
Bachelor’s thesis

Kromium
Kromium - KONGSBERG Remote Operated Mechanical Image Utilizing Machine

Faculty of Technology, Natural Sciences and
Maritime Sciences
Campus Kongsberg

KROMIUM

This page was intentionally left blank.

1

KROMIUM

Course: TS3000 Bacheloroppgave
Date: June 8, 2024
Title: Kromium

Project group: 3
Group members: Shahin Ostadahmadi

Aditi Deshpande
Oscar Melby
Adrian Elias Haugjord
Henrik Bertelsen

Internal supervisor: Hieu T. Nguyen
External supervisor: Qui-Huu Le-Viet (01.01.2024-17.04.2024)

Merethe Gotaas (18.04.2024-)

Project partner: Kongsberg Maritime

2

KROMIUM

Acknowledgements
We would like to express our gratitude to our external supervisors, Merethe Gotaas and
Qui-Huu Le-Viet, for their constant support, reassurance, invaluable guidance, and con-
tinuous encouragement throughout this project. Their expertise and insights have been
instrumental in shaping our research and ensuring its successful completion.

We also would like to convey our sincere appreciation to our internal supervisor, Hieu T.
Nguyen, for his insightful and precise feedback, constructive criticism, and steady belief
in our capabilities. His mentorship has been invaluable in keeping us focused, on track
and motivated throughout the project’s development.

Finally, we thank the University of South-Eastern Norway for providing us with the op-
portunity to undertake this research and for creating such a stimulating academic envi-
ronment. We also acknowledge the support of the faculty, who have provided us with the
resources and knowledge necessary to succeed.

3

KROMIUM

Abstract
Offshore operations have recently undergone a technological revolution, boosting effi-
ciency, safety, and cost-effectiveness to new heights. One untapped opportunity lies in
the adoption of remote operations. This bachelor’s thesis explores the integration of vir-
tual reality, artificial intelligence, and robotics to enhance offshore operations. The system
uses virtual reality for human-robot interaction and receives visual information from the
robot which is analysed through object detection models. It also receives information
about the status of the robot. The software architecture is modular, dividing tasks to
quicken development and ensure efficient operation.

The successful implementation of the integration of virtual reality, artificial intelligence,
and robotics demonstrates the feasibility and potential of using these fields in revolution-
izing offshore operations for improved safety, efficiency, and cost-effectiveness.

4

KROMIUM

This page was intentionally left blank.

5

Contents
Acknowledgements 3

Abstract 4

List of Figures 14

List of Tables 22

Glossary 23

Nomenclature 29

1 Introduction 30
1.1 About the project . 30
1.2 Group members . 30
1.3 Problem domain . 31

1.3.1 Introduction . 32
1.3.2 Virtual Reality . 32
1.3.3 Artificial Intelligence . 33
1.3.4 Robotics . 34
1.3.5 Robotic arms . 35
1.3.6 Integration of VR, AI, and Robotics 36

1.4 Project overview . 36
1.4.1 The customer . 36
1.4.2 Project goal . 37

1.5 Requirements . 37
1.5.1 Definition of priority order . 37
1.5.2 Additional requirements . 38
1.5.3 Validation . 38
1.5.4 Related work: Object detection 38

2 Project Management & Risk Assessment 39
2.1 Organizational structure . 39

2.1.1 Member responsibilities . 39
2.1.2 Team building . 40

2.2 Project tools . 41
2.2.1 ChatGPT . 41

2.3 Website . 41
2.4 Hardware used . 41

2.4.1 Virtual reality headset . 41
2.4.2 Development platform . 42

2.5 Software tools . 42
2.5.1 Git & GitHub . 42
2.5.2 ROS 2 . 42
2.5.3 Operating system . 43
2.5.4 Docker . 43
2.5.5 Unity . 44
2.5.6 Programming languages . 44
2.5.7 Google Colab . 44
2.5.8 Integrated development environment 44

6

KROMIUM CONTENTS

2.5.9 Doxygen . 44
2.5.10 Sphinx . 45
2.5.11 GitHub Workflows & Pages . 45
2.5.12 Python standards . 45
2.5.13 GitHub CoPilot . 45
2.5.14 Miscellaneous tools . 46

2.6 Project development process . 46
2.6.1 GitHub workflow . 46

2.7 Mechanical development tools . 46
2.7.1 Computer-aided design . 47
2.7.2 SolidWorks simulation . 47
2.7.3 UltiMakrer Cura . 47

2.8 Electronics . 47
2.8.1 Tools used for electrical development 47

2.9 Project model . 47
2.10 Risk Assessment: Rapid Risk Ranking (RRR) 48

2.10.1 Consequence severity . 49
2.10.2 Probability levels . 49
2.10.3 Risk Matrix . 50
2.10.4 Risk levels . 50
2.10.5 Hazardous events . 50
2.10.6 Risk analysis form . 50

3 Design overview 52
3.1 Project design overview . 52
3.2 System functionalities . 53

3.2.1 VR application features . 53
3.2.2 Operator Information Features 54

3.3 Hardware design . 55
3.3.1 Robot specifications . 55
3.3.2 Structure of the robot . 55
3.3.3 Building the robot . 56
3.3.4 Easy accessible power switch . 56
3.3.5 Easily accessible electronics . 56
3.3.6 How to change the battery . 57
3.3.7 Turning on the power . 57
3.3.8 Wheels . 58

3.4 Electrical design . 58
3.4.1 Battery design . 58

4 Software Implementation 61
4.1 Software setup . 61

4.1.1 Network configuration . 61
4.1.2 VR application environment . 61
4.1.3 Robot & AI environment . 61

4.2 The VR application . 62
4.2.1 Visual overview of the application 63
4.2.2 Communication between VR and the robot 65
4.2.3 Robot visual view . 67
4.2.4 VR application and robot modes 70

7

KROMIUM CONTENTS

4.2.5 Controlling the robot car . 74
4.2.6 Controlling the robot arm . 79
4.2.7 Robot status: information display 82
4.2.8 Emergency control . 83

4.3 Robot . 85
4.3.1 Using ROS 2 . 86
4.3.2 Node architecture . 87
4.3.3 Communicating with the Meta Quest 3 88
4.3.4 Video stream . 89
4.3.5 Interacting with the expansion board 89
4.3.6 Handling modes and safety features 90
4.3.7 Changing modes . 91
4.3.8 Driving the robot . 93
4.3.9 Logging functionality . 95
4.3.10 Sending of robot data & status 95

4.4 Robotic arm . 97
4.4.1 Arm movement concept . 97
4.4.2 Servo and arm limitations . 98
4.4.3 End effector placement and arm dimensions 98
4.4.4 Deciding on an arm manipulation method 100
4.4.5 Inverse kinematics . 101
4.4.6 Implementation . 104
4.4.7 Simulation . 109

4.5 Artificial Intelligence: Object Detection 109
4.5.1 Neural networks . 110
4.5.2 Loss functions and gradient descent 111
4.5.3 Convolutional Neural Networks 113
4.5.4 How convolution works . 113
4.5.5 Architectural components of data transformation in CNNs 114
4.5.6 Putting together a simple CNN 116
4.5.7 Transfer learning . 117
4.5.8 CNNs for edge devices . 118
4.5.9 Object detector CNNs . 121
4.5.10 Loss functions in object detectors 122
4.5.11 Framework for object detection 123
4.5.12 TensorFlow object detection with MediaPipe 123
4.5.13 Preparing the dataset . 124
4.5.14 Dataset augmentation . 126
4.5.15 Training the model . 127
4.5.16 Displaying object information 128

4.6 Additional work . 129
4.6.1 Getting depth data . 129
4.6.2 Showing depth data in the VR Space 136
4.6.3 Digital twin of the robot arm . 137
4.6.4 Detection of bolts using a self-made dataset 143
4.6.5 Automated fastening of bolts . 145
4.6.6 Reversing camera . 145
4.6.7 Backup logging . 146
4.6.8 Integration of voice commands in the VR application 147
4.6.9 Arm safety limits . 148

8

KROMIUM CONTENTS

4.6.10 Optimizing the video stream . 149
4.6.11 Caching of object detection boxes 150
4.6.12 Displaying latency of the robot 151
4.6.13 Internal logging . 151
4.6.14 Database integration with object detection 152

5 Electrical 155
5.1 Electrical components . 155

5.1.1 Yahboom Battery . 155
5.1.2 Custom built battery . 155
5.1.3 DC motors . 156
5.1.4 Servos . 156
5.1.5 USB 3.0 HUB expansion board 156
5.1.6 ROS robot expansion board . 156

6 Mechanical hardware development 157
6.1 Given equipment . 157
6.2 Robot design requirements . 158
6.3 Robot design ideas . 158
6.4 Robot iteration one . 159

6.4.1 Robot iteration one, assembly 159
6.5 Robot iteration two . 160

6.5.1 Iteration two assembly . 162
6.6 Robot iteration three . 163

6.6.1 Robot iteration three redesigns 163
6.6.2 Robot iteration three assembly 164

6.7 Robot iteration four . 164
6.7.1 Robot iteration four redesigns 165
6.7.2 Robot iteration four assembly 165

6.8 Iteration five design . 165
6.8.1 Robot iteration five redesigns . 166
6.8.2 Robot iteration five assembly . 166

6.9 Battery design . 167
6.9.1 Battery iteration one . 167
6.9.2 Battery iteration two . 168
6.9.3 Battery iteration three . 169
6.9.4 Battery iteration four . 170
6.9.5 Battery iteration five . 170
6.9.6 Battery iteration six . 171

6.10 Exporting the model for the digital twin 173
6.11 Production . 175

6.11.1 Robot car sheet floors . 175
6.11.2 Robot car cover . 175
6.11.3 Post processing . 177
6.11.4 3D printed components . 180

7 Testing & Results 181
7.1 Integration testing . 181
7.2 Object detection model performance . 181

7.2.1 People detection . 181
7.2.2 Bolt detection . 184

9

KROMIUM CONTENTS

7.2.3 Analyzing the results . 186
7.3 Running inference . 186

7.3.1 Pre-processing . 187
7.3.2 Detection and post-processing 187

7.4 Production mode . 191
7.5 Unit tests . 191

7.5.1 Writing an unit test . 191
7.5.2 Ignoring messages in wrong mode 192
7.5.3 Battery percentage verification 193

7.6 robot-test-client . 194
7.7 Simulations . 195

7.7.1 Testing of 520 DC motor brackets 195
7.7.2 Arm camera bracket . 195
7.7.3 Wall attachment bracket assembly 196

7.8 Visual physical testing . 197
7.8.1 Robot iteration one testing . 197
7.8.2 Robot iteration two testing . 198
7.8.3 Robot iteration three testing . 200
7.8.4 Robot iteration four testing . 201
7.8.5 Robot iteration five test . 202

7.9 Battery testing . 203
7.9.1 Test of battery cells . 203
7.9.2 Test of battery iterations . 205

7.10 User survey testing . 208

8 Future Work 209
8.1 Software . 209

8.1.1 3D mapping using depth information 209
8.1.2 Autonomous movement, object avoidance and operation 210
8.1.3 Avoid arm collisions with MoveIt 210
8.1.4 Simultaneous driving and arm manipulation 210
8.1.5 Increase performance with Ubuntu OS 211
8.1.6 Offload heavy computation . 212
8.1.7 Tracking of object detection boxes 212
8.1.8 3D object recognition with graph CNNs 213

8.2 Mechanical . 213
8.2.1 Increase lifting capacity of the arm 213

8.3 Electrical . 214
8.3.1 Upgrade hardware . 214
8.3.2 Battery . 214

9 Challenges 215
9.1 Non-technical challenges . 215

9.1.1 Electrical engineer could not continue 215
9.1.2 Previous report being exempt from public 215
9.1.3 Carbon CNC mill broken . 215
9.1.4 External supervisor changing job during the project 216

9.2 Technical challenges . 216
9.2.1 Corrupting one of our microSD cards 216
9.2.2 Frying an expansion board diode 216

10

KROMIUM CONTENTS

9.2.3 Problems with downloading tflite-model-maker 217
9.2.4 Difficulties in using the PyTorch library 218
9.2.5 Robot randomly going unresponsive 219
9.2.6 Issues with MoveIt . 219
9.2.7 Trouble transferring ∼300,000 points of depth data 220
9.2.8 Frying a BMS . 222

10 Conclusion 223

11 References 224

A User stories 235

B Use cases 241

C System requirement specification 246

D Global requirements 250

E Software testing documentation 252

F Estimated project timeline 269

G Budget 271

H Rapid risk ranking 274

I Schematic diagrams 282
I.1 Expansion board schematics . 282

J Battery 285
J.1 Introduction . 285
J.2 Design . 285

J.2.1 General design . 285
J.2.2 Components . 286
J.2.3 Research . 286
J.2.4 Design . 288

J.3 Building the battery with BMS . 294
J.4 Building the battery without BMS . 296
J.5 Test of battery cells . 296

J.5.1 Introduction . 296
J.5.2 Equipment . 296
J.5.3 Testing . 297
J.5.4 Results . 298

J.6 Testing of batteries . 298
J.6.1 Battery with BMS . 298
J.6.2 Battery without BMS . 299
J.6.3 Discussion . 299

J.7 Using the battery . 300
J.7.1 General use . 300
J.7.2 Assembly . 300
J.7.3 Swapping cells . 303

11

KROMIUM CONTENTS

J.7.4 Charging . 303

K Initial software implementation for arm 304

L Electronics interface description 307
L.1 Motor expansion board YB-ERF01-V1.0 interface description 307

M Earlier iterations of object detection 308
M.1 First iteration . 308
M.2 Second iteration . 308
M.3 Testing of the custom model . 310
M.4 Previous bolt detection dataset . 310

N Implementation of detection caching 312

O Robot: Detailed Implementation and Configuration 316
O.1 Example code a ROS 2 node . 316
O.2 Example of Rosmaster Library code modifications 317
O.3 Installing Docker . 319
O.4 Permissions to use Docker . 320
O.5 Dockerfile . 320
O.6 requirements.txt . 321
O.7 Expansion board symlink . 321
O.8 MongoDB database implementation . 321

O.8.1 Installing the Docker image . 321
O.8.2 Running the container . 322

O.9 Measuring the speed of the robot . 322
O.9.1 Speed at 0% . 322
O.9.2 Speed at 50% . 322
O.9.3 Speed at 100% . 323
O.9.4 Errors with estimation . 324

O.10 Finding arm camera angle . 324
O.11 Finding and drawing end effector point 325
O.12 Mapping servo ids to names . 326
O.13 Mesh plotting code . 327
O.14 Dealing with different paths . 328
O.15 Flask video stream implementation . 329
O.16 Missing packages for the Astra driver 329
O.17 Docker robot container options . 329
O.18 Building ROS 2 from source . 329
O.19 Building code documentation . 330
O.20 Robot repository timeline & lines of code 332

P VR application 334
P.1 Unity Scene and Game Object Elements 336

P.1.1 Scene . 336
P.1.2 Game objects . 336
P.1.3 Prefab . 336

P.2 First Two Iterations . 337
P.2.1 First iteration: Initial design . 337
P.2.2 Conceptualization . 337

12

KROMIUM CONTENTS

P.2.3 Second Iteration: New feature and improvements 339

Q Calculations 340
Q.1 Degrees of freedom for robot arm . 340
Q.2 Battery duration calculation . 341

R Code statistics 343
R.1 Repositories timeline . 343

S Netron Object detection model analyzation 345
S.1 Bolt detection . 346
S.2 People detection . 356

T Technical drawings 366
T.1 Robot design iteration one . 366

T.1.1 Arm cover iteration one . 366
T.1.2 Car cover iteration one . 368
T.1.3 Camera holder iteration one . 370
T.1.4 Shock absorber iteration one . 373

T.2 Electronics . 374
T.2.1 Motor expansion board YB-ERF01-V1.0 dimensions 374

T.3 Final parts technical drawings . 375
T.3.1 Floors . 375
T.3.2 Walls . 377
T.3.3 Expansion board brackets . 381
T.3.4 Raspberry Pi case bracket . 383
T.3.5 Magnet brackets . 384
T.3.6 Brackets . 386
T.3.7 Battery drawer . 392
T.3.8 Yahboom battery case . 393
T.3.9 KROMIUM battery . 394

T.4 Subassembly drawings . 395
T.5 Floor assemblies . 403
T.6 Wall assemblies . 407
T.7 Main assembly . 409
T.8 Production drawings . 413

U Robot code documentation 414

V Object-detection code documentation 472

W Transfer learning training code documentation 484

X VR headset code documentation 495

Y Working hours 704

13

List of Figures
1.1 A picture of a VR headset with hand controllers [1] 32
1.2 Fields and subfields of AI . 34
2.1 Project organization chart . 39
2.2 “Raspberry Pi connector for PCIe” [2] 43
2.3 Kromium’s GitHub workflow . 46
2.4 Typical week at Kromium before Easter 48
2.5 Typical week at Kromium after Easter 48
3.1 Human-robot interaction through virtual reality 52
3.2 Human-robot interaction with controls 52
3.3 Interaction Features for Robot Control from the operator 53
3.4 Features provided to the operator . 54
3.5 Robot exploded view. More detailed version T.7. 56
3.6 Changing electronics . 57
3.7 Changing battery . 57
3.8 Some of the robot movement options. Source: [3] 58
3.9 How a 2P3S configuration looks like on paper 59
4.1 Main components in the VR application 63
4.2 Overview of the application (Disconnected from the robot) 64
4.3 Overview of the application left-hand side when in action 64
4.4 Network manager VR application . 65
4.5 Network manager interface examples . 66
4.6 Data distribution from network manager to the application 67
4.7 Camera monitor inside the VR application 68
4.8 Camera monitor in Drive mode (Camera 1) detecting a person 69
4.9 Camera monitor in Arm mode (Camera 2) detecting a bolt 69
4.10 Use case diagram - Robot operator . 70
4.11 State machine diagram - Mode states in VR application 71
4.12 Drive scene detecting user’s hand movements 72
4.13 Arm scene detecting user’s hand movements 72
4.14 Visual interface for changing mode, connect to the robot and get depth data 72
4.15 Activities that occur when changing mode 73
4.16 Scene for controlling the robot car . 74
4.17 Controlling the robot car components . 75
4.18 Default tracking is when the hand is not detected. 76
4.19 Tracking area highlighted when the hand is detected. 76
4.20 Activities in drive mode . 77
4.21 Tracking area in the application drive mode 78
4.22 Tracking area conceptualized . 78
4.23 Tracking area divided by sections . 78
4.24 Calculation of speed . 79
4.25 Scene for controlling the robot arm . 80
4.26 Default tracking is when the hand is not detected - arm scene 80
4.27 Tracking area highlighted when the hand is detected - arm scene 80
4.28 Illustration of the robot arm and user’s hand - Back side 81
4.29 Illustration of the robot arm and user’s hand - Front side 81
4.30 Illustration of the robot arm and user’s hand - Front side 81
4.31 Activities in Arm Mode . 82
4.32 Robot status information panel . 83

