS | IBM

As we’ve investigated the espresso machine more thoroughly, it became apparent that it would be
unlikely that we’d be able to find a sensor which could be directly screwed inside the Grouphead
(for temperature measurement) or to the heat exchanger (for pressure measurement). This section
presents the mechanical considerations and tools involved in the installation of threaded sensors.

B.4.1 Couplings and Adapters MMS | IBM

In a hydraulic system of an espresso machine which introduces pressure inside it, components
which could be threaded were of great interest to us. This would contribute to very good tight
installations which also would measure precisely the conditions occurring in the system.

When the threaded components were chosen, a vast amount of time was researched upon under-
standing how to couple them and screw them inside compatible adapters which have both the same
pitch and thread dimensions.

Since our threaded sensors are of an imperial dimension, it was difficult to find compatible reduction
couplings and adapters, although they were found.

B.4.2 Sealing and Leak Prevention MMS | IBM

For all of our threaded sensors, it was necessary to apply a thread seal tape (PTFE) which prevents
leaks from pipe threads in plumbing projects. Without it, a leakage was most definitely going to
occur, in fact it did even as our sealing was not wrapped with adequate amount of layers on the
threading.

B.4.3 Pressure MMS | IBM

Since pressure measurement is one of the most desired requirements for our customer. It was
important to actually implement this into the system, with a sensor which is capable of resisting
the temperature conditions where it is installed.

At the first iteration, it was decided a T-coupling would be necessary to install into the system.
This was already becoming inconvenient both for the customer and for us, as this is an invasive
modification to the system. This was communicated to our customer and finally it was decided
that we’d get the green light to move with that modification. The requirement for pressure mea-
surement set for ourselves is for it to be precise, for that to be satisfied, the measurement should
take place right before the Grouphead at the same time after the heat exchanger output. An ideal
position would be at number 8 in the figure shown in Fig. 2.2.5.

As we’ve explored more of the espresso machine’s water system. A discovery was made that the
heat exchangers have a brass fitting plug which is screwed at a branch connection at their outputs.
This was unscrewed as we determined that we won’t need to modify the machine with a T-coupling.

175

KAFFEKNEKT

Figure B.4.1: Water pressure sensor installed at the heat exchanger output.

We’ve installed the water pressure sensor which we’ve ordered on our first component list, although
it was discovered that this specific sensor won’t tolerate the temperature which occurs inside the
heat exchanger, this being above the boiling point. It was decided that a different sensor should
be installed for this system, one which would be capable of that temperature, and the pressure
measurement range.

The chosen sensor which is explained in more depth in Sec. 4.4.1, has a thread dimension of 1/8”
and the branch connection only fits with dimensions at 1/4”. What was needed was both a brass
elbow fitting, and a threaded reducing coupling 1/4” to 1/8” shown in Fig B.4.2a, and Fig. B.4.2b

(a) 1/4” to 1/8” (male-to-female) reducing
coupling

(b) 1/4” to 1/4” (male-to-female) Brass
elbow fitting

Figure B.4.2: Brass fitting parts taken from Watski

176

KAFFEKNEKT

Brew-Event Detection IBM |

Brew-Event Detection has been a main topic for the group since we started the project. As in how
are we going to detect when an espresso shot is being poured and how do we count these so called
”events”. This being that brew detection has been one of the main requirements that we had to
follow since the beginning of the project, but pushed to the side during development. Then later
brought up, when we were asked how the process of finding such a method was going.

There was a debate between the group, on how we were supposed to implement this into the
system, what method, how would it work, function, would it be too invasive, and whether we are
able to implement it into the system.

B.5.1 Methods IBM |

In this section, in no particular order, we are going to mention/define some of the methods that
we thought about using for brew detection. And then ending with why we made the decision we
made.

• The team has squabbled between using a load cell to detect a weight difference for when a
espresso is being made.

• A microphone that is connected to a filter, that filters out all noise except for when the
machine is actually brewing. The microphone would be placed in the near vicinity of the
brew-head.

• Using the same AC current sensor that is used to measure how much power the machine has
used, and extracting the data for when it spikes in operation. But using this solution might
be problematic, since the machine uses more amperage when the boiler is being filled, and
when the heating elements engage.

• Connecting into the ”Purge” valve on the brewing head and extrapolating the delta voltage
to see if that can be used to determine ”espresso output”. This method could have been
used, but then we would have needed to step down the voltage to a more manageable level.

• Utilizing an optocoupler in conjunction with the ”Purge” valve. Since the valve in Normally
Open (NO) when the machine is not brewing, and when an espresso is being made, the valve
closes when a voltage is introduced to it. This voltage could be taken and stepped down to
a manageable voltage for an optocoupler to function. The optocoupler works by having a
light emitting diode and a light sensitive transistor, where when the LED lights up, it short
circuits the transistor within the chip causing a free path for a signal/voltage to travel. This
is where the input of the LED diode is connected to the input of the valve, and the output
of the LED is grounded. Then the input of the transistor is connected to a voltage, in this
case probably 3 to 5 volts, and the output to a pin on the ESP32 that can read the data.
On paper, this option was attractive for the electrical members of the group, but we started
to run out of time to develop optocouplers into the system. If this solution would have come
sooner in the development process, it might have gotten used, and implemented into the
PCB as well.

• Using another AC current sensor, but utilizing them in the input panel, where we are able to
detect when a button has been pressed. This method was the last one we thought of, before
settling on a method. We ended up choosing this method. This being that we had a spare
AC current sensor. The day after this method was being conceived, it got tested with the
system and worked for our purposes. As in, it was able to detect an amperage spike, or an
”event” with simple code, which could flag the event and track the brew time.

B.5.2 Implementation MMS | IBM

It certainly was a foresight on the group’s part to order multiples of components, mainly to confront
hardware failures, should they have occurred. Since we still had a spare AC current sensor, it was
decided to implement this as a ”trigger” for the start and stop of brewing events. Although how
the journey led us to that decision will be presented further in more depth.

177

KAFFEKNEKT

B.5.2.1 Solenoid Valve MMS | IBM

Figure B.5.1: The solenoid valve (circled in red) is controlling pressure release after brewing

It was observed that the solenoid valve seen if Fig. B.5.1 is related to the brewing in some way.
Since it wasn’t evident to us what its purpose was, by doing a bit of research on forums, examining
datasheets of individual parts, in addition to verifying it with earlier tests and maintenance, we
understood that this component is concerned with depressurizing the group-head right after the
brewing has finished.

Our approach to solenoids was at a novice level at best, we assumed that it had similar functions to
that of a relay. Although that wasn’t the case. Solenoids have a ”continuity” they need to satisfy,
its nothing more than just the validation if the solenoid coil isn’t broken, one of the very first things
was to find out where this continuity has a connection. To do this, a resistance measurement was
applied, between terminals 1 and 2 as seen in the illustraion seen in Fig. B.5.2.

Figure B.5.2: Schematic of the solenoid valve taken from [59]. (Edited with Sharex)

We verified the solenoid as a ”Normally Open” variant by identifying two specific functions asso-
ciated with that configuration:

178

KAFFEKNEKT

Measurement: To determine that a solenoid valve is operating accordingly, the voltage between
two terminals has to be measured, namely, (1 and 2). Between these terminals an AC voltage of
240V was measured, however only when the brewing had started, and not in idle mode (no brewing).

Pressure release: The solenoid valve discharges the pressure when the valve is ”deactivated” or
”de-energized”.

B.5.2.2 Non-invasive detection MMS | IBM

Figure B.5.3: One of the phase wires from a solenoid terminal, clamped with an AC current
sensor (encircled in red). Partly visible cable coming out of the solenoid valve (encircled in green).

By clamping around the wire which is connected to one of the terminals as shown in Fig. B.5.3,
we can detect an instantaneous change in voltage. However, the journey to that discovery lies in
how we understood the circuit in the control board of the espresso machine. Since there aren’t any
available datasheets out on the website of the original board. We’ve found a board manufactured
by Chinese designers, which to our luck, was compatible with other espresso machines, among
them of course, Faema, and with a schematic that corresponded to the same electrical connections
in our control board.

179

KAFFEKNEKT

Figure B.5.4: Terminal block used for controlling solenoid valves and managing AC power dis-
tribution. Each connection is labelled with their corresponding outputs.

The connections labeled are compared with the schematic of the Chinese made control board.
Notice the gray and orange wires shown in Fig B.5.4 which are the outputs to their separate
solenoids. Since we are monitoring the orange wire, which is connected to one of the terminals of
the left solenoid, we can efficiently monitor the brewing events.

180

KAFFEKNEKT

Control Board MMS | IBM

The espresso machine has a vast amount of electronics which need to work together, this to for
example extract the right yield of an espresso, programming purposes for the panel, or to reduce
waste. The control board is concerned with connecting all of these components directly to a
microprocessor which translates these signals and stores them for the user. This part of the report
is concerned with elaborating how we understood the control panel, and adapted despite not having
enough technical information about the panel itself.

B.6.1 Schematic MMS | IBM

One of the disadvantages linked to the product is that it is a commercial one. No technical docu-
mentation is to be found, except for the user manual. Anything which is concerned with electrical
components or even the control board are nowhere to be found.

Luckily, there are chinese-made variants of control boards which are compatible with a vast array
of espresso machines, including FAEMA, ours specifically. They are available for the public to buy
and they come with a datasheet. A variant shown is shown in Fig. B.6.1a, and it’s schematic in
Fig. B.6.1b.

(a) The physical motherboard (b) Schematic of the motherboard

Figure B.6.1: HTCCA coffee machine motherboard taken from [107].

If we look into the control board in our espresso machine and its connections, intuitively the
connections correspond to the chinese-made variant of it. Notice the connections on our control
board showed inf Fig. B.6.2.

181

KAFFEKNEKT

Figure B.6.2: Overview of the control board connections, with highlighted information.
-

3

3Both motherboard and control board are the same expressions for the unit, however for order purposes, we’ll
constraint ourselves to referring it to a control panel.

182

KAFFEKNEKT

3D Printing

183

KAFFEKNEKT

B.7.1 PCB Container IBM | MMS

Considering that the PCB is going to house a ESP32, it is a great idea to have a container that
contains the PCB. This is where container comes in. The container was designed to house the
PCB and a 5 V PSU that powers the PCB. The container was designed to fit next to the power
panel of the espresso machine, and slightly under the boiler. The container is also designed too
have fans to draw in cooler air from the bottom of the chassis of the espresso machine, and then
pushing out the warmer air as it rises.4 With this in mind, the cover of the casing is designed in
a way so that air can escape, and is removable. The casing also utilizes magnets on the cover of
the container, so that it is removable, and on the bottom of the container, so that it would move
less during operation. 5 Isometric images of the container can be seen in Fig. B.7.1a, and Fig.
B.7.1b, and a side profile of the container with the components in Fig. B.7.2. The current design
of the container that has been printed, is a prototype, and was printed using PET-G filament. The
filament was chosen because of its durability and high resistance to heat.

(a) Isometric view from the top (b) Isometric view from the bottom

Figure B.7.1: Isometric views of the container

Figure B.7.2: Side view with components in place

4The SolidWorks file is will be in the USB stick
5With great assistance creating and designing the container for the PCB and PSU came from Rasmus Ullestad

Relling, from the planning phase, design phase, and to the printing phase

184

KAFFEKNEKT

B.7.2 Touch screen and RPI casing MT | DAB

The touch screen we selected for the system does not have an enclosure (the electronics are exposed).
We had to develop an enclosure of our own. We had help from other groups in developing the
casing 6.

Figure B.7.3: Exposed electronics on screen.

Figure B.7.4: 3D-model of final design.

6For the first iteration we had help from Vinaj from Deeptech Hydraulics. Further into the development we had
to improve on the design so we could mount the RPI in a casing on the screen. This time Ole Martin from Power
Clamp Kongsberg helped with consulting, creating the 3D-drawings and performing the 3D-printing of the final
design.

185

KAFFEKNEKT

GUI Visualization SC |

186

☕

≡

→

K
A
F
F
E
K
N
E
K
T

193

K
A
F
F
E
K
N
E
K
T

Figure B.8.1: Initial real-time plot of ESP32 sensor data displayed in the GUI.

194

KAFFEKNEKT

Figure B.8.2: Plot of a Test Graph Generating Fake Random Values

195

KAFFEKNEKT

System Diagrams

Figure B.9.1: System Context Diagram

196

KAFFEKNEKT

Figure B.9.2: Activity Diagram of Event Handling

197

KAFFEKNEKT

Figure B.9.3: Sequence Diagram of Event Handling

198

Appendix C

Code Documentation

199

ESP32 SOURCE FILES

Generated by Doxygen 1.13.2

i

1 Class Index 1

1.1 Class List . 1

2 File Index 3

2.1 File List . 3

3 Class Documentation 5

3.1 Measurement Struct Reference . 5

3.1.1 Detailed Description . 5

3.1.2 Member Data Documentation . 5

3.1.2.1 ACPower . 5

3.1.2.2 flag . 5

3.1.2.3 pressure . 6

3.1.2.4 temperature . 6

3.1.2.5 timestamp . 6

4 File Documentation 7

4.1 include/TaskACPower.h File Reference . 7

4.1.1 Detailed Description . 7

4.1.2 Function Documentation . 7

4.1.2.1 TaskACPower() . 7

4.2 TaskACPower.h . 8

4.3 include/TaskCalculateTime.h File Reference . 8

4.3.1 Detailed Description . 9

4.3.2 Function Documentation . 9

4.3.2.1 TaskCalculateTime() . 9

4.4 TaskCalculateTime.h . 10

4.5 include/TaskPressure.h File Reference . 10

4.5.1 Detailed Description . 10

4.5.2 Function Documentation . 10

4.5.2.1 TaskPressure() . 10

4.6 TaskPressure.h . 11

4.7 include/TaskPublish.h File Reference . 11

4.7.1 Detailed Description . 12

4.7.2 Function Documentation . 12

4.7.2.1 TaskPublish() . 12

4.8 TaskPublish.h . 12

4.9 include/TaskReceiveTime.h File Reference . 13

4.9.1 Detailed Description . 13

4.9.2 Function Documentation . 13

4.9.2.1 TaskReceiveTime() . 13

4.10 TaskReceiveTime.h . 14

4.11 include/TaskShared.h File Reference . 14

Generated by Doxygen

ii

4.11.1 Detailed Description . 15

4.11.2 Variable Documentation . 15

4.11.2.1 measurementMutex . 15

4.11.2.2 sharedMeasurement . 15

4.12 TaskShared.h . 15

4.13 include/TaskTemperature.h File Reference . 15

4.13.1 Detailed Description . 16

4.13.2 Function Documentation . 16

4.13.2.1 TaskTemperature() . 16

4.14 TaskTemperature.h . 17

4.15 src/main.cpp File Reference . 18

4.15.1 Detailed Description . 18

4.15.2 Macro Definition Documentation . 19

4.15.2.1 SCL_PIN . 19

4.15.2.2 SDA_PIN . 19

4.15.3 Function Documentation . 19

4.15.3.1 loop() . 19

4.15.3.2 setup() . 19

4.15.4 Variable Documentation . 20

4.15.4.1 i2cMutex . 20

4.15.4.2 rtc . 20

4.15.4.3 sharedMeasurement . 20

4.15.4.4 Wire . 20

4.16 main.cpp . 21

4.17 src/TaskACPower.cpp File Reference . 21

4.17.1 Detailed Description . 22

4.17.2 Macro Definition Documentation . 22

4.17.2.1 CALIBRATION_FACTOR . 22

4.17.2.2 CURRENT_DETECTION_RANGE . 22

4.17.2.3 VOLTAGE_REFERENCE . 23

4.17.3 Function Documentation . 23

4.17.3.1 calculatePower() . 23

4.17.3.2 readACCurrentValue() . 23

4.17.3.3 TaskACPower() . 24

4.17.4 Variable Documentation . 25

4.17.4.1 ads . 25

4.17.4.2 CURRENT_PIN . 25

4.17.4.3 i2cMutex . 25

4.17.4.4 SAMPLES . 25

4.17.4.5 sharedMeasurement . 25

4.18 TaskACPower.cpp . 26

4.19 src/TaskCalculateTime.cpp File Reference . 27

Generated by Doxygen

iii

4.19.1 Detailed Description . 27

4.19.2 Function Documentation . 28

4.19.2.1 TaskCalculateTime() . 28

4.19.3 Variable Documentation . 28

4.19.3.1 i2cMutex . 28

4.19.3.2 rtc . 29

4.19.3.3 sharedMeasurement . 29

4.20 TaskCalculateTime.cpp . 29

4.21 src/TaskPressure.cpp File Reference . 30

4.21.1 Detailed Description . 30

4.21.2 Function Documentation . 30

4.21.2.1 TaskPressure() . 30

4.21.3 Variable Documentation . 31

4.21.3.1 i2cMutex . 31

4.21.3.2 OUTPUT_MAX . 31

4.21.3.3 OUTPUT_MIN . 31

4.21.3.4 PRESSURE_MAX_PSI . 32

4.21.3.5 PSI_TO_BAR . 32

4.21.3.6 SENSOR_ADDR . 32

4.21.3.7 sharedMeasurement . 32

4.22 TaskPressure.cpp . 32

4.23 src/TaskPublish.cpp File Reference . 33

4.23.1 Detailed Description . 33

4.23.2 Function Documentation . 34

4.23.2.1 TaskPublish() . 34

4.23.3 Variable Documentation . 34

4.23.3.1 sharedMeasurement . 34

4.24 TaskPublish.cpp . 35

4.25 src/TaskReceiveTime.cpp File Reference . 35

4.25.1 Detailed Description . 35

4.25.2 Function Documentation . 36

4.25.2.1 TaskReceiveTime() . 36

4.25.3 Variable Documentation . 37

4.25.3.1 rtc . 37

4.26 TaskReceiveTime.cpp . 37

4.27 src/TaskTemperature.cpp File Reference . 38

4.27.1 Detailed Description . 38

4.27.2 Macro Definition Documentation . 38

4.27.2.1 MAX31865_CLK_PIN . 38

4.27.2.2 MAX31865_CS_PIN . 39

4.27.2.3 MAX31865_DI_PIN . 39

4.27.2.4 MAX31865_DO_PIN . 39

Generated by Doxygen

iv

4.27.2.5 RNOMINAL . 39

4.27.2.6 RREF . 39

4.27.3 Function Documentation . 39

4.27.3.1 TaskTemperature() . 39

4.27.4 Variable Documentation . 41

4.27.4.1 sharedMeasurement . 41

4.27.4.2 thermo . 41

4.28 TaskTemperature.cpp . 41

Generated by Doxygen

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Measurement . 5

Generated by Doxygen

2 Class Index

Generated by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

include/TaskACPower.h
Handles AC power monitoring . 7

include/TaskCalculateTime.h
Calculates time . 8

include/TaskPressure.h
Handles pressure monitoring . 10

include/TaskPublish.h
Publishes sensor data over usb . 11

include/TaskReceiveTime.h
Handles incoming signal to adjust the clock . 13

include/TaskShared.h
Structure of sensor data . 14

include/TaskTemperature.h
Handles temperature monitoring . 15

src/main.cpp
Main entry point for the FreeRTOS system. Initializes hardware and starts tasks 18

src/TaskACPower.cpp
FreeRTOS task to measure AC current using a SEN0211 sensor and update power readings . 21

src/TaskCalculateTime.cpp
FreeRTOS task that reads time from an RTC over I2C and updates a UNIX timestamp 27

src/TaskPressure.cpp
FreeRTOS task that reads data from an I2C pressure sensor and updates shared measurements 30

src/TaskPublish.cpp
FreeRTOS task that serializes and publishes sensor data over Serial as JSON 33

src/TaskReceiveTime.cpp
FreeRTOS task that listens for JSON input over Serial to update the RTC 35

src/TaskTemperature.cpp
FreeRTOS task that reads data from a MAX31865 temperature sensor and updates the shared
measurement structure . 38

Generated by Doxygen

4 File Index

Generated by Doxygen

Chapter 3

Class Documentation

3.1 Measurement Struct Reference

#include <TaskShared.h>

Public Attributes

• uint64_t timestamp
• int flag
• float pressure
• float temperature
• float ACPower

3.1.1 Detailed Description

Definition at line 12 of file TaskShared.h.

3.1.2 Member Data Documentation

3.1.2.1 ACPower

float Measurement::ACPower

Definition at line 17 of file TaskShared.h.

3.1.2.2 flag

int Measurement::flag

Definition at line 14 of file TaskShared.h.

Generated by Doxygen

6 Class Documentation

3.1.2.3 pressure

float Measurement::pressure

Definition at line 15 of file TaskShared.h.

3.1.2.4 temperature

float Measurement::temperature

Definition at line 16 of file TaskShared.h.

3.1.2.5 timestamp

uint64_t Measurement::timestamp

Definition at line 13 of file TaskShared.h.

The documentation for this struct was generated from the following file:

• include/TaskShared.h

Generated by Doxygen

Chapter 4

File Documentation

4.1 include/TaskACPower.h File Reference

Handles AC power monitoring.

#include <Arduino.h>
#include <Wire.h>
#include <DFRobot_ADS1115.h>

Functions

• void TaskACPower (void ∗pvParameters)

FreeRTOS task that periodically reads AC current and updates power measurements.

4.1.1 Detailed Description

Handles AC power monitoring.

Detailed description here.

Definition in file TaskACPower.h.

4.1.2 Function Documentation

4.1.2.1 TaskACPower()

void TaskACPower (

void ∗ pvParameters)

FreeRTOS task that periodically reads AC current and updates power measurements.

Uses the SEN0211 sensor and ADS1115 ADC to read current from two input channels. One channel is used to
compute the power (ACPower), and the other sets a flag based on whether the current exceeds 0.06A.

Generated by Doxygen

8 File Documentation

Parameters

pvParameters Unused parameter required by FreeRTOS.

Definition at line 104 of file TaskACPower.cpp.
00104 {
00105 (void)pvParameters;
00106
00107 // // Initial delay to allow system to stabilize
00108 vTaskDelay(2000 / portTICK_PERIOD_MS);
00109
00110
00111 while (true) {
00112 float ACPower = 300.0;
00113 float current = readACCurrentValue(0);
00114 ACPower = current * VOLTAGE_REFERENCE;
00115
00116
00117
00118 sharedMeasurement.ACPower = ACPower;
00119
00120
00121 current = readACCurrentValue(1);
00122
00123
00124 if(current > 0.06){
00125 sharedMeasurement.flag = 1;
00126 } else {
00127 sharedMeasurement.flag = 0;
00128 }
00129
00130
00131
00132
00133
00134 // Wait before next reading (2 seconds)
00135 vTaskDelay(40 / portTICK_PERIOD_MS);
00136 }
00137 }

4.2 TaskACPower.h

Go to the documentation of this file.
00001
00007
00008
00009 #pragma once
00010 #include <Arduino.h>
00011 #include <Wire.h>
00012 #include <DFRobot_ADS1115.h>
00013
00014 void TaskACPower(void *pvParameters);

4.3 include/TaskCalculateTime.h File Reference

Calculates time.

#include <Arduino.h>

Functions

• void TaskCalculateTime (void ∗pvParameters)

Shared structure containing sensor measurements including timestamp.

Generated by Doxygen

4.3 include/TaskCalculateTime.h File Reference 9

4.3.1 Detailed Description

Calculates time.

Detailed description here.

Definition in file TaskCalculateTime.h.

4.3.2 Function Documentation

4.3.2.1 TaskCalculateTime()

void TaskCalculateTime (

void ∗ pvParameters)

Shared structure containing sensor measurements including timestamp.

FreeRTOS task to calculate the current UNIX timestamp from the RTC and store it.

Periodically reads the date and time from the RTC via I2C using a mutex to ensure safe access. The retrieved time
is converted to a UNIX timestamp in nanoseconds using mktime() and stored in sharedMeasurement.←↩

timestamp.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 29 of file TaskCalculateTime.cpp.
00029 {
00030 (void)pvParameters;
00031
00032 while (true) {
00033 uint16_t year;
00034 uint8_t month, date, hour, minute, second;
00035
00036
00037
00038
00039 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00040 year = rtc.getYear();
00041 month = rtc.getMonth();
00042 date = rtc.getDate();
00043 hour = rtc.getHour();
00044 minute = rtc.getMinute();
00045 second = rtc.getSecond();
00046 xSemaphoreGive(i2cMutex);
00047 }
00048
00049
00050
00051 struct tm timeinfo;
00052 timeinfo.tm_year = year - 1900;
00053 timeinfo.tm_mon = month - 1;
00054 timeinfo.tm_mday = date;
00055 timeinfo.tm_hour = hour;
00056 timeinfo.tm_min = minute;
00057 timeinfo.tm_sec = second;
00058 timeinfo.tm_isdst = 0;
00059
00060 time_t unix_seconds = mktime(&timeinfo);
00061 uint64_t unix_nanos = (uint64_t)unix_seconds * 1000000000ULL;
00062
00063
00064 sharedMeasurement.timestamp = unix_nanos;
00065
00066
00067 vTaskDelay(200 / portTICK_PERIOD_MS);
00068 }
00069 }

Generated by Doxygen

10 File Documentation

4.4 TaskCalculateTime.h

Go to the documentation of this file.
00001
00007
00008 #pragma once
00009 #include <Arduino.h>
00010
00011 void TaskCalculateTime(void *pvParameters);

4.5 include/TaskPressure.h File Reference

Handles pressure monitoring.

#include <Arduino.h>
#include <Wire.h>

Functions

• void TaskPressure (void ∗pvParameters)

Mutex for guarding I2C access across tasks.

4.5.1 Detailed Description

Handles pressure monitoring.

Detailed description here.

Definition in file TaskPressure.h.

4.5.2 Function Documentation

4.5.2.1 TaskPressure()

void TaskPressure (

void ∗ pvParameters)

Mutex for guarding I2C access across tasks.

FreeRTOS task that reads pressure data from a sensor and updates the shared measurement.

This task waits 1 second before starting, then enters a loop where it:

• Takes the I2C mutex.

• Requests 4 bytes of data from a digital pressure sensor at address 0x28.

• Parses the 14-bit raw pressure reading.

• Converts it to PSI, then to bar.

• Releases the mutex and updates the global sharedMeasurement.pressure value.

If the sensor doesn't respond properly, an error message is printed over Serial.

Generated by Doxygen

4.6 TaskPressure.h 11

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 37 of file TaskPressure.cpp.
00037 {
00038 (void)pvParameters;
00039
00040 vTaskDelay(1000 / portTICK_PERIOD_MS);
00041
00042 while (true) {
00043 float pressure = 0.0;
00044
00045 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00046
00047
00048
00049 // Request data from the pressure sensor
00050 Wire.requestFrom(SENSOR_ADDR, (uint8_t)4);
00051
00052 if (Wire.available() == 4) {
00053 uint8_t buffer[4];
00054 for (int i = 0; i < 4; ++i) {
00055 buffer[i] = Wire.read();
00056 }
00057
00058 // Extract 14-bit raw pressure
00059 uint16_t raw_pressure = ((buffer[0] & 0x3F) « 8) | buffer[1];
00060
00061 // Convert to pressure
00062 float pressure_psi = ((float)(raw_pressure - OUTPUT_MIN) / (OUTPUT_MAX - OUTPUT_MIN)) *

PRESSURE_MAX_PSI;
00063 pressure = pressure_psi * PSI_TO_BAR;
00064
00065
00066 } else {
00067 Serial.println("Failed to read pressure sensor data");
00068 }
00069 xSemaphoreGive(i2cMutex);
00070 }
00071
00072 sharedMeasurement.pressure = pressure;
00073
00074
00075 vTaskDelay(pdMS_TO_TICKS(2000));
00076 }
00077 }

4.6 TaskPressure.h

Go to the documentation of this file.
00001
00007
00008 #pragma once
00009 #include <Arduino.h>
00010 #include <Wire.h>
00011
00012 void TaskPressure(void *pvParameters);

4.7 include/TaskPublish.h File Reference

Publishes sensor data over usb.

#include <Arduino.h>

Generated by Doxygen

12 File Documentation

Functions

• void TaskPublish (void ∗pvParameters)

FreeRTOS task that publishes sensor data as JSON over Serial.

4.7.1 Detailed Description

Publishes sensor data over usb.

Detailed description here.

Definition in file TaskPublish.h.