14

KROMIUM LIST OF FIGURES

4.33 Data distribution and updating process in the Head-Up Display 83
4.34 Emergency button in the VR application 84
4.35 Emergency button in action . 85
4.36 Example of ROS 2 Nodes [4] . 86
4.37 All the ROS nodes in the robot system 87
4.38 Validating commands based on mode . 90
4.39 Drive camera view . 92
4.40 Arm camera view with end effector indication 92
4.41 Predefined arm movement when switching from drive to arm 93
4.42 Normal drive mode . 94
4.43 Precision drive mode . 94
4.44 Reverse drive mode . 94
4.45 Logger node topic subscriptions . 95
4.46 Linear battery estimation plot . 96
4.47 GeoGebra linear estimation of the speed 97
4.48 Kinematics black box . 98
4.49 Robotic Arm Servo Limitations [5] . 98
4.50 End-effector placement . 99
4.51 Lengths of each arm link . 99
4.52 Two valid arm configurations in the same point 100
4.53 3R Arm . 101
4.54 inverse kinematics - 3 DOF robotic arm 102
4.55 VR operator’s hand and corresponding JSON data received 104
4.56 Coordinate system showing the YZ-plane with the point (0, 0.5, 0.5) . . . 105
4.57 Angles related to X value . 106
4.58 Precision differences in x to angle calculation 106
4.59 φ function based on Z-coordinate . 107
4.60 Elbow down is illegal for this point . 108
4.61 Simulation of arm angles in Python . 109
4.62 Object detection black-box . 109
4.63 High-level representation of AI detection in the system 110
4.64 A simple neural network with two inputs (the boxes), one hidden layer of

two units and two outputs (circle 5) [6, p. 804] 111
4.65 Convolution example with 2 steps . 114
4.66 Padding example . 115
4.67 Example of average pooling from 4 adjacent values 115
4.68 Fully connected layer . 116
4.69 A simple CNN . 116
4.70 Frozen and trainable layers in Fine tuning 118
4.71 Standard Convolution vs. depthwise separable convolution 119
4.72 Bottleneck layer visualisation [7, p. 4] 120
4.73 Residual block . 120
4.74 Full MobileNet architecture [7] . 121
4.75 Example architectures of two-shot and single-shot detectors 121
4.76 Binary Cross-entropy versus Focal Loss [8, p. 1] 123
4.77 MediaPipe architecture [9] . 124
4.78 Labelling an image with a person [10] 125
4.79 The Pascal VOC directory structure and XML file format 126
4.80 Difference without and with data augmentation [10] 127
4.81 Training process . 128

15

KROMIUM LIST OF FIGURES

4.82 Astra Pro Plus Diagram [11] . 129
4.83 Astra Pro Plus RGB picture (1280x720) 131
4.84 Depth data plot of 255,888 points (640x480) 132
4.85 Huffman encoding difference . 133
4.86 Plot seen from front . 134
4.87 Plot seen from the right-hand side . 134
4.88 Compressed depth data plot of 3,412 points 134
4.89 Sequence of activities between involved classes for mapping depth data . 136
4.90 Conceptual illustrations of depth data visualization 137
4.91 Real-time depth data visualization in the VR application showing a slightly

opened door. 137
4.92 Visualization of the Digital Twin in the VR Application 138
4.93 Digital twin rotation points and pinch . 139
4.94 Examples of the digital twin alongside the real robot arm 140
4.95 Workflow of the Digital Twin Data Visualization 141
4.96 Dynamic content gathering of ROS 2 messages 142
4.97 Data Distribution by the Digital Twin Controller 143
4.98 The different distance perspective . 144
4.99 Top - side - front perspective . 144
4.100Arm camera perspective of fastening without bolt detection 145
4.101Reversing camera . 146
4.102Wit.ai application interface . 148
4.103The different entities available [12] . 148
4.104Illustration of box containing illegal points 149
4.105Caching of detection results . 150
4.106Ping command showing latency in milliseconds 151
4.107Internal logging monitor inside VR-application 152
4.108Example JSON data used . 153
5.1 Final battery design complete . 156
6.1 The robot at the start and end of the project 157
6.2 Equipment from previous projects . 157
6.3 Some of the design ideas . 159
6.4 Robot at 02.03.2024 . 159
6.5 Iteration two SOLIDWORKS model . 160
6.6 Models downloaded from GrabCad . 160
6.7 Robot arm assembly from Yahboom . 161
6.8 Simple models motor and case . 161
6.9 Expansion board models and brackets 162
6.10 Iteration two assembled . 162
6.11 Robot iteration three design . 163
6.12 New expansion board brackets . 163
6.13 Simple robot arm model . 164
6.14 Robot iteration three assembly . 164
6.15 Robot iteration four design . 165
6.16 Robot iteration four assembly . 165
6.17 Robot iteration five design . 166
6.18 Robot iteration five assembly . 167

16

KROMIUM LIST OF FIGURES

6.19 A part of the first iteration. Arrow 1 points towards a block representing
the attachment between the charger wires and wires leading to the BMSs.
Arrow 2 points towards a hole where the wires from the end will appear.
Arrow 3 points towards one of the attachment holes for the cover 168

6.20 The second design iteration of the battery 169
6.21 In figure a: Arrow 1 points towards the holder for the mechanical switch.

Arrow 2 points towards the magnetic connector. Arrow 3 points towards
the mechanical switch . 169

6.22 Arrow 1: area for connector plates. Arrow 2: wedging mechanism 170
6.23 Battery iteration five . 171
6.24 Producing battery iteration five . 171
6.25 Final battery design . 172
6.26 Inside of final battery . 172
6.27 Configure links and joints . 173
6.28 Robot arm moved during export . 174
6.29 Aluminium sheet parts . 175
6.30 CNC assembly in solidworks and after cut 176
6.31 Before and after adjusting the roof for water jet production 177
6.32 Cover parts after production . 177
6.33 Burn marks on edge of front cover . 178
6.34 Post processing tools . 178
6.35 Before and after clean up . 179
6.36 Drilling the holes for the roof . 180
7.1 Precision and Recall of people detection model 182
7.2 Loss functions . 183
7.3 Total losses . 184
7.4 AP and AR (Bolt) . 184
7.5 Loss functions . 185
7.6 Total losses . 186
7.7 Simple inference process . 187
7.8 Pre- and post-processing steps . 187
7.9 The annotated frame after post-processing 188
7.10 Person . 189
7.11 Object detection recognition and displaying of information 189
7.12 Full activity diagram of testing the model 190
7.13 The fixed angle bracket. The hole is square to remove the need for support

when 3D printing the part. 196
7.14 This way the cable for the arm camera does not hook itself to the robot. . 196
7.15 This is how the pieces fit together. 197
7.16 Iteration one testing . 198
7.17 Iteration two sections to remove . 199
7.18 Holes to find the best camera position. 200
7.19 Iteration three sections to fix . 201
7.20 Iteration four sections to fix . 202
7.21 Weight of the robot . 203
7.22 Test of battery with BMS. The red light on the BMSs indicates that the

cells are charging. 206
8.1 3D mapped environment with OctoMap [13] 209
8.2 Ubuntu support as of 9th of February 2024 [14] 211
8.3 Ubuntu support as of 6th of May 2024 [14] 212

17

KROMIUM LIST OF FIGURES

9.1 Both pictures show the back side of the expansion board. 217
9.2 YOLO real-time detection without NMS 218
9.3 Mesh seen from front . 221
9.4 Mesh seen from the right-hand side . 221
9.5 3D mesh of depth data with highlighted objects 221
9.6 The BMS with the fried IC . 222
H.1 Consequence severity . 275
H.2 Probability levels . 276
H.3 Risk Matrix . 276
H.4 Risk levels . 276
H.5 Hazardous events allocated to stakeholders 277
H.6 Possible hazards and description . 278
H.7 RRR-main form 1/2 . 279
H.8 RRR-main form 2/2 . 280
H.9 RRR-revision overview . 281
I.1 Schematic of the robot expansion board YB-ERF01-V1. 283
I.1 Schematic of the robot expansion board YB-ERF01-V1. 284
I.2 Crop out from YB-ERF01-V1. D3 diode is observable in the bottom right

corner. 284
J.1 This is how a 3S2P battery is connected 286
J.2 This is how a 2P3S battery is connected 286
J.3 Functional diagram of the charging module [15] 287
J.4 A part of the first iteration. Arrow 1 points towards a block representing

the attachment between the charger wires and wires leading to the BMSs.
Arrow 2 points towards a hole where the wires from the end will appear.
Arrow 3 points towards one of the attachment holes for the cover 289

J.5 The mounting plate for the battery cell holders for the first battery design . 289
J.6 Battery iteration 2. Arrow 1 points towards the holder for the mechanical

switch. Arrow 2 points towards the magnetic connector. Arrow 3 points
towards the mechanical switch . 290

J.7 Mounting plate for battery cell holders, for the second design 291
J.8 The cover for the second iteration . 291
J.9 The mechanical switch. Arrow 1 points towards the space for the connec-

tors. Arrow 2 points towards the taps that keep the switch attached to the
battery box. 292

J.10 The red markings show the added cut to the holes for the switch 292
J.11 The mounting plate had to be made longer for this iteration because the

fork switch had to be slid in the length direction. The small cut in the
bottom right corner is to make space for the notch in the battery cover lid. 293

J.12 The circuit for the battery with BMS in a 2P3S configuration. Wires for
charging are not drawn into this circuit. 293

J.13 The battery cover for design iteration four 294
J.14 Mounting plate for the final design iteration 294
J.15 The switches used for battery iteration four, in this position the switch is

turned on . 295
J.16 The switches used for battery iteration four, in this position the switch is

turned off . 296
J.17 The voltage test was a success. The white ribbon under the battery cells

is used to detach the battery cells easily. 299
J.18 Step one of assembling the battery . 301

18

KROMIUM LIST OF FIGURES

J.19 Insert the battery into the battery box . 301
J.20 Close-up picture of the back side of the connector, from the datasheet for

the magnetic connector[16] . 302
J.21 . 302
J.22 The finished battery . 303
K.1 VR hand control area . 304
L.1 Motor expansion board YB-ERF01-V1.0 interface description 307
M.1 Object detection with the COCO dataset and MobilenetV2 308
M.2 System architecture for Transfer Learning 309
M.3 Testing the custom-made model . 310
M.4 Example images from dataset . 311
O.1 50% speed: start time . 322
O.2 50% speed: end time . 323
O.3 100% speed: start time . 323
O.4 100% speed: end time . 324
O.5 Enter Caption . 325
O.6 Enter Caption . 326
O.7 Commits timeline [17] . 332
O.8 Lines of code [18] . 333
P.1 High-level system architecture . 335
P.2 Default Unity empty scene [19] . 336
P.3 Different game objects: animated character, a light, a tree, and an audio

source [20] . 337
P.4 Tree prefab example in a scene [21] . 337
P.5 Initial iteration of VR application development 338
P.6 Command conversion from Hand tracking 338
P.7 Second iteration of VR application development 339
P.8 Hand tracking version one . 340
P.9 Hand tracking version two . 340
P.10 Speed control . 340
Q.1 Robot arm simple drawing of joints and bodies. Joints (J) = blue & bodies

(N) = Red . 341
R.1 transfer-learning-training commits timeline [22] 343
R.2 obj-detection-pi commits timeline [23] 344
T.1 Car to arm interface technical drawing 366
T.2 Car to arm interface cover technical drawing 367
T.3 Car to arm interface assembly technical drawing 367
T.4 Top of the temporary cover . 368
T.5 Rear part of the temporary cover . 368
T.6 Rear side piece of the temporary cover 369
T.7 Front side part of the temporary cover 369
T.8 Assembly of the temporary cover . 370
T.9 Base for temporary camera support . 370
T.10 Holder for the temporary camera . 371
T.11 Legs for the temporary camera . 371
T.12 Stabilizer for the camera legs . 372
T.13 Spacer for the camera legs . 372
T.14 Temporary camera support assembly . 373
T.15 Shock absorber front short . 373
T.16 Shock absorber front long . 374

19

KROMIUM LIST OF FIGURES

T.17 Caption . 374
T.18 Robot car bottom floor . 375
T.19 Robot car middle floor . 376
T.20 Robot car top floor . 376
T.21 Robot car roof . 377
T.22 Robot car front wall . 377
T.23 Robot car left wall . 378
T.24 Robot car right wall . 378
T.25 Robot car rear wall . 379
T.26 Raspberry Pi house large wall . 379
T.27 Raspberry Pi house open wall . 380
T.28 Wall behind robot arm camera . 380
T.29 Raspberry Pi house middle wall . 381
T.30 Motor expansion board snap bracket bottom 381
T.31 Motor expansion board snap bracket top 382
T.32 USB hub snap bracket top . 382
T.33 USB hub snap bracket bottom . 383
T.34 Raspberry Pi bracket top . 383
T.35 Raspberry Pi bracket bottom . 384
T.36 Magnet bracket wall bottom . 384
T.37 Magnet bracket wall top . 385
T.38 Magnet bracket car back . 385
T.39 Magnet bracket car front . 386
T.40 L bracket . 386
T.41 Top floor opening to wall bracket . 387
T.42 Top floor other bracket . 387
T.43 Wall attachment bracket female . 388
T.44 Wall attachment bracket male . 388
T.45 520 DC motor bracket . 389
T.46 Arm cam holder fixed angle . 389
T.47 Cam cable holder . 390
T.48 Female magnet connector bracket . 390
T.49 Power switch bracket left side . 391
T.50 Power switch bracket right side . 391
T.51 Battery drawer rails . 392
T.52 Battery drawer . 392
T.53 Yahboom battery case lid . 393
T.54 Yahboom battery case . 393
T.55 KROMIUM battery case . 394
T.56 KROMIUM battery cell separator holder 394
T.57 KROMIUM battery case lid . 395
T.58 Motor assembly Front left & back right 395
T.59 Motor assembly Front right & back left 396
T.60 KROMIUM battery assembly . 396
T.61 KROMIUM battery drawer assembly . 397
T.62 Yahboom battery drawer assembly . 397
T.63 Magnet car mount assembly . 398
T.64 Magnet wall mount assembly . 398
T.65 Motor expansion board snap bracket assembly 399
T.66 Power switch bracket assembly . 399

20

KROMIUM LIST OF FIGURES

T.67 Raspberry Pi bracket assembly . 400
T.68 USB hub snap bracket assembly . 400
T.69 Wall attachment bracket assembly . 401
T.70 Yahboom battery case assembly . 401
T.71 Bottom floor assembly . 403
T.72 Middle floor assembly . 404
T.73 Top floor assembly . 405
T.74 Robot roof assembly . 406
T.75 Front wall assembly . 407
T.76 Left wall assembly . 407
T.77 Right wall assembly . 408
T.78 Rear wall assembly . 408
T.79 Robot assembly without walls . 410
T.80 Robot assembly with shell . 411
T.81 Robot assembly bill of materials . 412
T.82 Parts layout for CNC machining . 413
T.83 Parts layout for water jet cutting . 413

21

List of Tables
1.1 Team Members . 31
3.1 The two groups of battery cell clusters used 60
4.1 Summary of camera and machine learning configurations across different

operational modes. 70
4.2 Velocity at percentages . 97
4.3 Big-endian . 131
4.4 Little-endian . 131
7.1 Battery cell test results. Cell number 11 was dead. 205
7.2 Operational time based on 30 min operation, and calculations 207
J.1 The resistance (in kilo Ω) for the different charging currents [24] 288
J.2 Battery cell test results. Cell number 11 was dead. 298
J.3 The two groups of battery cell clusters used for the battery 300
M.1 Example of the dataset CSV file looks like 309

22

KROMIUM ABBREVIATIONS

Abbreviations
AI Artificial Intelligence. 30, 32–34, 37, 38, 41, 42, 45–47, 52, 55, 61, 109, 110, 123,

181, 223

ANN Artificial Neural Network. 111–113

AP Average Precision. 181, 184, 186

API Application Programming Interface. 316

AR Average Recall. 181, 184–186

BMS Battery management system. 59, 155, 156, 167, 205, 206, 214, 222, 285, 286

CAM Computer aided manufacturing. 176

CD Continuous Deployment. 40

CI Continuous Integration. 40

CNC Computer numerical control. 175, 176

CNN Convolutional Neural Network. 38, 112–114, 116–118, 122, 213, 218, 308

CPU Central processing unit. 42, 43, 123, 216, 219

CSS Cascading Style Sheets. 41

CSV comma-separated values. 309

DBMS Database Management System. 153

DOF degrees of freedom. 36, 54, 340

DPST Double Pole Singe Throw. 155, 170, 293

EOL End-of-life. 42

FOSS free and open-source software. 44

FPS Frames per second. 89, 150, 219

GPS Global Positioning System. 209

GPU Graphics processing unit. 42, 44, 123, 127, 218, 219

GUI Graphical user interface. 219, 220

HTML HyperText Markup Language. 41, 44, 45

HTTP Hypertext Transfer Protocol. 149, 329

humble Humble Hawksbill. 42

IC Integrated circuit. 222, 286, 287

23

KROMIUM ABBREVIATIONS

IDE Integrated Development Environment. 44, 62, 318

IoU Intersection over Union. 181, 185, 186, 218

IP Internet Protocol. 61, 88

IR Infrared. 129

JSON JavaScript Object Notation. 65, 87, 88, 135, 141, 142, 145, 151, 153, 191

Kromium KONGSBERG Remote Operated Mechanical Image Utilizing Machine. 39

LCDs Liquid-crystal displays. 32

Li-ion Lithium-ion. 285

LiPo Lithium Polymer. 285

LTS Long term support. 42, 211

ML Machine Learning. 44, 54, 68, 69, 123–126, 148, 186, 308

NaN Not a Number. 131

NMS Non-Maximum Supression. 18, 188, 189, 218, 219

OS Operating System. 43, 44, 211, 217, 219

PCIe Peripheral Component Interconnect Express. 43

PDF Portable Document Format. 44, 45

PID Proportional-Integral-Derivative. 210

pip package installer for Python. 321

PLA Polylactic acid. 162, 195

PoC Proof of Concept. 30, 33, 36, 66, 143, 150, 209, 220, 223

QoS Quality of Service. 316

QRA Quantitive Risk Analysis. 49

RAM Random Access Memory. 42

ReLU Rectified Linear Unit. 111, 117, 119

RGB Red Green Blue. 114, 129, 187, 210

ROS Robot Operating System. 42–44, 62, 86–89, 100, 110, 129, 130, 140–142, 156,
191–193, 211, 219, 310, 316, 329

RP Rapid Prototyping. 197

24

KROMIUM ABBREVIATIONS

RPi Raspberry Pi. 42, 43, 46, 56, 61, 62, 85, 88, 89, 118, 123, 156, 211, 216–220, 308,
310, 327, 329, 330

RPiOS Raspberry Pi OS. 43, 44, 61, 211, 319, 329

RRR Rapid Risk Ranking. 48

SCARA Selectively compliant arm for robotic assembly. 35

SDK Software development kit. 148, 337

SSD Single-Shot Detector. 122

SSH Secure Shell. 44, 46, 61, 62, 95, 219, 220

TCP Transmission Control Protocol. 88, 95, 132, 135, 142, 146, 150, 151, 220

TFLite TensorFlow Lite. 123, 124, 188, 218, 219, 308, 310

UDP User Datagram Protocol. 150, 222

UGV Unmanned ground vehicle. 35

URDF Unified Robotics Description Format. 173, 210, 213

URL Uniform Resource Locator. 69

USB Universal Serial Bus. 89, 156, 216, 329

VR Virtual Reality. 14, 16, 30, 32, 33, 37, 38, 41, 42, 44, 46, 47, 52–55, 61–63, 65, 68,
70–72, 74, 75, 79, 82, 83, 85, 87–91, 93–98, 104, 106, 108, 110, 129, 131, 132,
135–142, 145–152, 181, 191, 194, 208–210, 212–214, 220, 222, 223, 304, 312,
329, 334, 336–338

VSC Visual Studio Code. 44, 45, 62

WSL Windows Subsystem for Linux. 46, 217

25

KROMIUM DESCRIPTION OF TERMS

Description of Terms
GrabCad A open-source website for 3D models and engineering. 160

SOLIDWORKS A program used for 3D-design and testing. 47, 160, 161

3D-printing Also known as additive manufacturing. Construction of a three-dimensional
object layer by layer following a 3D model. 47

18650 A battery cell that has a nominal voltage of 3.7 volts and got its name after the
diameter and length, 18 mm in diameter and 65 mm in length. 285

additive manufacturing Also known as 3D-printing. Construction of a three-dimensional
object layer by layer following a 3D model. 46

artificial neural network A node-based, trainable machine learning model inspired by
neurons in the brain [6, p. 727]. 110, 123

C# A high-level, multi-paradigm programming language developed by Microsoft that
encompasses strong typing, imperative, declarative, functional, generic, object-
oriented (class-based), and component-oriented programming disciplines. 337

closed-source also known as proprietary software “is software whose author owns all
rights to use, modify, and copy it. Software products that do not meet the require-
ments for open-source software are generally categorized as closed-source soft-
ware.” [25]. 88

computer-aided design The use of computer software in the creation, optimization, test-
ing, simulation, and modification of a design. 47

delamination A type of failure where the material fractures into layers. 176, 215

docstring “Python docstrings are the string literals that appear right after the definition
of a function, method, class, or module” [26]. 40, 44, 45, 318, 331

end effector A point which denotes the final location attained upon configuring an arm’s
angles. 80, 98–103, 107

epoch One entire passing of data while training a model. 310

finite element method A method of numerically solving differential equations in math-
ematics and engineering. Can be used to simulate the deformations on a part as a
result of applied load. 47

git Version control program which makes collaboration and keeping code up-to-date eas-
ier. 42

GitHub A well-known developer platform owned by Microsoft [27] used for project
management, code hosting, workflow, and access control. 40, 42, 44–46, 104, 122,
124, 129, 151

ground truth The true answer we are asking our model to predict [6]. 122, 181

26

KROMIUM DESCRIPTION OF TERMS

hyperparameter The settings that oversee the training process of a machine learning
model [28]. 127, 144

Interaction SDK A library of modular, composable components that allows developers
to implement a range of robust, standardized interactions (including grab, poke,
raycast, and more) for controllers and hands. Interaction SDK also includes tooling
to help developers build their hand poses. 337

Jetson Nano A small, powerful computer for embedded applications and artificial intel-
ligence Internet of Things that delivers the power of modern artificial intelligence
[29]. 42

Meta Quest 3 A VR headset developed by Meta Platforms, Inc. (formerly known as
Facebook). The headset supports both virtual reality and augmented reality through
the use of cameras. 41, 44, 52, 61, 208, 214, 337

metadata Information that is given to describe or help you use other information [30].
124, 127, 188

natural language processing the branch of computer science that involves giving com-
puters the ability to interpret and produce language [30] . 33, 41, 147

overfitting A concept in machine learning that happens when the model is paying too
much attention to the data it is training on, thus making subpar predictions on un-
seen data [6, p. 701]. 126, 127, 184–186, 311

pipeline A set of steps that help automate and organize the process of creating, training,
testing, and using machine learning models [31]. 117, 124

planar Two-dimensional space where all the movements of a manipulator are restricted
to a single flat plane. 101

pre-preg A type of composite material where the fibres are pre-impregnated with a par-
tially cured matrix. 175

rapid prototyping Producing a prototype quickly, often utilizing CAD models and addi-
tive manufacturing instead of manufacturing process planning, tooling, or fixtures.
46

raspberry Pi A small computer made by Raspberry Pi Ltd. https://www.raspberrypi.com/for-
home/. 308

Raspberry Pi OS An operating system for Raspberry Pi (previously called “Raspbian”),
which is based on Linux [32]. 44

scrum Project tool used for agile software development. 47

Ubuntu A popular Linux operating system which can run on the Raspberry Pi [14]. 42–
44, 216, 217

Unity A game engine made by Unity Technologies which supports VR game and app
development. 19, 44, 61, 66, 88, 148, 336

27

KROMIUM DESCRIPTION OF TERMS

wholly-owned “relating to a company that is completely owned by another company or
organization” [30]. 36

wrapper “A wrapper is a programming language function for encapsulating and orga-
nizing elements within a well-defined interface.” [33]. 89, 129

28

KROMIUM NOMENCLATURE

Nomenclature
Φ The orientation of the end-effector compared to the start point of a manipulator

θ ,α,β Angle

C Constraints between two rigid bodies

J The number of joints

L Loss Function

m The degrees of freedom of a single body

N The number of bodies, including ground

x,y,z Position

29

KROMIUM 1. INTRODUCTION

1 Introduction

1.1 About the project OM | AD

In recent years, the realm of offshore operations has witnessed a transformative wave of
technological innovation, steering the industry towards unprecedented efficiency, safety,
and cost-effectiveness. One avenue which is yet to be explored is the use of remote op-
erations. Interactions through Virtual Reality (VR) systems in combination with human-
machine interaction such as hand movements, could be groundbreaking for the industry.
These cutting-edge technologies could provide the immersion an onsite operator needs,
all while harnessing human decision and precision.
This paper considers developing a Proof of Concept (PoC) prototype for Kongsberg Mar-
itime, which utilizes VR, Artificial Intelligence (AI), and hand tracking for the possibility
of carrying out remote oil rig operations.

1.2 Group members AD | SO

Our bachelor group was formed in May 2023, and we had all worked together previously
on an interdisciplinary student project named Hydroplant [34]. As a result, we knew each
other well and had a good idea of each other’s work methods. A desire to challenge our-
selves and address complex issues in today’s world led us to form this multidisciplinary
group. In October 2023 we had our first meeting with our project partner Kongsberg Mar-
itime, and subsequently, we received this project from them. We held several meetings
with our external supervisor to define the project before the start of the bachelor thesis.

Although this project is a group effort, each group member gets an individual evaluation.
Therefore we thought it was important to define the authorship of each section in the
report clearly. Inspired by the project reports of previous groups [35], we chose to spec-
ify the initials of the member responsible for writing the section, and also the member
who proofread it. The proofreader’s responsibility was to ensure that the text was gram-
matically error-free and consistent with the entire report. This is displayed beside each
section, with the writer’s initials on the left of a vertical line and the proofreader’s initials
on the right. The table 1.1 contains information about each group member, their initials,
and their role within the project.

30

KROMIUM 1.3 PROBLEM DOMAIN

Name Shahin Ostadahmadi

Initials SO

Discipline
Software engineer - Cyber-physical sys-
tems

Role Project Leader and Systems Engineer

Name Aditi Deshpande

Initials AD

Discipline
Software engineer - Cyber-physical sys-
tems

Role Software engineer

Name Oscar Melby

Initials OM

Discipline
Software engineer - Cyber-physical sys-
tems

Role Software engineer

Name Adrian Elias Haugjord

Initials AEH

Discipline
Mechanical engineer - Product Develop-
ment

Role Mechanical engineer

Name Henrik Bertelsen

Initials HB

Discipline
Mechanical engineer - Product Develop-
ment

Role Mechanical engineer

Table 1.1: Team Members

1.3 Problem domain

31

KROMIUM 1.3 PROBLEM DOMAIN

1.3.1 Introduction OM, SO | AEH

Working in offshore environments, such as oil and gas rigs, presents significant safety
and operational challenges. The tragedy of the “Alexander L. Kielland” platform on 27th
March 1980, where 212 personnel working on the platform fell into the cold North Sea
and only 89 survived the disaster [36], underscores these challenges. Traditional opera-
tions on offshore platforms require workers to be physically present for daily duties and
maintenance, often involving technicians being transported back and forth to work on
specific operations.

This project outlines challenges with the traditional operations in offshore platforms iden-
tified by Kongsberg Maritime. It aims to explore the world of AI and VR combined with
robotics to enable remote execution of these operations from land-based offices. The goal
is to replicate the operations typically done by humans on offshore rigs through a combi-
nation of VR, AI, and robotics from land-based facilities.

This paper will primarily research the technical aspects of the challenges. Due to time and
resource limitations - economic, safety, environment and sustainability aspects will not
be part of our problem domain. This section highlights the core technologies of VR, AI,
and robotics, their current situation, and specific applications in addressing operational
challenges in offshore rigs.

1.3.2 Virtual Reality SO, AD | AEH

Definition: The definition of Virtual Reality (VR) as a concept is that it is a set of images
and sounds produced by a computer that seems to represent a real place or situation [30].
A popular way to realize virtual reality is through simulations. A person observing these
simulations acquires an immersive feeling of a virtual world. To fully immerse oneself
in the virtual world, one can use head-mounted displays such as a VR headset. These
headsets utilize a vast range of sensors such as accelerometers, gyroscopes, infrared sen-
sors, depth sensors, and so on. They also tend to have Liquid-crystal displays (LCDs), or
organic light-emitting diodes (OLEDs) for the visuals [37]. These headsets tend to come
with hand controllers for interaction. Figure 1.1 shows a picture of a VR headset with
hand controllers.

Figure 1.1: A picture of a VR headset with hand controllers [1]

VR differs from Augmented Reality in the way that VR creates a completely immersive
digital environment that replaces the user’s real-world surroundings, whereas augmented

32

KROMIUM 1.3 PROBLEM DOMAIN

reality overlays digital elements onto the real world [38].
Status of VR in the industry: Virtual Reality moves beyond games and consumer appli-
cations. Several application areas have been investigated in recent years and research has
shown that usage of VR applications can be beneficial compared to traditional approaches
[39]. In this project, we are narrowing the scope to research how we can utilize VR com-
bined with AI and robotics to develop a PoC to enhance offshore operations.

Application in our project: Several ideas and suggestions have been discussed with the
customer. The ideas that our customer found most interesting involve the use of VR:

• Object detection: Detect objects in the robot’s environment, display information
about these objects, and provide this information to the operator through the VR
headset.

• AI assistant: Assist the robot for mimicking hand movements when the operator
uses the VR headset to control the robot’s arm. The purpose is to enable precise
imitation of human hand motion.

• AI drive assistant: Helps the robot follow the operator’s hand movements for driv-
ing, and suggests routes.

Our project’s potential to incorporate these applications depends on time, resources, and
progress.

1.3.3 Artificial Intelligence AD | SO

Definition The book Introduction to Artificial Intelligence [40] gives eight different def-
initions of Artificial Intelligence (AI), classified by thinking humanly, acting humanly,
thinking rationally, and acting rationally. As this is an engineering project, it is opti-
mal to present the definition by acting rationally - “Artificial Intelligence is the study
of the design of intelligent agents.” An agent is something that acts and in the digital
world, computers are used as agents. These computer agents are expected to act in vari-
ous ways: operate autonomously, perceive their environment, adapt to change, and create
goals. They should be set to achieve the best outcome or, when there is uncertainty, the
best-expected outcome [6, p. 4]. In the field of AI, there is a big focus on using computer
agents in fields like reasoning, analytics, learning, perception, support for robotics, and
much more.

Current trends in AI AI is a very relevant topic in various industries. Businesses use
predictive analytics to increase sales and generate more revenue, healthcare providers use
machine learning to understand diseases and improve treatments, autonomous vehicles
use machine perception to navigate safely, and AI is playing a crucial role in advancing
natural language processing, enabling human-computer interactions through voice assis-
tants and chatbots. In the realm of robotics, AI is being used to enhance the capabilities
of robots in manufacturing, and domestic settings, making them more autonomous, and
capable of managing complex tasks [41]. In our project, we have focused specifically on
machine perception, machine learning, and support for robotics.

Machine perception is a field of AI that uses sensors such as cameras to receive data
and interpret it in a manner that is similar to the way humans use their senses to relate to
the world around them. The end goal is to enable the computer system to use hardware

33

KROMIUM 1.3 PROBLEM DOMAIN

and software to recognize images, sounds, and even touch in a way that improves the in-
teraction between human operators and machines. [42]. The computer then presents this
data in a way that is perceivable to the user and also takes actions based on the data. This
particular method is also called computer vision [43].

Machine learning is also a field of AI. A machine is learning if it improves its perfor-
mance on future tasks after making observations about the world [6, p. 693]. Machine
learning focuses on data and algorithms to imitate the way that humans learn, gradually
improving its accuracy. There are usually three methods of conducting learning, but we
focus on supervised learning, where the data that is used to train algorithms to classify
data or predict outcomes is labelled [44].

AI in our project We will now present how we are going to use AI in our project.
Machine learning and machine perception can be combined to create a technology called
object detection. Figure 1.2 shows the different fields and subfields of AI and what object
detection derives from. Here, an image is taken and classified as a dog, person, etc, and
is predicted to belong to a particular class. In addition, the image class is also displayed
as an image or video and tracked in real-time [43]. Our goal in the project is to use object
detection on the camera placed on the robot to analyze the robot’s surroundings and detect
objects of interest. In addition, we want to analyze the objects further and display possible
information we have about them.

Artificial Intelligence

Machine
perception

Machine
learning

Predictive
Analytics

Support for
Robotics

Reasoning

Computer
Vision

Object
Detection

Supervised
Learning

Figure 1.2: Fields and subfields of AI

1.3.4 Robotics HB | AD

Robotics is a huge field within the technology and engineering world. Our project will
mainly focus on combining the branches of AI and VR to control a car, which also has a
mechanical arm that will be used to do different simple tasks.
Definition and usage in our project:
“Robotics is the intersection of science, engineering, and technology that produces ma-
chines, called robots, that replicate or substitute for human actions ” [45]. A robot’s five
major components are effectors, perception, control, communications, and power. An ef-
fector is an appendage of a robot that can move or make the robot move, it can be legs,
arms, necks, and wrists. Within effectors, we have a subsection called manipulators.
These manipulators are something that can be used like arms or hands. Perception is

34

KROMIUM 1.3 PROBLEM DOMAIN

how the robot can “see” and “feel” the world around it. Control is a bunch of computa-
tions that maximize the chances of success. Communication is how the robot interacts
with other agents. Power is other functions that can be enabled, such as sound and lights
[46, p. 39-40].

Robotics in our project: The effectors on the robot in our project are the omnidirectional
wheels, while the mechanical arm is the manipulator. The perception of the robot will
be through cameras mounted on the robot itself, and the robotic arm. The control of the
robot is the recognition of the different hand gestures, which will send the correct signals
to the robot regarding the driving and hand operation. It also concerns the object detection
that takes place from the camera. The communication is how the VR headset is “talking”
with the robot by sending hand gesture signals to the robot, the robot then calculates what
the hand gesture means and sends live images from the camera back to the VR headset so
the operator can see where they drive and how they control the robotic arm. The power
functions in our robot will perhaps be some lights and some sort of sound. There are three
main categories of robots: air, ground, and sea. Our robot will be an Unmanned ground
vehicle (UGV). Within the UGV field we have three categories again.
The three categories for UGV are:

• Humanoid: A robot that imitates humans and has human-like features.

• Mobile: Any robot that can move.

• Motes: A small stationary robot.

Our robot is a mobile robot, and here we have three more categories:

• Man-packable: The robot fits inside one or two backpacks, where one backpack
has the controller and batteries, and the other backpack has the robot itself.

• Man-portable: The weight of the robot requires two people to carry it.

• Maxi: A Robot so large and heavy that it is too heavy to be carried by people.

Here, our robot falls under the category of man-packable [46, p. 39-40].

1.3.5 Robotic arms AEH | HB

At the start of this project, the team had no prior experience working with robotic arms.
This chapter will therefore explore what categories of robotic arms exist in the industry,
what category the arm we were given at the start of this project belongs to, and if there
are more suitable options.
Robotic arms are as the name implies simply different types of mechanical arms working
independently or manually to perform certain tasks. There are many types of robotic arms
for various amount of use-cases.
Some distinguishable categories of robotic arms we found are:

Selectively compliant arm for robotic assembly (SCARA) robots which are small, fast,
and precise as a result of their rigid builds. The rigidity of the SCARA comes in part from
the fact that it cannot move vertically. This is a suitable choice for flat working environ-
ments such as PCB soldering but a poor choice for a project like ours.

Cartesian robots utilize three axes and are mostly used for operations confined within

35

KROMIUM 1.4 PROJECT OVERVIEW

a rigid frame or environment such as 3D printers, plasma cutters, etc.

Cylindrical robots are built up of a rotary joint at the base, a linear joint that controls
the height, and a linear joint for the length of the arm.

Delta robots are similar to Cartesian robots in that they are encapsulated in a work envi-
ronment. They are built up of multiple arms connected from the main operational head
up to different motors, the different motors acting on each arm move the head to different
positions. This is used in pick and place, 3D printing, and similar quick and precise oper-
ations.