4.7.2 Function Documentation

4.7.2.1 TaskPublish()

void TaskPublish (

void ∗ pvParameters)

FreeRTOS task that publishes sensor data as JSON over Serial.

Every 300 ms, this task creates a JSON object containing pressure, temperature, power, timestamp, and a status
flag from the shared measurement structure. It prints the JSON to the Serial port for external logging or monitoring.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 25 of file TaskPublish.cpp.
00025 {
00026 (void)pvParameters;
00027
00028 while (true) {
00029 Measurement localCopy;
00030
00031
00032 localCopy = sharedMeasurement;
00033
00034
00035 StaticJsonDocument<128> doc;
00036 doc["pressure"] = localCopy.pressure;
00037 doc["temperature"] = localCopy.temperature;
00038 doc["power"] = localCopy.ACPower;
00039 doc["timestamp"] = localCopy.timestamp;
00040 doc["flag"] = localCopy.flag;
00041 serializeJson(doc, Serial);
00042 Serial.println();
00043
00044 vTaskDelay(pdMS_TO_TICKS(300));
00045 }
00046 }

4.8 TaskPublish.h

Go to the documentation of this file.
00001
00007
00008 #pragma once
00009 #include <Arduino.h>
00010
00011 void TaskPublish(void *pvParameters);

Generated by Doxygen

4.9 include/TaskReceiveTime.h File Reference 13

4.9 include/TaskReceiveTime.h File Reference

Handles incoming signal to adjust the clock.

#include <Arduino.h>

Functions

• void TaskReceiveTime (void ∗pvParameters)

FreeRTOS task to receive and process time-setting commands over Serial.

4.9.1 Detailed Description

Handles incoming signal to adjust the clock.

Detailed description here.

Definition in file TaskReceiveTime.h.

4.9.2 Function Documentation

4.9.2.1 TaskReceiveTime()

void TaskReceiveTime (

void ∗ pvParameters)

FreeRTOS task to receive and process time-setting commands over Serial.

Expects a JSON payload such as:
{

"set_time": true,
"year": 2025,
"month": 5,
"day": 8,
"hour": 14,
"minute": 30,
"second": 0

}

If valid, it sets the RTC accordingly and replies with a success message.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Generated by Doxygen

14 File Documentation

Definition at line 36 of file TaskReceiveTime.cpp.
00036 {
00037 (void)pvParameters;
00038
00039 String input;
00040
00041 while (true) {
00042 if (Serial.available()) {
00043 input = Serial.readStringUntil(’\n’);
00044
00045 StaticJsonDocument<200> doc;
00046 DeserializationError err = deserializeJson(doc, input);
00047
00048 if (err) {
00049 Serial.println("{\"error\":\"Invalid JSON\"}");
00050 continue;
00051 }
00052
00053 if (doc["set_time"] == true &&
00054 doc.containsKey("year") &&
00055 doc.containsKey("month") &&
00056 doc.containsKey("day") &&
00057 doc.containsKey("hour") &&
00058 doc.containsKey("minute") &&
00059 doc.containsKey("second")) {
00060
00061 int year = doc["year"].as<int>();
00062 int month = doc["month"].as<int>();
00063 int day = doc["day"].as<int>();
00064 int hour = doc["hour"].as<int>();
00065 int minute = doc["minute"].as<int>();
00066 int second = doc["second"].as<int>();
00067
00068 rtc.setTime(year, month, day, hour, minute, second);
00069
00070 Serial.println("{\"status\":\"RTC updated\"}");
00071 }
00072 }
00073
00074 vTaskDelay(pdMS_TO_TICKS(100));
00075 }
00076 }

4.10 TaskReceiveTime.h

Go to the documentation of this file.
00001
00007
00008 #pragma once
00009 #include <Arduino.h>
00010
00011 void TaskReceiveTime(void *pvParameters);

4.11 include/TaskShared.h File Reference

Structure of sensor data.

#include <Arduino.h>

Classes

• struct Measurement

Generated by Doxygen

4.12 TaskShared.h 15

Variables

• Measurement sharedMeasurement
• SemaphoreHandle_t measurementMutex

4.11.1 Detailed Description

Structure of sensor data.

Detailed description here.

Definition in file TaskShared.h.

4.11.2 Variable Documentation

4.11.2.1 measurementMutex

SemaphoreHandle_t measurementMutex [extern]

4.11.2.2 sharedMeasurement

Measurement sharedMeasurement [extern]

Definition at line 28 of file main.cpp.
00028 {};

4.12 TaskShared.h

Go to the documentation of this file.
00001
00007
00008 #pragma once
00009 #include <Arduino.h>
00010
00011 // Shared data structure
00012 struct Measurement {
00013 uint64_t timestamp;
00014 int flag;
00015 float pressure;
00016 float temperature;
00017 float ACPower;
00018 };
00019
00020 // Global shared instance (defined in main.cpp)
00021 extern Measurement sharedMeasurement;
00022
00023 // Mutex to protect shared access to the Measurements
00024 extern SemaphoreHandle_t measurementMutex;

4.13 include/TaskTemperature.h File Reference

Handles temperature monitoring.

#include <Arduino.h>

Generated by Doxygen

16 File Documentation

Functions

• void TaskTemperature (void ∗pvParameters)

FreeRTOS task that reads temperature sensor data and processes it.

4.13.1 Detailed Description

Handles temperature monitoring.

Detailed description here.

Definition in file TaskTemperature.h.

4.13.2 Function Documentation

4.13.2.1 TaskTemperature()

void TaskTemperature (

void ∗ pvParameters)

FreeRTOS task that reads temperature sensor data and processes it.

Parameters

pvParameters Pointer to parameters passed to the task (unused).

FreeRTOS task that reads temperature sensor data and processes it.

Periodically reads the RTD value, computes the temperature, and stores it in a shared structure.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Initial delay to allow other initializations to complete

SPI initialization for temperature sensor

Initialize the MAX31865 with 2WIRE configuration

Initial reading to check if sensor is working

Task loop

Read raw RTD value

Default value

Only process if we got a valid reading

Calculate temperature using the library function

Generated by Doxygen

4.14 TaskTemperature.h 17

Check for out-of-range values

Check for sensor faults

Clear fault

Try to reinitialize the sensor

Definition at line 37 of file TaskTemperature.cpp.
00037 {
00038 (void)pvParameters;
00039
00041 vTaskDelay(2000 / portTICK_PERIOD_MS);
00042
00043 Serial.println("Temperature sensor task starting...");
00044
00046 SPI.begin(); //redundant?
00047
00049 thermo.begin(MAX31865_2WIRE);
00050
00052 uint16_t rtd_initial = thermo.readRTD();
00053 Serial.print("Initial RTD reading: ");
00054 Serial.println(rtd_initial);
00055
00056 if (rtd_initial == 0) {
00057 Serial.println("WARNING: Temperature sensor not responding, check connections");
00058 }
00059
00061 while (true) {
00063 uint16_t rtd = thermo.readRTD();
00064
00065 float temperature = 22.0;
00066
00068 if (rtd > 0) {
00070 temperature = thermo.temperature(RNOMINAL, RREF) - 7.0;
00071
00072
00073 float ratio = rtd;
00074 ratio /= 32768;
00075 float resistance = RREF * ratio;
00076
00077
00079 if (temperature < -50 || temperature > 200) {
00080 Serial.println("Temperature out of reasonable range, using default");
00081 temperature = 22.0;
00082 }
00083 } else {
00084 Serial.println("Invalid RTD reading, using default temperature");
00085 }
00086
00088 uint8_t fault = thermo.readFault();
00089 if (fault) {
00090 Serial.print("Fault detected 0x");
00091 Serial.println(fault, HEX);
00092
00094 thermo.clearFault();
00095
00097 thermo.begin(MAX31865_2WIRE);
00098 vTaskDelay(100 / portTICK_PERIOD_MS);
00099 }
00100
00101 sharedMeasurement.temperature = temperature;
00102
00103 vTaskDelay(2000 / portTICK_PERIOD_MS);
00104 }
00105 }

4.14 TaskTemperature.h

Go to the documentation of this file.
00001
00007
00008 #pragma once
00009 #include <Arduino.h>
00010
00016 void TaskTemperature(void *pvParameters);

Generated by Doxygen

18 File Documentation

4.15 src/main.cpp File Reference

Main entry point for the FreeRTOS system. Initializes hardware and starts tasks.

#include <Arduino.h>
#include <Wire.h>
#include "DFRobot_DS323X.h"
#include "TaskShared.h"
#include "TaskACPower.h"
#include "TaskPublish.h"
#include "TaskCalculateTime.h"
#include "TaskReceiveTime.h"
#include "TaskTemperature.h"
#include "TaskPressure.h"

Macros

• #define SDA_PIN 21
• #define SCL_PIN 22

Functions

• void setup ()

Arduino setup function. Initializes peripherals and starts FreeRTOS tasks.

• void loop ()

Arduino loop function. Left empty since all functionality is handled by tasks.

Variables

• DFRobot_DS323X rtc

Mutex for guarding I2C access across tasks.

• DFRobot_ADS1115 ads & Wire
• Measurement sharedMeasurement = {}

RTC module used to get the current time.

• SemaphoreHandle_t i2cMutex

4.15.1 Detailed Description

Main entry point for the FreeRTOS system. Initializes hardware and starts tasks.

Sets up I2C, ADC (ADS1115), and RTC (DS3232). Creates and pins various sensor-reading and data-publishing
FreeRTOS tasks to core 1. A shared measurement structure and an I2C mutex are used for safe task communication
and peripheral access.

Definition in file main.cpp.

Generated by Doxygen

4.15 src/main.cpp File Reference 19

4.15.2 Macro Definition Documentation

4.15.2.1 SCL_PIN

#define SCL_PIN 22

Definition at line 23 of file main.cpp.

4.15.2.2 SDA_PIN

#define SDA_PIN 21

Definition at line 22 of file main.cpp.

4.15.3 Function Documentation

4.15.3.1 loop()

void loop ()

Arduino loop function. Left empty since all functionality is handled by tasks.

Definition at line 70 of file main.cpp.
00070 {
00071 // Tasks do the work
00072 }

4.15.3.2 setup()

void setup ()

Arduino setup function. Initializes peripherals and starts FreeRTOS tasks.

Definition at line 34 of file main.cpp.
00034 {
00035 Serial.begin(115200);
00036 Wire.begin(SDA_PIN, SCL_PIN);
00037
00038 // SPI.begin();
00039
00040 ads.setAddr_ADS1115(ADS1115_IIC_ADDRESS0); // 0x48
00041 ads.setGain(eGAIN_ONE); // ±4.096V range
00042 ads.setMode(eMODE_SINGLE); // Single-shot mode
00043 ads.setRate(eRATE_128); // 128 samples per second
00044 ads.setOSMode(eOSMODE_SINGLE); // Start a single conversion
00045 ads.init();
00046
00047
00048 while (!rtc.begin()) {
00049 Serial.println("Failed to init DS3232 RTC chip.");
00050 delay(1000);
00051 }
00052 Serial.println("DS3232 RTC initialized successfully!");
00053
00054 i2cMutex = xSemaphoreCreateMutex();
00055
00056
00057 xTaskCreatePinnedToCore(TaskCalculateTime, "CalculateTime", 4096, NULL, 1, NULL, 1);
00058 xTaskCreatePinnedToCore(TaskPressure, "Pressure", 4096, NULL, 1, NULL, 1);
00059 xTaskCreatePinnedToCore(TaskTemperature, "Temperature", 4096, NULL, 1, NULL, 1);
00060 xTaskCreatePinnedToCore(TaskACPower, "ACPower", 4096, NULL, 2, NULL, 1);
00061 xTaskCreatePinnedToCore(TaskPublish, "Publish", 4096, NULL, 1, NULL, 1);
00062 //xTaskCreatePinnedToCore(TaskReceiveTime, "RecieveTime", 4096, NULL, 1, NULL, 1);
00063 //xTaskCreatePinnedToCore(TaskBrewTrigger, "BrewTrigger", 4096, NULL, 2, NULL, 1);
00064
00065 }

Generated by Doxygen

20 File Documentation

4.15.4 Variable Documentation

4.15.4.1 i2cMutex

SemaphoreHandle_t i2cMutex

Definition at line 29 of file main.cpp.

4.15.4.2 rtc

DFRobot_DS323X rtc

Mutex for guarding I2C access across tasks.

Global RTC object used to set the time.

Definition at line 25 of file main.cpp.

4.15.4.3 sharedMeasurement

Measurement sharedMeasurement = {}

RTC module used to get the current time.

Shared measurement structure used across tasks.

Shared structure containing the latest sensor measurements.

Definition at line 28 of file main.cpp.
00028 {};

4.15.4.4 Wire

DFRobot_ADS1115 ads& Wire

Definition at line 26 of file main.cpp.

Generated by Doxygen

4.16 main.cpp 21

4.16 main.cpp

Go to the documentation of this file.
00001
00009
00010 #include <Arduino.h>
00011 #include <Wire.h>
00012 #include "DFRobot_DS323X.h"
00013 #include "TaskShared.h"
00014 #include "TaskACPower.h"
00015 #include "TaskPublish.h"
00016 #include "TaskCalculateTime.h"
00017 #include "TaskReceiveTime.h"
00018 #include "TaskTemperature.h"
00019 #include "TaskPressure.h"
00020 //#include "TaskBrewTrigger.h"
00021
00022 #define SDA_PIN 21
00023 #define SCL_PIN 22
00024
00025 DFRobot_DS323X rtc; // global instance
00026 DFRobot_ADS1115 ads(&Wire);
00027
00028 Measurement sharedMeasurement = {};
00029 SemaphoreHandle_t i2cMutex;
00030
00034 void setup() {
00035 Serial.begin(115200);
00036 Wire.begin(SDA_PIN, SCL_PIN);
00037
00038 // SPI.begin();
00039
00040 ads.setAddr_ADS1115(ADS1115_IIC_ADDRESS0); // 0x48
00041 ads.setGain(eGAIN_ONE); // ±4.096V range
00042 ads.setMode(eMODE_SINGLE); // Single-shot mode
00043 ads.setRate(eRATE_128); // 128 samples per second
00044 ads.setOSMode(eOSMODE_SINGLE); // Start a single conversion
00045 ads.init();
00046
00047
00048 while (!rtc.begin()) {
00049 Serial.println("Failed to init DS3232 RTC chip.");
00050 delay(1000);
00051 }
00052 Serial.println("DS3232 RTC initialized successfully!");
00053
00054 i2cMutex = xSemaphoreCreateMutex();
00055
00056
00057 xTaskCreatePinnedToCore(TaskCalculateTime, "CalculateTime", 4096, NULL, 1, NULL, 1);
00058 xTaskCreatePinnedToCore(TaskPressure, "Pressure", 4096, NULL, 1, NULL, 1);
00059 xTaskCreatePinnedToCore(TaskTemperature, "Temperature", 4096, NULL, 1, NULL, 1);
00060 xTaskCreatePinnedToCore(TaskACPower, "ACPower", 4096, NULL, 2, NULL, 1);
00061 xTaskCreatePinnedToCore(TaskPublish, "Publish", 4096, NULL, 1, NULL, 1);
00062 //xTaskCreatePinnedToCore(TaskReceiveTime, "RecieveTime", 4096, NULL, 1, NULL, 1);
00063 //xTaskCreatePinnedToCore(TaskBrewTrigger, "BrewTrigger", 4096, NULL, 2, NULL, 1);
00064
00065 }
00066
00070 void loop() {
00071 // Tasks do the work
00072 }

4.17 src/TaskACPower.cpp File Reference

FreeRTOS task to measure AC current using a SEN0211 sensor and update power readings.

#include <Arduino.h>
#include <Wire.h>
#include "TaskShared.h"
#include "TaskACPower.h"
#include "I2CLock.h"

Generated by Doxygen

22 File Documentation

Macros

• #define CURRENT_DETECTION_RANGE 20
• #define VOLTAGE_REFERENCE 240.0
• #define CALIBRATION_FACTOR 1.070

Functions

• float readACCurrentValue (int pinNumber)

Reads the RMS AC current value from a specified ADS1115 channel.

• float calculatePower (float current)

Calculates power in watts from current using a fixed voltage reference.

• void TaskACPower (void ∗pvParameters)

FreeRTOS task that periodically reads AC current and updates power measurements.

Variables

• Measurement sharedMeasurement
• DFRobot_ADS1115 ads
• SemaphoreHandle_t i2cMutex
• const int CURRENT_PIN = 0
• const int SAMPLES = 10

4.17.1 Detailed Description

FreeRTOS task to measure AC current using a SEN0211 sensor and update power readings.

This task uses an ADS1115 ADC and a SEN0211 current sensor to measure the AC current, calculate power
consumption, and update a shared measurement structure. It also sets a status flag based on a secondary current
threshold.

Definition in file TaskACPower.cpp.

4.17.2 Macro Definition Documentation

4.17.2.1 CALIBRATION_FACTOR

#define CALIBRATION_FACTOR 1.070

Definition at line 25 of file TaskACPower.cpp.

4.17.2.2 CURRENT_DETECTION_RANGE

#define CURRENT_DETECTION_RANGE 20

Definition at line 23 of file TaskACPower.cpp.

Generated by Doxygen

4.17 src/TaskACPower.cpp File Reference 23

4.17.2.3 VOLTAGE_REFERENCE

#define VOLTAGE_REFERENCE 240.0

Definition at line 24 of file TaskACPower.cpp.

4.17.3 Function Documentation

4.17.3.1 calculatePower()

float calculatePower (

float current)

Calculates power in watts from current using a fixed voltage reference.

Parameters

current Current in amperes.

Returns

Power in watts.

Definition at line 91 of file TaskACPower.cpp.
00091 {
00092 return VOLTAGE_REFERENCE * current;
00093 }

4.17.3.2 readACCurrentValue()

float readACCurrentValue (

int pinNumber)

Reads the RMS AC current value from a specified ADS1115 channel.

Takes multiple ADC readings, calculates peak voltage, converts it to RMS voltage, then to current using the sensor's
range and calibration factor.

Parameters

pinNumber Analog input pin on ADS1115 (e.g., 0 for A0, 1 for A1).

Generated by Doxygen

24 File Documentation

Returns

Measured current in amperes.

Definition at line 43 of file TaskACPower.cpp.
00043 {
00044 float peakVoltage = 0;
00045 float voltageRMS = 0;
00046 float currentValue = 0;
00047
00048 // Take multiple samples for more stable reading
00049 const int SAMPLES = 10;
00050
00051 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00052 for (int i = 0; i < SAMPLES; i++) {
00053 int rawReading = ads.readVoltage(pinNumber); // Reading in mV
00054 peakVoltage += rawReading;
00055 vTaskDelay(2 / portTICK_PERIOD_MS);
00056 ; // Small delay between readings
00057 }
00058 xSemaphoreGive(i2cMutex);
00059 }
00060
00061
00062
00063 // Average the readings
00064 peakVoltage = peakVoltage / SAMPLES;
00065
00066 // Convert peak to RMS (root mean square) - using 0.707 factor
00067 voltageRMS = peakVoltage * 0.707;
00068
00069 // Convert the ADC millivolts to actual volts
00070 voltageRMS = voltageRMS / 1000.0; // Convert mV to V
00071
00072 // Account for circuit amplification
00073 voltageRMS = voltageRMS / 2;
00074
00075 // Convert voltage to current using detection range
00076 currentValue = voltageRMS * CURRENT_DETECTION_RANGE;
00077
00078 // Apply calibration factor to correct the reading
00079 currentValue = currentValue * CALIBRATION_FACTOR;
00080
00081 return currentValue;
00082 }

4.17.3.3 TaskACPower()

void TaskACPower (

void ∗ pvParameters)

FreeRTOS task that periodically reads AC current and updates power measurements.

Uses the SEN0211 sensor and ADS1115 ADC to read current from two input channels. One channel is used to
compute the power (ACPower), and the other sets a flag based on whether the current exceeds 0.06A.

Parameters

pvParameters Unused parameter required by FreeRTOS.

Definition at line 104 of file TaskACPower.cpp.
00104 {
00105 (void)pvParameters;
00106
00107 // // Initial delay to allow system to stabilize
00108 vTaskDelay(2000 / portTICK_PERIOD_MS);
00109
00110
00111 while (true) {
00112 float ACPower = 300.0;
00113 float current = readACCurrentValue(0);
00114 ACPower = current * VOLTAGE_REFERENCE;

Generated by Doxygen

4.17 src/TaskACPower.cpp File Reference 25

00115
00116
00117
00118 sharedMeasurement.ACPower = ACPower;
00119
00120
00121 current = readACCurrentValue(1);
00122
00123
00124 if(current > 0.06){
00125 sharedMeasurement.flag = 1;
00126 } else {
00127 sharedMeasurement.flag = 0;
00128 }
00129
00130
00131
00132
00133
00134 // Wait before next reading (2 seconds)
00135 vTaskDelay(40 / portTICK_PERIOD_MS);
00136 }
00137 }

4.17.4 Variable Documentation

4.17.4.1 ads

DFRobot_ADS1115 ads [extern]

4.17.4.2 CURRENT_PIN

const int CURRENT_PIN = 0

Definition at line 28 of file TaskACPower.cpp.

4.17.4.3 i2cMutex

SemaphoreHandle_t i2cMutex [extern]

Definition at line 29 of file main.cpp.

4.17.4.4 SAMPLES

const int SAMPLES = 10

Definition at line 31 of file TaskACPower.cpp.

4.17.4.5 sharedMeasurement

Measurement sharedMeasurement [extern]

Definition at line 28 of file main.cpp.
00028 {};

Generated by Doxygen

26 File Documentation

4.18 TaskACPower.cpp

Go to the documentation of this file.
00001
00009
00010 #include <Arduino.h>
00011 #include <Wire.h>
00012 #include "TaskShared.h"
00013 #include "TaskACPower.h"
00014 #include "I2CLock.h"
00015
00016 // External shared variables
00017 extern Measurement sharedMeasurement;
00018 extern DFRobot_ADS1115 ads;
00019 extern SemaphoreHandle_t i2cMutex;
00020
00021
00022 // SEN0211 sensor parameters
00023 #define CURRENT_DETECTION_RANGE 20 // Set your sensor’s current detection range (5A, 10A, 20A)
00024 #define VOLTAGE_REFERENCE 240.0 // Reference voltage for your AC line (220V, 110V, etc.)
00025 #define CALIBRATION_FACTOR 1.070 // Calibration factor: actual/measured (4.76/4.45)
00026
00027 // Input pins on ADS1115
00028 const int CURRENT_PIN = 0; // ADS1115 A0 for current measurement
00029
00030 // Number of samples to average for more stable readings
00031 const int SAMPLES = 10;
00032
00033
00043 float readACCurrentValue(int pinNumber) {
00044 float peakVoltage = 0;
00045 float voltageRMS = 0;
00046 float currentValue = 0;
00047
00048 // Take multiple samples for more stable reading
00049 const int SAMPLES = 10;
00050
00051 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00052 for (int i = 0; i < SAMPLES; i++) {
00053 int rawReading = ads.readVoltage(pinNumber); // Reading in mV
00054 peakVoltage += rawReading;
00055 vTaskDelay(2 / portTICK_PERIOD_MS);
00056 ; // Small delay between readings
00057 }
00058 xSemaphoreGive(i2cMutex);
00059 }
00060
00061
00062
00063 // Average the readings
00064 peakVoltage = peakVoltage / SAMPLES;
00065
00066 // Convert peak to RMS (root mean square) - using 0.707 factor
00067 voltageRMS = peakVoltage * 0.707;
00068
00069 // Convert the ADC millivolts to actual volts
00070 voltageRMS = voltageRMS / 1000.0; // Convert mV to V
00071
00072 // Account for circuit amplification
00073 voltageRMS = voltageRMS / 2;
00074
00075 // Convert voltage to current using detection range
00076 currentValue = voltageRMS * CURRENT_DETECTION_RANGE;
00077
00078 // Apply calibration factor to correct the reading
00079 currentValue = currentValue * CALIBRATION_FACTOR;
00080
00081 return currentValue;
00082 }
00083
00084
00091 float calculatePower(float current) {
00092 return VOLTAGE_REFERENCE * current;
00093 }
00094
00104 void TaskACPower(void *pvParameters) {
00105 (void)pvParameters;
00106
00107 // // Initial delay to allow system to stabilize
00108 vTaskDelay(2000 / portTICK_PERIOD_MS);
00109
00110
00111 while (true) {
00112 float ACPower = 300.0;
00113 float current = readACCurrentValue(0);

Generated by Doxygen

4.19 src/TaskCalculateTime.cpp File Reference 27

00114 ACPower = current * VOLTAGE_REFERENCE;
00115
00116
00117
00118 sharedMeasurement.ACPower = ACPower;
00119
00120
00121 current = readACCurrentValue(1);
00122
00123
00124 if(current > 0.06){
00125 sharedMeasurement.flag = 1;
00126 } else {
00127 sharedMeasurement.flag = 0;
00128 }
00129
00130
00131
00132
00133
00134 // Wait before next reading (2 seconds)
00135 vTaskDelay(40 / portTICK_PERIOD_MS);
00136 }
00137 }

4.19 src/TaskCalculateTime.cpp File Reference

FreeRTOS task that reads time from an RTC over I2C and updates a UNIX timestamp.

#include "TaskCalculateTime.h"
#include "TaskShared.h"
#include "DFRobot_DS323X.h"
#include "I2CLock.h"

Functions

• void TaskCalculateTime (void ∗pvParameters)

Shared structure containing sensor measurements including timestamp.

Variables

• SemaphoreHandle_t i2cMutex
• DFRobot_DS323X rtc

Mutex for guarding I2C access across tasks.

• Measurement sharedMeasurement

RTC module used to get the current time.

4.19.1 Detailed Description

FreeRTOS task that reads time from an RTC over I2C and updates a UNIX timestamp.

This task reads the current date and time from an RTC module using I2C, converts it to a UNIX timestamp in
nanoseconds, and stores it in the shared Measurement structure.

Definition in file TaskCalculateTime.cpp.

Generated by Doxygen

28 File Documentation

4.19.2 Function Documentation

4.19.2.1 TaskCalculateTime()

void TaskCalculateTime (

void ∗ pvParameters)

Shared structure containing sensor measurements including timestamp.

FreeRTOS task to calculate the current UNIX timestamp from the RTC and store it.

Periodically reads the date and time from the RTC via I2C using a mutex to ensure safe access. The retrieved time
is converted to a UNIX timestamp in nanoseconds using mktime() and stored in sharedMeasurement.←↩

timestamp.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 29 of file TaskCalculateTime.cpp.
00029 {
00030 (void)pvParameters;
00031
00032 while (true) {
00033 uint16_t year;
00034 uint8_t month, date, hour, minute, second;
00035
00036
00037
00038
00039 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00040 year = rtc.getYear();
00041 month = rtc.getMonth();
00042 date = rtc.getDate();
00043 hour = rtc.getHour();
00044 minute = rtc.getMinute();
00045 second = rtc.getSecond();
00046 xSemaphoreGive(i2cMutex);
00047 }
00048
00049
00050
00051 struct tm timeinfo;
00052 timeinfo.tm_year = year - 1900;
00053 timeinfo.tm_mon = month - 1;
00054 timeinfo.tm_mday = date;
00055 timeinfo.tm_hour = hour;
00056 timeinfo.tm_min = minute;
00057 timeinfo.tm_sec = second;
00058 timeinfo.tm_isdst = 0;
00059
00060 time_t unix_seconds = mktime(&timeinfo);
00061 uint64_t unix_nanos = (uint64_t)unix_seconds * 1000000000ULL;
00062
00063
00064 sharedMeasurement.timestamp = unix_nanos;
00065
00066
00067 vTaskDelay(200 / portTICK_PERIOD_MS);
00068 }
00069 }

4.19.3 Variable Documentation

4.19.3.1 i2cMutex

SemaphoreHandle_t i2cMutex [extern]

Definition at line 29 of file main.cpp.

Generated by Doxygen

4.20 TaskCalculateTime.cpp 29

4.19.3.2 rtc

DFRobot_DS323X rtc [extern]

Mutex for guarding I2C access across tasks.

Definition at line 25 of file main.cpp.

4.19.3.3 sharedMeasurement

Measurement sharedMeasurement [extern]

RTC module used to get the current time.