Lastly, we have articulated arms which is a broad term for multiple types of arms where
the one we currently have is called a six-axis robot. As the name implies our robot has
six-axis also called six degrees of freedom (DOF). More about what DOF in chapter Q.1.

There is certainly an argument to be made if other robotic arms could be used in the
project. However, one of the ideas discussed with the client is to map each joint of the
operator and assign it to a designated joint on the robot arm. Going for another design
could close the possibility of testing and implementing this.
If the dimensions and design of the arm were to be changed, the calculations and kine-
matics behind the arm would also need to be redone. This could take a lot of time from
the actual task of researching different ways of integrating Virtual reality with Artificial
intelligence and robotics in different ways.

1.3.6 Integration of VR, AI, and Robotics SO | AD

The fusion of Virtual Reality (VR), Artificial Intelligence (AI), and robotics forms the
backbone of this project. This integration aims to enhance offshore operations through
land-based facilities, providing innovative solutions to existing challenges. By combining
these technologies, the project seeks to develop a PoC that demonstrates the potential for
more efficient, safe, and effective remote operations.

1.4 Project overview

1.4.1 The customer AD | OM

Kongsberg Maritime is a wholly-owned subsidiary of Kongsberg Gruppen (KONGS-
BERG). KONGSBERG is a leading global technology corporation delivering mission-
critical solutions with extreme performance for customers that operate under extremely
challenging conditions. Kongsberg Maritime supplies the technology, equipment, and
services needed for sustainable maritime operations today and in the future. Kongsberg
Maritime is a big multinational company with 117 offices in 32 countries and more than
7,000 employees. [47]
As of today, Kongsberg Maritime incurs significant expenses and time in sending person-
nel to offshore rigs to carry out operations. A safety risk is also posed to the personnel
that should be considered. As a result, there is a great emphasis on remote control and
autonomy for offshore operations. [48, p. 33]

36

KROMIUM 1.5 REQUIREMENTS

1.4.2 Project goal AD | OM

In the previous section 1.3, we explored the individual capabilities of VR, AI, and robotics,
and their transformative impact on various industries. Building on these topics, we look
back to the pressing challenge within the offshore industry. Given the demanding nature
of offshore operations and the necessity for safety and efficiency, our project is driven
by a critical question: How can we utilize VR and AI, in combination with robotics, to
enhance and improve offshore operations? This question lies at the centre of our research,
aiming to use these technologies for innovative solutions in offshore environments.
This thesis aims to design and implement a robot prototype that an operator can navigate
through the use of an VR headset. The approach includes hand gesture recognition to
translate the operator’s movements to robot commands, applying AI to enable the robot
to identify objects in its surroundings and display information about the objects, ensuring
the robot’s design is functional and aesthetically pleasing, and facilitating easy battery
replacement.

1.5 Requirements AD | AEH

The requirements for the project were defined from the project description given by
Kongsberg Maritime. During our meetings with them, they talked about the idea they
had in mind. We then defined the user stories and use cases that covered the objectives
of the product. The user stories can be found in Appendix A and the use cases can be
found in Appendix B. From the user stories and use cases, we created a list of require-
ments which we presented to our external supervisor. We received confirmation that the
requirements fit the idea that Kongsberg Maritime had in mind. The requirement table
can be seen in Appendix C.
In the table, the user story ID and name are first mentioned, followed by the ID and the
name of use cases that were defined from the user story. This is because during the pro-
cess of creating them, we observed that a user story could have several use cases, and
a use case could have several requirements. The fifth and sixth columns represent the
requirements, followed by their priority that was assigned based on the wishes of Kongs-
berg Maritime. Also included is the technical performance of a requirement that contains
any predefined constraints and criteria. The test method column explains how the re-
quirement will be tested, and the verification column confirms that the product meets the
requirement. A test can test several requirements, and a requirement can be tested with
several tests. Therefore, we have created a test report ID column where one or more test
reports can be linked to a requirement. Lastly, we have the status of the completion of the
requirement.

1.5.1 Definition of priority order SO | AD

The requirements of this project all have priorities ranging from A to C. Here is the defi-
nition of the order of the priorities:

Priority A - Highest priority: These are the critical requirements that the project must
fulfill for successful completion. These are core functionalities that we must meet to
achieve our objectives. For example, integration between VR, AI, and the robot for basic
operational functionalities.

Priority B - Should have: Important but not critical for the main functionality of the sys-
tem. They enhance overall performance and user experience but are not essential for the

37

KROMIUM 1.5 REQUIREMENTS

prototype to function. For example, additional AI capabilities, or advanced hand gesture
recognition fall into this category.

Priority C - Nice to have: Beneficial features that are not essential and can be developed
if time and resources allow. An example might be additional capabilities of the robot’s
arm such as rotate tool to rotate an object.

1.5.2 Additional requirements SO | OM

In addition to the original requirements (A, B, and C), the group has addressed further
tasks requested by the customer during the project. The implementation details of this
additional work are documented in a separate section 4.6.

1.5.3 Validation AD | AEH

Validation is about constructing the right system. Here we need to make sure that the
system does what it is supposed to do in its intended environment and satisfies the needs
of the stakeholders [49, p. 4]. Validation is a critical stage as even if the end product
is impressive, it cannot be considered a success if it is not what the stakeholder wanted.
Therefore, we conducted weekly meetings with our external supervisor to make sure we
were always on the right track.

1.5.4 Related work: Object detection AD | OM

There has been endless research on the object detection field due to advancements in the
different AI fields. The paper “Object Detection with Deep Learning: A Review” [50] by
Zhong-Qiu Zhao et al. provides a comprehensive overview of the evolution of object de-
tection methods, highlighting the transition from traditional approaches to the dominance
of deep learning-based models. This shift has been driven by the remarkable success of
Convolutional Neural Network (CNN)s (explained further in 4.5.3) in extracting mean-
ingful features from images and accurately localizing objects within them.
The paper “Implementation of ROS-Based Mobile Robots with Few Shot Object Detec-
tion Using TensorFlow API” explored the integration of object detection into a robotic
application [51]. Their work focused on enabling robots to detect objects from a limited
number of examples and on edge devices, showcasing the potential for real-time object
recognition in robotic applications.
The paper “Real-time object detection and tracking in mixed reality using Microsoft
HoloLens” [52] presents a mixed reality system using the headset Microsoft HoloLens.
It incorporates object detection and tracking with lighter models, but the camera used to
detect the objects is from the HoloLens itself, not from a robot placed remotely. It also
uses complex 2D to 3D mapping that is too complex for our system.
Kromium’s system will use object detection models to analyse the surroundings of the
robot. This is visualised by a camera and the camera feed will be displayed on the VR
application.

38

KROMIUM 2. PROJECT MANAGEMENT & RISK ASSESSMENT

2 Project Management & Risk Assessment
This section outlines our organizational project management approach and describes the
tools, applications, and project models used in our project. This section includes how ad-
ministrative and operational tasks were dealt with; including communication with Kromium’s
internal and external supervisor. In addition, we have written about the development pro-
cess, categorically discipline-specified development methods for software, mechanical,
as well as electronics. Choosing a clear and well-defined development process helps the
project progress toward the success of developing a product that satisfies the customer’s
requirements and expectations. Finally, we have written about the risk assessment made
concerning the project using Rapid Risk Ranking (RRR).

2.1 Organizational structure SO | AD

Our organizational structure is illustrated in Figure 2.1 below. As the project had vari-
ous software and mechanical aspects, a natural approach to the organization was adopted,
where each team member took primary responsibility for a specific subsystem or compo-
nent. Additionally, the project leader took the role of a systems engineer and an adminis-
trator.

Smaller tasks, like note-taking, research on a specific topic, and other duties, were as-
signed to different group members each time.

Oscar Melby
Software Engineer

Aditi Deshpande
Software Engineer

Adrian Elias Haugjord
Mechanical Engineer

Henrik Bertelsen
Mechanical Engineer

Shahin Ostadahmadi
Project Leader

& System Engineer

Figure 2.1: Project organization chart

2.1.1 Member responsibilities OM | AD

Each group member is assigned a specific role, which entails responsibility for certain
aspects of the project. However, this division of roles does not necessarily imply that the
individual solely performs all tasks associated with their role. Instead, they are account-
able for ensuring that the assigned tasks are completed and that applicable standards are
followed.

Shahin Ostadahmadi

• Requirement-driven development process - ensure the project stays on track and
tasks being done by members belong to requirements

• Interfaces - managing interfaces between different subsystems and components

• System integration - ensure components of the system get integrated, both soft-
ware and hardware

39

KROMIUM 2.1 ORGANIZATIONAL STRUCTURE

• Code integration (CI/CD) - ensure the team is integrating new parts and testing
them

Aditi Deshpande

• High-level software design - responsible for the high-level software design and
ensuring that this is followed

• Interfaces for software - define software interfaces

Oscar Melby

• GitHub workflow - ensure the team follows the workflow (see 2.3) and responsible
for GitHub actions

• Code standards - define formatting, linting and code style standards

• Git - fix merge conflicts, ensure code is available on GitHub

• Code documentation - define documentation tools, design, and docstring formats

• Unit tests - relevant parts of the codebase should have unit tests

Adrian Elias Haugjord

• Robot design - design, testing and construction of robot

• Requirement overview - overview of requirements for mechanical engineering

• Order and production - order and production of aluminium and carbon fibre parts.

Henrik Bertelsen

• Risk assessment - responsible for assessments of risks

• Technical drawings up to standard - make sure the technical drawings for all
parts are up to standard

• 3D drawings up to standard - make sure that all of the 3D modelled parts are up
to standard

• Battery - design, produce, and test the battery

2.1.2 Team building SO | AD

Team building is part of our initiative to enhance the work environment and cooperation
within the group. We began our first team-building activity in December 2023 with an
escape room in Oslo, solving The Mad Inventor escape challenge, where our mission was
to “Save humanity from complete idiocy by completing the Mad Inventor’s Machine”
[53] in one hour. Throughout the project, we plan to organize an event before and after
each presentation, involving simple activities such as playing games with the Meta Quest
VR headset, dining together, and solving other escape rooms among other things.

40

KROMIUM 2.2 PROJECT TOOLS

2.2 Project tools OM | AD

A plethora of tools and applications were used when working on this project. The tools
mentioned here are the most essential ones in terms of management.
Atlassian’s Jira and Confluence were used for keeping track of tasks, time, and meetings
and for writing smaller documents. Additionally, various applications under the “Office
Suite”-umbrella were used for sharing files, communication, and keeping track of working
hours.
The paper was written using LATEX on Overleaf and Zotero was utilized for tracking
references and keeping them up-to-date. Discord was used for communication internally
in the group and for sharing resources.

2.2.1 ChatGPT AD | AEH

Our group has leveraged the advanced capabilities of ChatGPT, an AI natural language
processing model developed by OpenAI, to optimize both the report’s overall language
and the project’s technical aspects. However, we have collected the sources that it uses,
read over the source, and referred to the source as a reference.

2.3 Website OM | AD

The Kromium website was made using a HyperText Markup Language (HTML) and Cas-
cading Style Sheets (CSS) template from free-css.com called “lodge” [54]. The template
was modified to have fitting colours, layout, and content. The website is static and hosted
on USN’s servers. The domain name kromium.no was bought and works as a redirect.

2.4 Hardware used OM | AD

This section describes the hardware components used and the considerations taken into
account before purchasing them.

2.4.1 Virtual reality headset SO | OM

Choosing the right VR headset was one of the initial steps to ensure the development pro-
cess could proceed without delays. Several popular VR headsets and glasses were con-
sidered, focusing on both gaming and industrial applications. Industrial headsets, while
robust, were quite expensive (over 15,000 NOK). Our customer requested two options.

We were recommended the Meta Quest 3 and the Microsoft HoloLens. There is a lot of
open-source documentation available for application development with these two head-
sets. Both are supported by platforms such as Unity and Unreal Engine, which offer
extensive documentation and community support. A comparative analysis was conducted
using resources like vr-compare.com, which was shared with the customer. Ultimately,
the Meta Quest 3 was selected based on the customer’s evaluation, offering a suitable
balance of cost and functionality for our project needs. The headset was purchased before
Christmas of 2023 to be ready for the project start and will continue to be used for further
development by the customer.

41

https://free-css.com
https://vr-compare.com

KROMIUM 2.5 SOFTWARE TOOLS

2.4.2 Development platform OM | AD

Kongsberg Maritime provided the group with hardware previously utilized by earlier
bachelor groups. It was emphasized that any hardware bought would benefit future bach-
elor groups. The group knew running AI models is a demanding task, which requires
hardware with enough resources. The required resources vary depending on the nature of
the AI models and their required processing speed. There were no requirements for local
execution on the robot, but this was assumed.

We received a Raspberry Pi (RPi) 2B and a Jetson Nano 4GB B01. The RPi 2B, in-
troduced in 2015, features specifications that are outdated by current standards, with a
Central processing unit (CPU) clocked at 900MHz and 1GB of Random Access Memory
(RAM) [55]. In contrast, the Jetson Nano B01 4GB appears to have been released in
2020, with a CPU operating at 1.43GHz, 4GB of RAM, and a 128-core Maxwell Graph-
ics processing unit (GPU) [29]. It runs Ubuntu 18.04 Long term support (LTS), released
in 2018 [56], with non-upgradable soldered memory.

Given the group’s engagement with cutting-edge technologies and a newly launched VR
headset, we sought the latest hardware for compatibility and potential future development.

After careful consideration, the RPi 5 8GB was opted for, featuring a 2.4GHz CPU and
8GB of RAM, said to have “2–3× the speed of the previous generation” [55]. Two units
were bought at a cost of 1,224 NOK each, inclusive of transportation [57]. The decision
to purchase two units was motivated by the need for redundancy in case of damage and to
be able to develop in parallel.

2.5 Software tools OM | AD

This section lists generic or more essential technologies used by the group for developing
software.

2.5.1 Git & GitHub OM | AD

Git was chosen as our version control program, as this was what the group was most
familiar with. GitHub is where all of Kromium’s code is hosted. A GitHub organization
was created, where all group members were added. Only members of this organization
can edit and manage the repositories without having to ask for approval. Smaller and
less relevant repositories for the thesis were kept private, which means only members of
the organization can access and view them. The more essential and relevant parts of the
codebase are publicly available on the organization’s GitHub page [58].

2.5.2 ROS 2 OM | AD

Robot Operating System (ROS) 2 “is a set of software libraries and tools for building
robot applications” [59]. ROS uses nodes, which is an intuitive way to structure the soft-
ware. This works well when collaborating, as one person can be responsible for one node
and only know the external interfaces, while another person works on a different node.
By defining the interfaces beforehand, development can be done in parallel.
There are multiple ROS distributions available, such as Foxy Fitzroy (foxy), Rolling Rid-
ley (rolling), Humble Hawksbill (humble) and Iron Irwini (iron). humble was the chosen
distribution as it has LTS [60] and the most distant End-of-life (EOL) date, as well as it

42

KROMIUM 2.5 SOFTWARE TOOLS

is stable. Additionally, a member of the group had previous experience with this distribu-
tion.

2.5.3 Operating system OM | AD

The RPi needs to run an Operating System (OS) for it to be able to run software. The
RPi 5 has a 64-bit Arm CPU [2] and can run both arm32 and arm64 architectures [32].
The two most popular RPi OSs are Raspberry Pi OS (RPiOS) and Ubuntu. For our group,
it is important that they are popular, as this means more resources and information are
available online in case of problems.

ROS 2 is supported on RPiOS, but “Raspberry Pi OS is based on Debian which receives
Tier 3 support, but it can run Ubuntu docker containers for Tier 1 support. [...] Tier 1
support means distribution-specific packages and binary archives are available, while Tier
3 requires the user to compile ROS 2 from source” [59]. Compiling ROS 2 from source
involves many steps, and due to the RPi 5 being newly released, encountering issues
are likely. Additionally, there is no official guide available for compiling ROS 2 from
source on the RPi 5. Although Ubuntu has Tier 3 support, previous experience has shown
that camera support might be limited, especially when using the Peripheral Component
Interconnect Express (PCIe) connector. It was uncertain whether the PCIe connector
would need to be used, but having it available was considered optimal. Therefore, the
chosen OS was RPiOS 64-bit, as it can run ROS 2 through Docker containers.

Figure 2.2: “Raspberry Pi connector for PCIe” [2]

2.5.4 Docker OM | AD

Docker is a platform which enables the containerization of code and environments. “Docker
packages software into standardized units called containers that have everything the soft-
ware needs to run including libraries, system tools, code, and runtime. Using Docker, you
can quickly deploy and scale applications into any environment and know your code will
run” [61].

43

KROMIUM 2.5 SOFTWARE TOOLS

Docker was used for running ROS 2 on the Raspberry Pi OS 64-bit installation, as there
are no official binary archives available for this OS [59]. Docker is also supported for
RPiOS 32-bit [62], but there was uncertainty surrounding ROS 2 Docker images for this
architecture. Additionally, Docker can run on Ubuntu.

2.5.5 Unity OM | AD

Developing for the Meta Quest 3 there are two viable options, Unreal Engine or Unity.
Unreal Engine uses C++, while Unity uses C# [63], none of them are completely free and
open-source software (FOSS). Unity was chosen as there were more resources and doc-
umentation available online, and it seemed to have more VR functionalities than Unreal
Engine.

2.5.6 Programming languages OM | AD

C# and Python were chosen as the primary languages for this project. No one in the group
had previous experience with C#, as this is the language Unity uses [63]. Nevertheless,
the software members of the group had previous experience with C++, so it was thought
that this transition to C# would not be too challenging.
Python, being a high-level language was selected as the primary language outside of the
Unity application development. The reasoning for this was due to the vast amount of
tools already available, no requirements for speed, shorter development time, and previous
experience with the language.

2.5.7 Google Colab AD | OM

Google Colab was used to make our own custom Machine Learning (ML) model. It is
a free, cloud-based Jupyter Notebook service that requires no setup to use and provides
free access to computing resources, including GPUs. Colab is especially well suited to
ML [64]. As it provides free access to a GPU, our group decided to use it to reduce the
training time.

2.5.8 Integrated development environment OM | AD

Unity Hub was used for developing the VR application. Unity Hub allows users to “cre-
ate and open projects in the Unity Editor, access resources...” [65]. Additionally, Visual
Studio Code (VSC) was used for writing C# code.

VSC was chosen as our main Integrated Development Environment (IDE) for several
reasons. It supports numerous extensions, including flake8, black, and GitHub CoPilot
(see 2.5.13). Another significant factor was its remote Secure Shell (SSH) integration.
This feature simplifies programming for the development platform, allowing code writing,
running, and command execution on the device itself remotely using a local instance of
VSC.