Definition at line 28 of file main.cpp.
00028 {};

4.20 TaskCalculateTime.cpp

Go to the documentation of this file.
00001
00009
00010 #include "TaskCalculateTime.h"
00011 #include "TaskShared.h"
00012 #include "DFRobot_DS323X.h"
00013 #include "I2CLock.h"
00014 extern SemaphoreHandle_t i2cMutex;
00015
00016
00017 extern DFRobot_DS323X rtc;
00018 extern Measurement sharedMeasurement;
00019
00029 void TaskCalculateTime(void *pvParameters) {
00030 (void)pvParameters;
00031
00032 while (true) {
00033 uint16_t year;
00034 uint8_t month, date, hour, minute, second;
00035
00036
00037
00038
00039 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00040 year = rtc.getYear();
00041 month = rtc.getMonth();
00042 date = rtc.getDate();
00043 hour = rtc.getHour();
00044 minute = rtc.getMinute();
00045 second = rtc.getSecond();
00046 xSemaphoreGive(i2cMutex);
00047 }
00048
00049
00050
00051 struct tm timeinfo;
00052 timeinfo.tm_year = year - 1900;
00053 timeinfo.tm_mon = month - 1;
00054 timeinfo.tm_mday = date;
00055 timeinfo.tm_hour = hour;
00056 timeinfo.tm_min = minute;
00057 timeinfo.tm_sec = second;
00058 timeinfo.tm_isdst = 0;
00059
00060 time_t unix_seconds = mktime(&timeinfo);
00061 uint64_t unix_nanos = (uint64_t)unix_seconds * 1000000000ULL;
00062
00063
00064 sharedMeasurement.timestamp = unix_nanos;
00065
00066
00067 vTaskDelay(200 / portTICK_PERIOD_MS);
00068 }
00069 }

Generated by Doxygen

30 File Documentation

4.21 src/TaskPressure.cpp File Reference

FreeRTOS task that reads data from an I2C pressure sensor and updates shared measurements.

#include "TaskPressure.h"
#include "TaskShared.h"

Functions

• void TaskPressure (void ∗pvParameters)

Mutex for guarding I2C access across tasks.

Variables

• const uint8_t SENSOR_ADDR = 0x28
• const uint16_t OUTPUT_MIN = 1638
• const uint16_t OUTPUT_MAX = 14746
• const float PRESSURE_MAX_PSI = 200.0
• const float PSI_TO_BAR = 0.0689476
• Measurement sharedMeasurement

RTC module used to get the current time.
• SemaphoreHandle_t i2cMutex

4.21.1 Detailed Description

FreeRTOS task that reads data from an I2C pressure sensor and updates shared measurements.

This task communicates with a digital pressure sensor over I2C, converts the raw 14-bit pressure reading to bar,
and stores the result in the shared Measurement structure.

Definition in file TaskPressure.cpp.

4.21.2 Function Documentation

4.21.2.1 TaskPressure()

void TaskPressure (

void ∗ pvParameters)

Mutex for guarding I2C access across tasks.

FreeRTOS task that reads pressure data from a sensor and updates the shared measurement.

This task waits 1 second before starting, then enters a loop where it:

• Takes the I2C mutex.

• Requests 4 bytes of data from a digital pressure sensor at address 0x28.

• Parses the 14-bit raw pressure reading.

• Converts it to PSI, then to bar.

• Releases the mutex and updates the global sharedMeasurement.pressure value.

If the sensor doesn't respond properly, an error message is printed over Serial.

Generated by Doxygen

4.21 src/TaskPressure.cpp File Reference 31

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 37 of file TaskPressure.cpp.
00037 {
00038 (void)pvParameters;
00039
00040 vTaskDelay(1000 / portTICK_PERIOD_MS);
00041
00042 while (true) {
00043 float pressure = 0.0;
00044
00045 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00046
00047
00048
00049 // Request data from the pressure sensor
00050 Wire.requestFrom(SENSOR_ADDR, (uint8_t)4);
00051
00052 if (Wire.available() == 4) {
00053 uint8_t buffer[4];
00054 for (int i = 0; i < 4; ++i) {
00055 buffer[i] = Wire.read();
00056 }
00057
00058 // Extract 14-bit raw pressure
00059 uint16_t raw_pressure = ((buffer[0] & 0x3F) « 8) | buffer[1];
00060
00061 // Convert to pressure
00062 float pressure_psi = ((float)(raw_pressure - OUTPUT_MIN) / (OUTPUT_MAX - OUTPUT_MIN)) *

PRESSURE_MAX_PSI;
00063 pressure = pressure_psi * PSI_TO_BAR;
00064
00065
00066 } else {
00067 Serial.println("Failed to read pressure sensor data");
00068 }
00069 xSemaphoreGive(i2cMutex);
00070 }
00071
00072 sharedMeasurement.pressure = pressure;
00073
00074
00075 vTaskDelay(pdMS_TO_TICKS(2000));
00076 }
00077 }

4.21.3 Variable Documentation

4.21.3.1 i2cMutex

SemaphoreHandle_t i2cMutex [extern]

Definition at line 29 of file main.cpp.

4.21.3.2 OUTPUT_MAX

const uint16_t OUTPUT_MAX = 14746

Definition at line 14 of file TaskPressure.cpp.

4.21.3.3 OUTPUT_MIN

const uint16_t OUTPUT_MIN = 1638

Definition at line 13 of file TaskPressure.cpp.

Generated by Doxygen

32 File Documentation

4.21.3.4 PRESSURE_MAX_PSI

const float PRESSURE_MAX_PSI = 200.0

Definition at line 15 of file TaskPressure.cpp.

4.21.3.5 PSI_TO_BAR

const float PSI_TO_BAR = 0.0689476

Definition at line 16 of file TaskPressure.cpp.

4.21.3.6 SENSOR_ADDR

const uint8_t SENSOR_ADDR = 0x28

Definition at line 12 of file TaskPressure.cpp.

4.21.3.7 sharedMeasurement

Measurement sharedMeasurement [extern]

RTC module used to get the current time.

Definition at line 28 of file main.cpp.
00028 {};

4.22 TaskPressure.cpp

Go to the documentation of this file.
00001
00008
00009 #include "TaskPressure.h"
00010 #include "TaskShared.h"
00011
00012 const uint8_t SENSOR_ADDR = 0x28;
00013 const uint16_t OUTPUT_MIN = 1638;
00014 const uint16_t OUTPUT_MAX = 14746;
00015 const float PRESSURE_MAX_PSI = 200.0;
00016 const float PSI_TO_BAR = 0.0689476;
00017
00018 extern Measurement sharedMeasurement;
00019
00020 extern SemaphoreHandle_t i2cMutex;
00021
00022
00037 void TaskPressure(void *pvParameters) {
00038 (void)pvParameters;
00039
00040 vTaskDelay(1000 / portTICK_PERIOD_MS);
00041
00042 while (true) {
00043 float pressure = 0.0;
00044
00045 if (xSemaphoreTake(i2cMutex, portMAX_DELAY) == pdTRUE) {
00046
00047
00048
00049 // Request data from the pressure sensor
00050 Wire.requestFrom(SENSOR_ADDR, (uint8_t)4);

Generated by Doxygen

4.23 src/TaskPublish.cpp File Reference 33

00051
00052 if (Wire.available() == 4) {
00053 uint8_t buffer[4];
00054 for (int i = 0; i < 4; ++i) {
00055 buffer[i] = Wire.read();
00056 }
00057
00058 // Extract 14-bit raw pressure
00059 uint16_t raw_pressure = ((buffer[0] & 0x3F) « 8) | buffer[1];
00060
00061 // Convert to pressure
00062 float pressure_psi = ((float)(raw_pressure - OUTPUT_MIN) / (OUTPUT_MAX - OUTPUT_MIN)) *

PRESSURE_MAX_PSI;
00063 pressure = pressure_psi * PSI_TO_BAR;
00064
00065
00066 } else {
00067 Serial.println("Failed to read pressure sensor data");
00068 }
00069 xSemaphoreGive(i2cMutex);
00070 }
00071
00072 sharedMeasurement.pressure = pressure;
00073
00074
00075 vTaskDelay(pdMS_TO_TICKS(2000));
00076 }
00077 }
00078
00079
00080
00081
00082
00083
00084

4.23 src/TaskPublish.cpp File Reference

FreeRTOS task that serializes and publishes sensor data over Serial as JSON.

#include "TaskPublish.h"
#include "TaskShared.h"
#include <ArduinoJson.h>

Functions

• void TaskPublish (void ∗pvParameters)

FreeRTOS task that publishes sensor data as JSON over Serial.

Variables

• Measurement sharedMeasurement

Shared structure containing the latest sensor measurements.

4.23.1 Detailed Description

FreeRTOS task that serializes and publishes sensor data over Serial as JSON.

This task reads the most recent sensor measurements from a shared structure and sends them as a JSON object
over the Serial interface at regular intervals.

Definition in file TaskPublish.cpp.

Generated by Doxygen

34 File Documentation

4.23.2 Function Documentation

4.23.2.1 TaskPublish()

void TaskPublish (

void ∗ pvParameters)

FreeRTOS task that publishes sensor data as JSON over Serial.

Every 300 ms, this task creates a JSON object containing pressure, temperature, power, timestamp, and a status
flag from the shared measurement structure. It prints the JSON to the Serial port for external logging or monitoring.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 25 of file TaskPublish.cpp.
00025 {
00026 (void)pvParameters;
00027
00028 while (true) {
00029 Measurement localCopy;
00030
00031
00032 localCopy = sharedMeasurement;
00033
00034
00035 StaticJsonDocument<128> doc;
00036 doc["pressure"] = localCopy.pressure;
00037 doc["temperature"] = localCopy.temperature;
00038 doc["power"] = localCopy.ACPower;
00039 doc["timestamp"] = localCopy.timestamp;
00040 doc["flag"] = localCopy.flag;
00041 serializeJson(doc, Serial);
00042 Serial.println();
00043
00044 vTaskDelay(pdMS_TO_TICKS(300));
00045 }
00046 }

4.23.3 Variable Documentation

4.23.3.1 sharedMeasurement

Measurement sharedMeasurement [extern]

Shared structure containing the latest sensor measurements.

Shared structure containing the latest sensor measurements.

Definition at line 28 of file main.cpp.
00028 {};

Generated by Doxygen

4.24 TaskPublish.cpp 35

4.24 TaskPublish.cpp

Go to the documentation of this file.
00001
00008
00009 #include "TaskPublish.h"
00010 #include "TaskShared.h"
00011 #include <ArduinoJson.h>
00012
00014 extern Measurement sharedMeasurement;
00015
00025 void TaskPublish(void *pvParameters) {
00026 (void)pvParameters;
00027
00028 while (true) {
00029 Measurement localCopy;
00030
00031
00032 localCopy = sharedMeasurement;
00033
00034
00035 StaticJsonDocument<128> doc;
00036 doc["pressure"] = localCopy.pressure;
00037 doc["temperature"] = localCopy.temperature;
00038 doc["power"] = localCopy.ACPower;
00039 doc["timestamp"] = localCopy.timestamp;
00040 doc["flag"] = localCopy.flag;
00041 serializeJson(doc, Serial);
00042 Serial.println();
00043
00044 vTaskDelay(pdMS_TO_TICKS(300));
00045 }
00046 }

4.25 src/TaskReceiveTime.cpp File Reference

FreeRTOS task that listens for JSON input over Serial to update the RTC.

#include "TaskReceiveTime.h"
#include <ArduinoJson.h>
#include "DFRobot_DS323X.h"

Functions

• void TaskReceiveTime (void ∗pvParameters)

FreeRTOS task to receive and process time-setting commands over Serial.

Variables

• DFRobot_DS323X rtc

Global RTC object used to set the time.

4.25.1 Detailed Description

FreeRTOS task that listens for JSON input over Serial to update the RTC.

This task waits for a JSON message containing time information via the serial port. If the JSON is valid and contains
a set_time command along with time fields, it updates the RTC module using the provided values.

Definition in file TaskReceiveTime.cpp.

Generated by Doxygen

36 File Documentation

4.25.2 Function Documentation

4.25.2.1 TaskReceiveTime()

void TaskReceiveTime (

void ∗ pvParameters)

FreeRTOS task to receive and process time-setting commands over Serial.

Expects a JSON payload such as:
{

"set_time": true,
"year": 2025,
"month": 5,
"day": 8,
"hour": 14,
"minute": 30,
"second": 0

}

If valid, it sets the RTC accordingly and replies with a success message.

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Definition at line 36 of file TaskReceiveTime.cpp.
00036 {
00037 (void)pvParameters;
00038
00039 String input;
00040
00041 while (true) {
00042 if (Serial.available()) {
00043 input = Serial.readStringUntil(’\n’);
00044
00045 StaticJsonDocument<200> doc;
00046 DeserializationError err = deserializeJson(doc, input);
00047
00048 if (err) {
00049 Serial.println("{\"error\":\"Invalid JSON\"}");
00050 continue;
00051 }
00052
00053 if (doc["set_time"] == true &&
00054 doc.containsKey("year") &&
00055 doc.containsKey("month") &&
00056 doc.containsKey("day") &&
00057 doc.containsKey("hour") &&
00058 doc.containsKey("minute") &&
00059 doc.containsKey("second")) {
00060
00061 int year = doc["year"].as<int>();
00062 int month = doc["month"].as<int>();
00063 int day = doc["day"].as<int>();
00064 int hour = doc["hour"].as<int>();
00065 int minute = doc["minute"].as<int>();
00066 int second = doc["second"].as<int>();
00067
00068 rtc.setTime(year, month, day, hour, minute, second);
00069
00070 Serial.println("{\"status\":\"RTC updated\"}");
00071 }
00072 }
00073
00074 vTaskDelay(pdMS_TO_TICKS(100));
00075 }
00076 }

Generated by Doxygen

4.26 TaskReceiveTime.cpp 37

4.25.3 Variable Documentation

4.25.3.1 rtc

DFRobot_DS323X rtc [extern]

Global RTC object used to set the time.

Global RTC object used to set the time.

Definition at line 25 of file main.cpp.

4.26 TaskReceiveTime.cpp

Go to the documentation of this file.
00001
00009
00010 #include "TaskReceiveTime.h"
00011 #include <ArduinoJson.h>
00012 #include "DFRobot_DS323X.h"
00013
00015 extern DFRobot_DS323X rtc;
00016
00036 void TaskReceiveTime(void *pvParameters) {
00037 (void)pvParameters;
00038
00039 String input;
00040
00041 while (true) {
00042 if (Serial.available()) {
00043 input = Serial.readStringUntil(’\n’);
00044
00045 StaticJsonDocument<200> doc;
00046 DeserializationError err = deserializeJson(doc, input);
00047
00048 if (err) {
00049 Serial.println("{\"error\":\"Invalid JSON\"}");
00050 continue;
00051 }
00052
00053 if (doc["set_time"] == true &&
00054 doc.containsKey("year") &&
00055 doc.containsKey("month") &&
00056 doc.containsKey("day") &&
00057 doc.containsKey("hour") &&
00058 doc.containsKey("minute") &&
00059 doc.containsKey("second")) {
00060
00061 int year = doc["year"].as<int>();
00062 int month = doc["month"].as<int>();
00063 int day = doc["day"].as<int>();
00064 int hour = doc["hour"].as<int>();
00065 int minute = doc["minute"].as<int>();
00066 int second = doc["second"].as<int>();
00067
00068 rtc.setTime(year, month, day, hour, minute, second);
00069
00070 Serial.println("{\"status\":\"RTC updated\"}");
00071 }
00072 }
00073
00074 vTaskDelay(pdMS_TO_TICKS(100));
00075 }
00076 }

Generated by Doxygen

38 File Documentation

4.27 src/TaskTemperature.cpp File Reference

FreeRTOS task that reads data from a MAX31865 temperature sensor and updates the shared measurement struc-
ture.

#include <Arduino.h>
#include <Adafruit_MAX31865.h>
#include <SPI.h>
#include "TaskShared.h"

Macros

• #define MAX31865_CS_PIN 14
• #define MAX31865_DI_PIN 23
• #define MAX31865_DO_PIN 19
• #define MAX31865_CLK_PIN 18
• #define RREF 430.0

The value of the Rref resistor. Use 430.0 for PT100 and 4300.0 for PT1000.

• #define RNOMINAL 100.0

The 'nominal' 0-degrees-C resistance of the sensor.

Functions

• void TaskTemperature (void ∗pvParameters)

FreeRTOS task to read temperature from the MAX31865 sensor.

Variables

• Measurement sharedMeasurement

Shared measurement structure used across tasks.

• Adafruit_MAX31865 thermo = Adafruit_MAX31865(MAX31865_CS_PIN, MAX31865_DI_PIN, MAX31865_DO_PIN,
MAX31865_CLK_PIN)

Use software SPI: CS, DI, DO, CLK.

4.27.1 Detailed Description

FreeRTOS task that reads data from a MAX31865 temperature sensor and updates the shared measurement struc-
ture.

Definition in file TaskTemperature.cpp.

4.27.2 Macro Definition Documentation

4.27.2.1 MAX31865_CLK_PIN

#define MAX31865_CLK_PIN 18

Definition at line 18 of file TaskTemperature.cpp.

Generated by Doxygen

4.27 src/TaskTemperature.cpp File Reference 39

4.27.2.2 MAX31865_CS_PIN

#define MAX31865_CS_PIN 14

Definition at line 15 of file TaskTemperature.cpp.

4.27.2.3 MAX31865_DI_PIN

#define MAX31865_DI_PIN 23

Definition at line 16 of file TaskTemperature.cpp.

4.27.2.4 MAX31865_DO_PIN

#define MAX31865_DO_PIN 19

Definition at line 17 of file TaskTemperature.cpp.

4.27.2.5 RNOMINAL

#define RNOMINAL 100.0

The 'nominal' 0-degrees-C resistance of the sensor.

Definition at line 26 of file TaskTemperature.cpp.

4.27.2.6 RREF

#define RREF 430.0

The value of the Rref resistor. Use 430.0 for PT100 and 4300.0 for PT1000.

Definition at line 24 of file TaskTemperature.cpp.

4.27.3 Function Documentation

4.27.3.1 TaskTemperature()

void TaskTemperature (

void ∗ pvParameters)

FreeRTOS task to read temperature from the MAX31865 sensor.

FreeRTOS task that reads temperature sensor data and processes it.

Periodically reads the RTD value, computes the temperature, and stores it in a shared structure.

Generated by Doxygen

40 File Documentation

Parameters

pvParameters Unused parameter required by FreeRTOS task signature.

Initial delay to allow other initializations to complete

SPI initialization for temperature sensor

Initialize the MAX31865 with 2WIRE configuration

Initial reading to check if sensor is working

Task loop

Read raw RTD value

Default value

Only process if we got a valid reading

Calculate temperature using the library function

Check for out-of-range values

Check for sensor faults

Clear fault

Try to reinitialize the sensor

Definition at line 37 of file TaskTemperature.cpp.
00037 {
00038 (void)pvParameters;
00039
00041 vTaskDelay(2000 / portTICK_PERIOD_MS);
00042
00043 Serial.println("Temperature sensor task starting...");
00044
00046 SPI.begin(); //redundant?
00047
00049 thermo.begin(MAX31865_2WIRE);
00050
00052 uint16_t rtd_initial = thermo.readRTD();
00053 Serial.print("Initial RTD reading: ");
00054 Serial.println(rtd_initial);
00055
00056 if (rtd_initial == 0) {
00057 Serial.println("WARNING: Temperature sensor not responding, check connections");
00058 }
00059
00061 while (true) {
00063 uint16_t rtd = thermo.readRTD();
00064
00065 float temperature = 22.0;
00066
00068 if (rtd > 0) {
00070 temperature = thermo.temperature(RNOMINAL, RREF) - 7.0;
00071
00072
00073 float ratio = rtd;
00074 ratio /= 32768;
00075 float resistance = RREF * ratio;
00076
00077
00079 if (temperature < -50 || temperature > 200) {
00080 Serial.println("Temperature out of reasonable range, using default");
00081 temperature = 22.0;
00082 }
00083 } else {
00084 Serial.println("Invalid RTD reading, using default temperature");
00085 }

Generated by Doxygen

4.28 TaskTemperature.cpp 41

00086
00088 uint8_t fault = thermo.readFault();
00089 if (fault) {
00090 Serial.print("Fault detected 0x");
00091 Serial.println(fault, HEX);
00092
00094 thermo.clearFault();
00095
00097 thermo.begin(MAX31865_2WIRE);
00098 vTaskDelay(100 / portTICK_PERIOD_MS);
00099 }
00100
00101 sharedMeasurement.temperature = temperature;
00102
00103 vTaskDelay(2000 / portTICK_PERIOD_MS);
00104 }
00105 }

4.27.4 Variable Documentation

4.27.4.1 sharedMeasurement

Measurement sharedMeasurement [extern]

Shared measurement structure used across tasks.

Shared measurement structure used across tasks.

Shared structure containing the latest sensor measurements.

Definition at line 28 of file main.cpp.
00028 {};

4.27.4.2 thermo

Adafruit_MAX31865 thermo = Adafruit_MAX31865(MAX31865_CS_PIN, MAX31865_DI_PIN, MAX31865_DO_PIN,

MAX31865_CLK_PIN)

Use software SPI: CS, DI, DO, CLK.

Definition at line 21 of file TaskTemperature.cpp.

4.28 TaskTemperature.cpp

Go to the documentation of this file.
00001
00006
00007 #include <Arduino.h>
00008 #include <Adafruit_MAX31865.h>
00009 #include <SPI.h>
00010 #include "TaskShared.h"
00011
00013 extern Measurement sharedMeasurement;
00014
00015 #define MAX31865_CS_PIN 14
00016 #define MAX31865_DI_PIN 23
00017 #define MAX31865_DO_PIN 19
00018 #define MAX31865_CLK_PIN 18
00019
00021 Adafruit_MAX31865 thermo = Adafruit_MAX31865(MAX31865_CS_PIN, MAX31865_DI_PIN, MAX31865_DO_PIN,

MAX31865_CLK_PIN);
00022
00024 #define RREF 430.0

Generated by Doxygen

42 File Documentation

00026 #define RNOMINAL 100.0
00027
00036
00037 void TaskTemperature(void *pvParameters) {
00038 (void)pvParameters;
00039
00041 vTaskDelay(2000 / portTICK_PERIOD_MS);
00042
00043 Serial.println("Temperature sensor task starting...");
00044
00046 SPI.begin(); //redundant?
00047
00049 thermo.begin(MAX31865_2WIRE);
00050
00052 uint16_t rtd_initial = thermo.readRTD();
00053 Serial.print("Initial RTD reading: ");
00054 Serial.println(rtd_initial);
00055
00056 if (rtd_initial == 0) {
00057 Serial.println("WARNING: Temperature sensor not responding, check connections");
00058 }
00059
00061 while (true) {
00063 uint16_t rtd = thermo.readRTD();
00064
00065 float temperature = 22.0;
00066
00068 if (rtd > 0) {
00070 temperature = thermo.temperature(RNOMINAL, RREF) - 7.0;
00071
00072
00073 float ratio = rtd;
00074 ratio /= 32768;
00075 float resistance = RREF * ratio;
00076
00077
00079 if (temperature < -50 || temperature > 200) {
00080 Serial.println("Temperature out of reasonable range, using default");
00081 temperature = 22.0;
00082 }
00083 } else {
00084 Serial.println("Invalid RTD reading, using default temperature");
00085 }
00086
00088 uint8_t fault = thermo.readFault();
00089 if (fault) {
00090 Serial.print("Fault detected 0x");
00091 Serial.println(fault, HEX);
00092
00094 thermo.clearFault();
00095
00097 thermo.begin(MAX31865_2WIRE);
00098 vTaskDelay(100 / portTICK_PERIOD_MS);
00099 }
00100
00101 sharedMeasurement.temperature = temperature;
00102
00103 vTaskDelay(2000 / portTICK_PERIOD_MS);
00104 }
00105 }

Generated by Doxygen

KAFFEKNEKT

ESP32 Development Log MT | DAB

April 3, 2025

Installed PlatformIO on a Linux machine provided by Semcon. Installed PlatformIO both as a
tool in the commandline and as a plugin in VScode.

Figure C.1.1: Installation PlatformIO

Figure C.1.2: PlatformIO VSCode Plugin

248

KAFFEKNEKT

April 4, 2025

Checked out test driven development in PlatformIO. Concluded that we will just do unit testing
and not full blown test driven development.

Unit test: T-ESP32-1.0 - Temperature sensor testing (Appx. A.4).

Established initial contact with temperature sensor (this was already tested directly on Rasp-
berry Pi but we are migrating the functionality over to ESP32).
Working example code was provided from DFRobot [24]

To get the code to work we just had to do some minor adjustments and familiarization with using
platformio.ini file to include libraries.

Code used for testing: GitHub 1

Figure C.1.3: Terminal readout temperature sensor

Conclusion: Test passes. Sensor works.
Notes: Temperature changes when we touch the probe. Cannot conclude if accurate.

1https://github.com/martintara/kaffeknekt/blob/martin/temp test/src/main.cpp Copy of this file also on USB.

249

https://github.com/martintara/kaffeknekt/blob/martin/temp_test/src/main.cpp

KAFFEKNEKT

April 7, 2025

Unit test: T-ESP32-1.1 - DC current sensor testing (Appx. A.4)

Code used for testing: GitHub 2

Example code provided from DFRobot [23].
We just had to do adjustments in platformio.ini to import the correct libraries to get the code
running on ESP32.
Library found at DFRobot’s GitHub 3.

Figure C.1.4: Terminal readout dc current sensor

Conclusion: Test passes. Sensor works.
Note: Values are changing. Cannot conclude if accurate. Datasheet mentions calibration.

2https://github.com/martintara/kaffeknekt/blob/martin/watt test/src/main.cpp Copy of this file also on USB.
3https://github.com/DFRobot/DFRobot INA219

250

https://github.com/martintara/kaffeknekt/blob/martin/watt_test/src/main.cpp
https://github.com/DFRobot/DFRobot_INA219

KAFFEKNEKT

Unit test: T-ESP32-1.2 - DC current sensor calibration (Appx. A.4)
The calibration works accordingly:
Step 1. Set the in219Reading mA variable to value observed in terminal readout.
Step 2: Set extMeterReading mA variable to measured current.
We used a digital multimeter for reference.

Figure C.1.5: Before calibration.

Figure C.1.6: After calibration.

Conclusion: Test passes. Sensor is now calibrated.

251

KAFFEKNEKT

Unit test: T-ESP32-1.3 - AC current sensor testing (Appx. A.4)
Setup: Sensor connected with 1 pin (excluding ground and power). Sensor is clamped around he
electrical wire of 5v power supply for Raspberry Pi.

Example code provided from DFRobot [21]

Code used for testing: GitHub 4

Figure C.1.7: Terminal readout.

Conclusion: Test fails. We tested this on power supply that outputs 5V for a Raspeberry Pi. The
power supply does not run hot. I cant make these numbers to make sense. Further testing and
consulting with the electrical team needed.

Unit test: T-ESP32-1.4 - USB communication test (Appx. A.4)
Tested using pyserial for communication between ESP32 and Raspberry Pi. Forgot to screenshot.
It was just a basic python script using pyserial library.

Conclusion: Test passes. We have communication! And can inform rest of dev team about potential
interface between signal coming in to Raspberry Pi from ESP32 for then to be used to push data
into Influx DB.
Note: The idea is to structure the data being sent over usb by using JSON format since it is easy
to read and understand.

4https://github.com/martintara/kaffeknekt/blob/3bcda6b2c9aee31192f155499cf180b84258a6b0/current sensor
ac test/src/main.cpp Copy of this file also on USB.

252

https://github.com/martintara/kaffeknekt/blob/3bcda6b2c9aee31192f155499cf180b84258a6b0/current_sensor_ac_test/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/3bcda6b2c9aee31192f155499cf180b84258a6b0/current_sensor_ac_test/src/main.cpp

KAFFEKNEKT

April 8, 2025

Unit test: T-ESP32-1.5 - Combining two sensors (Appx. A.4)

Code used for testing: GitHub 5

Approach: Used Claude AI to combine the already working code snippets for temperature and
current sensor.

Conclusion: Test passes. Tasking works.

Getting readouts from both sensors. Forgot screenshot.