2.5.9 Doxygen OM | AD

For documenting the C# code we used Doxygen. Doxygen can build diagrams, HTML
and Portable Document Format (PDF) documentation from code comments and doc-
strings.

44

KROMIUM 2.5 SOFTWARE TOOLS

2.5.10 Sphinx OM | AD

Sphinx, much like Doxygen, can build HTML and PDF documentation from code com-
ments. Sphinx was used for all Python code documentation using Google’s Python
standard with type annotations [66]. Built-in Sphinx extensions such as autodoc [67]
and Napoleon [68] made it possible to automatically build documentation using these
docstrings. The HTML documentation shown on our website was built using Pradyun
Gedam’s furo theme [69].

2.5.11 GitHub Workflows & Pages OM | AD

GitHub Workflows can be set up to run every time code is changed or a new release is
created. These workflows can be configured to run custom code on GitHub’s servers to
perform actions. Examples of actions could be running tests, checking if formatting is
correct and building code for various platforms. Workflows run in their virtual machine
instance, so needed packages and dependencies need to be defined [70]. There is one
workflow on both the “robot” and “transfer-learning-training” repositories, which is con-
figured to build the Sphinx code documentation. The workflow runs every time a file
gets changed on the “main” branch. When the documentation gets built, it is deployed to
GitHub Pages.

GitHub Pages are static websites hosted by GitHub for free, typically available under the
github.io domain. GitHub Pages have been used for hosting the code documentation for
the “robot” and “transfer-learning-training” repositories. The documentation is kept up-
to-date using a GitHub Workflow. Any time a file is changed, the documentation gets
rebuilt and deployed to the static website. Both of these documentation pages are linked
to on our website.

2.5.12 Python standards OM | AD

A list of packages was used when developing Python code. These were chosen due to
prior experience, which accelerated development and reduced errors. For formatting, the
group used black, which was configured in VSC to run automatically whenever a file was
saved. black ensures consistent code appearance throughout the file, enhancing readabil-
ity.

For linting, the group chose flake8. A linter performs static checks for code standards,
such as the correct order of imported packages, proper use of operators, consistent quota-
tion style, and identification of unused variables. These checks help users write consistent
code and catch issues early.

The group selected unittest as the Python package for unit testing. It was known from pre-
vious experience that unit testing would be beneficial for validating, testing, and writing
code. Unit tests enabled the group to test parts of the code without having to physically
test the system each time, as explained in 7.5.

2.5.13 GitHub CoPilot OM | AD

GitHub CoPilot is an AI-powered application developed by GitHub, which can auto-
complete and predict more than a typical language server. CoPilot is available as a VSC
extension and can automatically complete text, common code snippets, and scripts [71].

45

KROMIUM 2.6 PROJECT DEVELOPMENT PROCESS

CoPilot has significantly sped up the process of writing code documentation and unit tests,
in addition to generating code for graph plotting in this thesis.

2.5.14 Miscellaneous tools OM | AD

Windows Subsystem for Linux (WSL) was used for SSH access to the RPi and commit-
ting local changes or files to GitHub. FileZilla was utilized for transferring multiple files
between the RPis and our local machines.

2.6 Project development process AD, SO | OM

The development process of the project across all disciplines was an iterative incremental
process. The process is based on two methods, iterative and incremental. The iterative
method allows us to develop the system through repeated cycles, while the incremen-
tal method divides the system into smaller portions at a time. This approach enabled us
to develop smaller parts of the system through repeated cycles allowing us to gain new
knowledge, experiment with AI and VR technology, and demonstrate and validate our
progress along the way.

2.6.1 GitHub workflow SO, OM | AD

Main

Hotfix

Development

Features

v0.1 v0.3v0.2 v0.4

New releases

Features

Dev req.
Dev req.

Dev req.

Release
req.

Release
req.

Time

Figure 2.3: Kromium’s GitHub workflow

The workflow consists of branches that should be used when adding new functionalities.
However, hotfixes are allowed directly on the main branch to quickly address bugs and
issues, making the workflow more agile. The diagram emphasizes the continuous nature
of software development. New features are constantly added, developed, and released.

2.7 Mechanical development tools AEH | HB

During development, the goal was always to have a usable robot for testing and demon-
strations. For the development and testing cycles, we utilized rapid prototyping and addi-
tive manufacturing.

46

KROMIUM 2.8 ELECTRONICS

2.7.1 Computer-aided design AEH | HB

All the computer-aided design parts are produced in the program SOLIDWORKS before
being tested or produced.

2.7.2 SolidWorks simulation AEH | HB

SolidWorks simulation uses the finite element method for digital testing of 3D models to
simulate if a part is strong enough to withstand different loads.

2.7.3 UltiMakrer Cura AEH | HB

The preparation for 3D-printing parts is done on the free slicing program UltiMaker Cura.
The program determines all the factors that go into producing the part. After plotting the
necessary values you get what is called a G-code which is all the information the 3D
printer needs to produce the part layer by layer.

2.8 Electronics HB | AEH

Because the team does not have an electrical engineer, the responsibility for the electron-
ics will be divided between the team.

2.8.1 Tools used for electrical development HB | AD

The tools used for the electrical development are Excel and “Circuit Diagram - A Circuit
Diagram Maker”. Excel was used to log results for the test of the battery cells, listing
which battery cells can be used for the battery, and calculating a rough estimate for the
battery’s operational time. “Circuit Diagram - A Circuit Diagram Maker” is a webpage
where it is possible to create and download circuit diagrams for free. The URL for this
webpage is circuit-diagram.org.

2.9 Project model SO | AD

Our project involves the research and development of a product integrating technologies
such as VR and AI, focusing on their application in remotely controlling a robot. We rec-
ognized the need to learn and evolve through multiple iterations, enabling us to achieve
a better result. This understanding led us to choose an agile methodology combined with
an iterative and incremental development approach.

Our project model was a simplified scrum. “Scrum is a framework for organizing and
managing work. The Scrum framework is based on a set of values, principles, and prac-
tices that provide the foundation to which your organization will add its unique imple-
mentation of relevant engineering practices and your specific approaches for realizing the
Scrum practices. The result will be a version of Scrum that is uniquely yours” [72, p. 123].
We practised the following essentials of scrum:

• Sprint: A time-boxed period during which specific work has to be completed and
made ready for review.

• Sprint Planning: Meetings where the team plans the work to be completed during
the sprint.

47

https://www.circuit-diagram.org/

KROMIUM 2.10 RISK ASSESSMENT: RAPID RISK RANKING (RRR)

• Sprint Reviews: Meetings at the end of each sprint to demonstrate what has been
accomplished.

• Daily Stand-up Meeting: Short daily meetings to discuss progress and obstacles.

• Retrospective: Meetings to reflect on the sprint and identify improvements for
future sprints.

• Backlog: A prioritized list of tasks and requirements for the project.

A typical week at Kromium is illustrated in Figure 2.4 and Figure 2.5, showcasing typical
weeks before and after Easter respectively.

Figure 2.4: Typical week at Kromium before Easter

Figure 2.5: Typical week at Kromium after Easter

2.10 Risk Assessment: Rapid Risk Ranking (RRR) HB | OM

Rapid Risk Ranking (RRR) is a type of risk assessment. This method is used to predeter-
mine possible hazardous events that may occur, so mitigating measures can be deployed
to reduce the actual risk. Maybe even remove the risk completely.

48

KROMIUM 2.10 RISK ASSESSMENT: RAPID RISK RANKING (RRR)

“RRR is a simpler approach than a full Quantitive Risk Analysis (QRA). The reason for
using RRR is that the information available at this stage is not detailed enough for a full

QRA. Rapid Risk Ranking (RRR) with the use of risk matrixes will yield the desired
results for evaluation of the different concepts.” [73, p. 3]

To perform the risk analysis, it was decided that the group should use the same method-
ology which Norsk Hydro ASA and DNV used when they created an RRR for hydrogen
filling stations in 2002. It consists of five different tables where the values and definitions
are dependent on the project itself. This means that the tables the group uses must be
redefined and rewritten so they will fit the project. The reason the group chose the same
methodology as Norsk Hydro ASA and DNV, was because two of the group participants
had already used this methodology in a couple of subjects during their bachelor’s degree.

The different tables are:

• Consequence severity

• Probability levels

• Risk matrix

• Risk levels

• Hazardous events

• Risk analysis form

When all of the tables have been rewritten such that, they fit the project. The different
hazardous events, their probability of occurring, and what degree of hazard they have can
now be found. When all of this is done, the main reporting form can be filled in, and the
decision of what risk the different hazardous events have can be made.

2.10.1 Consequence severity HB | OM

The consequence severity table in a risk analysis, describes the different areas that can be
affected by an event. Each area such as “Environment” or “People”, has a different de-
scription for each severity level. This is because the severity levels can change depending
on what area is looked at. The different areas located in the risk analysis are the devel-
opers, the environment, Kongsberg Maritime, material values, and people. The reason
the project group chose to have these areas in the risk analysis, is based on the group
participants’ opinions on what areas need to be a part of the risk assessment.

2.10.2 Probability levels HB | OM

A probability level table in a risk analysis consists of different levels of probabilities for
an unwanted event to occur. In this risk analysis, the levels are arranged from A to E,
where A represents the lowest probability, and E represents the highest probability. The
amount of levels is based on how accurate the risk analysis has to be, considering the
project. In this risk analysis, it was chosen to use five different levels, since this gives an
ability to be quite accurate, and the table from Norsk Hydro and DNV had this setup as
well.

49

KROMIUM 2.10 RISK ASSESSMENT: RAPID RISK RANKING (RRR)

2.10.3 Risk Matrix HB | OM

A risk matrix uses the consequence severity table and the probability level table to make
a new table. A risk matrix uses these two tables to create a cross-product that repre-
sents a risk. In this case, the risks have been divided into three different sections, LOW,
MEDIUM, and HIGH. There is no problem with dividing the risks into more sections, but
for this project, it is not necessary.

Explanation of the different sections in the Risk Matrix:

• Low: Mitigating measures don’t need to be considered

• Medium: Mitigating measures should be considered

• High: A mitigating measure must be carried out

It is important to note that the different levels may vary from project to project, but they
are often described as something like this.

2.10.4 Risk levels HB | OM

The risk level table in a risk analysis describes the different risk levels in a risk matrix.
In this risk matrix the first letter of the risk section (L, M or H) and a matching colour to
keep the table clear and easy to use. The risk table that is used first describes the letter for
each risk section, then it describes the risk level itself. If the risk level is any other than
LOW, it is also described how important it is for one or more mitigating measures to be
carried out.

2.10.5 Hazardous events HB | AD

The table “Hazardous event allocated to our stakeholders” is a list of unwanted events
that are believed to possibly occur during the project. These events can be ranked be-
tween very common too highly unlikely to occur. But every event that is listed on the
table is thought to be reasonable.

To begin with, it was brainstormed a lot of different unwanted events. Then the different
events were divided between the different areas that could be affected. It is important
to note that one unwanted event can affect several areas. Therefore, the same event can
be found in several areas. To make sure that the events will not be misinterpreted, and
that the people reading the report have a better understanding of the different hazards, the
table with the different hazardous events has a description section to better describe each
event. Even if some of the events are quite self-explanatory, there is a small description
of the event.

2.10.6 Risk analysis form HB | AD

The risk analysis form is the last step before the risk analysis can be completed. In this
step, everything is put together, and the final result becomes visible and easy to under-
stand. It was decided to divide the table into two sections, to make it easier to read. This
was because the writing became too small to read if the whole table was on one page. In
addition to the sections area/ID, hazard, and cause, the first table consists of the conse-
quence severity and the risk before the mitigating measures. The second part of the table
consists of the mitigating measures, the consequence, the probability, and the risk after

50

KROMIUM 2.10 RISK ASSESSMENT: RAPID RISK RANKING (RRR)

the mitigating measures have been applied, in addition to the area/ID, hazard, and cause.

To use and find the results of the risk analysis, the consequence of the different hazards
is defined for each area. If the hazard does not affect the area, the consequence box for
this area has a dash placed in it. Then the probability of the hazard to occur is defined.
With these two values, the risk for the hazardous event can now be found. If the miti-
gating measures are considered, the consequence and the probability often change. This
should give a lower risk than the original risk. If the risk is still at the same level or not
low enough, other mitigating measures should be considered in addition to the original
mitigating measures.

51

KROMIUM 3. DESIGN OVERVIEW

3 Design overview
This section provides a high-level overview of the Kromium system’s design. It outlines
the functionalities and features of the robot from a user perspective. We describe what
users can do with the application, how they interact with the system, and the useful in-
formation the application provides to them. Detailed implementation specifics for each
feature are covered in the following section.

3.1 Project design overview SO, AD | OM

Kromium’s system given the requirements and purpose of the system is to enhance off-
shore operations using VR, AI and robotics. As illustrated in Figure 3.1, Kromium’s
system is designed to facilitate human-robot interaction through virtual reality. The group
uses the Meta Quest 3 as VR-headset to create an immersive experience, which allows the
operator to control and monitor the robot.

Figure 3.1: Human-robot interaction through virtual reality

For an operator to remotely control a robot through a VR application and perform tasks,
they need to interact with the system and receive feedback, such as video feeds of the
robot’s environment and the robot’s status. Figure 3.2 illustrates this interaction. The
red path shows how the operator uses the VR application to interact with virtual objects
and send commands to the robot, such as driving forward, driving backward, or taking a
picture. The blue path represents the communication from the robot to the operator, pro-
viding visual information such as video feeds and status updates (e.g., connection status,
speed, and latency). This system ensures an intuitive and natural way for the operator
to remotely control the robot and obtain environmental information through the robot’s
cameras, facilitating comfortable and efficient task performance in offshore environments.

Figure 3.2: Human-robot interaction with controls

52

KROMIUM 3.2 SYSTEM FUNCTIONALITIES

The operator interacts with the robot by manipulating virtual objects in the VR applica-
tion, which can be controlled in various ways. For example, the user can perform hand
movements within a virtual area to drive the robot to a desired destination. The operator
sees what the robot sees on a virtual screen that displays the visual information from the
robot’s cameras, providing an immersive interaction experience.

3.2 System functionalities SO | AD

The system functionalities are divided into two categories: “Interaction Features” and
“Operator Information Features”.
Interaction Features describe the actions the operator can perform with the application,
including interacting with virtual objects to control the robot and perform tasks in the
robot’s environment.
Operator Information Features provide the operator with useful information, such as
video feeds from the robot’s cameras and status updates, to aid in task performance.
In this subsection, we will provide a graphical overview of these functionalities before
delving into the details in the following sections.

3.2.1 VR application features SO, AD | OM

Figure 3.3: Interaction Features for Robot Control from the operator

Figure 3.3 illustrates the different ways the operator can interact with the robot using the
VR application. These interaction features can be broadly categorized into the following:

• Drive the robot: This feature allows the operator to drive the robot with hand
movements interacting with virtual objects, like driving a car. This feature includes
three driving modes:

– Normal mode: Standard movement, allowing the user to drive in all direc-
tions with speed control up to the robot’s full capability.

– Precision mode: Fine-grained movement for delicate manoeuvres, such as
driving to a corner.

53

KROMIUM 3.2 SYSTEM FUNCTIONALITIES

– Reverse mode: Allows the operator to drive backward.

• Virtual emergency activation: In critical situations, the operator can put the robot
into an emergency mode, requiring a physical inspection by a technician. This is
activated through a virtual emergency button.

• Manipulate the robot’s arm: This feature allows the operator to control the robot’s
6 DOF arm, enabling it to perform tasks such as picking up objects and assembling
components. It can also be used autonomously for tasks like assembling and disas-
sembling bolts.

• Voice control: This feature allows the operator to issue commands to the robot
using voice interactions. ML models are used to recognize voice commands, which
can be particularly useful when the operator needs to keep their hands free.

3.2.2 Operator Information Features SO, AD | OM

In 3.2.1, the interaction features from the operator’s side were discussed. In this section,
the features provided to the operator are discussed. Figure 3.4 shows all the features and
information that Kromium’s system provides to the operator through the VR application.
These features and functionalities provide useful and important information to the user
operating the robot in the robot’s environment.

Figure 3.4: Features provided to the operator

The features are divided into three main channels:

54

KROMIUM 3.3 HARDWARE DESIGN

1. AI: The AI models used in the project can detect two things: humans and bolts.
This is sent to the operator along with additional information about these objects.

2. Robot status: As the robot is controlled remotely, it is useful to know its different
characteristics. This is the connection status between the VR application and the
robot, the robot speed, the current operational mode, the battery level and voltage,
and lastly the latency between the VR application sending a command and the robot
receiving it.

3. Visual information: This includes the video feeds from the robot’s front and re-
verse cameras, as well as the arm camera. Additionally, depth data is transmitted,
offering spatial awareness.

3.3 Hardware design
This chapter discusses the different specifications of the robot, which physical function-
alities the robot has, and how to use these functionalities.

3.3.1 Robot specifications HB, AEH | OM

• Speed: The car has a maximum speed of 80 cm/s (see O.9)

• Weight: The car has a weight of 5.4 kg (see 7.8.5)

• Number of battery packs: The robot has two compatible battery packs, one of
them with changeable cells.

• KROMIUM battery pack: The KROMIUM battery pack can power the robot for
approximately 2 hours and 45 minutes, and 2 hours and 25 minutes, depending on
which battery cluster is used. For the calculations see appendix Q.2. It is important
to note that this is just an approximation, and the time might deviate from this.

• Yahboom battery pack: The Yahboom battery pack can power the robot for several
hours. This is known because the Yahboom battery pack has a capacity of 9600
mAh, which is more than double the KROMIUM custom battery pack.

• Degrees of freedom car: The car has three degrees of freedom, and can move in
every direction in a two-dimensional plane while facing the same way.

• Degrees of freedom arm: The robot arm has six degrees of freedom (see Q.1)

• Strength of the arm: The arm can lift 200 grams when fully stretched out and up
to 500 grams when clamping and handling otherwise. [74]

3.3.2 Structure of the robot HB | AEH

The robot has a modular design. In this case, modular design means that the majority
of the parts are easily accessible and can be changed if necessary. To make the robot as
modular as possible, the main walls of the robot can be removed by simply lifting them.
This way every component on the robot is possible to reach without too much work. The
main electronics are also secured by brackets that slide in and out of the robot by rails. The
robot consists of three different floors, where every floor stores one or more components
used to control the robot.

55

KROMIUM 3.3 HARDWARE DESIGN

(a) Robot internal structure exploded view (b) Robot external exploded view

Figure 3.5: Robot exploded view. More detailed version T.7.