Note: Need to start planning how to structure the code. Using ai to combine the tasks is all ready
starting to get a bit messy. Also: The system is not connected to the internet - In this current
iteration the ESP32 gets the time sent from the Raspberry Pi. This is a bad idea since it can cause
the time to drift and have to be revised.

5https://github.com/martintara/kaffeknekt/blob/0673ad0f92ce84eff4f25eab455542ad74a3edc3/combined test/
src/main.cpp Copy of this file also on USB.

253

https://github.com/martintara/kaffeknekt/blob/0673ad0f92ce84eff4f25eab455542ad74a3edc3/combined_test/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/0673ad0f92ce84eff4f25eab455542ad74a3edc3/combined_test/src/main.cpp

KAFFEKNEKT

April 10, 2025

Unit test: T-ESP32-1.6 - Testing pressure sensor (Appx. A.4)

Code used for testing: GitHub (history version) 6

We did not find any arduino example code for this sensor. We found the conversion formula in the
NPI-19 datasheet [58]
We instructed Claude AI to make an example code.
Conversion formula:

Output (Counts) =
Papplied − Pmin

Pmax − Pmin
× (Outputmax −Outputmin) (C.1.1)

Figure C.1.8: Terminal readout.

Conclusion: Test passes. Readouts makes sense since the sensor is in open air.
Notes: We notice a sporadic I2C error once in a while.

6https://github.com/martintara/kaffeknekt/blob/c37503749b72bc410b1b505dc2fac483dea63eb0/trykk test/src/
main.cpp Copy of this file also on USB.

254

https://github.com/martintara/kaffeknekt/blob/c37503749b72bc410b1b505dc2fac483dea63eb0/trykk_test/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/c37503749b72bc410b1b505dc2fac483dea63eb0/trykk_test/src/main.cpp

KAFFEKNEKT

April 11, 2025

Unit test: T-ESP32-1.7 - AC current sensor 2nd test (Appx. A.4)
We concluded that the internal ADC of the ESP32 is not up to par. Will now test an ADC module
with higher bitrate.

Example code provided from DFRobot [22].

We did not get the example code to work. We used Claude AI to translate the working Arduino
example code to ESP32.

Code used for testing: GitHub 7

Figure C.1.9: Terminal readout.

Conclusion: Test fails. Readouts makes no sense: we are still hooked up to a water boiler.

7https://github.com/martintara/kaffeknekt/blob/martin/current sensor ac test/src/main.cpp Copy of this file
also on USB.

255

https://github.com/martintara/kaffeknekt/blob/martin/current_sensor_ac_test/src/main.cpp

KAFFEKNEKT

April 14, 2025

Unit test: T-ESP32-1.8 - RTC-module testing (Appx. A.4)

Testing using RTC module instead of getting the time from Raspberry Pi.

Example code found at DFRobot [19].
Code used for testing: GitHub 8 and: GitHub 9

We used Claude AI to make a python script to test sending timestamps as JSON format.

Libraries imported from GitHub 10

This defines the RTC interfaces such as uint8 t getMinutes(), uint8 t getSeconds() and void set-
Time(uint16 t year, uint8 t month, uint8 t date, uint8 t hour, uint8 t minute, uint8 t second) etc.
GitHub 11 adds the functionality to serialize a JSON document.

Figure C.1.10: RTC-module on testbench.

Conclusion: Test passes. Setting and getting the time works. Forgot screenshot.

8https://github.com/martintara/kaffeknekt/blob/martin/rtc test/src/main.cpp Copy of this file also on USB.
9https://github.com/martintara/kaffeknekt/blob/martin/rtc test/rtc json.py Copy of this file also on USB.

10https://github.com/DFRobot/DFRobot DS323X
11https://github.com/bblanchon/ArduinoJson

256

https://github.com/martintara/kaffeknekt/blob/martin/rtc_test/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/martin/rtc_test/rtc_json.py
https://github.com/DFRobot/DFRobot_DS323X
https://github.com/bblanchon/ArduinoJson

KAFFEKNEKT

April 15, 2025

Unit test: T-ESP32-1.9 - AC current sensor 3rd test (Appx. A.4)
Setup: This time the current sensor is hooked up to a water boiler that we know is between 1000
and 1300 watts.

Picking up where we left off with the AC current sensor. After consulting with electrical, we try
to use a better adc [22].
Code used for testing: GitHub 12

Code is based on the example code from the DFrobot wiki [22].

Figure C.1.11: Terminal readout - with load.

Figure C.1.12: Terminal readout - Without load.

Conclusion: Test passes.
Note: These readouts makes sense, but we want to confirm this with using ampere meter later.

12https://github.com/martintara/kaffeknekt/blob/martin/current sensor ac test/src/main.cpp Copy of this file
also on USB.

257

https://github.com/martintara/kaffeknekt/blob/martin/current_sensor_ac_test/src/main.cpp

KAFFEKNEKT

April 22, 2025

Moved the testbench down to the coffee machine in the workshop.

After installing the sensor and turning on the coffee machine, we quickly discovered a leakage and
had to power off the machine.

Figure C.1.13: Aborted test - Leakage.

Conclusion: Test aborted.

258

KAFFEKNEKT

April 23, 2025

Unit test: T-ESP32-2.0 - Calibrating AC current sensor (Appx. A.4)

Picked up where we left off, where we had the idea to measure actual current through the water
boiler using a ampere meter. After applying a calibration factor of 1.070 (4.76 / 4.45) (mea-
sured/code output) the system now senses the current accurately.

Figure C.1.14: Before calibration.

Figure C.1.15: After calibration.

Conclusion: Test passes. Current sensor now satisfies our needs (measuring current accurately)

259

KAFFEKNEKT

Unit test: T-ESP32-2.1 - Testing MQTT (Appx. A.4)

In a meeting with Semcon we uncovered a new ”want” and that was having wireless communication
between Raspberry Pi and ESP32.
Code used for testing: GitHub 13

Test code generated by Claude AI.

When trying to get MQTT to work the best solution seemed to be hosting a local wifi hotspot
from the Raspberry Pi.

We got the communication to send messages internally sending mqtt messages through localhost.
Listener:

Figure C.1.16: Local listener.

Figure C.1.17: Sending and receiving MQTT

13https://github.com/martintara/kaffeknekt/blob/martin/mqtt test/src/main.cpp Copy of this file also on USB.

260

https://github.com/martintara/kaffeknekt/blob/martin/mqtt_test/src/main.cpp

KAFFEKNEKT

Figure C.1.18: Password protected

After a lot of failed tinkering with trying to get the ESP32 to connect with a local hope. We had
a glimmer of hope after installing RaspAP (wifi hotspot software).

Figure C.1.19: MQTT Success

RaspAP bloated the Raspberry Pi. First of all we could not connect to the internet. (needed in
our development workflow).
After rebooting the Raspberry Pi we discovered it took forever to boot. It is loading hundreds of
packages.

Tinkering this much with the config files of the networking functionality of the Pi made it impos-
sible to restore to default behavior.

Luckily we had had the foresight to make snapshots of the system, so we did a full system restore
using Timeshift:
Conclusion: Test failed.

261

KAFFEKNEKT

Figure C.1.20: System restoration using Timeshift

Conclusion: Test failed.
Notes: Putting MQTT on hold.

262

KAFFEKNEKT

Unit test: T-ESP32-2.2 - Pressure sensor testing (Appx. A.4)

Picking up where I left off yesterday. Last session we had to abort because of leakage.
Datasheet: NPI-19 Series Digital Pressure Sensor I2C [58].
Code used for testing: GitHub 14

Figure C.1.21: Terminal readout: binary sensor data

Figure C.1.22: Terminal readout: Pressure detected.

Conclusion: Test passes. Seems like we are getting accurate readings. It gets very close to zero
when we turn off the coffee machine.

Notes: Our hope for finding 9 bars in the current position of the system faded after testing. The
pressure builds gradually when system is idle, and it drops when starting brewing. It does not
have the exact same range of values dependent on how much pressure has built up. But it usually
gets to around 4 bar during brewing.

14https://github.com/martintara/kaffeknekt/blob/martin/trykk test/src/main.cpp Copy of this file also on USB.

263

https://github.com/martintara/kaffeknekt/blob/martin/trykk_test/src/main.cpp

KAFFEKNEKT

April 23, 2025

Had another attempt on setting up wifi hotspot. Messed up network configurations again. Had to
do full system restore again. Putting MQTT on hold, taking too much time, it is not our highest
priority.

Did some more pressure sensor testing, observing the system. When we observed the coffee machine
in the search for finding a trigger it seems that we can differentiate the pressure during brewing
and the pressure that gets built up when only refilling the tank.

Figure C.1.23: Pressure when brewing.

Figure C.1.24: Pressure when pump kicks in.

The two different pressure levels observed is 1. machine is brewing, 2. tank gets low and the pump
starts pumping fresh water. We should be able to distinguish these levels and use the 8 bars as
indicator for when the machine is currently brewing.
Though in theory this should work, we can not find the correlation with the pressure dropping in
the boiler and the readouts we get from the sensor.

Conclusion: We have to look into other means on finding a trigger that indicates brewing.

264

KAFFEKNEKT

April 27, 2025

Unit test: T-ESP32-2.3 - Bluetooth testing (Appx. A.4)

We have working code for each individual code now. Added AC current sensor to the combined
testing code. While the use of AI has been helpful in understanding the sensors and helping cre-
ating testcode, the complexity in combining the sensors is now increasing to such extent that it
starting to struggle. We have to take a step back and manually rebuild the code step by step and
test for each step.

Since figuring out MQTT took too much time and we had to abort, we wanted to check if bluetooth
can be a viable option. We made a quick test with generating code on ESP32 and a python script
with claude ai to observe if I can establish the connection.

Code used for testing: GitHub 15 and GitHub 16

Terminal readout:

Figure C.1.25: Bluetooth testing.

Conclusion: Test passes. Established connection and it seems stable. (the sensor data is random
gibberish but the purpose of the test was to check if i could send data reliably over bluetooth.
Potential candidate for defining a wireless interface, but will first complete the implementation
using usb connection.

15https://github.com/martintara/kaffeknekt/blob/martin/bluetooth test/src/main.cppCopy of this file also on
USB.

16https://github.com/martintara/kaffeknekt/blob/martin/bluetooth test/esp32 bluetooth.py Copy of this file
also on USB.

265

https://github.com/martintara/kaffeknekt/blob/martin/bluetooth_test/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/martin/bluetooth_test/esp32_bluetooth.py

KAFFEKNEKT

April 28, 2025

Started working on implementing a combined test but this time without the help of ai. We start
off combining tasks one by one but something goes horribly wrong.
We get this code to work: GitHub (history version) 17

We should break the tasks into different files. And observe when errors gets introduced.

Since we do not have functioning code yet, we made a program for ESP32 that simulates values
close to what we have observed. Testing can now be commenced in other areas of development
without being dependent on functional sensor code. Used Claude AI. A mistake we did was mak-
ing the simulated temperature suddenly rise or drop. We meant to implement this behavior for
pressure. Instructing claudeai to swap this functionality worked with grace. Code for random
generator script: GitHub (history version) 18

Conclusion: Have to read more on tasking and figure out a structured way to do this. Note:
Random generator script simulates the wanted behavior from ESP32 in such manner that the rest
of the team does not have to wait for functional sensor code to do their testing. Findings: When
making the random generator script we thought of the wanted behavior. An idea of using a flag
variable came up. This flag will indicate if the system is currently brewing coffee or not.

Figure C.1.26: Script simulating sensor readouts.

17https://github.com/martintara/kaffeknekt/blob/4e5d57021a7406fd65095720412f9ef87f4749f0/combined test2/
src/main.cpp Copy of this file also on USB.

18https://github.com/martintara/kaffeknekt/blob/4e5d57021a7406fd65095720412f9ef87f4749f0/combined test2/
src/main.cpp Copy of this file also on USB.

266

https://github.com/martintara/kaffeknekt/blob/4e5d57021a7406fd65095720412f9ef87f4749f0/combined_test2/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/4e5d57021a7406fd65095720412f9ef87f4749f0/combined_test2/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/4e5d57021a7406fd65095720412f9ef87f4749f0/combined_test2/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/4e5d57021a7406fd65095720412f9ef87f4749f0/combined_test2/src/main.cpp

KAFFEKNEKT

May 2, 2025

Unit test: T-ESP32-2.4 - RTC interface testing (Appx. A.4)

ESP32 Code used for testing: GitHub 19

Python script used for sending a manually set time (defined in variables): GitHub 20

The two tasks are based on earlier tested code. One task for receiving data over serial. One task
for sending data over serial.

Figure C.1.27: Terminal readout.

Conclusion: Test passes. Date got sent and registered. ESP32 keeps sending data.

19https://github.com/martintara/kaffeknekt/blob/martin/serial comm tasking test/src/main.cppCopy of this
file also on USB.

20https://github.com/martintara/kaffeknekt/blob/martin/serial comm tasking test/serial test.py Copy of this
file also on USB.

267

https://github.com/martintara/kaffeknekt/blob/martin/serial_comm_tasking_test/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/martin/serial_comm_tasking_test/serial_test.py

KAFFEKNEKT

Unit test: T-ESP32-2.5 - Leading zeros test (Appx. A.4)
Further testing: Was asked from GUI dev if leading 0’s will work (as in month 01, hour 01 etc.)
Testing with leading 0.
Code used for testing: GitHub 21

Figure C.1.28: Crash using leading zero.

As suspected this crashed. An easy fix was using as int [4].

Figure C.1.29: Using as int.

Conclusion: Test passes. Leading zero works now.
Note: No need to consider any more validation of the string since the values will be set from the
GUI, not user input from keyboard. This was just for convenience for GUI dev.

21https://github.com/martintara/kaffeknekt/blob/martin/serial comm tasking test/src/main.cpp Copy of this
file also on USB.

268

https://github.com/martintara/kaffeknekt/blob/martin/serial_comm_tasking_test/src/main.cpp

KAFFEKNEKT

May 5, 2025

Unit test: T-ESP32-2.6 - Combining sensors test (Appx. A.4)

Code used for testing: GitHub (history version) 22

First we thought there was no contact with sensor. But that did not really make sense. We tried
testing the pressure sensor with the standalone code which we have tested and confirmed to work.
Sensor works with this code. We then added prinln statements to debug. It prints the raw data
and conversion to bar, meaning we get sensor readouts.
Conclusion: Problem was the float value gets stored in an int and is rounded to 0.
Fix: Changed int to float

Figure C.1.30: Float issue.

Figure C.1.31: Fixed by changing int to float.

Conclusion: Bug fixed. Test passes.

22https://github.com/martintara/kaffeknekt/tree/08f33bc8212c93c9b0d330fe3669bde35571627d/combined test2
Copy of these files also on USB.

269

https://github.com/martintara/kaffeknekt/tree/08f33bc8212c93c9b0d330fe3669bde35571627d/combined_test2

KAFFEKNEKT

Unit test: T-ESP32-2.7 - Testing new temperature sensor (Appx. A.4)

Code used for testing: GitHub (history version) 23

Connected sensor to ESP32. Getting no response.
Only instructions from Adafruit guide [1] is to download the test code from the Arduino IDE for
usage on an Arduino. Cannot find code anywhere else.
Found our trusty Arduino Mega. Downloaded and installed arduino IDE and tried the example
code: GitHub 24

At first we did not get readouts here either. We had been instructed by electrical team that this
was a 4wire sensor. Turned out the sensor we got is a 2wire configuration. We discovered this
by reading on the packaging bag. Consulting the datasheet the soultion then is to short the two
terminals on the chip. This made the arduino give proper readouts.

Figure C.1.32: Correct readouts on Arduino Mega.

After trying the example code on ESP32 we had high hopes but we did not get readouts.

We checked the wiring again on the ESP32. The mistake was discovered. We had plugged the
chip select into pin 21, which at first glance was empty and unused (it is not specifically marked
SDA either). After consulting the pinout diagram from the datasheet we discovered that pin 21 is
found on both sides of the esp 32.

23https://github.com/martintara/kaffeknekt/blob/08f33bc8212c93c9b0d330fe3669bde35571627d/combined
test2/src/TaskTemperature.cpp Copy of this file also on USB.

24https://github.com/martintara/kaffeknekt/blob/martin/temp test arduino/max31865.ino Copy of this file also
on USB.

270

https://github.com/martintara/kaffeknekt/blob/08f33bc8212c93c9b0d330fe3669bde35571627d/combined_test2/src/TaskTemperature.cpp
https://github.com/martintara/kaffeknekt/blob/08f33bc8212c93c9b0d330fe3669bde35571627d/combined_test2/src/TaskTemperature.cpp
https://github.com/martintara/kaffeknekt/blob/martin/temp_test_arduino/max31865.ino

KAFFEKNEKT

Figure C.1.33: Discovered SDA is on both sides of ESP32.

Actually many things happened here. We were not thorough enough when reading datasheets and
we were not methodical enough when testing the sensor on ESP32. We were to eager to test the
sensor combined with other sensors. We got confused when we did not get readouts and we could
not isolate the error.

After changing the chip select to a regular gpio pin (pin 14 in our case) we got the sensor to work
on ESP32.
The working testcode: GitHub (history version)25

Terminal readout:

Figure C.1.34: Temperature showing 30c when it is 24c room temperature.

This was room temperature. Since the sensor is linear we just offsetted the value with a constant.

25https://github.com/martintara/kaffeknekt/blob/08f33bc8212c93c9b0d330fe3669bde35571627d/combined
test2/src/TaskTemperature.cpp Copy of this file also on USB.

271

https://github.com/martintara/kaffeknekt/blob/08f33bc8212c93c9b0d330fe3669bde35571627d/combined_test2/src/TaskTemperature.cpp
https://github.com/martintara/kaffeknekt/blob/08f33bc8212c93c9b0d330fe3669bde35571627d/combined_test2/src/TaskTemperature.cpp

KAFFEKNEKT

Figure C.1.35: Calibrating by offsetting the readout.

Conclusion: Test passes. This made the temperature readout align with the room temperature
thermometer.

272

KAFFEKNEKT

May 6, 2025

Unit test: T-ESP32-2.8 - Combined test with static data (Appx. A.4)

Implemented ACPower task with static dummy data.

Code used for testing: GitHub (history version) 26

Figure C.1.36: ACPower task with static data.

Conclusion: Test passes. First test with static data successfully adds power as a field in the shared
data.

26https://github.com/martintara/kaffeknekt/blob/ffa60c247f7527a502ec11ae527a3d49b11f0639/combined test3/
src/TaskACPower.cpp Copy of this file also on USB.

273

https://github.com/martintara/kaffeknekt/blob/ffa60c247f7527a502ec11ae527a3d49b11f0639/combined_test3/src/TaskACPower.cpp
https://github.com/martintara/kaffeknekt/blob/ffa60c247f7527a502ec11ae527a3d49b11f0639/combined_test3/src/TaskACPower.cpp

KAFFEKNEKT

Unit test: T-ESP32-2.9 - Implementation of AC current sensor (Appx. A.4)
Attempt at implementing the ac current sensor to combined test.
Code used for testing: GitHub (history version) 27

Terminal output:

Figure C.1.37: Assert error. Unsure how to proceed.

Conclusion: Test failed. Used a lot of time. We suspect some kind of address conflicts since error
only happens when we introduce a new sensor.
Notes: I get mutex errors. But the mutex I use only locks down the shared data. Errors only occur
when i introduce the sensor to the code.

27https://github.com/martintara/kaffeknekt/tree/230badd950372938254fdfff359fd3c66bc4e35a/combined test3/
src Copy of these files also on USB.

274

https://github.com/martintara/kaffeknekt/tree/230badd950372938254fdfff359fd3c66bc4e35a/combined_test3/src
https://github.com/martintara/kaffeknekt/tree/230badd950372938254fdfff359fd3c66bc4e35a/combined_test3/src

KAFFEKNEKT

May 7, 2025

Unit test: T-ESP32-3.0 - Implementation of static temperature data (Appx. A.4)

Code used for testing: GitHub (history version) 28

Figure C.1.38: Temperature task with static data.

Conclusion: Test passes. Static data shows up as new field in the JSON structure.

Unit test: T-ESP32-3.1 - Implementation of temperature sensor
Using the currently functioning code for temperature sensor and implementing it as a task.

Figure C.1.39: Implementation of actual temperature sensor.

Conclusion: Test passes. Getting the the expected sensor readout in the JSON structure.

Unit test: T-ESP32-3.2 - Implementation of static pressure data (Appx. A.4)
Implemented pressure task with static data:

Figure C.1.40: Pressure task with static data.

Conclusion: Test passes. Static data shows up as new field in the JSON structure

Unit test: T-ESP32-3.3 - Implementation of pressure sensor (Appx. A.4)

Implemented pressure sensor instead of static data:

28https://github.com/martintara/kaffeknekt/tree/852e6ed460069c4ed0c86f58a004ff6a3bc70c5b/combined test3
Copy of these files also on USB.

275

https://github.com/martintara/kaffeknekt/tree/852e6ed460069c4ed0c86f58a004ff6a3bc70c5b/combined_test3

KAFFEKNEKT

Figure C.1.41: Assert fail again. Suspecting I2C conflict.

Conclusion: Test failed. We get the readouts but suddenly crashes.

Unit test: T-ESP32-3.4 - Implementation of pressure sensor take 2 (Appx. A.4)

Locking down the i2c functionality with mutex:

Figure C.1.42: Pressure task implemented correctly.

Conclusion: Test passes. No errors. Getting expected readouts.

Note: Still noticing timing issue. Multiple readings within same second, and sometimes it skips a
beat.

Figure C.1.43: Timer skipping a beat.

Note: While doing this much testing on sensors and occupying the machine. To not prevent
other developers from performing tests, we modified the random generator script to align with the
current wanted behavior (flagging 1 when brewing, and 0 when not): GitHub (history version) 29

29https://github.com/martintara/kaffeknekt/blob/488a8bd77872f6e66f14222b7c72046b7fd3377a/random
generator/src/main.cpp Copy of this file also on USB.

276

https://github.com/martintara/kaffeknekt/blob/488a8bd77872f6e66f14222b7c72046b7fd3377a/random_generator/src/main.cpp
https://github.com/martintara/kaffeknekt/blob/488a8bd77872f6e66f14222b7c72046b7fd3377a/random_generator/src/main.cpp

KAFFEKNEKT

May 8, 2025

Unit test: T-ESP32-3.5 - Testing of brew trigger (Appx. A.4)
After exploring currents running in the system we found a wire that runs a control current to the
solenoid. Highly likely a candidate to use as indicator of current brewing status.
Code used for testing: GitHub (history version) 30

Figure C.1.44: Brewing flag changes when brewing.

Test passes. Flag variable changes to 1 when brewing and 0 when not brewing. Note: There is
a slight delay. Could be improved with timing tasks. Maybe separating out the watt meters into
different tasks, give priority to brew trigger current sensor. Currently not a requirement. Note:
Timing still skips a beat, should look into calculate time task next.

30https://github.com/martintara/kaffeknekt/blob/ad28862f7e0f0e25f8ed769ed991be672808ddbd/combined
test3/src/TaskACPower.cpp Copy of this file also on USB.

277

https://github.com/martintara/kaffeknekt/blob/ad28862f7e0f0e25f8ed769ed991be672808ddbd/combined_test3/src/TaskACPower.cpp
https://github.com/martintara/kaffeknekt/blob/ad28862f7e0f0e25f8ed769ed991be672808ddbd/combined_test3/src/TaskACPower.cpp

KAFFEKNEKT

May 9, 2025

Unit test: T-ESP32-3.6 - Testing new timer functionality (Appx. A.4)

After discussing the current implementation of how the ESP32 keeps track of time, we realized
that this is not a good solution. The problem with current solution is that esp32 is continuously
checking in with the RTC and asks what time it is. The smallest time unit the RTC provides is
seconds. Herin lies the culprit. Not only is this bad since we cant uniquely identify sensor read-
ings, but also because current implementation is unnecessarily using the I2C bus (and by doing so
locking it down).

Code used for testing: GitHub (history version) 31

Testing with getting the time from RTC on boot, and from this point keep track of the time by
using millis() counter on the ESP32. Also added functionality of setting the time once every 3
hours to prevent the millis() counter to drift.

Figure C.1.45: Correct timer behavior.

Conclusion: Test passes. We now get milliseconds as the smallest unit of time. This now uniquely
identify each line of sensor readouts.
Note: It also solved the problem of the observed behavior of lines skipping a beat. Most likely
because the I2C bus does not get locked down as often.

Code is now fulfilling the wanted functionality.

31https://github.com/martintara/kaffeknekt/blob/5167ba9dd53da734a878a01ebe2e171918d20150/combined
test3/src/TaskCalculateTime.cpp Copy of this file also on USB.

278

https://github.com/martintara/kaffeknekt/blob/5167ba9dd53da734a878a01ebe2e171918d20150/combined_test3/src/TaskCalculateTime.cpp
https://github.com/martintara/kaffeknekt/blob/5167ba9dd53da734a878a01ebe2e171918d20150/combined_test3/src/TaskCalculateTime.cpp

KAFFEKNEKT

Setting Clock and Socket
Implementation

C.2.1 Clock Setting Code Formulation(Qt Side) DAB | MT

Defining the Interface
To facilitate the functionality for manual time setting from the application side, it was decided that
it would use the same interface as the communication between the ESP32 and the Data Handling
Script. That interface being utilizing the serial port for data transfer in a JSON format. As the
ESP32 looks for a ”set time” with a value of ”true” when the setup of the JSON where have this
structure:

{’set time’: True,
’year’: yyyy,
’month’: MM,
’day’: dd,
’hour’: HH,
’minute’: mm,
’second’: ss}

The second thing to look at was what limitations Qt had in terms of delivering data over a serial
port. Looking through the documentation on Qt official site[71] the QtSerialPort class seemed to
have all the functionality needed, but its write() function only takes in ”const char*” or QByteAr-
ray so the data would need to be converted to either. QByteArray was used as the ”.toUtf8” is an
easy way to convert QString to QByteArray.

Code Development Process
Looking at the formatting that the QTimeEdit class utilized ”yyyy-MM-dd HH:mm:ss” when
representing it as a 24h clock with the Gregorian calendar. A method using the split() function
was first tried where the value was added to a QString and was then split using ”space” before
each of the splits were again split using ”-” for year, month, day and ”:” for hour, minutes, seconds
allowing for the extraction of each individual value. This was then set into a new QString with the
necessary structure. (Arguments were used so they could easily be added) Unfortunately this did
not work. Although the ESP32 received the same format structure it registered it as not a valid
JSON format. After looking at the structure again a final attempt was made as it seemed that a
”newline” was also added at the end, but same result.
The next attempt was to use the QJsonDocument and QJsonObject classes in Qt to set the format
up as a JSON object, insert it into a JSON document and then send that as a QByteArray to see
if the problem lied in the structuring of the QString. That did the trick, and when testing against
the ESP32 the data was accepted.

C.2.2 Domain Socket Code Formulation DAB | MT

Defining the Interface
After a meeting with our customer, the idea of looking into using sockets for the communication
between the Qt desktop and the Influx database came up. This was as a way to avoid having the
Qt desktop continuously query the database when looking for the ”trigger” that tells the system
the brewing process has started. Because the Influx had limited socket functionality that being
only able to take in information over a socket connection, another way was needed.
Under this process another shortcoming of our system came to light and one more that was known
beforehand, but as a new solution was being looked at, addressing it seemed relevant. Our known is-
sue stemmed from our current solution for real-time visualization, which was to query the database
for the information continuously, leading to potential delays and creating an unnecessary load on
the system. This was initially done to reduce the number of interfaces needed in the system, but
with the goal of optimizing performance, a way to access the data as early as possible was looked
into.
Our second issue was regarding the amount of traffic induced over the serial port. This was raised
as a potential issue if the amount of sensors increase to a point where multiple processes try to

279

KAFFEKNEKT

access the data causing congestion. After a discussion it was decided that the data handling scrip
which at that point only handled data from the ESP32 to the database should handle all data from
the ESP32 to mitigate the traffic on the serial port. And even tho the socket solution did not work
for our previous intentions here it was a perfect fit. The last decision was which type of socket
where to be utilized and it was fairly straightforward that UNIX domain socket was the optimal
choice as it is faster than Transmission Control Protocol (TCP) sockets, which we are looking for,
and that our system is local so the need for a communication channel over internet is not needed.