3.3.3 Building the robot AEH | HB

If the need to access, modify or build part of the robot arises we have made assembly
drawings for each subassembly, floor assembly, wall assembly and main assembly. How
to assemble the subassemblies can be found in appendix T.4, the floor assemblies in ap-
pendix T.5, the wall assemblies in appendix T.6 and the main assemblies in appendix
T.7.

3.3.4 Easy accessible power switch AEH | HB

A visible and easy-to-access power switch is on the roof at the back of the robot. This
switch is serially wired directly between the battery and the expansion board. You can shut
off the system by flipping the switch mounted directly on the expansion board or simply
by using the rocker switch on the roof. Since it is wired serially between the battery and
the expansion board, which supplies power to the rest of the system, this power switch
also functions as an easily accessible emergency shut-off.

3.3.5 Easily accessible electronics HB | AEH

One of the main reasons for the robot to have easily detachable walls is that the electronic
components should be easily accessible. In addition to this, the RPi, expansion board and
the USB hub all have mounts that make them easily detachable by sliding them in and out
of the robot. The battery is also easily accessible. The battery is placed in a drawer which
can be dragged out of the robot. Then the battery is lifted out of the drawer because the
connector between the robot and the battery is a magnet connector.

56

KROMIUM 3.3 HARDWARE DESIGN

Figure 3.6: Changing electronics

3.3.6 How to change the battery HB | AEH

To change the battery, make sure that the main power switch is in the off position. If it is
not, flick it over so it is. Then, remove the right side wall. Grab the drawer on the bottom
floor and pull it out carefully. With the drawer out, grab the battery pack and remove it
from the magnet, this might require that the battery is angled gradually while disconnect-
ing. When the battery is removed, grab the new battery, and insert it.

When inserting the new battery, it is easier to tilt the battery a bit, make the connector
between the battery and the robot touch and then level off the battery until the pins in the
drawer are inserted into the holes in the battery. Make sure that the battery is properly
attached. Then slide the drawer in carefully. Attach the right side wall, and turn the power
on.

Figure 3.7: Changing battery

3.3.7 Turning on the power HB | AEH

To turn on the power on the robot, some steps need to be followed. The first step is to make
sure that the battery inside the robot has enough charge for the robot to be operational for
the desired time or that the battery is fully charged. The second step is to make sure the
connector between the battery and the robot is properly attached. Then, make sure that the
on/off switch on the expansion board is in the on position. Then, make sure that the on/off

57

KROMIUM 3.4 ELECTRICAL DESIGN

switch on the USB hub is also in the on position. When all of these steps are checked, the
main power switch can be activated.

3.3.8 Wheels HB | AEH

The wheels used on the robot car are omnidirectional. These wheels allow the car to move
more freely. The steering mechanism of the car is the wheels themselves in addition to
one motor per wheel. What makes this possible is that the wheels are covered in small
rollers which has a 45-degree angle to them. The rollers are attached in such a way that
they can create a cross in the middle of the car if a line is drawn normally too the rollers’
direction. The disadvantage of these wheels is that they create a lot of vibrations during
driving and each wheel needs at least one motor each. The advantages on the other hand
are that the car can drive in every direction in a two-dimensional plane while it is facing
the same direction, and it can also turn around its own axis. This is possible because
the wheels have the rollers and each wheel has its own motor. The car will either turn
or move in a specific direction depending on which wheel is turning and what direction
they are turning. Because of the rollers on the wheels, this type of wheel has one more
degree of freedom than normal wheels, which have two degrees of freedom [75, p. 2].
This extra degree of freedom gives the car the ability to move the way it does. Below is
an illustration of how the car will move depending on which direction the different wheels
turn, and where the centre point of the turn will be.

Figure 3.8: Some of the robot movement options. Source: [3]

The reason omnidirectional wheels were used is because the car had them when the
project group received it. At the same time, the car should be able to operate in tight
spaces where traditional steering could be difficult. At the same time, the budget could be
used on other things than wheels.

3.4 Electrical design

3.4.1 Battery design HB | OM

The battery design process had several design iterations before the battery could be put to
use. The reason for this was that the earliest designs consisted of design flaws, that were
discovered either during the design phase or the testing phase.

58

KROMIUM 3.4 ELECTRICAL DESIGN

Figure 3.9: How a 2P3S configuration looks like on paper

The battery has the configuration 2P3S, which means that there are three sets of battery
cells in pairs, connected in series, see figure 3.9 for reference. Because the cells have
a nominal voltage of 3.7V, the nominal voltage of the battery will be 11.1V. However,
because the maximum voltage of the battery cells is 4.20V, the maximum voltage of the
battery is 12.60V. Because the battery ended up not having a Battery management system
(BMS), the capacity of the battery is equal to the capacity of the cell group with the least
amount of capacity. If the battery had a BMS designed for a 2P3S configuration, the
battery capacity would have been the average of the capacity of the cell pairs. This is
because one of the jobs a BMS has is to make sure that the voltage drop is equal in every
cell. The capacity of each pair of cells can be calculated like this.

mAh1 +mAh2 = mAhpair (3.1)

This means that the lowest theoretical capacity of the battery can be 4085 mAh for the bat-
tery with “Battery cluster 1” and the lowest capacity of the battery with “Battery cluster
2” is 4024 mAh. See 7.1 for the battery cell capacity. Because the cells are not connected
to a BMS, the same amount of electricity is being pulled from each cell, this is why the
capacity of the battery is the capacity of the pair with the least amount of mAh. The
reason the cells are divided into different clusters is to prevent the cells from completely
discharging, which can happen if cells that have a very different capacity are used in a
battery without a BMS. The other reason that the battery cells are divided into two battery
clusters, is to make sure that the robot can always be operational (except when switching
out the battery). This way two of the batteries can charge while one is being used. For
the two different clusters of battery cells, the twelve best-performing battery cells were
chosen, where the top six were in cluster number one, and the ones that came in seventh
to twelfth place were in cluster number two. See the tables 3.1 below for the cells used in
each cluster. For all of the results from the battery cell test see table 7.1.

59

KROMIUM 3.4 ELECTRICAL DESIGN

Cell №: Capacity Cell №: Capacity
8 2060mAh 4 2031mAh

10 2047mAh 6 2031mAh
12 2091mAh 9 2023mAh
13 2038mAh 17 2028mAh
15 2086mAh 18 2005mAh
16 2082mAh 21 2019mAh

Avg: 2067mAh Avg: 2023mAh

Battery cluster 1 Battery cluster 2

Table 3.1: The two groups of battery cell clusters used

60

KROMIUM 4. SOFTWARE IMPLEMENTATION

4 Software Implementation
In this section, we delve into the design and implementation aspects of all software com-
ponents and their functionalities. We begin by describing the setup of the development
environment for each software component. Following this, we provide detailed sections
on the VR application, the robot, the robotic arm and the AI object detection. Due to
the extensive implementation process involved with the robotic arm, we have dedicated a
separate subsection to it for the sake of readability. The final section discusses the addi-
tional work outlined in 1.5.2, which extends beyond the original project requirements. For
clarity and coherence, this section is organized to reflect the sequence of functionalities
as they are designed and implemented.

4.1 Software setup OM | AD

This section explains the steps taken to set up and configure the software development
environment.

4.1.1 Network configuration OM | AD

A local network was configured to facilitate communication between the devices in our
system. This network setup enables SSH access, which is blocked on the “eduroam”
network. SSH access is crucial for an efficient and streamlined development process. This
allowed us to access the RPi remotely. This eliminates the need for physical interaction
with the devices, saving significant time and effort. Additionally, static Internet Protocol
(IP) addresses were assigned to both RPis, ensuring consistent and straightforward SSH
access by maintaining constant IP addresses.

4.1.2 VR application environment SO | AD

The setup for the VR application environment involved configuring the VR headset, the
Unity editor, and the integration software between the VR headset and Unity for devel-
oping applications. Given the complexity and numerous steps involved in this process,
detailed instructions are not included in this report. However, comprehensive step-by-
step guides can be found in the official documentation of the Meta Quest 3 and Unity on
their respective websites.
For detailed setup instructions, refer to the following resources:

• Set up development environment and headset, [76]

• Get started with Meta Quest 3 development in Unity [77]

These resources provide thorough guidance on setting up the development environment
for VR applications.

4.1.3 Robot & AI environment OM | AD

Installing Raspberry Pi OS The installation of RPiOS (64-bit) was performed using
the Raspberry Pi Imager [57] and an SD card converter to transfer the ISO image onto the
microSD card. This microSD card functions as the hard drive for the RPi.

61

KROMIUM 4.2 THE VR APPLICATION

Configuring the Raspberry Pi After installing and booting the RPi, SSH access was
enabled to facilitate remote access, allowing code editing on the RPi using VSC’s remote
SSH feature. Additionally, a symlink was created for the expansion board, as its name
would change randomly (see O.7).

Installing Docker Docker was installed on the RPi using the script shown in O.3. By
default, this requires the user to use sudo every time the Docker command is executed.
Configuring permissions for the Docker group allows this requirement to be bypassed (see
O.4).

Creating the Docker Image To run a Docker container, an image is needed. This
image should include installation instructions, other dependent Docker images, necessary
packages, user permissions, a default working directory, and so on. These instructions
are typically listed inside a Dockerfile, the contents of which are shown in O.5. ROS
2 is installed here, with the Dockerfile depending on the arm64v8/ros:humble Docker
image, where arm64v8 denotes the system architecture. All required Python packages,
such as numpy and mediapipe, are listed in a requirements.txt file, which is copied
into the image and installed. If a new dependency is needed, the Docker image must be
rebuilt. Once the Docker image is built, it is installed and ready to run.

Configuring the Docker container “Container images become containers at runtime
and in the case of Docker containers – images become containers when they run on
Docker Engine” [78]. There are several considerations and options to take into account
when running a Docker container, as shown in O.17.

• Sharing files A volume is specified to allow for bidirectional sharing of files. This
means that changes made outside the container are reflected inside it, and vice versa.
This enables the use of an IDE outside the Docker container to edit files within
it. Without this setup, changes to files would need to be made from within the
container, risking loss once the container is terminated.
Additionally, the /dev/ directory is shared for easier access to devices such as
connected cameras. While the --device argument could be used for this purpose,
it led to issues.

• User permissions A “ros” user is created in the Dockerfile without root access. By
entering the container as this user, files within the shared volume (robot/ folder)
do not have root permissions. This allows a user outside the Docker container to
edit files created by this non-root user without elevated permissions, and vice versa.
This ensures seamless code editing.

• Network The container’s network is set to use the host’s network. This configura-
tion enables ports inside the Docker container to be accessible outside without indi-
vidual mapping. This simplifies communication with the VR headset and database.

4.2 The VR application SO | OM

In this section, we delve into the design and implementation aspects of the VR applica-
tion. The primary objective of using the VR application is to provide an interface for
the operator to control the robot. The implementation details are divided into different
sections, each explaining various functionalities.

62

KROMIUM 4.2 THE VR APPLICATION

The VR application comprises several main components, as depicted in Figure 4.1. Each
component is designed to fulfil specific functionalities derived from the project require-
ments; thus addressing the A, B, and C requirements 1.5. These components are major
groupings, each consisting of various smaller units that collaboratively achieve the in-
tended functionality. Beyond the initial specifications, additional components have been
integrated to meet extra requirements provided by the customer beyond the original scope.
In Figure 4.1, the components are colour-coded: purple indicates the original A, B, and C
requirements, green denotes the additional requirements, and red highlights the compo-
nents essential for the development process.
In this section, we will provide a visual overview of the VR application to clarify its layout
and design. Following this, each component will be described in detail, highlighting their
contributions to the overall functionality. Additional functionalities added beyond the
initial plan will be addressed in the ‘Additional Work’ section 4.6.

Figure 4.1: Main components in the VR application

4.2.1 Visual overview of the application SO | OM

Before delving into the detailed functionalities of the VR application, let us examine its
visual elements from a broad perspective. The application’s interface varies depending
on its connection status to the robot. Figure 4.2 illustrates the visual elements when the
application is not connected to the robot, while Figure 4.3 depicts the interface when the
application is in action.

Each visual element serves a unique function and responds to user interactions through
the VR headset, providing both textual and visual information to users of Kromium’s ap-
plication. These elements are labelled in the figures for clarity. In the following sections,
we will describe the implementation details of each element.

63

KROMIUM 4.2 THE VR APPLICATION

Figure 4.2: Overview of the application (Disconnected from the robot)

Figure 4.3: Overview of the application left-hand side when in action

64

KROMIUM 4.2 THE VR APPLICATION

4.2.2 Communication between VR and the robot SO | OM

Integrating the VR application with the robot was a crucial first step in the development
process. This integration was segmented by communication method and the message
type understood by both the robot and VR, which we define as the interface between
them. The Network Manager is the sole component responsible for managing commu-
nication between the robot and the VR application. All communication, both incoming
and outgoing, is handled through the Network Manager, which processes and distributes
the received messages throughout the rest of the application. Furthermore, data sent from
the application is processed by the Network Manager before being forwarded to the appro-
priate destination, as depicted in Figure 4.4. The Network Manager adheres to a singleton
design pattern, making it a static object that any other object within the application can re-
quest for sending messages to the robot, while incoming data is managed by the Network
Manager itself.

Figure 4.4: Network manager VR application

Network manager socket client and interfaces
The Network Manager communicates with the robot through a socket client connected
to a socket server hosted on the robot side. The Network Manager has two interfaces
for receiving data; one for JavaScript Object Notation (JSON) format and another for
Brotli compressed data, which will be elaborated on later in this report 4.6.1. Examples
of messages are illustrated in Figure 4.5. The JSON interface is the primary communi-
cation protocol, where each message is notated with a key: “type” that indicates specific
informational data, and the rest of the JSON data contains specific application data. The
interface for Brotli is marked with a custom header, ‘bro’, added at the beginning of the
message. The first three bytes indicating the Brotli data are ignored before it is decom-
pressed and distributed to the rest of the application.

65

KROMIUM 4.2 THE VR APPLICATION

Figure 4.5: Network manager interface examples

Distribution of received information As indicated in Figure 4.4, the Network Manager
processes the incoming data and distributes it to the rest of the application. The incoming
data to the socket client is managed by a component called the Received Thread, which
continuously listens for incoming data from the socket client. This component reads the
incoming bytes, converts them to UTF-8 strings, and appends them to the Received Data
Buffer. This buffer is a data structure which contains all incoming information waiting
to be processed and sent to specific objects within the application. The Process Received
Data component retrieves the oldest data from the buffer and processes it according to the
type of data described in Figure 4.5, triggering the corresponding event within the Unity
event system.

The Unity event system is a framework used to manage and dispatch events, allowing dif-
ferent components within the application to communicate with each other efficiently. It
operates on a subscriber model where components can listen for specific events and react
to them when they occur. This system enhances modularity and decoupling by allowing
objects to interact without needing to know the intricate details of each other’s operations.
Using this system, components subscribing to a specific event will receive the new data
and utilize it accordingly. The Unity event system is used for the distribution of incoming
information, as shown in Figure 4.6.

Priority queue was considered to process incoming information based on priority levels.
Taking into account our requirements to build a PoC the priority queue was not prioritised
for implementation.

66

KROMIUM 4.2 THE VR APPLICATION

Figure 4.6: Data distribution from network manager to the application

The triggered events are not restricted to a single component; rather, multiple components
can subscribe to the same event and respond to the data in varying ways. For instance,
upon receiving “new status data” from the robot, visual elements dynamically update
themselves, showcasing information like the robot’s speed on a text element. Simultane-
ously, an internal logging component listens for the same event, refreshing the logging
screen accordingly. At this stage, the processed incoming data is distributed throughout
the application via events, leaving it to other components to utilize this information. In the
coming subsections, we will look into how this information is utilized in the application.

4.2.3 Robot visual view SO | OM

The robot visual view is a vital component of Kromium’s application, designed to enhance
remote operational capabilities. It provides the operator with a first-person perspective of
the robot’s environment, enabling real-time visual feedback. This feature is crucial as
it allows the operator to see through the robot’s “eyes”, facilitating precise and effective
control during operations. Below, Figure 4.7 illustrates the monitor that displays the
camera feed within the application.

67

KROMIUM 4.2 THE VR APPLICATION

Figure 4.7: Camera monitor inside the VR application

Functionality:
Providing operators live video feeds from cameras that are strategically placed on the
robot (see 6.2). These cameras are positioned to maximize the quality of the visual data
they collect, which helps enhance how operators control the robot. This setup enables
operators to navigate the robot and manipulate its arm effectively, providing them with a
clear view of their surroundings.

The functionality of the cameras extends beyond basic navigation. The cameras provide
front, rear, and arm-mounted views. This range of camera angles gives operators compre-
hensive visual coverage, making it easier to carry out complex tasks with the robot’s arm.

Additionally, the video feeds are processed using ML algorithms that recognize and iden-
tify objects around the robot. This extra layer of information helps operators make better
decisions by giving them a clearer understanding of the environment. More details on
these ML enhancements are available in the object detection section on 4.5. In Figure 4.8
and 4.9 you can see examples of different views of the camera inside the VR application.

68

KROMIUM 4.2 THE VR APPLICATION

Figure 4.8: Camera monitor in Drive mode (Camera 1) detecting a person

Figure 4.9: Camera monitor in Arm mode (Camera 2) detecting a bolt

Receiving video feed:
The video feed from the robot’s cameras is transmitted via websockets. The application
continuously listens on a specific Uniform Resource Locator (URL) and port 5000 to
receive this camera feed, updating the camera monitor displayed in the application as
shown in Figure 4.7. The switch between camera views is automated, depending on the
robot’s operational mode (see 4.2.4). The robot handles the changes in the camera feed
and decides which ML algorithm to use for the video feed transmission, with more details
written about in section 4.3 and 4.5. Additionally, the video stream was optimized for
better performance in the latter part of the project, as detailed in 4.6.10. The coordination
of the robot’s cameras and the ML algorithms active in each mode is summarized in the
table below.

69

KROMIUM 4.2 THE VR APPLICATION

Operational Mode Active Camera Active ML Algorithm
Driving Mode Camera 1 People Detection model

Arm Mode Camera 2 Bolt Detection model
Driving Backward Camera 2 (rotated) People Detection model

Table 4.1: Summary of camera and machine learning configurations across different op-
erational modes.