Code Development Process (Client Side)
For the client, implemented on the Qt desktop, the socket solution was developed in a C++
environment due to prior experience within the team and as Qt uses C++ no conflict arose from
this approach. With that in mind the general setup for a socket implementation on the client side
was used (i.e. make socket and connect to it) while the options for how to handle the received data
was deliberated more thoroughly as to keep in mind the scalability of the system. The methods
considered where fixed length messages, fixed length header and delimiter to detect the length of
each serial data. Fixed length was ruled out almost immediately as any additions to the system
means that the value would need to be redefined while the other two functions in an expanding
system. It was ultimately decided to use the delimiter as it reduced the complexity on the server
side by just having to add a ”newline” at the end of the data it catches from the ESP32. This
naturally also means that the data will arrive in a JSON format which makes the extraction of the
relevant data an easy process.
From there after receiving data over the socket and adding it to a string one would only need to
find the position of the ”newline”, add the data before the position to a new string and delete the
data + the ”newline”. (i. e. pos + 1). Once you have the data it can be parsed using a number of
JSON libraries; in this case nlohmann/json was used, before adding the relevant data for real-time
visualization and the flag to check if the brewing has started.
At first this was implemented all in a single main, but for better readability it was later split into
on function that handles the opening of the socket and another that handles the retrieval of data.

280

KAFFEKNEKT

GUI Doxygen Documentation

281

Kaffeknekt

Generated by Doxygen 1.13.2

i

1 Namespace Index 1

1.1 Namespace List . 1

2 Hierarchical Index 3

2.1 Class Hierarchy . 3

3 Class Index 5

3.1 Class List . 5

4 File Index 7

4.1 File List . 7

5 Namespace Documentation 9

5.1 Ui Namespace Reference . 9

5.1.1 Detailed Description . 9

6 Class Documentation 11

6.1 CoffeeInstructionsDialog Class Reference . 11

6.1.1 Detailed Description . 11

6.1.2 Constructor & Destructor Documentation . 11

6.1.2.1 CoffeeInstructionsDialog() . 11

6.1.2.2 ∼CoffeeInstructionsDialog() . 12

6.1.3 Member Data Documentation . 12

6.1.3.1 ui . 12

6.2 DataFetcher Class Reference . 12

6.2.1 Detailed Description . 13

6.2.2 Member Function Documentation . 13

6.2.2.1 fetchPressureWindow() . 13

6.2.2.2 fetchTempWindow() . 13

6.3 DataPoint Struct Reference . 14

6.3.1 Detailed Description . 14

6.4 graphDialog Class Reference . 14

6.4.1 Detailed Description . 15

6.4.2 Constructor & Destructor Documentation . 15

6.4.2.1 graphDialog() . 15

6.4.3 Member Function Documentation . 16

6.4.3.1 appendData . 16

6.4.3.2 hideEvent() . 16

6.4.3.3 onDataReceived . 16

6.4.3.4 setWindowSeconds() . 16

6.4.3.5 showEvent() . 17

6.5 GraphWidget Class Reference . 17

6.5.1 Detailed Description . 18

6.5.2 Constructor & Destructor Documentation . 18

Generated by Doxygen

ii

6.5.2.1 GraphWidget() . 18

6.5.3 Member Function Documentation . 19

6.5.3.1 appendPressurePoint() . 19

6.5.3.2 appendTempPoint() . 19

6.5.3.3 drawSeries() . 19

6.5.3.4 resizeEvent() . 19

6.5.3.5 setWindowSeconds() . 20

6.6 InfoDetailDialog Class Reference . 20

6.6.1 Detailed Description . 21

6.6.2 Constructor & Destructor Documentation . 21

6.6.2.1 InfoDetailDialog() . 21

6.7 MainWindow Class Reference . 21

6.7.1 Detailed Description . 23

6.7.2 Constructor & Destructor Documentation . 23

6.7.2.1 MainWindow() . 23

6.7.3 Member Function Documentation . 23

6.7.3.1 showEvent() . 23

6.8 OneDayDialog Class Reference . 24

6.9 OneMonthDialog Class Reference . 24

6.10 OneWeekDialog Class Reference . 25

6.11 OptionsDialog Class Reference . 25

6.11.1 Detailed Description . 26

6.11.2 Constructor & Destructor Documentation . 26

6.11.2.1 OptionsDialog() . 26

6.12 SensorAnalyticsDialog Class Reference . 26

6.12.1 Detailed Description . 27

6.12.2 Constructor & Destructor Documentation . 27

6.12.2.1 SensorAnalyticsDialog() . 27

6.12.3 Member Function Documentation . 27

6.12.3.1 intervalSelected . 27

6.13 SettingsDialog Class Reference . 28

6.13.1 Detailed Description . 28

6.13.2 Constructor & Destructor Documentation . 28

6.13.2.1 SettingsDialog() . 28

6.14 Statistics Class Reference . 29

6.14.1 Detailed Description . 29

6.14.2 Constructor & Destructor Documentation . 29

6.14.2.1 Statistics() . 29

6.14.3 Member Function Documentation . 30

6.14.3.1 setCupCount() . 30

6.15 WarningDialog Class Reference . 30

6.15.1 Detailed Description . 30

Generated by Doxygen

iii

6.16 WebSocketClient Class Reference . 31

6.16.1 Detailed Description . 31

6.16.2 Constructor & Destructor Documentation . 31

6.16.2.1 WebSocketClient() . 31

6.16.3 Member Function Documentation . 31

6.16.3.1 dataReceived . 31

7 File Documentation 33

7.1 coffeeinstructionsdialog.h . 33

7.2 datafetcher.h . 33

7.3 graphdialog.h . 34

7.4 graphview.h . 34

7.5 infodetaildialog.h . 35

7.6 mainwindow.h . 35

7.7 moc_predefs.h . 36

7.8 onedaydialog.h . 41

7.9 onemonthdialog.h . 42

7.10 oneweekdialog.h . 42

7.11 optionsdialog.h . 42

7.12 sensoranalyticsdialog.h . 43

7.13 settingsdialog.h . 43

7.14 statistics.h . 44

7.15 warningdialog.h . 44

7.16 websocketclient.h . 44

Index 45

Generated by Doxygen

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

Ui
Qt namespace for UI classes generated from .ui files . 9

Generated by Doxygen

2 Namespace Index

Generated by Doxygen

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

DataFetcher . 12
DataPoint . 14
QDialog

CoffeeInstructionsDialog . 11
InfoDetailDialog . 20
OneDayDialog . 24
OneMonthDialog . 24
OneWeekDialog . 25
OptionsDialog . 25
SensorAnalyticsDialog . 26
SettingsDialog . 28
Statistics . 29
graphDialog . 14

QGraphicsView
GraphWidget . 17

QMainWindow
MainWindow . 21

QThread
WebSocketClient . 31

WarningDialog . 30

Generated by Doxygen

4 Hierarchical Index

Generated by Doxygen

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CoffeeInstructionsDialog
A dialog window that displays coffee brewing instructions . 11

DataFetcher
Utility class for fetching sensor data from InfluxDB . 12

DataPoint
Represents a single data sample with a timestamp and a value 14

graphDialog
Dialog window for displaying real-time pressure and temperature graphs 14

GraphWidget
A custom graphics view for plotting pressure and temperature data in real-time 17

InfoDetailDialog
A dialog that displays detailed information with navigation options 20

MainWindow
The main application window for the Kaffeknekt dashboard 21

OneDayDialog . 24
OneMonthDialog . 24
OneWeekDialog . 25
OptionsDialog

Dialog window for displaying and modifying application options 25
SensorAnalyticsDialog

Dialog for displaying and selecting sensor analytics metrics 26
SettingsDialog

Dialog window for configuring application settings . 28
Statistics

Dialog for displaying usage statistics . 29
WarningDialog

Dialog for displaying a temperature-related warning to the user 30
WebSocketClient

Threaded client for receiving real-time data via WebSocket 31

Generated by Doxygen

6 Class Index

Generated by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

coffeeinstructionsdialog.h . 33
datafetcher.h . 33
graphdialog.h . 34
graphview.h . 34
infodetaildialog.h . 35
mainwindow.h . 35
moc_predefs.h . 36
onedaydialog.h . 41
onemonthdialog.h . 42
oneweekdialog.h . 42
optionsdialog.h . 42
sensoranalyticsdialog.h . 43
settingsdialog.h . 43
statistics.h . 44
warningdialog.h . 44
websocketclient.h . 44

Generated by Doxygen

8 File Index

Generated by Doxygen

Chapter 5

Namespace Documentation

5.1 Ui Namespace Reference

Qt namespace for UI classes generated from .ui files.

5.1.1 Detailed Description

Qt namespace for UI classes generated from .ui files.

Qt namespace containing UI classes generated from .ui files.

Generated by Doxygen

10 Namespace Documentation

Generated by Doxygen

Chapter 6

Class Documentation

6.1 CoffeeInstructionsDialog Class Reference

A dialog window that displays coffee brewing instructions.

#include <coffeeinstructionsdialog.h>

Inheritance diagram for CoffeeInstructionsDialog:

CoffeeInstructionsDialog

QDialog

Public Member Functions

• CoffeeInstructionsDialog (QWidget ∗parent=nullptr)

Constructor.
• ∼CoffeeInstructionsDialog ()

Destructor.

Private Attributes

• Ui::CoffeeInstructionsDialog ∗ ui

Pointer to the UI elements of the dialog.

6.1.1 Detailed Description

A dialog window that displays coffee brewing instructions.

This class represents a modal dialog window built using Qt, specifically for displaying instructions related to coffee
preparation.

6.1.2 Constructor & Destructor Documentation

6.1.2.1 CoffeeInstructionsDialog()

CoffeeInstructionsDialog::CoffeeInstructionsDialog (

QWidget ∗ parent = nullptr) [explicit]

Constructor.

Generated by Doxygen

12 Class Documentation

Parameters

parent Pointer to the parent widget (default is nullptr).

Creates and initializes the CoffeeInstructionsDialog.

6.1.2.2 ∼CoffeeInstructionsDialog()

CoffeeInstructionsDialog::∼CoffeeInstructionsDialog ()

Destructor.

Cleans up resources used by the dialog.

6.1.3 Member Data Documentation

6.1.3.1 ui

Ui::CoffeeInstructionsDialog∗ CoffeeInstructionsDialog::ui [private]

Pointer to the UI elements of the dialog.

This is generated automatically by Qt Designer (via .ui file).

The documentation for this class was generated from the following files:

• coffeeinstructionsdialog.h
• coffeeinstructionsdialog.cpp

6.2 DataFetcher Class Reference

Utility class for fetching sensor data from InfluxDB.

#include <datafetcher.h>

Public Member Functions

• DataFetcher ()

Default constructor for DataFetcher.

Static Public Member Functions

• static QVector< DataPoint > fetchPressureWindow (qreal windowSeconds, const QString &influxUrl, const
QString &token, const QString &bucket)

Fetch pressure data points within a given time window.

• static QVector< DataPoint > fetchTempWindow (qreal windowSeconds, const QString &influxUrl, const
QString &token, const QString &bucket)

Fetch temperature data points within a given time window.

Generated by Doxygen

6.2 DataFetcher Class Reference 13

6.2.1 Detailed Description

Utility class for fetching sensor data from InfluxDB.

This class provides static methods for retrieving temperature and pressure data over a given time window from an
InfluxDB source.

6.2.2 Member Function Documentation

6.2.2.1 fetchPressureWindow()

QVector< DataPoint > DataFetcher::fetchPressureWindow (

qreal windowSeconds,

const QString & influxUrl,

const QString & token,

const QString & bucket) [static]

Fetch pressure data points within a given time window.

Parameters

windowSeconds The size of the time window in seconds.
influxUrl URL of the InfluxDB server.
token Authentication token for accessing the InfluxDB.

bucket Name of the bucket to query data from.

Returns

QVector<DataPoint> A vector of pressure data points.

6.2.2.2 fetchTempWindow()

QVector< DataPoint > DataFetcher::fetchTempWindow (

qreal windowSeconds,

const QString & influxUrl,

const QString & token,

const QString & bucket) [static]

Fetch temperature data points within a given time window.

Parameters

windowSeconds The size of the time window in seconds.
influxUrl URL of the InfluxDB server.
token Authentication token for accessing the InfluxDB.

bucket Name of the bucket to query data from.

Returns

QVector<DataPoint> A vector of temperature data points.

The documentation for this class was generated from the following files:

• datafetcher.h
• datafetcher.cpp

Generated by Doxygen

14 Class Documentation

6.3 DataPoint Struct Reference

Represents a single data sample with a timestamp and a value.

#include <graphview.h>

Public Attributes

• qreal timestamp

Time of the data point (seconds since epoch or relative).

• qreal value

Value of the data point (e.g., temperature or pressure).

6.3.1 Detailed Description

Represents a single data sample with a timestamp and a value.

The documentation for this struct was generated from the following file:

• graphview.h

6.4 graphDialog Class Reference

Dialog window for displaying real-time pressure and temperature graphs.

#include <graphdialog.h>

Inheritance diagram for graphDialog:

graphDialog

QDialog

Public Slots

• void appendData (double pressure, double temperature)

Appends pressure and temperature data to the internal buffer.

• void onDataReceived (double pressure, double temperature, const QString &flag)

Handles data received from the WebSocketClient.

Signals

• void dialogShown ()

Emitted when the dialog is shown.

• void dialogHidden ()

Emitted when the dialog is hidden.

• void flagsent ()

Emitted when a flag is sent.

Generated by Doxygen

6.4 graphDialog Class Reference 15

Public Member Functions

• graphDialog (QWidget ∗parent=nullptr)

Constructs a graphDialog window.

• ∼graphDialog ()

Destroys the graphDialog instance.

• void setWindowSeconds (qreal seconds)

Sets the time window (in seconds) to display on the graph.

Protected Member Functions

• void showEvent (QShowEvent ∗ev) override

Handles the event when the dialog is shown.

• void hideEvent (QHideEvent ∗ev) override

Handles the event when the dialog is hidden.

Private Attributes

• Ui::graphDialog ∗ ui

Pointer to the UI components.

• GraphWidget ∗ m_graph

Widget used to plot the data.

• WebSocketClient ∗ m_wsClient

WebSocket client for real-time data.

• QVector< DataPoint > m_pressure

Buffer for pressure data points.

• QVector< DataPoint > m_temp

Buffer for temperature data points.

• qreal m_windowSeconds = 600.0

Display window size in seconds.

6.4.1 Detailed Description

Dialog window for displaying real-time pressure and temperature graphs.

This class handles data visualization using a GraphWidget, and receives real-time updates via WebSocketClient. It
also emits signals on show/hide events and when a specific flag is sent.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 graphDialog()

graphDialog::graphDialog (

QWidget ∗ parent = nullptr) [explicit]

Constructs a graphDialog window.

Generated by Doxygen

16 Class Documentation

Parameters

parent The parent widget.

6.4.3 Member Function Documentation

6.4.3.1 appendData

void graphDialog::appendData (

double pressure,

double temperature) [slot]

Appends pressure and temperature data to the internal buffer.

Parameters

pressure The new pressure reading.

temperature The new temperature reading.

6.4.3.2 hideEvent()

void graphDialog::hideEvent (

QHideEvent ∗ ev) [override], [protected]

Handles the event when the dialog is hidden.

Parameters

ev Pointer to the QHideEvent.

6.4.3.3 onDataReceived

void graphDialog::onDataReceived (

double pressure,

double temperature,

const QString & flag) [slot]

Handles data received from the WebSocketClient.

Parameters

pressure The received pressure value.

temperature The received temperature value.

flag A string flag received with the data.

6.4.3.4 setWindowSeconds()

void graphDialog::setWindowSeconds (

qreal seconds) [inline]

Sets the time window (in seconds) to display on the graph.

Generated by Doxygen

6.5 GraphWidget Class Reference 17

Parameters

seconds Length of the time window.

6.4.3.5 showEvent()

void graphDialog::showEvent (

QShowEvent ∗ ev) [override], [protected]

Handles the event when the dialog is shown.

Parameters

ev Pointer to the QShowEvent.

The documentation for this class was generated from the following files:

• graphdialog.h
• graphdialog.cpp

6.5 GraphWidget Class Reference

A custom graphics view for plotting pressure and temperature data in real-time.

#include <graphview.h>

Inheritance diagram for GraphWidget:

GraphWidget

QGraphicsView

Public Member Functions

• GraphWidget (QWidget ∗parent=nullptr)

Constructs a GraphWidget.

• ∼GraphWidget ()

Destructor.

• void start ()

Starts the periodic data refresh timer.

• void setWindowSeconds (qreal seconds)

Sets the size of the time window (in seconds) for graph display.

• void appendPressurePoint (const DataPoint &p)

Appends a new pressure data point.

• void appendTempPoint (const DataPoint &t)

Generated by Doxygen

18 Class Documentation

Appends a new temperature data point.

• void refresh ()

Redraws the entire graph: clears scene, draws axes and data series.

• void clearData ()

Clears all stored data points and the graph display.

• void drawAxes ()

Draws the axes on the graph.

• void drawSeries (const QVector< DataPoint > &series, const QColor &penColor, qreal yOffset)

Draws a time series on the graph with a given color and Y offset.

Protected Member Functions

• void resizeEvent (QResizeEvent ∗event) override

Handles resizing of the widget to adjust the graph accordingly.

Private Slots

• void fetchAndRedraw ()

Called periodically to fetch new data and update the graph.

Private Attributes

• QGraphicsScene ∗ m_scene

Scene for rendering the graph.

• QTimer ∗ m_timer

Timer for triggering periodic updates.

• QVector< DataPoint > m_pressure

Stored pressure data points.

• QVector< DataPoint > m_temp

Stored temperature data points.

• qreal m_windowSeconds = 600.0

Time window for visible data (default 10 minutes).

6.5.1 Detailed Description

A custom graphics view for plotting pressure and temperature data in real-time.

This widget displays two time-series graphs (pressure and temperature) and periodically updates to reflect new
incoming data.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 GraphWidget()

GraphWidget::GraphWidget (

QWidget ∗ parent = nullptr) [explicit]

Constructs a GraphWidget.

Generated by Doxygen

6.5 GraphWidget Class Reference 19

Parameters

parent The parent widget.

6.5.3 Member Function Documentation

6.5.3.1 appendPressurePoint()

void GraphWidget::appendPressurePoint (

const DataPoint & p)

Appends a new pressure data point.

Parameters

p The pressure data point to append.

6.5.3.2 appendTempPoint()

void GraphWidget::appendTempPoint (

const DataPoint & t)

Appends a new temperature data point.

Parameters

t The temperature data point to append.

6.5.3.3 drawSeries()

void GraphWidget::drawSeries (

const QVector< DataPoint > & series,

const QColor & penColor,

qreal yOffset)

Draws a time series on the graph with a given color and Y offset.

Parameters

series The data series to draw.
penColor The color of the graph line.

yOffset Vertical offset for the series.

6.5.3.4 resizeEvent()

void GraphWidget::resizeEvent (

QResizeEvent ∗ event) [override], [protected]

Handles resizing of the widget to adjust the graph accordingly.

Generated by Doxygen

20 Class Documentation

Parameters

event Resize event.

6.5.3.5 setWindowSeconds()

void GraphWidget::setWindowSeconds (

qreal seconds) [inline]

Sets the size of the time window (in seconds) for graph display.

Parameters

seconds Length of the display window in seconds.

The documentation for this class was generated from the following files:

• graphview.h
• graphview.cpp

6.6 InfoDetailDialog Class Reference

A dialog that displays detailed information with navigation options.

#include <infodetaildialog.h>

Inheritance diagram for InfoDetailDialog:

InfoDetailDialog

QDialog

Public Member Functions

• InfoDetailDialog (QWidget ∗parent=nullptr)

Constructs the InfoDetailDialog.

• ∼InfoDetailDialog ()

Destructor.

Private Slots

• void on_btnBack_clicked ()

Slot triggered when the "Back" button is clicked.

• void on_btnHome_clicked ()

Slot triggered when the "Home" button is clicked.

Generated by Doxygen

6.7 MainWindow Class Reference 21

Private Attributes

• Ui::InfoDetailDialog ∗ ui

Pointer to the UI components.

6.6.1 Detailed Description

A dialog that displays detailed information with navigation options.

This dialog provides a UI for displaying extended information and includes navigation buttons such as "Back" and
"Home".

6.6.2 Constructor & Destructor Documentation

6.6.2.1 InfoDetailDialog()

InfoDetailDialog::InfoDetailDialog (

QWidget ∗ parent = nullptr) [explicit]

Constructs the InfoDetailDialog.

Parameters

parent The parent widget (optional).

The documentation for this class was generated from the following files:

• infodetaildialog.h
• infodetaildialog.cpp

6.7 MainWindow Class Reference

The main application window for the Kaffeknekt dashboard.

#include <mainwindow.h>

Inheritance diagram for MainWindow:

MainWindow

QMainWindow

Generated by Doxygen

22 Class Documentation

Public Member Functions

• MainWindow (QWidget ∗parent=nullptr)

Constructs the main window.

• ∼MainWindow ()

Destructor.

• void hideInfoFrame ()

Hides the informational side frame (if visible).

• void on_flagsent ()

Slot to handle when a flag is sent (e.g., for a warning or state change).

Protected Member Functions

• void showEvent (QShowEvent ∗event) override

Handles the event when the main window is shown.

Private Slots

• void on_btnHamburger_clicked ()

Slot triggered when the hamburger menu button is clicked.

• void on_btnHome_clicked ()

Slot triggered when the home button is clicked.

• void on_btnSettings_clicked ()

Slot triggered when the settings button is clicked.

• void on_btnInfo_clicked ()

Slot triggered when the info button is clicked.

• void on_btnInstructions_clicked ()

Slot triggered when the instructions button is clicked.

• void on_btnSensorAnalytics_clicked ()

Slot triggered when the sensor analytics button is clicked.

• void on_btnStatistics_clicked ()

Slot triggered when the statistics button is clicked.

• void on_btnHere_clicked ()

Slot triggered when the "Here" button inside info frame is clicked.

• void on_btnTestWarning_clicked ()

Slot triggered when the test warning button is clicked. Used for testing the warning popup.

Private Attributes

• Ui::Kaffeknekt ∗ ui

Pointer to UI components.

• GraphWidget ∗ m_graph

Graph widget for data display.

• Statistics ∗ m_statsDialog

Dialog for showing statistics.

• SensorAnalyticsDialog ∗ m_saDialog

Dialog for real-time analytics.

• WebSocketClient ∗ m_ws

WebSocket client for real-time data.

Generated by Doxygen

6.7 MainWindow Class Reference 23

• bool sideMenuVisible

Tracks visibility of side menu.

• int m_cupCount = 0

Tracks the number of cups (usage metric).

• bool m_warningShown = false

Whether a warning dialog has been shown.

• graphDialog ∗ m_graphDialog

Dialog for graph display.

6.7.1 Detailed Description

The main application window for the Kaffeknekt dashboard.

This class controls the main GUI, manages views such as graphs, settings, and instructions, and connects to real-
time data via WebSocket. It also handles various UI interactions.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 MainWindow()

MainWindow::MainWindow (

QWidget ∗ parent = nullptr)

Constructs the main window.

Parameters

parent Optional parent widget.

6.7.3 Member Function Documentation

6.7.3.1 showEvent()

void MainWindow::showEvent (

QShowEvent ∗ event) [override], [protected]

Handles the event when the main window is shown.

Parameters

event Pointer to the QShowEvent.

The documentation for this class was generated from the following files:

• mainwindow.h
• mainwindow.cpp
• warningdialog.cpp

Generated by Doxygen

24 Class Documentation

6.8 OneDayDialog Class Reference

Inheritance diagram for OneDayDialog:

OneDayDialog

QDialog

Public Member Functions

• OneDayDialog (QWidget ∗parent=nullptr)

Private Attributes

• Ui::OneDayDialog ∗ ui

The documentation for this class was generated from the following files:

• onedaydialog.h
• onedaydialog.cpp

6.9 OneMonthDialog Class Reference

Inheritance diagram for OneMonthDialog:

OneMonthDialog

QDialog

Public Member Functions

• OneMonthDialog (QWidget ∗parent=nullptr)

Private Attributes

• Ui::OneMonthDialog ∗ ui

The documentation for this class was generated from the following files:

• onemonthdialog.h
• onemonthdialog.cpp

Generated by Doxygen

6.10 OneWeekDialog Class Reference 25

6.10 OneWeekDialog Class Reference

Inheritance diagram for OneWeekDialog:

OneWeekDialog

QDialog

Public Member Functions

• OneWeekDialog (QWidget ∗parent=nullptr)

Private Attributes

• Ui::OneWeekDialog ∗ ui

The documentation for this class was generated from the following files:

• oneweekdialog.h
• oneweekdialog.cpp

6.11 OptionsDialog Class Reference

Dialog window for displaying and modifying application options.

#include <optionsdialog.h>

Inheritance diagram for OptionsDialog:

OptionsDialog

QDialog

Public Member Functions

• OptionsDialog (QWidget ∗parent=nullptr)

Constructs the OptionsDialog.

• ∼OptionsDialog ()

Destructor.

Private Attributes

• Ui::OptionsDialog ∗ ui

Pointer to the UI components.

Generated by Doxygen

26 Class Documentation

6.11.1 Detailed Description

Dialog window for displaying and modifying application options.

This class provides a simple Qt dialog interface for setting or displaying configuration options within the application.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 OptionsDialog()

OptionsDialog::OptionsDialog (

QWidget ∗ parent = nullptr) [explicit]

Constructs the OptionsDialog.

Parameters

parent The parent widget (optional).

The documentation for this class was generated from the following files:

• optionsdialog.h
• optionsdialog.cpp

6.12 SensorAnalyticsDialog Class Reference

Dialog for displaying and selecting sensor analytics metrics.

#include <sensoranalyticsdialog.h>

Inheritance diagram for SensorAnalyticsDialog:

SensorAnalyticsDialog

QDialog

Signals

• void intervalSelected (qreal seconds)

Emitted when the user selects a time interval.

Public Member Functions

• SensorAnalyticsDialog (QWidget ∗parent=nullptr)

Constructs the SensorAnalyticsDialog.

• ∼SensorAnalyticsDialog ()

Destructor.

Generated by Doxygen

6.12 SensorAnalyticsDialog Class Reference 27

Private Slots

• void on_btnWaterTemp_clicked ()

Slot triggered when the water temperature button is clicked.

• void on_btnWaterPressure_clicked ()

Slot triggered when the water pressure button is clicked.

• void on_btnPowerConsumption_clicked ()

Slot triggered when the power consumption button is clicked.

• void on_day_clicked ()

Slot triggered when the "day" interval is selected.

• void on_week_clicked ()

Slot triggered when the "week" interval is selected.

• void on_month_clicked ()

Slot triggered when the "month" interval is selected.

Private Attributes

• Ui::SensorAnalyticsDialog ∗ ui

Pointer to the UI components.

6.12.1 Detailed Description

Dialog for displaying and selecting sensor analytics metrics.

This dialog allows the user to view different sensor-related data (e.g., water temperature, pressure, power consump-
tion) and to select the time interval for data analysis.

6.12.2 Constructor & Destructor Documentation

6.12.2.1 SensorAnalyticsDialog()

SensorAnalyticsDialog::SensorAnalyticsDialog (

QWidget ∗ parent = nullptr) [explicit]

Constructs the SensorAnalyticsDialog.

Parameters

parent The parent widget (optional).

6.12.3 Member Function Documentation

6.12.3.1 intervalSelected

void SensorAnalyticsDialog::intervalSelected (

qreal seconds) [signal]

Emitted when the user selects a time interval.

Generated by Doxygen

28 Class Documentation

Parameters

seconds The selected interval in seconds.

The documentation for this class was generated from the following files:

• sensoranalyticsdialog.h
• sensoranalyticsdialog.cpp

6.13 SettingsDialog Class Reference

Dialog window for configuring application settings.

#include <settingsdialog.h>

Inheritance diagram for SettingsDialog:

SettingsDialog

QDialog

Public Member Functions

• SettingsDialog (QWidget ∗parent=nullptr)

Constructs the SettingsDialog.

• ∼SettingsDialog ()

Destructor.

Private Attributes

• Ui::SettingsDialog ∗ ui

Pointer to the UI components.

6.13.1 Detailed Description

Dialog window for configuring application settings.

This class provides a Qt-based dialog interface where users can view and modify application-specific settings.

6.13.2 Constructor & Destructor Documentation

6.13.2.1 SettingsDialog()

SettingsDialog::SettingsDialog (

QWidget ∗ parent = nullptr) [explicit]

Constructs the SettingsDialog.

Generated by Doxygen

6.14 Statistics Class Reference 29

Parameters

parent The parent widget (optional).

The documentation for this class was generated from the following files:

• settingsdialog.h
• settingsdialog.cpp

6.14 Statistics Class Reference

Dialog for displaying usage statistics.

#include <statistics.h>

Inheritance diagram for Statistics:

Statistics

QDialog

Public Member Functions

• Statistics (QWidget ∗parent=nullptr)

Constructs the Statistics dialog.
• ∼Statistics ()

Destructor.
• void setCupCount (int num)

Sets the number of cups to display in the statistics.

Private Attributes

• Ui::Statistics ∗ ui

Pointer to the UI components.
• int m_cupCount = 0

Number of cups tracked for statistics.

6.14.1 Detailed Description

Dialog for displaying usage statistics.

This class provides a Qt dialog that displays statistical information, such as the number of cups made by the
espresso machine.

6.14.2 Constructor & Destructor Documentation

6.14.2.1 Statistics()

Statistics::Statistics (

QWidget ∗ parent = nullptr) [explicit]

Constructs the Statistics dialog.

Generated by Doxygen

30 Class Documentation

Parameters

parent The parent widget (optional).

6.14.3 Member Function Documentation

6.14.3.1 setCupCount()

void Statistics::setCupCount (

int num)

Sets the number of cups to display in the statistics.

Parameters

num The number of cups.

The documentation for this class was generated from the following files:

• statistics.h
• statistics.cpp

6.15 WarningDialog Class Reference

Dialog for displaying a temperature-related warning to the user.

#include <warningdialog.h>

6.15.1 Detailed Description

Dialog for displaying a temperature-related warning to the user.

This dialog notifies the user when a critical temperature threshold is reached. It provides options to ignore or
acknowledge the warning.

The documentation for this class was generated from the following file:

• warningdialog.h

Generated by Doxygen

6.16 WebSocketClient Class Reference 31

6.16 WebSocketClient Class Reference

Threaded client for receiving real-time data via WebSocket.

#include <websocketclient.h>

Inheritance diagram for WebSocketClient:

WebSocketClient

QThread

Signals

• void dataReceived (double pressure, double temperature, const QString &flag)

Emitted when new sensor data is received.

Public Member Functions

• WebSocketClient (QObject ∗parent=nullptr)

Constructs the WebSocketClient.
• void run () override

Runs the thread logic. Override this method to implement the WebSocket communication.

6.16.1 Detailed Description

Threaded client for receiving real-time data via WebSocket.

This class runs in a separate thread and is responsible for connecting to a WebSocket server to receive live pressure,
temperature, and flag data.

6.16.2 Constructor & Destructor Documentation

6.16.2.1 WebSocketClient()

WebSocketClient::WebSocketClient (

QObject ∗ parent = nullptr) [explicit]

Constructs the WebSocketClient.

Parameters

parent Optional parent QObject.

6.16.3 Member Function Documentation

6.16.3.1 dataReceived

void WebSocketClient::dataReceived (

double pressure,

double temperature,

const QString & flag) [signal]

Emitted when new sensor data is received.

Generated by Doxygen

32 Class Documentation

Parameters

pressure The pressure value.

temperature The temperature value.

flag A string-based flag or status indicator.

The documentation for this class was generated from the following files:

• websocketclient.h
• websocketclient.cpp

Generated by Doxygen

Chapter 7

File Documentation

7.1 coffeeinstructionsdialog.h

00001 #ifndef COFFEEINSTRUCTIONSDIALOG_H
00002 #define COFFEEINSTRUCTIONSDIALOG_H
00003
00004 #include <QDialog>
00005
00010 namespace Ui {
00011 class CoffeeInstructionsDialog;
00012 }
00013
00021 class CoffeeInstructionsDialog : public QDialog
00022 {
00023 Q_OBJECT
00024
00025 public:
00032 explicit CoffeeInstructionsDialog(QWidget *parent = nullptr);
00033
00039 ~CoffeeInstructionsDialog();
00040
00041 private:
00047 Ui::CoffeeInstructionsDialog *ui;
00048 };
00049
00050 #endif // COFFEEINSTRUCTIONSDIALOG_H

7.2 datafetcher.h

00001 #ifndef DATAFETCHER_H
00002 #define DATAFETCHER_H
00003 #include <QDebug>
00004 #include <QObject>
00005 #include <QVector>
00006 #include "graphview.h" // for DataPoint
00007
00015 class DataFetcher
00016 {
00017 public:
00021 DataFetcher();
00022
00032 static QVector<DataPoint> fetchPressureWindow(qreal windowSeconds,
00033 const QString& influxUrl,
00034 const QString& token,
00035 const QString& bucket);
00036
00046 static QVector<DataPoint> fetchTempWindow(qreal windowSeconds,
00047 const QString& influxUrl,
00048 const QString& token,
00049 const QString& bucket);
00050 };
00051
00052 #endif // DATAFETCHER_H

Generated by Doxygen

34 File Documentation

7.3 graphdialog.h

00001 //graphdialog.h
00002 #ifndef GRAPHDIALOG_H
00003 #define GRAPHDIALOG_H
00004
00005 #include <QDialog>
00006 #include <QSizePolicy>
00007
00008 #include "graphview.h"
00009 #include "websocketclient.h"
00010
00015 namespace Ui { class graphDialog; }
00016
00025 class graphDialog : public QDialog {
00026 Q_OBJECT
00027
00028 public:
00033 explicit graphDialog(QWidget *parent = nullptr);
00034
00038 ~graphDialog();
00039
00044 void setWindowSeconds(qreal seconds) { m_windowSeconds = seconds; }
00045
00046 signals:
00050 void dialogShown();
00051
00055 void dialogHidden();
00056
00060 void flagsent();
00061
00062 public slots:
00068 void appendData(double pressure, double temperature);
00069
00076 void onDataReceived(double pressure,
00077 double temperature,
00078 const QString& flag);
00079
00080 private:
00081 Ui::graphDialog *ui;
00082 GraphWidget *m_graph;
00083 WebSocketClient *m_wsClient;
00084
00085 QVector<DataPoint> m_pressure;
00086 QVector<DataPoint> m_temp;
00087 qreal m_windowSeconds = 600.0;
00088
00089 protected:
00094 void showEvent(QShowEvent* ev) override;
00095
00100 void hideEvent(QHideEvent* ev) override;
00101 };
00102
00103 #endif // GRAPHDIALOG_H

7.4 graphview.h

00001 #ifndef GRAPHWIDGET_H
00002 #define GRAPHWIDGET_H
00003
00004 #include <QGraphicsView>
00005 #include <QGraphicsScene>
00006 #include <QTimer>
00007
00008 #include <QResizeEvent>
00009 #include <QGraphicsSimpleTextItem>
00010
00015 struct DataPoint {
00016 qreal timestamp;
00017 qreal value;
00018 };
00019
00027 class GraphWidget : public QGraphicsView {
00028 Q_OBJECT
00029 public:
00034 explicit GraphWidget(QWidget* parent = nullptr);
00035
00039 ~GraphWidget();
00040
00044 void start();
00045
00050 void setWindowSeconds(qreal seconds) { m_windowSeconds = seconds; }

Generated by Doxygen

7.5 infodetaildialog.h 35

00051
00056 void appendPressurePoint(const DataPoint& p);
00057
00062 void appendTempPoint(const DataPoint& t);
00063
00067 void refresh();
00068
00072 void clearData();
00073
00077 void drawAxes();
00078
00085 void drawSeries(const QVector<DataPoint>& series,
00086 const QColor& penColor,
00087 qreal yOffset);
00088
00089 private slots:
00093 void fetchAndRedraw();
00094
00095 protected:
00100 void resizeEvent(QResizeEvent* event) override;
00101
00102 private:
00103 QGraphicsScene* m_scene;
00104 QTimer* m_timer;
00105
00106 QVector<DataPoint> m_pressure;
00107 QVector<DataPoint> m_temp;
00108
00109 qreal m_windowSeconds = 600.0;
00110 };
00111
00112 #endif // GRAPHWIDGET_H

7.5 infodetaildialog.h

00001 #ifndef INFODETAILDIALOG_H
00002 #define INFODETAILDIALOG_H
00003
00004 #include <QDialog>
00005
00010 namespace Ui {
00011 class InfoDetailDialog;
00012 }
00013
00021 class InfoDetailDialog : public QDialog
00022 {
00023 Q_OBJECT
00024
00025 public:
00030 explicit InfoDetailDialog(QWidget *parent = nullptr);
00031
00035 ~InfoDetailDialog();
00036
00037 private slots:
00041 void on_btnBack_clicked();
00042
00046 void on_btnHome_clicked();
00047
00048 private:
00049 Ui::InfoDetailDialog *ui;
00050 };
00051
00052 #endif // INFODETAILDIALOG_H

7.6 mainwindow.h

00001 #ifndef MAINWINDOW_H
00002 #define MAINWINDOW_H
00003
00004 #include "sensoranalyticsdialog.h"
00005 #include "coffeeinstructionsdialog.h"
00006 #include "graphview.h"
00007 #include "warningdialog.h"
00008 #include "websocketclient.h"
00009 #include "graphdialog.h"
00010 #include <QMainWindow>
00011 #include <QTimer>
00012 #include <QGraphicsScene>

Generated by Doxygen

36 File Documentation

00013 #include <QGraphicsView>
00014 #include "statistics.h"
00015 #include "ui_mainwindow.h"
00016 #include "infodetaildialog.h"
00017 #include "datafetcher.h"
00018 #include <QFrame>
00019 #include <QPushButton>
00020
00021 QT_BEGIN_NAMESPACE
00026 namespace Ui {
00027 class Kaffeknekt;
00028 }
00029 QT_END_NAMESPACE
00030
00038 class MainWindow : public QMainWindow
00039 {
00040 Q_OBJECT
00041
00042 public:
00047 MainWindow(QWidget *parent = nullptr);
00048
00052 ~MainWindow();
00053
00057 void hideInfoFrame();
00058
00062 void on_flagsent();
00063
00064 private slots:
00065 // Frame 1 (main menu)
00069 void on_btnHamburger_clicked();
00070
00074 void on_btnHome_clicked();
00075
00079 void on_btnSettings_clicked();
00080
00084 void on_btnInfo_clicked();
00085
00086 // Frame 2 (submenu)
00090 void on_btnInstructions_clicked();
00091
00095 void on_btnSensorAnalytics_clicked();
00096
00100 void on_btnStatistics_clicked();
00101
00105 void on_btnHere_clicked();
00106
00111 void on_btnTestWarning_clicked();
00112
00113 protected:
00118 void showEvent(QShowEvent *event) override;
00119
00120 private:
00121 Ui::Kaffeknekt *ui;
00122 GraphWidget *m_graph;
00123 Statistics *m_statsDialog;
00124 SensorAnalyticsDialog *m_saDialog;
00125 WebSocketClient *m_ws;
00126 bool sideMenuVisible;
00127 int m_cupCount = 0;
00128 bool m_warningShown = false;
00129 graphDialog *m_graphDialog;
00130 };
00131
00132 #endif // MAINWINDOW_H

7.7 moc_predefs.h

00001 #define __DBL_MIN_EXP__ (-1021)
00002 #define __LDBL_MANT_DIG__ 113
00003 #define __cpp_attributes 200809L
00004 #define __cpp_nontype_template_parameter_auto 201606L
00005 #define __UINT_LEAST16_MAX__ 0xffff
00006 #define __ARM_SIZEOF_WCHAR_T 4
00007 #define __ATOMIC_ACQUIRE 2
00008 #define __FLT128_MAX_10_EXP__ 4932
00009 #define __FLT_MIN__ 1.17549435082228750796873653722224568e-38F
00010 #define __GCC_IEC_559_COMPLEX 2
00011 #define __cpp_aggregate_nsdmi 201304L
00012 #define __UINT_LEAST8_TYPE__ unsigned char
00013 #define __INTMAX_C(c) c ## L
00014 #define __CHAR_BIT__ 8
00015 #define __UINT8_MAX__ 0xff
00016 #define __USER_LABEL_PREFIX__

Generated by Doxygen

7.7 moc_predefs.h 37

00017 #define __WINT_MAX__ 0xffffffffU
00018 #define __cpp_static_assert 201411L
00019 #define __WCHAR_MAX__ 0xffffffffU
00020 #define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 1
00021 #define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 1
00022 #define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8 1
00023 #define __GCC_ATOMIC_CHAR_LOCK_FREE 2
00024 #define __GCC_IEC_559 2
00025 #define __FLT32X_DECIMAL_DIG__ 17
00026 #define __FLT_EVAL_METHOD__ 0
00027 #define __cpp_binary_literals 201304L
00028 #define __FLT64_DECIMAL_DIG__ 17
00029 #define __cpp_noexcept_function_type 201510L
00030 #define __GCC_ATOMIC_CHAR32_T_LOCK_FREE 2
00031 #define __cpp_variadic_templates 200704L
00032 #define __UINT_FAST32_TYPE__ long unsigned int
00033 #define __UINT_FAST64_MAX__ 0xffffffffffffffffUL
00034 #define __SIG_ATOMIC_TYPE__ int
00035 #define __DBL_MIN_10_EXP__ (-307)
00036 #define __FINITE_MATH_ONLY__ 0
00037 #define __cpp_variable_templates 201304L
00038 #define __FLT32X_MAX_EXP__ 1024
00039 #define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1 1
00040 #define __GNUC_PATCHLEVEL__ 0
00041 #define __FLT32_HAS_DENORM__ 1
00042 #define __UINT_FAST8_MAX__ 0xff
00043 #define __cpp_rvalue_reference 200610L
00044 #define __cpp_nested_namespace_definitions 201411L
00045 #define __INT8_C(c) c
00046 #define __INT_LEAST8_WIDTH__ 8
00047 #define __cpp_variadic_using 201611L
00048 #define __UINT_LEAST64_MAX__ 0xffffffffffffffffUL
00049 #define __INT_LEAST8_MAX__ 0x7f
00050 #define __cpp_capture_star_this 201603L
00051 #define __SHRT_MAX__ 0x7fff
00052 #define __STDC_ISO_10646__ 201706L
00053 #define __LDBL_MAX__ 1.18973149535723176508575932662800702e+4932L
00054 #define __ARM_FEATURE_IDIV 1
00055 #define __FLT64X_MAX_10_EXP__ 4932
00056 #define __cpp_if_constexpr 201606L
00057 #define __FLT64_NORM_MAX__ 1.79769313486231570814527423731704357e+308F64
00058 #define __LDBL_IS_IEC_60559__ 2
00059 #define __ARM_FP 14
00060 #define __FLT64X_IS_IEC_60559__ 2
00061 #define __FLT64X_HAS_QUIET_NAN__ 1
00062 #define __WINT_TYPE__ unsigned int
00063 #define __UINT_LEAST8_MAX__ 0xff
00064 #define __FLT128_DENORM_MIN__ 6.47517511943802511092443895822764655e-4966F128
00065 #define __UINTMAX_TYPE__ long unsigned int
00066 #define __cpp_nsdmi 200809L
00067 #define __linux 1
00068 #define __CHAR_UNSIGNED__ 1
00069 #define __UINT32_MAX__ 0xffffffffU
00070 #define __GXX_EXPERIMENTAL_CXX0X__ 1
00071 #define __DBL_DENORM_MIN__ double(4.94065645841246544176568792868221372e-324L)
00072 #define __AARCH64_CMODEL_SMALL__ 1
00073 #define __LDBL_MAX_EXP__ 16384
00074 #define __INT_FAST32_WIDTH__ 64
00075 #define __FLT128_MIN_EXP__ (-16381)
00076 #define __FLT128_MIN_10_EXP__ (-4931)
00077 #define __FLT32X_IS_IEC_60559__ 2
00078 #define __INT_LEAST16_WIDTH__ 16
00079 #define __SCHAR_MAX__ 0x7f
00080 #define __FLT128_MANT_DIG__ 113
00081 #define __DBL_MAX__ double(1.79769313486231570814527423731704357e+308L)
00082 #define __FLT32X_DIG__ 15
00083 #define __WCHAR_MIN__ 0U
00084 #define __INT64_C(c) c ## L
00085 #define __GCC_ATOMIC_POINTER_LOCK_FREE 2
00086 #define __FLT_MAX__ 3.40282346638528859811704183484516925e+38F
00087 #define __SIZEOF_INT__ 4
00088 #define __FLT32X_MANT_DIG__ 53
00089 #define __GCC_ATOMIC_CHAR16_T_LOCK_FREE 2
00090 #define __cpp_aligned_new 201606L
00091 #define __FLT32_MAX_10_EXP__ 38
00092 #define __FLT64X_EPSILON__ 1.92592994438723585305597794258492732e-34F64x
00093 #define __STDC_HOSTED__ 1
00094 #define __cpp_decltype_auto 201304L
00095 #define __DBL_DIG__ 15
00096 #define __FLT32_DIG__ 6
00097 #define __FLT_EPSILON__ 1.19209289550781250000000000000000000e-7F
00098 #define __GXX_WEAK__ 1
00099 #define __SHRT_WIDTH__ 16
00100 #define __FLT32_IS_IEC_60559__ 2
00101 #define __LDBL_MIN__ 3.36210314311209350626267781732175260e-4932L
00102 #define __DBL_IS_IEC_60559__ 2
00103 #define __FLT16_HAS_QUIET_NAN__ 1

Generated by Doxygen

38 File Documentation

00104 #define __cpp_threadsafe_static_init 200806L
00105 #define __ARM_SIZEOF_MINIMAL_ENUM 4
00106 #define __cpp_enumerator_attributes 201411L
00107 #define __FLT64X_DENORM_MIN__ 6.47517511943802511092443895822764655e-4966F64x
00108 #define __FP_FAST_FMA 1
00109 #define __FLT32X_HAS_INFINITY__ 1
00110 #define __INT32_MAX__ 0x7fffffff
00111 #define __FLT16_DIG__ 3
00112 #define __INT_WIDTH__ 32
00113 #define __SIZEOF_LONG__ 8
00114 #define __STDC_IEC_559__ 1
00115 #define __UINT16_C(c) c
00116 #define __DECIMAL_DIG__ 36
00117 #define __FLT64_EPSILON__ 2.22044604925031308084726333618164062e-16F64
00118 #define __gnu_linux__ 1
00119 #define __INT16_MAX__ 0x7fff
00120 #define __FLT64_MIN_EXP__ (-1021)
00121 #define __FLT64X_MIN_10_EXP__ (-4931)
00122 #define __LDBL_HAS_QUIET_NAN__ 1
00123 #define __FLT16_MIN_EXP__ (-13)
00124 #define __FLT64_MANT_DIG__ 53
00125 #define __FLT64X_MANT_DIG__ 113
00126 #define __GNUC__ 12
00127 #define __pie__ 2
00128 #define __GXX_RTTI 1
00129 #define __FLT16_DECIMAL_DIG__ 5
00130 #define __FLT_HAS_DENORM__ 1
00131 #define __SIZEOF_LONG_DOUBLE__ 16
00132 #define __cpp_rtti 199711L
00133 #define __STDC_UTF_16__ 1
00134 #define __FLT64_MAX_10_EXP__ 308
00135 #define __FLT16_MAX_10_EXP__ 4
00136 #define __FLT32_HAS_INFINITY__ 1
00137 #define __cpp_raw_strings 200710L
00138 #define __INT_FAST32_MAX__ 0x7fffffffffffffffL
00139 #define __DBL_HAS_INFINITY__ 1
00140 #define __INT64_MAX__ 0x7fffffffffffffffL
00141 #define __HAVE_SPECULATION_SAFE_VALUE 1
00142 #define __cpp_fold_expressions 201603L
00143 #define __INTPTR_WIDTH__ 64
00144 #define __FLT64X_HAS_INFINITY__ 1
00145 #define __cpp_delegating_constructors 200604L
00146 #define __FLT32X_HAS_DENORM__ 1
00147 #define __INT_FAST16_TYPE__ long int
00148 #define __cpp_template_auto 201606L
00149 #define __LDBL_HAS_DENORM__ 1
00150 #define __cplusplus 201703L
00151 #define __cpp_ref_qualifiers 200710L
00152 #define __DEPRECATED 1
00153 #define __cpp_rvalue_references 200610L
00154 #define __DBL_MAX_EXP__ 1024
00155 #define __WCHAR_WIDTH__ 32
00156 #define __FLT64_MAX__ 1.79769313486231570814527423731704357e+308F64
00157 #define __FLT32_MAX__ 3.40282346638528859811704183484516925e+38F32
00158 #define __GCC_ATOMIC_LONG_LOCK_FREE 2
00159 #define __FLT16_MANT_DIG__ 11
00160 #define __FLT32_HAS_QUIET_NAN__ 1
00161 #define __LONG_LONG_MAX__ 0x7fffffffffffffffLL
00162 #define __SIZEOF_SIZE_T__ 8
00163 #define __ARM_ALIGN_MAX_PWR 28
00164 #define __SIZEOF_WINT_T__ 4
00165 #define __LONG_LONG_WIDTH__ 64
00166 #define __cpp_initializer_lists 200806L
00167 #define __WCHAR_UNSIGNED__ 1
00168 #define __FLT32_MAX_EXP__ 128
00169 #define __cpp_hex_float 201603L
00170 #define __ARM_FP16_FORMAT_IEEE 1
00171 #define __FP_FAST_FMAF32x 1
00172 #define __FLT128_HAS_INFINITY__ 1
00173 #define __FLT_MIN_EXP__ (-125)
00174 #define __PIE__ 2
00175 #define __GCC_HAVE_DWARF2_CFI_ASM 1
00176 #define __cpp_lambdas 200907L
00177 #define __FLT32X_MIN_EXP__ (-1021)
00178 #define __INT_FAST64_TYPE__ long int
00179 #define __ARM_FP16_ARGS 1
00180 #define __DBL_DECIMAL_DIG__ 17
00181 #define __FP_FAST_FMAF 1
00182 #define __FLT128_NORM_MAX__ 1.18973149535723176508575932662800702e+4932F128
00183 #define __FLT64_DENORM_MIN__ 4.94065645841246544176568792868221372e-324F64
00184 #define __DBL_MIN__ double(2.22507385850720138309023271733240406e-308L)
00185 #define __ARM_FEATURE_CLZ 1
00186 #define __FLT16_DENORM_MIN__ 5.96046447753906250000000000000000000e-8F16
00187 #define __unix__ 1
00188 #define __FLT64X_NORM_MAX__ 1.18973149535723176508575932662800702e+4932F64x
00189 #define __SIZEOF_POINTER__ 8
00190 #define __LP64__ 1

Generated by Doxygen

7.7 moc_predefs.h 39

00191 #define __DBL_HAS_QUIET_NAN__ 1
00192 #define __FLT_EVAL_METHOD_C99__ 0
00193 #define __FLT32X_EPSILON__ 2.22044604925031308084726333618164062e-16F32x
00194 #define __LDBL_DECIMAL_DIG__ 36
00195 #define __aarch64__ 1
00196 #define __FLT64_MIN_10_EXP__ (-307)
00197 #define __INT_FAST64_WIDTH__ 64
00198 #define __FLT64X_DECIMAL_DIG__ 36
00199 #define __REGISTER_PREFIX__
00200 #define __UINT16_MAX__ 0xffff
00201 #define __INTMAX_WIDTH__ 64
00202 #define __GXX_ABI_VERSION 1017
00203 #define __AARCH64EL__ 1
00204 #define __LDBL_HAS_INFINITY__ 1
00205 #define __UINT8_TYPE__ unsigned char
00206 #define __FLT_DIG__ 6
00207 #define __NO_INLINE__ 1
00208 #define __DEC_EVAL_METHOD__ 2
00209 #define __FLT_MANT_DIG__ 24
00210 #define __FLT16_MIN_10_EXP__ (-4)
00211 #define __VERSION__ "12.2.0"
00212 #define __UINT64_C(c) c ## UL
00213 #define __cpp_unicode_characters 201411L
00214 #define _STDC_PREDEF_H 1
00215 #define __INT_LEAST32_MAX__ 0x7fffffff
00216 #define __GCC_ATOMIC_INT_LOCK_FREE 2
00217 #define __FLT128_MAX_EXP__ 16384
00218 #define __FLT32_MANT_DIG__ 24
00219 #define __FLOAT_WORD_ORDER__ __ORDER_LITTLE_ENDIAN__
00220 #define __FLT16_MAX_EXP__ 16
00221 #define __BIGGEST_ALIGNMENT__ 16
00222 #define __STDC_IEC_60559_COMPLEX__ 201404L
00223 #define __INT32_C(c) c
00224 #define __cpp_aggregate_bases 201603L
00225 #define __FLT128_HAS_DENORM__ 1
00226 #define __FLT128_DIG__ 33
00227 #define __SCHAR_WIDTH__ 8
00228 #define __ORDER_PDP_ENDIAN__ 3412
00229 #define __ARM_64BIT_STATE 1
00230 #define __INT_FAST32_TYPE__ long int
00231 #define __FLT128_MIN__ 3.36210314311209350626267781732175260e-4932F128
00232 #define __UINT_LEAST16_TYPE__ short unsigned int
00233 #define __SIZE_TYPE__ long unsigned int
00234 #define __UINT64_MAX__ 0xffffffffffffffffUL
00235 #define __FLT_IS_IEC_60559__ 2
00236 #define __GNUC_WIDE_EXECUTION_CHARSET_NAME "UTF-32LE"
00237 #define __FLT64X_DIG__ 33
00238 #define __ARM_FEATURE_FMA 1
00239 #define __INT8_TYPE__ signed char
00240 #define __GNUG__ 12
00241 #define __cpp_digit_separators 201309L
00242 #define __ELF__ 1
00243 #define __GCC_ASM_FLAG_OUTPUTS__ 1
00244 #define __GCC_ATOMIC_TEST_AND_SET_TRUEVAL 1
00245 #define __FLT_RADIX__ 2
00246 #define __INT_LEAST16_TYPE__ short int
00247 #define __ARM_ARCH_PROFILE 65
00248 #define __LDBL_EPSILON__ 1.92592994438723585305597794258492732e-34L
00249 #define __UINTMAX_C(c) c ## UL
00250 #define __GLIBCXX_BITSIZE_INT_N_0 128
00251 #define __ARM_PCS_AAPCS64 1
00252 #define __SIG_ATOMIC_MAX__ 0x7fffffff
00253 #define __INT_LEAST64_WIDTH__ 64
00254 #define __GCC_ATOMIC_WCHAR_T_LOCK_FREE 2
00255 #define __STDC_IEC_60559_BFP__ 201404L
00256 #define __SIZEOF_PTRDIFF_T__ 8
00257 #define __ATOMIC_RELAXED 0
00258 #define __FLT_EVAL_METHOD_TS_18661_3__ 0
00259 #define unix 1
00260 #define __cpp_guaranteed_copy_elision 201606L
00261 #define __LDBL_DIG__ 33
00262 #define __FLT64_IS_IEC_60559__ 2
00263 #define __FLT16_IS_IEC_60559__ 2
00264 #define __INT_FAST16_MAX__ 0x7fffffffffffffffL
00265 #define __GCC_CONSTRUCTIVE_SIZE 64
00266 #define __FLT64_DIG__ 15
00267 #define __UINT_FAST32_MAX__ 0xffffffffffffffffUL
00268 #define __UINT_LEAST64_TYPE__ long unsigned int
00269 #define __FLT16_EPSILON__ 9.76562500000000000000000000000000000e-4F16
00270 #define __FLT_HAS_QUIET_NAN__ 1
00271 #define __FLT_MAX_10_EXP__ 38
00272 #define __LONG_MAX__ 0x7fffffffffffffffL
00273 #define __FLT64X_HAS_DENORM__ 1
00274 #define __FLT_HAS_INFINITY__ 1
00275 #define __GNUC_EXECUTION_CHARSET_NAME "UTF-8"
00276 #define __unix 1
00277 #define __cpp_unicode_literals 200710L