4.2.4 VR application and robot modes SO | AD

Kromium’s system offers a variety of operational modes that enable the operator to cus-
tomize the control of the robot according to specific requirements. These modes are
accessible through the VR application, allowing the operator to select the most suitable
system mode for different scenarios. The available modes are designed to address a range
of use cases, each facilitating custom interactions and control. The use case diagram in
Figure 4.10 illustrates the operator’s ability to switch between these different operational
modes, which have been derived from our requirements.

Robot
operator

Change mode

Idle mode

Drive the robot

Control the arm

Emergency mode

<<include>>

<<include>>

<<include>>

<<include>>

Receive robot's
 video feed

Receive robot's
 status updates

Figure 4.10: Use case diagram - Robot operator

Mode descriptions:

• Idle mode: In this mode, the robot does not react to any commands from the op-
erator, nor does the application send any commands. This feature is important for
safety, as it allows the operator to do other duties without accidentally sending com-
mands with their hands.

• Drive the robot: The operator can use their hand movements to drive the robot. The
application constantly sends commands to the robot in response to the operator’s
appropriate hand movements.

• Control the arm: Similar to driving the robot, this mode allows for the control of
the robot’s arm using different hand movements.

• Emergency mode: Similar to the Idle mode, it requires physical inspection from a
technician to verify that the robot can continue to operate.

70

KROMIUM 4.2 THE VR APPLICATION

Handling operational modes
Operational modes in the VR application are managed through a state-machine architec-
ture. This setup ensures that each mode is distinct with specific controls and interactions
tailored to that state. The application dynamically adjusts the available controls and visual
interactions according to the active mode to enhance usability and reduce errors.

• State machine logic: The operational mode handling functions like a state machine
within the application. Each state corresponds to a different mode of robot opera-
tion, ensuring that the control interface adapts accordingly as the mode changes.

• Visual and interactive controls: In different modes, the application alters the vis-
ibility and functionality of user interface elements. For example, in Idle mode, all
controls that could command the robot to move or manipulate its arm are hidden to
prevent operations by accident. In contrast, in Driving mode, controls and visual
controls become available, allowing the operator to drive the robot.

• Mode transition: When the operator switches modes, the application communi-
cates this change to the robot, ensuring that it receives the correct data to respond
appropriately.

Figure 4.11 illustrates the transitions between the various states within the application.
Upon initialization, the application enters Idle mode. From there, it is designed to allow
transitions to any of the other operational modes. Each mode incorporates specific logic
that governs its unique state behaviour within the application, ensuring tailored interac-
tions and responses according to the mode’s functional requirements. Figure 4.13 shows
the arm scene (see P.1.1) in Arm Mode, and Figure 4.12 shows the drive scene in Drive
Mode, both of which are further detailed in the following sections 4.2.5 and 4.2.6.

Figure 4.11: State machine diagram - Mode states in VR application

71

KROMIUM 4.2 THE VR APPLICATION

Figure 4.12: Drive scene detecting user’s
hand movements

Figure 4.13: Arm scene detecting user’s
hand movements

Mode synchronization and control interfaces:
Changing operational modes is facilitated by two interfaces:

• Visual menu: Operators can change modes using a graphical interface within the
VR application, designed for intuitive and quick switching of modes, illustrated in
Figure 4.14.

• Voice control: For hands-free operation, voice commands are also enabled, al-
lowing operators to switch modes without physical interaction, which is especially
useful in scenarios where manual control is impractical. Detailed use cases for
voice commands are explored further in section 4.6.8.

Figure 4.14: Visual interface for changing mode, connect to the robot and get depth data

72

KROMIUM 4.2 THE VR APPLICATION

Synchronization: Synchronizing the mode between the application and the robot is crit-
ical. It ensures that commands issued in one mode are appropriate and that transitions
into other modes are recognized and implemented without disruption to ongoing tasks.
Figure 4.15 details the sequence of activities triggered when a user switches operational
modes. Specifically, upon activating the “Enable drive scene” or “Enable arm scene,” the
application initiates multiple background processes tailored to each mode. For instance,
the “Enable drive scene” starts processes such as hand tracking, drive command calcula-
tions, and communication with the robot to relay new command data. Concurrently, all
game objects (see P.1.2) related to the drive scene become visually available to the user.
These processes are elaborated in section 4.2.5. Following the selection of a mode, three
parallel activities occur:

• Update the robot: The application sends a mode change request to the robot.

• Update status panel: The application updates the status panel to display the se-
lected application mode. This panel does not reflect the robot’s actual mode, which
is instead communicated by the robot itself and displayed on the robot status panel
(4.2.7), allowing users to see the robot’s current mode.

• Notify the user(Voice notification): The application uses a voice notification to
inform the user about the mode change.

Figure 4.15: Activities that occur when changing mode

73

KROMIUM 4.2 THE VR APPLICATION

4.2.5 Controlling the robot car SO | AEH

One of our requirements is that the user can drive the robot car through the VR applica-
tion. The controlling component of the robot car is responsible for all aspects of driving,
including the calculation of directions (forward, left, right, backward), driving modes
(reverse, normal, precision), and speed control. The application together with the robot,
provides an intuitive and precise control mechanism for virtually driving the robot through
the VR headset. See the folder Driving Robot in the attachments for a demonstration.

The scene for controlling the robot, including all the game objects, is shown in Figure
4.16. As described in section changing operational modes 4.2.4, the scene shown here
only appears to the user when the application is in drive mode.

Figure 4.16: Scene for controlling the robot car

The implementation of the driving mode has undergone several iterations and tests to
refine an intuitive and precise control mechanism. The components involved in the im-
plementation are illustrated in Figure 4.17. These components, which include both game
objects and logic controllers, work together to fulfil the functionality required by our
stakeholders (See Appendix C). The game objects in the scene are the visual elements
that the user interacts with, while the logic controllers are software components respon-
sible for calculating the correct driving commands and sending them to the robot. In this
section, we will describe the roles of game objects and logic controllers and how they
interact with each other to create the driving logic.

74

KROMIUM 4.2 THE VR APPLICATION

Figure 4.17: Controlling the robot car components

Game objects in the drive scene
The development of the VR-driven control system for the robot car begins with a founda-
tional concept: translating user hand movements into precise drive commands. We built
upon this idea by creating a driving scene where the user can interact with a set of game
objects to generate driving commands for the robot. In this scene, specific game objects
are designed to detect and interpret the user’s hand movements. These objects act as the
interface between the VR environment and the physical movements of the user, converting
hand gestures into actionable commands that are sent to the robot car.

Tracking Area The Tracking Area is an empty rectangular cube located in front of
the user’s right hand. It serves as the primary interactive zone for hand tracking, initiating
tracking when the user’s hand enters this space. This object is crucial for detecting hand
movements that control the robot car. You can see the non-highlighted tracking area when
the hand is absent in Figure 4.18, and the highlighted version when the hand is detected
in Figure 4.19.

75

KROMIUM 4.2 THE VR APPLICATION

Figure 4.18: Default tracking is when the
hand is not detected. Figure 4.19: Tracking area highlighted

when the hand is detected.

Information Text The information text is a text display within the scene that indicates
the scene name “Drive mode”.

Driving Mode Button Area Located at the back of the tracking area 4.2.5, the Driv-
ing Mode Button Area contains several buttons: Reverse, Normal, and Precision. These
buttons allow the user to select the desired driving mode. Interaction with these buttons is
captured by the logic controllers, and transmitted to the robot, which then processes these
inputs to adjust the robot car’s driving mode accordingly.

Drive command generation in Normal Drive Mode
The application begins generating drive commands when it enters the drive mode. A se-
quence of activities is illustrated in Figure 4.20. The application tracks the user’s hand
through the Hand Tracking component, which continuously monitors the user’s hand po-
sition. However, command generation does not commence until the user’s tip bone en-
ters the tracking area. From this point, the tip bone is tracked, and drive commands are
generated and sent to the robot. The frequency of this calculation is controlled by the
calculation interval, currently set to 0.1 seconds.

76

KROMIUM 4.2 THE VR APPLICATION

Figure 4.20: Activities in drive mode

Command generation involves calculating the position of the user’s tip bone relative to
the tracking area and mapping the values between X ∈ [−1,1] and Z ∈ [0,1]. Figure 4.21
shows the application scene where the user interacts and Figure 4.22 provides a mathe-
matical diagram illustrating how the relative position of the user’s tip bone in the tracking
area is calculated. Points p1 and p2 in the diagram represent examples of the user’s tip
bone position. Initially, the calculations focus on finding a precise and intuitive method
for the user to drive the robot. Subsequently, the user’s tip bone position is converted into
directional driving commands on the robot side, as shown in Figure 4.23. The tracking
area is divided into directional sections. Movements of the user’s hand within these sec-
tions send signals to the robot, directing it to drive in specific directions. The translation
of these signals by the robot is detailed in 4.3.8.

Calculation of Speed Control
During the development process, we discovered that controlling the robot without speed
control, or with a static speed, did not offer a natural feel. The lack of speed control led
to uncontrolled and rapid changes in the robot’s direction, and less control and precision.
Consequently, speed control functionality was integrated into the application to provide
simultaneous control of direction and speed through hand movements. The speed control
is implemented within the same Tracking Area, where the distance between the user’s

77

KROMIUM 4.2 THE VR APPLICATION

tip bone and the edge of the corresponding direction is used as the speed. The speed
increases and decreases based on the distance between the user’s tip bone and the edge
of the tracking area. The edge The corresponding directions are mapped as follows: left
area to left edge, right area to right edge, forward to front edge. Figure 4.24 illustrates
how speed is calculated in a range between 30 to 100, where the speed range represents
the percentage of the robot’s maximum speed. Speeds between 0 and 30 are disregarded
as the robot’s movement is too slow to react effectively in this range.

Figure 4.21: Tracking area in the applica-
tion drive mode Figure 4.22: Tracking area conceptualized

Figure 4.23: Tracking area divided by sections

78

KROMIUM 4.2 THE VR APPLICATION

X

Z

X

Z

-1 0

1
Area L: Left Area R: Right

Area S: Stop

0.3-0.3

0.3

A
re

a F: Fo
rw

ard

X

Z

-1 0

1
Area L: Left Area R: Right

Area S: Stop

0.3-0.3

0.3

A
re

a F: Fo
rw

ard

30100

Speed range

Sp
ee

d
 r

an
ge

30

100

50 Sp
ee

d
 r

an
ge

30

100

50

Figure 4.24: Calculation of speed

Precision and Reverse Drive Control Mode
In the Precision and Reverse Mode, the control mechanism remains the same as in Normal
mode. The distinctions arise on the robot side, as discussed in 4.3.8. However, when in
Reverse Mode, the robot’s visual view switches to a different camera, allowing the user
to see backwards, as detailed in 4.3.8.

4.2.6 Controlling the robot arm SO | AD

Controlling the robot’s arm is one of the primary functionalities of the application, allow-
ing users to manipulate the robot arm through the VR headset. While the control mech-
anism is analogous to driving a car, the robot’s arm interface requires a different set of
data. The scene for arm control is shown in Figure 4.25. Users control the physical robot
arm through hand movements within the white rectangular cube shown in the scene. The
control area, similar to the driving scene, begins tracking and sending commands when
the user’s hand enters the control area. Figures 4.26 and 4.27 show the application track-
ing the user’s hand presence within the control area and the absence of such tracking,
respectively.

79

KROMIUM 4.2 THE VR APPLICATION

Figure 4.25: Scene for controlling the robot arm

Figure 4.26: Default tracking is when the
hand is not detected - arm scene Figure 4.27: Tracking area highlighted

when the hand is detected - arm scene

The application tracks the user’s tip bone within the cube, calculating the x, y, and z
positions relative to the cube and mapping the values to x in [-1, 1], y in [0, 1], and z in
[-1, 1]. The values for x, y, and z are normalized to correspond to the dimensions of the
physical robot arm. For instance, if the user’s tip bone is at position p(0,0,1), the physical
arm will be fully stretched upward. The tip bone’s position is mapped to the robot arm’s
end effector. Hand movements inside the cube translate into control values, which are
sent to the robot. The robot employs inverse kinematics to convert the x, y, and z data
into angles for each arm servo, moving the end effector to the desired position. Further
details on how the robot translates this data are discussed in section 4.4. Examples of
these controls are illustrated in Figures 4.28, 4.29, and 4.30.

80

KROMIUM 4.2 THE VR APPLICATION

Figure 4.28: Illustration of the robot arm and user’s hand - Back side

Figure 4.29: Illustration of the robot arm and user’s hand - Front side

Figure 4.30: Illustration of the robot arm and user’s hand - Front side

The sequence of activities when the user engages in Arm Mode is illustrated in the activity
diagram 4.31. Unlike the car driving mode, when the user’s hand exits the tracking area,
the system does not reset the values or send them back to the robot. Instead, it is designed
to maintain the arm in the same position as it was when the user’s hand left the tracking
area. The application then returns to a waiting state until the hand re-enters the tracking
area.

81

KROMIUM 4.2 THE VR APPLICATION

Figure 4.31: Activities in Arm Mode

4.2.7 Robot status: information display SO | OM

The display of status information is a key functionality of the VR application, providing
users with real-time updates about the robot. The visual element used to display this
information is depicted in Figure 4.32. Each piece of information represents the current
status of the robot and is frequently updated to ensure accuracy. The information panel
is designed to follow the user’s head movement, allowing the user to view the status
regardless of their head direction within the virtual environment.

82

KROMIUM 4.2 THE VR APPLICATION

Figure 4.32: Robot status information panel

As outlined in the Network Manager diagram 4.6, the Network Manager triggers events
when new Robot and Ping data become available. The robot status information panel
is managed by the Head Up Controller, which subscribes to Network Manager events
such as New status data and New ping data. This controller processes the incoming data
to update the corresponding text elements in the application shown in Figure 4.32. The
distribution and updating of this data are illustrated in Figure 4.33.

Figure 4.33: Data distribution and updating process in the Head-Up Display

4.2.8 Emergency control SO | AEH

A critical requirement is the inclusion of a virtual emergency button in the VR application,
allowing the user to activate the emergency mode of the robot. This button, shown in
Figure 4.34, mimics the standard red emergency button widely recognized in the industry.
Upon activation, all control scenes within the application are hidden, and an emergency
message is sent to the robot. In emergency mode, the robot does not respond to any
commands and must be manually reactivated for operational safety.

83

KROMIUM 4.2 THE VR APPLICATION

Figure 4.34: Emergency button in the VR application

Examples of the emergency button in action within the VR application are shown in Fig-
ures 4.35a, 4.35b, and 4.35.

84

KROMIUM 4.3 ROBOT

(a) Emergency button in the VR application (b) Hand detected on the button

(c) Emergency button triggered

Figure 4.35: Emergency button in action

Additionally, the emergency mode can be triggered through a visual menu (see Figure
4.14) or by a voice command detailed in 4.6.8. The user can initiate this mode by selecting
the appropriate option in the menu or by saying “Emergency” in English. Both methods
lead to the same emergency activation process as pressing the emergency button.
The emergency button is strategically placed on the right-hand side of the control scenes,
ensuring easy access for the user to activate it in case of an emergency.

4.3 Robot OM | AD

The term “robot” collectively refers to all software running on the RPi mounted on the
physical robot. This software facilitates communication with the VR headset and enables
control of the robot. While the robotic arm (refer to 4.4) and object detection (refer to 4.5)
are integral parts of this software, they are presented in separate sections in this thesis due
to their size and complexity. For details on how the robot code documentation was built,
see O.19.

85

KROMIUM 4.3 ROBOT

4.3.1 Using ROS 2 OM | AD

Figure 4.36: Example of ROS 2 Nodes [4]

Basics ROS 2 employs nodes that use topics to publish and subscribe to messages or ser-
vices to communicate between different nodes. Our implementation primarily uses topics
for data transmission, with limited use of services. A ROS node “should be responsible
for a single, modular purpose, e.g. controlling the wheel motors or publishing the sensor
data from a laser range-finder [...] In ROS 2, a single executable (C++ program, Python
program, etc.) can contain one or more nodes” [4]. However, in our implementation, each
node is contained within its own executable file. All nodes are written in Python, except
for the Astra camera node (see 4.6.1). A node can subscribe to or publish on one or more
topics, each requiring a specified interface.

Interfaces Interfaces facilitate communication between nodes by being filled and sent
as messages. These interfaces can be predefined ROS interfaces or custom ones. For
example, the custom-defined message interface VRDrive.msg is shown below:

float64 x

float64 y

int64 speed

string drive_mode "normal"

Each value is separated by a space, and it is possible to have up to three values. The
first value defines the data type, the second value is the key for accessing the data when
reading or writing the message, and the third value defines the default value if it is not
specified when filling in the message.

File structure The nodes are organized into packages. In our implementation, each
node is contained within its own package for easy differentiation. However, the example
below demonstrates two nodes within the same package:

86

KROMIUM 4.3 ROBOT

robot/src/

my_package/

my_package/

__init__.py

example_subscriber.py <-- node

example_publisher.py <-- node

resource/

my_package

test/

... test files

package.xml

setup.cfg

setup.py

... more packages

To build and run these nodes, they must be structured correctly, as shown above. The code
for these two basic Python ROS 2 nodes is shown and explained in O.1.

Building Before a ROS node can be run, the code needs to be built. Colcon is used for
this purpose, and the code must be rebuilt each time it is changed. However, this does not
apply to JSON files, as mentioned in 7.4.

4.3.2 Node architecture OM | AD

Figure 4.37: All the ROS nodes in the robot system

There are a total of seven nodes running on the robot, each serving a specific purpose.
Below is a brief explanation of each node:

• VR linker node handles communication with the VR headset, facilitating both the
reception and transmission of data. All data exchanged between the robot and the
VR headset passes through this node, except for the video stream.

87

KROMIUM 4.3 ROBOT

• Controller node is the only node which interacts with the expansion board (see
4.3.5), which controls the physical motors and servo. It is within this node that the
robotic arm calculations (see 4.4) and driving mechanisms are implemented.

• Master node manages the robot’s operational modes and adds safety to the system.
In specific modes, the robot ignores incoming commands to ensure that driving and
controlling the arm simultaneously is not allowed.

• AI detection node enables streaming video to the VR headset (see 4.3.4) and im-
plements object detection (see 4.5).

• Logger node saves logging information and implements backup logging (see 4.6.7).
Logs are primarily used for debugging purposes.

• Astra camera node publishes depth information from the depth camera at the high-
est possible rate. The raw data published by this node is not used directly.

• Depth data node listens for raw depth data, processes and compresses it, and even-
tually sends it to the VR headset through the VR linker node (see 4.6.1).