Generated by Doxygen

40 File Documentation

00278 #define __DBL_HAS_DENORM__ 1
00279 #define __UINT_FAST16_TYPE__ long unsigned int
00280 #define __FLT32X_HAS_QUIET_NAN__ 1
00281 #define __CHAR16_TYPE__ short unsigned int
00282 #define __PRAGMA_REDEFINE_EXTNAME 1
00283 #define __SIZE_WIDTH__ 64
00284 #define __INT_LEAST16_MAX__ 0x7fff
00285 #define __FLT16_NORM_MAX__ 6.55040000000000000000000000000000000e+4F16
00286 #define __FLT32_DENORM_MIN__ 1.40129846432481707092372958328991613e-45F32
00287 #define __INT_LEAST64_TYPE__ long int
00288 #define __INT16_TYPE__ short int
00289 #define __INT_LEAST8_TYPE__ signed char
00290 #define __FLT16_MAX__ 6.55040000000000000000000000000000000e+4F16
00291 #define __cpp_structured_bindings 201606L
00292 #define __INT_FAST8_MAX__ 0x7f
00293 #define __ARM_ARCH 8
00294 #define __FLT128_MAX__ 1.18973149535723176508575932662800702e+4932F128
00295 #define __INTPTR_MAX__ 0x7fffffffffffffffL
00296 #define __cpp_sized_deallocation 201309L
00297 #define linux 1
00298 #define __FLT64_HAS_QUIET_NAN__ 1
00299 #define __INTMAX_TYPE__ long int
00300 #define __FLT64X_MIN_EXP__ (-16381)
00301 #define __FLT32_MIN_10_EXP__ (-37)
00302 #define __PTRDIFF_WIDTH__ 64
00303 #define __FLT64_HAS_INFINITY__ 1
00304 #define __FLT64X_MAX__ 1.18973149535723176508575932662800702e+4932F64x
00305 #define __FLT16_HAS_INFINITY__ 1
00306 #define __STDCPP_DEFAULT_NEW_ALIGNMENT__ 16
00307 #define __SIG_ATOMIC_MIN__ (-__SIG_ATOMIC_MAX__ - 1)
00308 #define __cpp_nontype_template_args 201411L
00309 #define __PTRDIFF_MAX__ 0x7fffffffffffffffL
00310 #define __cpp_return_type_deduction 201304L
00311 #define __INTPTR_TYPE__ long int
00312 #define __UINT16_TYPE__ short unsigned int
00313 #define __WCHAR_TYPE__ unsigned int
00314 #define __cpp_range_based_for 201603L
00315 #define __pic__ 2
00316 #define __UINTPTR_MAX__ 0xffffffffffffffffUL
00317 #define __ARM_ARCH_8A 1
00318 #define __ARM_FEATURE_UNALIGNED 1
00319 #define __cpp_decltype 200707L
00320 #define __FLT32_DECIMAL_DIG__ 9
00321 #define __INT_FAST64_MAX__ 0x7fffffffffffffffL
00322 #define __FLT_NORM_MAX__ 3.40282346638528859811704183484516925e+38F
00323 #define __FLT64X_MAX_EXP__ 16384
00324 #define __UINT_FAST64_TYPE__ long unsigned int
00325 #define __cpp_inline_variables 201606L
00326 #define __INT_MAX__ 0x7fffffff
00327 #define __STDCPP_THREADS__ 1
00328 #define __INT64_TYPE__ long int
00329 #define __FLT_MAX_EXP__ 128
00330 #define __ORDER_BIG_ENDIAN__ 4321
00331 #define __DBL_MANT_DIG__ 53
00332 #define __cpp_inheriting_constructors 201511L
00333 #define __INT_LEAST64_MAX__ 0x7fffffffffffffffL
00334 #define __FP_FAST_FMAF32 1
00335 #define __UINT_LEAST32_TYPE__ unsigned int
00336 #define __SIZEOF_SHORT__ 2
00337 #define __FLT32_NORM_MAX__ 3.40282346638528859811704183484516925e+38F32
00338 #define __LDBL_MIN_EXP__ (-16381)
00339 #define __GCC_ATOMIC_BOOL_LOCK_FREE 2
00340 #define __SIG_ATOMIC_WIDTH__ 32
00341 #define __WINT_WIDTH__ 32
00342 #define __FP_FAST_FMAF64 1
00343 #define __FLT32X_MAX_10_EXP__ 308
00344 #define __SIZEOF_INT128__ 16
00345 #define __FLT16_MIN__ 6.10351562500000000000000000000000000e-5F16
00346 #define __LDBL_MAX_10_EXP__ 4932
00347 #define __DBL_EPSILON__ double(2.22044604925031308084726333618164062e-16L)
00348 #define __FLT32_MIN_EXP__ (-125)
00349 #define _LP64 1
00350 #define __UINT8_C(c) c
00351 #define __FLT64_MAX_EXP__ 1024
00352 #define __INT_LEAST32_TYPE__ int
00353 #define __SIZEOF_WCHAR_T__ 4
00354 #define __ARM_NEON 1
00355 #define __FLT128_HAS_QUIET_NAN__ 1
00356 #define __INTMAX_MAX__ 0x7fffffffffffffffL
00357 #define __UINT_FAST8_TYPE__ unsigned char
00358 #define __INT_FAST8_TYPE__ signed char
00359 #define __cpp_namespace_attributes 201411L
00360 #define __FLT64X_MIN__ 3.36210314311209350626267781732175260e-4932F64x
00361 #define __GNUC_STDC_INLINE__ 1
00362 #define __FLT64_HAS_DENORM__ 1
00363 #define __FLT32_EPSILON__ 1.19209289550781250000000000000000000e-7F32
00364 #define __FLT16_HAS_DENORM__ 1

Generated by Doxygen

7.8 onedaydialog.h 41

00365 #define __STDC_UTF_32__ 1
00366 #define __INT_FAST8_WIDTH__ 8
00367 #define __FLT32X_MAX__ 1.79769313486231570814527423731704357e+308F32x
00368 #define __cpp_alias_templates 200704L
00369 #define __DBL_NORM_MAX__ double(1.79769313486231570814527423731704357e+308L)
00370 #define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
00371 #define __ARM_ALIGN_MAX_STACK_PWR 16
00372 #define __LDBL_DENORM_MIN__ 6.47517511943802511092443895822764655e-4966L
00373 #define __GCC_DESTRUCTIVE_SIZE 256
00374 #define __cpp_runtime_arrays 198712L
00375 #define __UINT64_TYPE__ long unsigned int
00376 #define __UINT32_C(c) c ## U
00377 #define __FLT32X_MIN__ 2.22507385850720138309023271733240406e-308F32x
00378 #define __WINT_MIN__ 0U
00379 #define __FLT128_IS_IEC_60559__ 2
00380 #define __INT8_MAX__ 0x7f
00381 #define __LONG_WIDTH__ 64
00382 #define __PIC__ 2
00383 #define __FLT32X_NORM_MAX__ 1.79769313486231570814527423731704357e+308F32x
00384 #define __CHAR32_TYPE__ unsigned int
00385 #define __cpp_constexpr 201603L
00386 #define __cpp_deduction_guides 201703L
00387 #define __ARM_FEATURE_NUMERIC_MAXMIN 1
00388 #define __INT32_TYPE__ int
00389 #define __SIZEOF_DOUBLE__ 8
00390 #define __cpp_exceptions 199711L
00391 #define __FLT64_MIN__ 2.22507385850720138309023271733240406e-308F64
00392 #define __FLT_DENORM_MIN__ 1.40129846432481707092372958328991613e-45F
00393 #define __INT_LEAST32_WIDTH__ 32
00394 #define __SIZEOF_FLOAT__ 4
00395 #define __ATOMIC_CONSUME 1
00396 #define __GNUC_MINOR__ 2
00397 #define __GLIBCXX_TYPE_INT_N_0 __int128
00398 #define __INT_FAST16_WIDTH__ 64
00399 #define __UINTMAX_MAX__ 0xffffffffffffffffUL
00400 #define __FLT32X_DENORM_MIN__ 4.94065645841246544176568792868221372e-324F32x
00401 #define __cpp_template_template_args 201611L
00402 #define __DBL_MAX_10_EXP__ 308
00403 #define __INT16_C(c) c
00404 #define __ARM_ARCH_ISA_A64 1
00405 #define __STDC__ 1
00406 #define __PTRDIFF_TYPE__ long int
00407 #define __FLT32_MIN__ 1.17549435082228750796873653722224568e-38F32
00408 #define __ATOMIC_SEQ_CST 5
00409 #define __EXCEPTIONS 1
00410 #define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_16 1
00411 #define __UINT32_TYPE__ unsigned int
00412 #define __FLT32X_MIN_10_EXP__ (-307)
00413 #define __UINTPTR_TYPE__ long unsigned int
00414 #define __linux__ 1
00415 #define __LDBL_MIN_10_EXP__ (-4931)
00416 #define __cpp_generic_lambdas 201304L
00417 #define __FLT128_EPSILON__ 1.92592994438723585305597794258492732e-34F128
00418 #define __SIZEOF_LONG_LONG__ 8
00419 #define __cpp_user_defined_literals 200809L
00420 #define __FLT128_DECIMAL_DIG__ 36
00421 #define __GCC_ATOMIC_LLONG_LOCK_FREE 2
00422 #define __FLT_DECIMAL_DIG__ 9
00423 #define __UINT_FAST16_MAX__ 0xffffffffffffffffUL
00424 #define __STDC_IEC_559_COMPLEX__ 1
00425 #define __LDBL_NORM_MAX__ 1.18973149535723176508575932662800702e+4932L
00426 #define __FLT_MIN_10_EXP__ (-37)
00427 #define __GCC_ATOMIC_SHORT_LOCK_FREE 2
00428 #define __ORDER_LITTLE_ENDIAN__ 1234
00429 #define __SIZE_MAX__ 0xffffffffffffffffUL
00430 #define _GNU_SOURCE 1
00431 #define __UINT_LEAST32_MAX__ 0xffffffffU
00432 #define __cpp_init_captures 201304L
00433 #define __ATOMIC_ACQ_REL 4
00434 #define __ATOMIC_RELEASE 3

7.8 onedaydialog.h

00001 #ifndef ONEDAYDIALOG_H
00002 #define ONEDAYDIALOG_H
00003
00004 #include <QDialog>
00005
00006 namespace Ui {
00007 class OneDayDialog;
00008 }
00009
00010 class OneDayDialog : public QDialog

Generated by Doxygen

42 File Documentation

00011 {
00012 Q_OBJECT
00013
00014 public:
00015 explicit OneDayDialog(QWidget *parent = nullptr);
00016 ~OneDayDialog();
00017
00018 private:
00019 Ui::OneDayDialog *ui;
00020 };
00021
00022 #endif // ONEDAYDIALOG_H

7.9 onemonthdialog.h

00001 #ifndef ONEMONTHDIALOG_H
00002 #define ONEMONTHDIALOG_H
00003
00004 #include <QDialog>
00005
00006 namespace Ui {
00007 class OneMonthDialog;
00008 }
00009
00010 class OneMonthDialog : public QDialog
00011 {
00012 Q_OBJECT
00013
00014 public:
00015 explicit OneMonthDialog(QWidget *parent = nullptr);
00016 ~OneMonthDialog();
00017
00018 private:
00019 Ui::OneMonthDialog *ui;
00020 };
00021
00022 #endif // ONEMONTHDIALOG_H

7.10 oneweekdialog.h

00001 #ifndef ONEWEEKDIALOG_H
00002 #define ONEWEEKDIALOG_H
00003
00004 #include <QDialog>
00005
00006 namespace Ui {
00007 class OneWeekDialog;
00008 }
00009
00010 class OneWeekDialog : public QDialog
00011 {
00012 Q_OBJECT
00013
00014 public:
00015 explicit OneWeekDialog(QWidget *parent = nullptr);
00016 ~OneWeekDialog();
00017
00018 private:
00019 Ui::OneWeekDialog *ui;
00020 };
00021
00022 #endif // ONEWEEKDIALOG_H

7.11 optionsdialog.h

00001 #ifndef OPTIONSDIALOG_H
00002 #define OPTIONSDIALOG_H
00003
00004 #include <QDialog>
00005
00010 namespace Ui {
00011 class OptionsDialog;
00012 }

Generated by Doxygen

7.12 sensoranalyticsdialog.h 43

00013
00021 class OptionsDialog : public QDialog
00022 {
00023 Q_OBJECT
00024
00025 public:
00030 explicit OptionsDialog(QWidget *parent = nullptr);
00031
00035 ~OptionsDialog();
00036
00037 private:
00038 Ui::OptionsDialog *ui;
00039 };
00040
00041 #endif // OPTIONSDIALOG_H

7.12 sensoranalyticsdialog.h

00001 #ifndef SENSORANALYTICSDIALOG_H
00002 #define SENSORANALYTICSDIALOG_H
00003
00004 #include <QDialog>
00005 #include <QDebug>
00006
00011 namespace Ui {
00012 class SensorAnalyticsDialog;
00013 }
00014
00023 class SensorAnalyticsDialog : public QDialog
00024 {
00025 Q_OBJECT
00026
00027 public:
00032 explicit SensorAnalyticsDialog(QWidget *parent = nullptr);
00033
00037 ~SensorAnalyticsDialog();
00038
00039 private slots:
00043 void on_btnWaterTemp_clicked();
00044
00048 void on_btnWaterPressure_clicked();
00049
00053 void on_btnPowerConsumption_clicked();
00054
00058 void on_day_clicked();
00059
00063 void on_week_clicked();
00064
00068 void on_month_clicked();
00069
00070 signals:
00075 void intervalSelected(qreal seconds);
00076
00077 private:
00078 Ui::SensorAnalyticsDialog *ui;
00079 };
00080
00081 #endif // SENSORANALYTICSDIALOG_H

7.13 settingsdialog.h

00001 #ifndef SETTINGSDIALOG_H
00002 #define SETTINGSDIALOG_H
00003
00004 #include <QDialog>
00005
00010 namespace Ui {
00011 class SettingsDialog;
00012 }
00013
00021 class SettingsDialog : public QDialog
00022 {
00023 Q_OBJECT
00024
00025 public:
00030 explicit SettingsDialog(QWidget *parent = nullptr);
00031
00035 ~SettingsDialog();

Generated by Doxygen

44 File Documentation

00036
00037 private:
00038 Ui::SettingsDialog *ui;
00039 };
00040
00041 #endif // SETTINGSDIALOG_H

7.14 statistics.h

00001 #ifndef STATISTICS_H
00002 #define STATISTICS_H
00003
00004 #include <QDialog>
00005
00010 namespace Ui {
00011 class Statistics;
00012 }
00013
00021 class Statistics : public QDialog
00022 {
00023 Q_OBJECT
00024
00025 public:
00030 explicit Statistics(QWidget *parent = nullptr);
00031
00035 ~Statistics();
00036
00041 void setCupCount(int num);
00042
00043 private:
00044 Ui::Statistics *ui;
00045 int m_cupCount = 0;
00046 };
00047
00048 #endif // STATISTICS_H

7.15 warningdialog.h

00001 #ifndef WARNINGDIALOG_H
00002 #define WARNINGDIALOG_H
00003
00004 #include <QDialog>
00005
00010 namespace Ui { class WarningDialog; }
00011
00019 class WarningDialog : public QDialog {
00020 Q_OBJECT
00021
00022 public:

7.16 websocketclient.h

00015 class WebSocketClient : public QThread {
00016 Q_OBJECT
00017
00018 public:
00023 explicit WebSocketClient(QObject* parent = nullptr);
00024
00029 void run() override;
00030
00031 signals:
00038 void dataReceived(double pressure, double temperature, const QString& flag);
00039 };

Generated by Doxygen

Index

∼CoffeeInstructionsDialog
CoffeeInstructionsDialog, 12

appendData
graphDialog, 16

appendPressurePoint
GraphWidget, 19

appendTempPoint
GraphWidget, 19

CoffeeInstructionsDialog, 11
∼CoffeeInstructionsDialog, 12
CoffeeInstructionsDialog, 11
ui, 12

DataFetcher, 12
fetchPressureWindow, 13
fetchTempWindow, 13

DataPoint, 14
dataReceived

WebSocketClient, 31
drawSeries

GraphWidget, 19

fetchPressureWindow
DataFetcher, 13

fetchTempWindow
DataFetcher, 13

graphDialog, 14
appendData, 16
graphDialog, 15
hideEvent, 16
onDataReceived, 16
setWindowSeconds, 16
showEvent, 17

GraphWidget, 17
appendPressurePoint, 19
appendTempPoint, 19
drawSeries, 19
GraphWidget, 18
resizeEvent, 19
setWindowSeconds, 20

hideEvent
graphDialog, 16

InfoDetailDialog, 20
InfoDetailDialog, 21

intervalSelected
SensorAnalyticsDialog, 27

MainWindow, 21
MainWindow, 23
showEvent, 23

onDataReceived
graphDialog, 16

OneDayDialog, 24
OneMonthDialog, 24
OneWeekDialog, 25
OptionsDialog, 25

OptionsDialog, 26

resizeEvent
GraphWidget, 19

SensorAnalyticsDialog, 26
intervalSelected, 27
SensorAnalyticsDialog, 27

setCupCount
Statistics, 30

SettingsDialog, 28
SettingsDialog, 28

setWindowSeconds
graphDialog, 16
GraphWidget, 20

showEvent
graphDialog, 17
MainWindow, 23

Statistics, 29
setCupCount, 30
Statistics, 29

Ui, 9
ui

CoffeeInstructionsDialog, 12

WarningDialog, 30
WebSocketClient, 31

dataReceived, 31
WebSocketClient, 31

Generated by Doxygen

KAFFEKNEKT

32

32Special thanks to Aditi Deshpande for her valuable guidance and clear explanation on how to generate Doxygen
files.

333

KAFFEKNEKT

Database Source Files AK |

334

"""ESP32 to InfluxDB and Socket Connection data bridge

This script reads JSON-formatted sensor data from an ESP32 over a serial
connection, parses and formats the data, writes it to InfluxDB, and transmits
it to a local client over a UNIX domain socket.

Requirements:
 - InfluxDB client library
 - A running InfluxDB instance with a configured bucket
 - ESP32 sending JSON-encoded data via serial
"""

import serial
import json
from influxdb_client import InfluxDBClient, Point
from influxdb_client.client.write_api import SYNCHRONOUS
from datetime import datetime
import socket
import os

InfluxDB settings
URL = 'http://localhost:8086'
ORG = 'Kaffeknekt'
TOKEN = 'ETV_6VBhkfF7HzNGfOjN6F7nTvX0ye_tblcGObcB1OVJDLYxQXUWpt8NU84PJmrn6R6IV921X2eWLLJDg1wgdQ=='
BUCKET = 'sensor_data'

#Registers "address information" to connect to InfluxDB
client = InfluxDBClient(url=URL, token=TOKEN, org=ORG)

#Grants Write ability to the API
API = client.write_api(write_options=SYNCHRONOUS)

#Predetermined connection settings for Esp32
serial_port = '/dev/ttyUSB0'
baud_rate = 115200

def main():

 """Main loop to read, transform, and transfer sensor data from Esp32.

 Opens a serial connection to the Esp32 and a UNIX socket
 for a connection to a client. Continuously reads JSON-formatted data
 from the Esp32, converts timestamps, writes data to InfluxDB, and
 forwards the data to a connected client.

 Steps:
 - Sets up a UNIX socket with filepath and waits for client
 - Reads serial input line-by-line
 - Converts JSON strings into Python dictionaries
 - Extracts and formats timestamps
 - Structures points with serial data and writes to InfluxDB
 - Sends the same data through the socket connection to a connected client

 Raises:
 KeyboardInterrupt: If execution is manually stopped
 JSONDecodeError: If serial input cannot be parsed, i.e because of bad format
 KeyError: If certain fields are missing from data
 SerialException: If there's an error with the serial port, i.e no connection
 """

 #Define socket path
 path = '/tmp/socket'

 #unlinking 'path' to potentially existing filepath
 if os.path.exists(path):
 os.unlink(path)

 #Creating a UNIX socket for local client
 server = socket.socket(
 socket.AF_UNIX, #Declares a local socket
 socket.SOCK_STREAM #Ensures secure connection-based communication between server and client
)

 #Assigns path to the socket
 server.bind(path)

 #Sets the server to listen mode for 1 client to connect
 server.listen(1)

 try:
 #Opens port to esp32 temporarily
 with serial.Serial(serial_port, baud_rate, timeout=1) as ser:

 print("Esp connected")

 print("Waiting for client connection")

 #Waits for client to connect
 connection, cli_addr = server.accept()
 print("Connected:", cli_addr)

 while True:
 #reads line, converts byte to string, and cleans excess characters like \n
 line = ser.readline().decode('utf-8').strip()

 if line: #checks if line exists
 try:
 #Convert json string to python dictionary
 data = json.loads(line)
 print(data)

 #Turns nanoseconds into seconds and removes microseconds
 stamp = datetime.fromtimestamp(int(data["timestamp"]) / 1e9).replace(microsecond=0)
 #convert to ISO format
 iso = stamp.isoformat()
 #remove T
 date_part, time_part = iso.split("T")
 #save as string
 readable_time = f"{date_part} {time_part}"

 #Initializing Point structurization
 point = Point("Esp32Metrics") \
 .field("readable_time", readable_time)

 #Goes through and adds every item in the dictionary to the Point with defined value types
 for field, value in data.items():
 if field != "timestamp" and field != "flag":
 point = point.field(field, float(value))

 elif field == "flag":
 point = point.field(field, str(value))

 elif field == "timestamp":
 point = point.time(int(value))

 print(point)

 #Tells the API to write the current Point to the bucket with nanoseconds presicion
 API.write(bucket=BUCKET, org=ORG, record=point, write_precision='ns')
 print("Data written to Influx")

 #Adding readable time to the json string
 data["readable_time"] = readable_time

 #Converting python dictionary back to json string and adding newline for the recieving code to detect
 socketstring = json.dumps(data) + '\n'

 print(socketstring)

 #Encodes the current JSON string and sends to the client
 connection.send(socketstring.encode('utf-8'))

 except json.JSONDecodeError:
 print("Invalid JSON:", line)

 except KeyError as e:
 print(f"{e} is missing.")

 except KeyboardInterrupt:
 print("Stopped by user.")

 except serial.SerialException as e:
 print(f"Serial error: {e}")

 finally:

 #In the case of session termination, closes the connection in a secure manner
 connection.close()

 #Unlinks the current filepath from socket upon connection close
 os.unlink(path)

#Calls the main() function every time te script is being run
if __name__ == "__main__":
 main()

KAFFEKNEKT

Figure C.4.1: InfluxDB Sequence Diagram

C.4.1 Data handling Sequence diagram AK |

This sequence diagram visualizes the communication between the python data handling script and
the InfluxDB server as well as the Esp32.

• The sequence begins with the script establishing a connection to the InfluxDB server by
creating a client with InfluxDBClient, which acts as an interface to InfluxDB.

• Using write api(), we tell InfluxDBClient that we want to use a writing tool to write data.

• Inside a While loop, input data is recieved line-by-line, by reading data with readlines().

• The data inside the line is extracted, processed and used to build a Point() to write to
InfluxDB

• With write(), the readied Point is presented to InfluxDBClient, which then sends a POST
request to the InfluxDB API.
Given that the identification and authorization info are correct, and the structured Point is
valid (i.e correct value types and no mismatch with already existing fields), the API writes
the data to the destination via line protocol.

340

GUI and ESP32 interface source files

Generated by Doxygen 1.13.2

i

1 Hierarchical Index 1

1.1 Class Hierarchy . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Class Documentation 7

4.1 clock_time Class Reference . 7

4.1.1 Detailed Description . 7

4.1.2 Constructor & Destructor Documentation . 7

4.1.2.1 clock_time() . 7

5 File Documentation 9

5.1 src/clock_Time/clock_main.cpp File Reference . 9

5.1.1 Function Documentation . 9

5.1.1.1 main() . 9

5.2 clock_main.cpp . 9

5.3 src/clock_Time/clock_time.cpp File Reference . 10

5.4 clock_time.cpp . 10

5.5 src/clock_Time/clock_time.h File Reference . 11

5.6 clock_time.h . 11

5.7 src/SocketData/main.cpp File Reference . 11

5.7.1 Macro Definition Documentation . 12

5.7.1.1 SOCKET_PATH . 12

5.7.2 Function Documentation . 12

5.7.2.1 createSocket() . 12

5.7.2.2 getData() . 13

5.7.2.3 main() . 13

5.8 main.cpp . 13

Generated by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

QWidget
clock_time . 7

Generated by Doxygen

2 Hierarchical Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

clock_time . 7

Generated by Doxygen

4 Class Index

Generated by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

src/clock_Time/clock_main.cpp . 9
src/clock_Time/clock_time.cpp . 10
src/clock_Time/clock_time.h . 11
src/SocketData/main.cpp . 11

Generated by Doxygen

6 File Index

Generated by Doxygen

Chapter 4

Class Documentation

4.1 clock_time Class Reference

#include <clock_time.h>

Inheritance diagram for clock_time:

clock_time

QWidget

Public Member Functions

• clock_time (QWidget ∗parent=nullptr)

Constructor for the clock_time class. Constructor that initializes the layout for the clock_time widget. (Placeholder
version)

4.1.1 Detailed Description

Definition at line 8 of file clock_time.h.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 clock_time()

clock_time::clock_time (

QWidget ∗ parent = nullptr) [explicit]

Constructor for the clock_time class. Constructor that initializes the layout for the clock_time widget. (Placeholder
version)

Definition at line 13 of file clock_time.cpp.

Generated by Doxygen

8 Class Documentation

00014 : QWidget(parent)
00015 {
00016 QVBoxLayout *layout = new QVBoxLayout(this);
00017 dateTimeEdit = new QDateTimeEdit(QDateTime::currentDateTime(), this);
00018 dateTimeEdit->setDisplayFormat("yyyy-MM-dd HH:mm:ss");
00019 QPushButton *setButton = new QPushButton("Set Time", this);
00020 layout->addWidget(dateTimeEdit);
00021 layout->addWidget(setButton);
00022 connect(setButton, &QPushButton::clicked, this, &clock_time::setTime);
00023 }

The documentation for this class was generated from the following files:

• src/clock_Time/clock_time.h
• src/clock_Time/clock_time.cpp

Generated by Doxygen

Chapter 5

File Documentation

5.1 src/clock_Time/clock_main.cpp File Reference

#include "clock_time.h"
#include <QApplication>

Functions

• int main (int argc, char ∗argv[])

5.1.1 Function Documentation

5.1.1.1 main()

int main (

int argc,

char ∗ argv[])

Definition at line 5 of file clock_main.cpp.
00006 {
00007 QApplication a(argc, argv);
00008 clock_time w;
00009 w.show();
00010 return a.exec();
00011 }

5.2 clock_main.cpp

Go to the documentation of this file.
00001 #include "clock_time.h"
00002
00003 #include <QApplication>
00004
00005 int main(int argc, char *argv[])
00006 {
00007 QApplication a(argc, argv);
00008 clock_time w;
00009 w.show();
00010 return a.exec();
00011 }

Generated by Doxygen

10 File Documentation

5.3 src/clock_Time/clock_time.cpp File Reference

#include "clock_time.h"
#include <QVBoxLayout>
#include <QTimeEdit>
#include <QPushButton>
#include <QDebug>
#include <QString>
#include <QSerialPort>
#include <QJsonObject>
#include <QJsonDocument>

5.4 clock_time.cpp

Go to the documentation of this file.
00001 #include "clock_time.h"
00002 #include <QVBoxLayout>
00003 #include <QTimeEdit>
00004 #include <QPushButton>
00005 #include <QDebug>
00006 #include <QString>
00007 #include <QSerialPort>
00008 #include <QJsonObject>
00009 #include <QJsonDocument>
00010
00013 clock_time::clock_time(QWidget *parent)
00014 : QWidget(parent)
00015 {
00016 QVBoxLayout *layout = new QVBoxLayout(this);
00017 dateTimeEdit = new QDateTimeEdit(QDateTime::currentDateTime(), this);
00018 dateTimeEdit->setDisplayFormat("yyyy-MM-dd HH:mm:ss");
00019 QPushButton *setButton = new QPushButton("Set Time", this);
00020 layout->addWidget(dateTimeEdit);
00021 layout->addWidget(setButton);
00022 connect(setButton, &QPushButton::clicked, this, &clock_time::setTime);
00023 }
00024
00028 void clock_time::setTime(){
00029 QDateTime dateTime = dateTimeEdit->dateTime();
00030
00031 //Adds time values as a QJsonObject in correct format
00032 QJsonObject timeObject;
00033 timeObject["set_time"] = true;
00034 timeObject["year"] = dateTime.toString("yyyy");
00035 timeObject["month"] = dateTime.toString("MM");
00036 timeObject["day"] = dateTime.toString("dd");
00037 timeObject["hour"] = dateTime.toString("HH");
00038 timeObject["minute"] = dateTime.toString("mm");
00039 timeObject["second"] = dateTime.toString("ss");
00040
00041 //Adds the QJsonObject to a QJsonDocument and converts it to a string
00042 QJsonDocument doc(timeObject);
00043 QString jsonString = doc.toJson(QJsonDocument::Compact);
00044 jsonString.append("\n");
00045
00046 //Create a QSerialPort and defines the settings
00047 QSerialPort serial;
00048 serial.setPortName("/dev/ttyUSB0");
00049 serial.setBaudRate(QSerialPort::Baud115200);
00050 serial.setDataBits(QSerialPort::Data8);
00051 serial.setParity(QSerialPort::NoParity);
00052 serial.setFlowControl(QSerialPort::NoFlowControl);
00053 serial.setStopBits(QSerialPort::OneStop);
00054
00055 //Opens the serial port and check if it opended correctly
00056 if(!serial.open(QIODevice::WriteOnly)){
00057 qDebug() « "Error: Port Not Open";
00058 return;
00059 }
00060
00061 //Turns the QString int QByteArray and sends it to the ESP32
00062 QByteArray bytemessage = jsonString.toUtf8();
00063 serial.write(bytemessage);
00064 serial.flush(); //Is used to force the data to be sendt immediately
00065 serial.close();
00066 }

Generated by Doxygen

5.5 src/clock_Time/clock_time.h File Reference 11

5.5 src/clock_Time/clock_time.h File Reference

#include <QDateTimeEdit>
#include <QWidget>

Classes

• class clock_time

5.6 clock_time.h

Go to the documentation of this file.
00001 #ifndef CLOCK_TIME_H
00002 #define CLOCK_TIME_H
00003
00004 #include <QDateTimeEdit>
00005 #include <QWidget>
00006
00007
00008 class clock_time : public QWidget
00009 {
00010 Q_OBJECT
00011
00012 public:
00013 explicit clock_time(QWidget *parent = nullptr);
00014
00015 private slots:
00016 void setTime();
00017
00018 private:
00019 QDateTimeEdit *dateTimeEdit;
00020 };
00021 #endif // CLOCK_TIME_H

5.7 src/SocketData/main.cpp File Reference

#include <QCoreApplication>
#include <QDebug>
#include <iostream>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include <cstring>
#include <string>
#include <nlohmann/json.hpp>

Macros

• #define SOCKET_PATH "/tmp/socket"

Path for the UNIX domain socket. This path is used to create the socket and connect to it.

Generated by Doxygen

12 File Documentation

Functions

• int createSocket ()

Creates a UNXI socket and connects it to the data handling server. Creates a UNIX domain socket, connects to the
data handling server, and handles errors.

• void getData (int socket)

Reads data from the connected socket. Reads data from the connected socket, adds the specified values to variables.

• int main ()

UNIX domain socket client. Connects to a UNIX domain socket using createSocket() and receives data using
getData().

5.7.1 Macro Definition Documentation

5.7.1.1 SOCKET_PATH

#define SOCKET_PATH "/tmp/socket"

Path for the UNIX domain socket. This path is used to create the socket and connect to it.

Definition at line 13 of file main.cpp.

5.7.2 Function Documentation

5.7.2.1 createSocket()

int createSocket ()

Creates a UNXI socket and connects it to the data handling server. Creates a UNIX domain socket, connects to the
data handling server, and handles errors.

Definition at line 17 of file main.cpp.
00017 {
00018 int qtSocket;
00019 struct sockaddr_un addr;
00020 qtSocket = socket(AF_UNIX, SOCK_STREAM, 0);
00021 if (qtSocket < 0){
00022 perror("Socket Error");
00023 return -1;
00024 }
00025 addr.sun_family = AF_UNIX;
00026 std::strcpy(addr.sun_path, SOCKET_PATH);
00027 if (connect(qtSocket,(struct sockaddr*)&addr, sizeof(addr)) == -1){
00028 perror("Connection Error");
00029 close(qtSocket);
00030 return -1;
00031 }
00032 return qtSocket;
00033 }

Generated by Doxygen

5.8 main.cpp 13

5.7.2.2 getData()

void getData (

int socket)

Reads data from the connected socket. Reads data from the connected socket, adds the specified values to
variables.

Definition at line 37 of file main.cpp.
00037 {
00038 char buffer[1024];
00039 std::string rest;
00040 bool status = true;
00041 while(status){
00042 ssize_t dataReceived = recv(socket, buffer, sizeof(buffer), 0);
00043 if (dataReceived <= 0) break;
00044 rest.append(buffer, dataReceived);
00045
00046 size_t pos;
00047 while ((pos = rest.find(’\n’)) != std::string::npos) {
00048 std::string data = rest.substr(0, pos);
00049 rest.erase(0, pos + 1);
00050 if (nlohmann::json::accept(data)) {
00051 nlohmann::json jsonData = nlohmann::json::parse(data);
00052 std::string flag = jsonData["flag"];
00053 float pressure = jsonData["pressure"];
00054 float temperature = jsonData["temperature"];
00055 std::cout « "Received JSON: " « jsonData.dump(4) « std::endl; //Prints the received

JSON (is not needed)
00056 } else {
00057 std::cout « "Invalid JSON data: " « data « std::endl;
00058 status = false;
00059 break;
00060 }
00061
00062 }
00063
00064 }
00065 }

5.7.2.3 main()

int main ()

UNIX domain socket client. Connects to a UNIX domain socket using createSocket() and receives data using
getData().

Definition at line 69 of file main.cpp.
00069 {
00070 int newSocket = createSocket();
00071 if (newSocket == -1){
00072 std::cout « "Error: Failed to create socket" « std::endl;
00073 return -1;
00074 }
00075 getData(newSocket);
00076 close(newSocket);
00077 return 0;
00078 }

5.8 main.cpp

Go to the documentation of this file.
00001 #include <QCoreApplication>
00002 #include <QDebug>
00003 #include <iostream>
00004 #include <sys/socket.h>
00005 #include <sys/un.h>
00006 #include <unistd.h>

Generated by Doxygen

14 File Documentation

00007 #include <cstring>
00008 #include <string>
00009 #include <nlohmann/json.hpp>
00010
00013 #define SOCKET_PATH "/tmp/socket"
00014
00017 int createSocket(){
00018 int qtSocket;
00019 struct sockaddr_un addr;
00020 qtSocket = socket(AF_UNIX, SOCK_STREAM, 0);
00021 if (qtSocket < 0){
00022 perror("Socket Error");
00023 return -1;
00024 }
00025 addr.sun_family = AF_UNIX;
00026 std::strcpy(addr.sun_path, SOCKET_PATH);
00027 if (connect(qtSocket,(struct sockaddr*)&addr, sizeof(addr)) == -1){
00028 perror("Connection Error");
00029 close(qtSocket);
00030 return -1;
00031 }
00032 return qtSocket;
00033 }
00034
00037 void getData(int socket){
00038 char buffer[1024];
00039 std::string rest;
00040 bool status = true;
00041 while(status){
00042 ssize_t dataReceived = recv(socket, buffer, sizeof(buffer), 0);
00043 if (dataReceived <= 0) break;
00044 rest.append(buffer, dataReceived);
00045
00046 size_t pos;
00047 while ((pos = rest.find(’\n’)) != std::string::npos) {
00048 std::string data = rest.substr(0, pos);
00049 rest.erase(0, pos + 1);
00050 if (nlohmann::json::accept(data)) {
00051 nlohmann::json jsonData = nlohmann::json::parse(data);
00052 std::string flag = jsonData["flag"];
00053 float pressure = jsonData["pressure"];
00054 float temperature = jsonData["temperature"];
00055 std::cout « "Received JSON: " « jsonData.dump(4) « std::endl; //Prints the received

JSON (is not needed)
00056 } else {
00057 std::cout « "Invalid JSON data: " « data « std::endl;
00058 status = false;
00059 break;
00060 }
00061
00062 }
00063
00064 }
00065 }
00066
00069 int main(){
00070 int newSocket = createSocket();
00071 if (newSocket == -1){
00072 std::cout « "Error: Failed to create socket" « std::endl;
00073 return -1;
00074 }
00075 getData(newSocket);
00076 close(newSocket);
00077 return 0;
00078 }

Generated by Doxygen

KAFFEKNEKT

First App Example GUI

359

Coffee_machine_main
Release 1.0.0

Sokaina Cherkane

May 19, 2025

CONTENTS:

Index 3

i

ii

Coffee_machine_main, Release 1.0.0

main.get_resource_path(rel_path)
Returnerer den absolutte filstien til en ressursfil.

Dette gjør det mulig å bruke ressurser (som bilder) både under utvikling og når programmet er pakket med f.eks.
PyInstaller.

Parameters
rel_path (str) – Relativ sti til ressursfilen.

Returns
Absolutt sti til ressursfilen.

Return type
str

class main.SimpleClock(*args, **kwargs)
Bases: QLCDNumber

A simple digital clock using QLCDNumber. Updates every second and hides the colon every other second.

update_time()

class main.SimpleCoffeeMaker

Bases: object

Simulates a basic coffee machine with ingredient stock and simple recipes.

get_stock_report()

Returns a report of current ingredient levels.

get_recipe(kind)
Returns the recipe of the specified coffee type.

Parameters
kind (str) – Type of coffee.

Returns
Formatted recipe or error message.

Return type
str

can_make(kind)
Checks if there are enough ingredients to make the coffee.

Parameters
kind (str) – Coffee type.

Returns
(bool, str) whether it can be made, and which ingredient is lacking.

Return type
tuple

use_ingredients(kind)
Deducts the required ingredients from stock.

Parameters
kind (str) – Coffee type.

refill()

Refills the stock to full capacity.

CONTENTS: 1

Coffee_machine_main, Release 1.0.0

class main.ReportWin(*args, **kwargs)
Bases: QMessageBox

Simple dialog to show a text report using QMessageBox.

class main.CoffeeWindow(*args, **kwargs)
Bases: QMainWindow

Main application window for the coffee machine GUI. Provides buttons for making coffee, displaying a report,
and refilling.

setup_ui()

Sets up the GUI layout and widgets.

start_coffee(kind)
Begins the coffee brewing process for the given coffee type.

Parameters
kind (str) – The type of coffee to brew (e.g., “espresso”, “cappuccino”).

If ingredients are insufficient, a warning is shown. Disables all controls and starts progress and sensor
timers.

update_progress()

Updates the progress bar during brewing.

If brewing is complete, stops timers and finalizes the process.

update_sensor()

Simulates sensor updates with random temperature and pressure values.

Updates the sensor label with current simulated readings.

finish_coffee()

Finalizes the brewing process.

Deducts ingredients, shows a completion message, re-enables controls, and resets progress bar and title.

stop_process()

Stops the brewing process if in progress.

Resets progress bar, title, and re-enables controls.

disable_all()

Stops the brewing process if in progress.

Resets progress bar, title, and re-enables controls.

enable_all()

Enables all control buttons after brewing is done or stopped.

show_report()

Shows a message box with the espresso recipe and current ingredient stock.

refill_maker()

Refills the machine’s ingredient stock to full.

Shows a message to confirm refill.

2 CONTENTS:

INDEX

C
can_make() (main.SimpleCoffeeMaker method), 1
CoffeeWindow (class in main), 2

D
disable_all() (main.CoffeeWindow method), 2

E
enable_all() (main.CoffeeWindow method), 2

F
finish_coffee() (main.CoffeeWindow method), 2

G
get_recipe() (main.SimpleCoffeeMaker method), 1
get_resource_path() (in module main), 1
get_stock_report() (main.SimpleCoffeeMaker

method), 1

M
main
module, 1

module
main, 1

R
refill() (main.SimpleCoffeeMaker method), 1
refill_maker() (main.CoffeeWindow method), 2
ReportWin (class in main), 1

S
setup_ui() (main.CoffeeWindow method), 2
show_report() (main.CoffeeWindow method), 2
SimpleClock (class in main), 1
SimpleCoffeeMaker (class in main), 1
start_coffee() (main.CoffeeWindow method), 2
stop_process() (main.CoffeeWindow method), 2

U
update_progress() (main.CoffeeWindow method), 2
update_sensor() (main.CoffeeWindow method), 2

update_time() (main.SimpleClock method), 1
use_ingredients() (main.SimpleCoffeeMaker

method), 1

3

KAFFEKNEKT

Database log AK |

11.03
Developed and tested a logic that sends registered temperature to InfluxDB. This has verified the
functionality of the database (T-FUNC-1.1)
GitHub 33

08.04
Developed a script that connects to an Esp32, takes in data in the form of json, decodes it, and
transforms it into a python dictionary that can be worked with. It reads every key-value pair in
the dictionary, such as temperature, power and timestamp, and writes to a bucket using Point().
This happens in a While loop, so it takes every incoming line as long as the script is running.
Used ‘influx v1 shell’ command to open an SQL shell to query data and verify that the data is
being stored. There is a time column that shows the time in UNIX format, which is not human
readable
Tried to overwrite the timestamp with a human readable version using ISO format, but InfluxDB
didn’t accept it.

09.04
After assuming that the UNIX timestamp cannot be overwritten with a different format in the
python script, I have decided that instead of overwriting the UNIX timestamps, it would be just
as fine to save the human readable time in its own column in the bucket. Now we can read the
exact time in influx v1 shell
This GitHub commit was made 1 day after the script in its entirety was developed. The read-
able time part was added this day 34

11.04
I have developed a flux query script that can be used in the terminal. Using keep(), it only shows
the important columns such as time, temperature and power, as the other ones don’t hold mean-
ingful information, including readable time, since it turns out that flux queries return time in
readable format.
GitHub 35

14.04
I made the python script scalable so it reads the entire json line no matter how big it is, instead
of fixed power, temperature and pressure parameters. It goes in a loop for every key-value pair in
the dictionary, and as long as the key is not “timestamp”, it writes to the influx point as a field,
otherwise time.
GitHub 36

15.04
I have worked on the sequence diagram, but more importantly researched on how the different
components in the diagram actually work, such as write api(), that tells the API that we want to
write data from the script.

16.04
Finished the sequence diagram. Tried to query data with flux script before taking the easter holi-
day, but it didn’t show up. I suspect this is caused by how InfluxDB handles null values, because
when I query with the command ‘influx v1 shell’ and use the SQL interface, it shows everything.
GitHub 37

22.04
I have tried querying newly generated data with the flux script in several ways: with pivot(), with-
out pivot(), filtering for specific data, filtering for only measurement, setting range starting from

33https://github.com/martintara/kaffeknekt/commit/3e8558951af4c9ab9482d0b9150f61c6819d26f1
34https://github.com/martintara/kaffeknekt/commit/0673ad0f92ce84eff4f25eab455542ad74a3edc3
35https://github.com/martintara/kaffeknekt/commit/248c6d7b95b83c97c532458e4b49998afdc31a69
36https://github.com/martintara/kaffeknekt/commit/ddacbd76275529893b04bc9d34f046cd80f3909a
37https://github.com/martintara/kaffeknekt/commit/942c37e3d868c44b07b9831c96d285226ae4c110

367

https://github.com/martintara/kaffeknekt/commit/3e8558951af4c9ab9482d0b9150f61c6819d26f1
https://github.com/martintara/kaffeknekt/commit/0673ad0f92ce84eff4f25eab455542ad74a3edc3
https://github.com/martintara/kaffeknekt/commit/248c6d7b95b83c97c532458e4b49998afdc31a69
https://github.com/martintara/kaffeknekt/commit/ddacbd76275529893b04bc9d34f046cd80f3909a
https://github.com/martintara/kaffeknekt/commit/942c37e3d868c44b07b9831c96d285226ae4c110

KAFFEKNEKT

100 years ago, dropping fields to simplify the query, querying in a specific range knowing those
rows don’t include null values. None worked. I triple checked the field names, the data-writing
python script, the names in the query script, making sure they all match.

23.04
I have started developing a flux script that filters for power ¿ 0 and returns the timestamp of the
first row after filtering. Then variables are assigned where one holds a timestamp with 5 seconds
subtracted from the returned timestamp, and another that holds 30 seconds added. Finally, data
will be selected with these modified timestamps so we will end up filtering event data and send it
to a different bucket.

24.04
I have finished the event logging flux script. These are theoretical values, and this script was
developed so I have a baseline to go off after we have determined how we will approach this task.
This also needs to be tested, as there are little to no ways to check the syntax etc. GitHub 38

25.04
I have researched on different useful functions and how to implement them. I discovered a function
called StateTracking() that can track the duration of a row from a given value until a different
value is detected. In addition, I have learned more about other functions such as map(), which
allows you to modify a table of rows after filtering data.

28.04
Came across a small problem where if incoming parameter data were whole numbers, they would
be detected as integers, and influx sets the field type to whatever type the first value was, namely
a float. I had to specify that the value in the point was going to be a float.
GitHub 39

Later I wrote a script that will automatically detect null values in a bucket and replace them with
0.
GitHub 40

29.04
A new variable “flag” has been added to the incoming json lines, that will mark drastic change
of pressure (for now, we need better machine activation cues) with U for up and D for down.
Discovered a function events.duration() that can track the state of rows after filtering. We can use
this to calculate the duration of machine activity and query data from registered flag = U, to its
duration.
GitHub 41

30.04
Rewritten the event logging script so one query (kaffe) will filter for flag = U -¿ D events with
the help of events.duration() and extract their time, another query (monitor) will just query all
available data, and use join.left() towards the “kaffe” query to end up with data rendered down to
events where the machine has been used. Needs testing.
GitHub 42

02.05
Had trouble querying with flux scripts, presumably because of the null problem whenever U or D
are not written to flag. I have investigated how InfluxDB handles null values and combining tables
of rows that contain null values.

05.05
Added logic that tries to write flag to influx if it exists, else it writes flag with ”1”, instead of
looking for flag in the for loop.

38https://github.com/martintara/kaffeknekt/commit/27f283f22c97efafeb46edcfdb0e3a56bb48e883
39https://github.com/martintara/kaffeknekt/commit/e6b34a9f56de3c91dc8726de4a1096bde28944f6
40https://github.com/martintara/kaffeknekt/commit/1c1329c8a4a9e1c46b105fb582ec5e408165eec8
41https://github.com/martintara/kaffeknekt/commit/3eb2ab3c2e01e596e2b8467721305c2c8a756967
42https://github.com/martintara/kaffeknekt/commit/2392ac7592c01a8b3ece4d66fe5c270e484e6fca

368

https://github.com/martintara/kaffeknekt/commit/27f283f22c97efafeb46edcfdb0e3a56bb48e883
https://github.com/martintara/kaffeknekt/commit/e6b34a9f56de3c91dc8726de4a1096bde28944f6
https://github.com/martintara/kaffeknekt/commit/1c1329c8a4a9e1c46b105fb582ec5e408165eec8
https://github.com/martintara/kaffeknekt/commit/3eb2ab3c2e01e596e2b8467721305c2c8a756967
https://github.com/martintara/kaffeknekt/commit/2392ac7592c01a8b3ece4d66fe5c270e484e6fca

KAFFEKNEKT

GitHub 43

Added clock logic that adds milliseconds to timestamps, so that influx lines with the same times-
tamps don’t overwrite each other. It also subtracts 2 hours from the timestamps as a temporary
solution to the random data generator script sending future timestamps.
GitHub 44

Changed join condition to time column instead of measurement column because I realized the time
is not precise enough for the value matching to be a problem.

06.05
Added tag set implementation, which was quickly taken out as I deemed it unnecessary since flag
does the same thing: mark machine activity. Added functionality that detected latest incoming
flag value and filled subsequent rows with that value.

07.05
I tried to fix the event script that worked with events.duration(), that was supposedly going to
detect when the flag was going to give ”high” value, and count until it detected a ”low” value,
which was not the case at all. It simply returned the duration between value input timestamps.
After realizing that, I tried using the duration to add to the query range to use as a stop line, so
the script would correctly capture the scenario where the machine was active.

08.05
To avoid having to constantly query for new live data, we have agreed to integrate websocket func-
tionality to the software architecture. My script will be the server side that waits for connection,
then sends data in real-time.

GitHub 45

After that, I worked with the flux script, and decided to drop the time range manipulation and
decided to just join data based on flag=”1”.

GitHub 46

I had trouble moving the finalized data to the other bucket, because of how pivot() handles the
records, and buckets require input data to be in its original form. So I decided to also drop the
join part of the script, and resorted to a simple unpivot() function, which did the trick. Although
it is stated to be an experimental function, so with that I am carrying a small risk that it might
be replaced with a different, more robust function in the future.

GitHub 47

12.05
I have developed a simple flux script that calculates the sum of power usage every day. using
date.truncate(), I can truncate the time to 12:00 pm every day, allowing the script to update the
present day’s sum of power usage in real-time.

43https://github.com/martintara/kaffeknekt/commit/e4f93896700dc21c736b4a7a264d6e588b02577d
44https://github.com/martintara/kaffeknekt/commit/69dab71794d00a93b7452a09d30221107c47a45a
45https://github.com/martintara/kaffeknekt/commit/52723cd677384abe46274065ab37a11bcb2e59cf
46https://github.com/martintara/kaffeknekt/commit/edaad350b042cc485894fc3cc2b18ee390c57608
47https://github.com/martintara/kaffeknekt/commit/2fd470a39ef772d31fa2f96483ab9f1843c591f9

369

https://github.com/martintara/kaffeknekt/commit/e4f93896700dc21c736b4a7a264d6e588b02577d
https://github.com/martintara/kaffeknekt/commit/69dab71794d00a93b7452a09d30221107c47a45a
https://github.com/martintara/kaffeknekt/commit/52723cd677384abe46274065ab37a11bcb2e59cf
https://github.com/martintara/kaffeknekt/commit/edaad350b042cc485894fc3cc2b18ee390c57608
https://github.com/martintara/kaffeknekt/commit/2fd470a39ef772d31fa2f96483ab9f1843c591f9

KAFFEKNEKT

Figure C.6.1: Task run was a success!

Figure C.6.2: Event sorted data

370

KAFFEKNEKT

GitHub 48

I have assigned retention period to the two buckets: 3 days for ”sensor data”, and 6 months for
”event data” using commands from this page:
[44]

48https://github.com/martintara/kaffeknekt/commit/bcc9d285fe44c20a75baab348fc1cc2a2495f90a

371

https://github.com/martintara/kaffeknekt/commit/bcc9d285fe44c20a75baab348fc1cc2a2495f90a

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Glossary

	Introduction
	Project Overview
	Bachelor group
	Group Members
	Initials

	About Semcon Part of Knightec Group
	Project Objective
	Coffee and technology

	Background
	The Role of Coffee in Modern Culture
	The History of Coffee
	The espresso method
	Brewing time
	Water pressure
	Percolation
	Flow rate
	Water temperature

	Espresso Machines: From Craft to Engineering
	General Overview
	Design
	Single Boiler
	Heat Exchanger
	Double Boiler
	E61 Design

	Operation
	Thermosiphon system

	Project Management
	Planning Phase
	Choosing a Methodology
	Agile And Why
	Scrum
	Scrum Activities
	Sprints
	Sprint Planning
	Daily Scrum
	Sprint Review
	Retrospective
	How we started implementing scrum
	How we adapted to these problems

	Meetings
	External supervisor / Company
	Internal supervisor

	Risk Analysis
	Agile Risk Management
	Risk Assessment Matrix
	Consequence Level Matrices For Product And Project
	Probability Level Matrices For Product And Project
	Risk Mitigation Strategies
	Agile Scrum Integration With Risk Assessment

	Tools
	Overleaf
	Google Scholar
	Microsoft Teams
	Github
	Timeshift
	ChatGPT
	Discord
	KiCad
	Azure DevOps
	PlatformIO
	Qt Creator
	What is Qt
	Why use Qt Creator?

	Draw.io
	Google Sheets
	InfluxDB

	Website
	System Requirements
	User Stories
	Requirements
	Validation of Our Requirements

	System Development
	System Specification and Architecture
	System Architecture
	Overall Architecture
	Defining System Modules
	Defining System Interfaces
	Our Solution

	Hardware Overview
	Raspberry Pi 5
	ESP-32
	Solid state drive (SSD)
	Touch-screen

	Sensor Hardware
	Digital Pressure Sensor
	Resistance Temperature Detector PT100
	AC Current Sensor

	Electrical Overview
	The Espresso Machine
	Electrical Setup
	Solenoid Valves

	Embedded Development
	I2C Protocol

	GUI
	What is a GUI?
	Relevance to the Project

	Framework and Tools
	Framework Selection
	Why Qt
	Standard C++ and Qt's OOP Model

	Development Environment
	Qt Creator Overview
	GUI design
	Tools and Features

	Architecture and Implementation
	Overview of System Architecture

	Database Development
	InfluxDB
	Data Retention
	Shards
	Shard Group Duration
	InfluxDB Data Storage Model
	Data Layout

	Introducing Flux
	Why Flux?
	Developing with Flux

	System Integration
	Hardware Integration
	PCB Integration
	Threaded Pressure Sensor
	Threaded Temperature Sensor

	Software Implementation
	Data Retriaval from the ESP32
	Data Retriaval from the InfluxDB to the GUI

	Overall Integration Of the GUI
	Sensor Analytics

	Coffee Instructions
	Information Button "i"
	Real-Time Data Graph
	Integration overview of the GUI

	Data Aggregation and Visualization Hub
	Real Time Socket Solution
	Time Configuration

	Minimum Viable Product

	Results and Discussion
	Test Procedures
	Electrical and Mechanical Testing
	Pressure
	Solenoid Valve Coil Continuity
	ESP32's Inbuilt ADC

	Software testing and Development
	GUI testing
	RPI-5
	GUI
	Temperature Reading and Storing tests
	The goal and plans regarding the tests
	Test environment setup
	Test procedures

	Challenges
	Software Challenges
	Cross-Compiling problem
	Cmake to qmake
	Minor Challenges

	Technical Challenges
	Leakage
	Boiler overfill

	Further Work
	GUI Software
	PCB Design
	Embedded improvements
	Automatic Startup
	Additional Features
	Drip Tray Scale
	InfluxDB Tasks

	Conclusion
	References
	Project Management Documentation
	Risk Analysis
	User Stories
	Requirements
	Non-invasive Requirements
	Non-functional requirements

	Test Table
	Traceability Matrix
	Code Documentation Of The Water Pressure Graph
	Group Contribution
	Budget & Components List
	Temperature and Database Tests
	AI Usage Documentation
	Sokaina - AI Use
	Martin - AI Use
	Didrik - AI Use
	Kadir - AI Use
	Ivan - AI Use
	Mikolaj - AI Use

	Technical Documentation
	Component Procurement Strategy
	Threaded sensors

	Power Strategy: Isolated Supply
	Power Source
	Power Supply

	PCB Design
	Component
	Headers
	Sensors
	Dip Switches
	ADC
	RTC

	Main Schematic
	ADC Schematic
	ESP32 and RTD Amplifiers Schematic
	RTC Schematic
	Analog Region
	Digital Region
	Symbols for 3D models

	Layout
	First layer
	Second layer
	Third layer
	Fourth layer

	Surface Level Testing
	Late Arrival

	Mechanical Integration
	Couplings and Adapters
	Sealing and Leak Prevention
	Pressure

	Brew-Event Detection
	Methods
	Implementation
	Solenoid Valve
	Non-invasive detection

	Control Board
	Schematic

	3D Printing
	PCB Container
	Touch screen and RPI casing

	GUI Visualization
	System Diagrams

	Code Documentation
	ESP32 Development Log
	Setting Clock and Socket Implementation
	Clock Setting Code Formulation(Qt Side)
	Domain Socket Code Formulation

	GUI Doxygen Documentation
	Database Source Files
	Data handling Sequence diagram

	First App Example GUI
	Database log