4.3.3 Communicating with the Meta Quest 3 OM | SO

One of the first tasks undertaken was establishing communication with the VR headset.
Initially, we had little to no knowledge about this process and were uncertain if it was
even feasible. These doubts stemmed from Meta’s software being closed-source and un-
certainty regarding what was publicly available. After some research, the Unity package
“ROS-TCP-Connector” was discovered, which could connect to an external IP address.
However, since the last commit was over two years old [79] and there were difficulties get-
ting it to work, it was decided to develop our own Transmission Control Protocol (TCP)
socket implementation. This approach also allowed for greater control over the commu-
nication.
It was decided that the RPi would host a ROS node acting as the server (VR linker node),
with the VR headset serving as the client. This setup seemed more logical, as it made
sense for the VR headset to connect to the robot rather than the other way around.

JSON was chosen as the preferred communication format due to its dynamic nature, the
group’s prior experience with it, and its widespread implementation across various pro-
gramming languages [80]. JSON uses a key-value format, simplifying the process of
adding more data to the message. The receiver can choose to ignore irrelevant data. Be-
low is an example of JSON data:

{

"x": 0.8821,

"y": 0.1965,

"speed": 70

}

An example of a more compact format is shown below.

0.8821,0.1965,70

While this format takes fewer bytes, it is less explicit about the data’s meaning. This
format could lead to issues with type conversion and difficulties in adding new data to the
message.

88

KROMIUM 4.3 ROBOT

4.3.4 Video stream OM | SO

The video stream provides visual information, making it easier for the operator to navigate
the robot within its environment. It is implemented using a WebSocket server with the
“websockets” Python package [81]. The drive camera captures images at a rate of 30
Frames per second (FPS) [82], which are then transmitted over the WebSocket to the VR
headset. The specific camera used depends on the robot’s current mode, as detailed in
4.3.7. Additionally, each captured image is analyzed using object detection, as explained
in detail in 4.5. The initial implementation of this video stream did not use WebSocket
and is discussed in 4.6.10.

4.3.5 Interacting with the expansion board OM | SO

The robot we are using and building on top of is the ROSMASTER X3 PLUS made by
Shenzhen Yahboom Technology Co., Ltd. [74] (referred to as “Yahboom”). When refer-
ring to the “expansion board”, the circuit board made by Yahboom, which is connected to
the electronics of the robot (sensors, servos, motors, etc.) is implied. The expansion board
can take commands from the RPi over a Universal Serial Bus (USB) serial connection and
act on these commands.

Yahboom has developed the firmware running on this expansion board. Additionally,
they have made a library called “Rosmaster Library” [83], which works as a driver and
can communicate with the expansion board using the pyserial Python package. Built on
top of this, Yahboom has implemented software that can for instance track a line, use
voice control, randomly move the arm and more. These examples are implemented in
ROS 1 and/or ROS 2.

The quality of the code and documentation varies, as it has been translated into English.
Our client recommended not reinventing the wheel and using what is already available,
but building on top of this code or examples was not considered. This would most likely
take way more time than building the ROS 2 environment and logic from scratch.

However, the “Rosmaster Library” is used, but there have been made adjustments to it.
The driver includes addresses for specific functions, values and methods for sending bytes
over serial to the expansion board. On top of this library, a wrapper class has been imple-
mented, making it easier to develop and add more advanced functionality. An example of
the modifications that were done is shown in O.2.

A code snippet of this wrapper is shown below.

@in_production_mode

def set_arm_elbow(self, angle: int) -> None:

"""Sets the arm elbow angle.

Args:

angle: angle

"""

self.ros_master.set_uart_servo_angle(3, angle)

def reset_arm_elbow(self) -> None:

"""Resets the arm elbow to its default position."""

self.set_arm_elbow(Preset.ARM_ELBOW_ANGLE)

89

KROMIUM 4.3 ROBOT

This approach makes interaction with the expansion board more straightforward and ex-
plicit. Additionally, users do not have to remember default values or the servo_id each
time they interact with it. A @in_production_mode decorator was also made which
throws an exception if the robot is not in production mode (see 7.4).

4.3.6 Handling modes and safety features OM | AD

The robot can operate in four modes, described below. Note that while production mode
ends with “mode,” it is not a standalone mode (see 7.4).

• Idle mode In this mode, the robot remains stationary and ignores incoming com-
mands. Although commands are received, their handling is terminated prematurely,
so the robot does not move or perform calculations.

• Drive mode In this mode, the operator can drive the robot. There are three driving
sub-modes: normal, precision, and reverse, which are detailed in 4.3.8.

• Arm mode In this mode, the operator can control the robot’s arm.

• Emergency mode In this mode, the robot becomes unresponsive to all commands.
Unlike the other modes, switching out of emergency mode requires a reboot, neces-
sitating a physical inspection. This mode is intended for emergencies only.

The master node keeps track of the robot’s current mode by storing it in a class variable.
Since the robot acts on commands from the VR headset, which can theoretically send any
type of command at any time, the robot is programmed to ignore commands that are not
appropriate for its current mode. For example, in Idle mode, the robot will ignore both
drive and arm commands.

Figure 4.38: Validating commands based on mode

This functionality is implemented in the master node using a function decorator to ensure
that the mode matches the expected one.

def matches_mode_and_not_emergency(mode: Mode):

def decorator(func):

def wrapper(self, msg):

if self.mode == Mode.EMERGENCY:

print("In emergency mode, aborting...")

return

if mode != self.mode:

print("Mode mismatch, aborting...")

90

KROMIUM 4.3 ROBOT

return

return func(self, msg)

return wrapper

return decorator

class Master(Node):

...

@matches_mode_and_not_emergency(Mode.DRIVE)

def handle_untrusted_vr_drive(self, msg) -> None:

code will only run if not in emergency mode

AND in drive mode

...

If the mode does not match the expected mode, the method will terminate prematurely,
making the method call ineffective. For instance, this prevents the robotic arm from
being controlled while in drive mode. This works because the VR linker node publishes
messages to an “untrusted” topic, a concept based on naming conventions where untrusted
topics start with an underscore.

_vr_arm (untrusted)

vr_arm (trusted)

Other nodes listen only to “trusted” topics, and the master node only publishes to the
trusted topic if the mode matches.
Building code documentation directly from this code can lead to issues, as discussed in
O.19. Unit tests for this functionality are detailed in 7.5.2.

Additionally, a function was implemented to make the robot beep if it had not received
a command in the last five seconds. This helps indicate whether the VR application is
sending commands or if there is a mode mismatch. However, the robot also sends its
current mode, as explained in 4.3.10.

4.3.7 Changing modes OM | AD

When switching between different modes, certain actions are triggered to minimize colli-
sions and maximize the camera view for the application.

Switching camera In most modes, the drive camera is used. However, in arm mode
and when reversing (see 4.6.6), the arm camera is used. This ensures that the operator has
optimal control. When switching between cameras, the video stream will momentarily
freeze for the VR operator.

91

KROMIUM 4.3 ROBOT

Figure 4.39: Drive camera view

(a) Unpinched (b) Pinched

Figure 4.40: Arm camera view with end effector indication

In the arm mode, a red dot is displayed to indicate the position of the end effector, helping
the operator understand where an object will be pinched and making arm control easier.
The process of determining this point is explained in Section O.11.

Predefined arm movements When switching between the drive and arm modes, the
robotic arm is moved. Since there is no requirement to drive and control the arm simul-
taneously, the arm is positioned away and under the camera when driving. This ensures
that the camera view is not obstructed and reduces the risk of damaging the arm in case

92

KROMIUM 4.3 ROBOT

of a collision.

When in drive mode, the arm is placed under the camera. In arm mode, the arm is po-
sitioned in front. Due to a problem with obtaining the angle of servo 2 (see 4.49), it is
always assumed that the arm is under the camera to avoid collisions. This precaution is
also applied when rebooting the robot; if the robot is shut down with the arm under the
camera, it will not collide upon restarting. Additionally, the robotic arm only moves if
the mode changes, preventing unnecessary movements if the VR operator re-sends the
current mode.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.41: Predefined arm movement when switching from drive to arm

This sequence of movements also occurs when switching from arm to drive mode but in
reverse order.

4.3.8 Driving the robot OM | SO

The robot is equipped with mecanum wheels, allowing it to move in various directions.
To provide the operator with optimal control for different scenarios, three drive modes
have been implemented.

93

KROMIUM 4.3 ROBOT

Figure 4.42: Normal drive mode

Normal In the normal drive mode, the robot behaves like a typical car. It can drive
forward, turn right, turn left, and stop. This is the default driving mode because it is the
most intuitive. The robot’s speed depends on the distance of the operator’s hand from a
specified point. For example, if the hand is all the way to the left, the robot will turn left
as quickly as possible. This allows for both fast and slow driving, providing more precise
control. The VR operator’s point of view is from the normal forward-facing drive camera.

Figure 4.43: Precision drive mode

Precision In precision mode, the robot can move north, south, east, west, northwest,
northeast, southwest, and southeast, and it can also stop. The speed is predefined to be
40% of the highest speed, which is relatively slow. This mode allows the operator to drive
with high precision, ideal for navigating close to areas where arm operations will take
place. The VR operator’s point of view remains the forward-facing camera, similar to
normal mode.

Figure 4.44: Reverse drive mode

94

KROMIUM 4.3 ROBOT

Reverse In reverse mode, the controls are similar to those in normal mode, but the actual
directions are inverted. When the operator’s hand is in the forward box, the robot drives
backward. The same inversion applies to turning left and right; for instance, if the hand is
forward left, the robot drives backwards right (from an overhead perspective). This mode
is akin to reversing a real car. In reverse mode, the VR operator’s camera feed switches
to the arm camera, which faces backward acting as a reversing camera (see 4.6.6).

4.3.9 Logging functionality OM | AD

The logger node subscribes to all topics considered important for logging.

Figure 4.45: Logger node topic subscriptions

The logging is used solely for debugging purposes, allowing the review of data and be-
havior during or after testing. By retracing the logs, it is possible to identify when and
where issues occurred and potentially understand why. These logs are saved to a local
.log file on the robot, which can be accessed remotely via SSH. Additionally, backup
logging is also implemented, as discussed in 4.6.7. An excerpt from one log file is shown
below.

15/05/2024 19:27:45.734 - [CRITICAL]: Socket connection to VR closed.

15/05/2024 19:27:47.667 - [INFO]: Using settings is_production=Tru...

15/05/2024 19:27:54.814 - [DEBUG]: topic='arm_angles': rotation=90...

15/05/2024 19:27:54.815 - [DEBUG]: topic='robot_data': x=0.0239257...

All logs begin with the timestamp and severity level, followed by the topic received and
the message contents.

4.3.10 Sending of robot data & status OM | AD

The robot sends feedback data to the VR operator, including information such as the
robot’s current mode, battery voltage, speed, and more. This data is transmitted using the
TCP socket in the VR linker node. The structure of the transmitted data is shown below.

{

"type": "robot_data",

"accelerometer": [0.03, -0.02, 9.81],

"gyroscope": [0.5, -0.3, 0.1],

"magnetometer": [30, -40, 50],

"motion": [4, 2, 3],

95

KROMIUM 4.3 ROBOT

"speed": 100,

"cms_speed": 80.0,

"voltage": 12.6,

"battery_percent": 100,

"mode": "drive"

}

This data is retrieved from the expansion board. Values such as battery_percent and
cms_speed are estimated calculations. While not all of the data sent to the VR headset is
utilized, the option to use it is available.

Battery percentage estimation It was assumed that at 12.6V the battery is fully charged
(100%), and the robot stops if the battery drops below 9.6V (0%) [84]. Assuming a linear
relationship between voltage and battery percentage, the graph shown below was derived.
There was no requirement for an accurate battery estimation.

Figure 4.46: Linear battery estimation plot

The equation shown below was used for estimating the battery percentage:

Percentage(voltage) :=
voltage−9.6

12.6−9.6
·100% (4.1)

Before physically testing the Python functionality using the expansion board, unit testing
was conducted using the code presented in 7.5.3.

Speed estimation When retrieving the speed from the expansion board, only a percentage
is returned, ranging from 0 to 100. The speed of the robot was physically measured, as
detailed in O.9, and estimated to be:

96

KROMIUM 4.4 ROBOTIC ARM

Percentage Velocity (cm/s)
0 0

50 34.72
100 80

Table 4.2: Velocity at percentages

The calculations were done using centimeters per second (cm/s) rather than the more
common meters per second (m/s) or kilometers per hour (km/h) units due to the small
values involved. The system appeared more responsive when there were larger differences
in speed changes.

Figure 4.47: GeoGebra linear estimation of the speed

Speed(percentage) := 0.8 · percentage−1.76 (4.2)

Due to the output being negative for smaller values, the output is clamped in the Python
code.

4.4 Robotic arm OM | AD

The robotic arm is attached to the robot and can execute tasks such as turning a valve
or pressing a button. It is controlled by a VR operator through hand movements. Each
time the operator moves their hand, a new coordinate is transmitted to the robot. This
coordinate is used to determine and move the arm to the specified location. While there
are no precision requirements (see C), there are constraints on the weight and size the arm
can lift, as well as maximum latency requirements.

4.4.1 Arm movement concept OM | AD

The robotic arm is manipulated by the VR operator’s hand in VR space. The arm consists
of six servos, each requiring a specific angle to provide the operator with sufficient control.

97

KROMIUM 4.4 ROBOTIC ARM

Figure 4.48: Kinematics black box

The coordinate point provided by the VR application represents an absolute point in VR
space. This point must be interpreted to correspond to a coordinate in the robot’s space.

4.4.2 Servo and arm limitations OM | AEH

Figure 4.49: Robotic Arm Servo Limitations [5]

The robotic arm includes six servos, each of which is software-limited to a movement
range of 180 degrees, except for servo 5, which can rotate 270 degrees. Servo 5 specifi-
cally controls the rotation of the pinching segment around its own axis. Servos 2, 3 and 4
can be considered a three revolute (3R) planar manipulator.

4.4.3 End effector placement and arm dimensions OM | AD

To ensure correct angle calculations, a reference point, known as the end effector, is
crucial. The placement of this point significantly influences the arm’s behavior.

98

KROMIUM 4.4 ROBOTIC ARM

Figure 4.50: End-effector placement

When the arm’s “fingers” pinch, the “fingertips” move forward. Therefore, the end ef-
fector point is positioned at the tip of the pinching mechanism when it is closed. This
placement ensures that the other segments of the arm do not need to retract when pinch-
ing an object. This end effector point remains fixed, regardless of whether the pinching
mechanism is closed or not. Additionally, accurate measurements of the arm’s links are
essential for determining the servo angles.

Figure 4.51: Lengths of each arm link

Measurements were taken using a ruler and are approximate. Arm links one and two each
measure 8.4 cm from joint to joint. The third and final arm link is 19 cm long from the

99

KROMIUM 4.4 ROBOTIC ARM

joint to the chosen end effector point. The total arm length is 35.8 cm, representing its
maximum reach.

4.4.4 Deciding on an arm manipulation method OM | AD

Determining the angles for each servo introduces complexity, as adjusting one servo’s
angle subsequently affects the angle of the next servo. Additionally, there may be multiple
valid angle configurations for the same point.

(a) Elbow up configuration (b) Elbow down configuration

Figure 4.52: Two valid arm configurations in the same point

There are different methods to determine arm angles. Some of these methods are outlined
below.

Forward kinematics “is used to calculate the position and orientation of the end effector
when given a kinematic chain with multiple degrees of freedom” [85]. In other words,
this is the opposite of what we want, as the goal is to determine the angles from a point,
not to calculate a point from the given angles.

Inverse kinematics “is a method of solving the joint variables when the end-effector po-
sition and orientation (relative to the base frame) of a serial chain manipulator and all the
geometric link parameters are known” [86].

Using a framework MoveIt is to our knowledge the most popular and widely used
robotics manipulation framework. MoveIt is described as “an open source robotics ma-
nipulation framework for developing new applications, prototyping designs, and bench-
marking algorithms” [87]. It is used by agencies and corporations such as NASA, Google,
and Microsoft [88], and “have received funding from the European Union’s Horizon 2020
research and innovation programme” [89]. Implementations are available for both ROS 1
and ROS 2.

Initially, it was thought that the optimal and easiest way to handle arm movements was
to use the MoveIt framework. However, attempts to implement this framework led to
issues discussed in 9.2.6. Consequently, the group decided to take on the challenge of

100

KROMIUM 4.4 ROBOTIC ARM

implementing inverse kinematics ourselves, which provided the added benefit of greater
control and a more challenging development process.

4.4.5 Inverse kinematics AD | OM

Figure 4.53: 3R Arm

Kinematics for the 3R planar manipulator involves identifying the desired end position or
the joint angles. To explain how this is done, one needs to understand forward kinematics.

As seen in the figure 4.53, the servos 2, 3, and 4 in our robotic arm are considered the
three joints J1, J2, J3 respectively, and the distance between them have been referred to as
L1, L2, and L3, where the L stands for link. The end position coordinates of the arm in the
X-Y plane are denoted as (xe,ye) and the angle φ is the end orientation of the end effector
compared to the start point of our arm. Lastly, the joint angles are denoted as θ1, θ2, and
θ3. The end position of the end effector is calculated by calculating the coordinates of the
three joints.
The coordinates of J1 is (0,0). The position of J2 is calculated with the help of trigonom-
etry. If we take the right-angled triangle formed using point A, J1 and (x2,y2) as vertices,
we can state that :

cos(θ1) =
x2

L1

from which we can calculate x2:

x2 = L1 · cos(θ1) (4.3)

Similarly, by using the sin(θ1) we can calculate y2:

y2 = L1 · sin(θ1) (4.4)

Finding (x3,y3) involves a bit more trigonometry because it depends on the angles and
lengths of both the first and second segments of the arm. This is because looking at the
figure 4.53, we can see that point B, J2 and J3 can all create a right-angled triangle. The
angle ∠BJ2J3 is the summation of θ1 and θ2(△BJ2C is a triangle similar to △AJ1x2). We

101

KROMIUM 4.4 ROBOTIC ARM

use this to calculate x3 and y3:

cos(θ1 +θ2) =
x3 − x2

L2

⇒ x3 = cos(θ1 +θ2) ·L2 + x2

y3 = sin(θ1 +θ2) ·L2 + y2

(4.5)

Replacing the values of x2 and y2 from the equations 4.3 and 4.4, we have:

x3 = L2 · cos(θ1 +θ2)+L1 · cos(θ1) (4.6)

y3 = L2 · sin(θ1 +θ2)+L1 · sin(θ1) (4.7)

Using the same method, we can find (xe,ye):

xe = L3 · cos(θ1 +θ2 +θ3)+L2 · cos(θ1 +θ2)+L1 · cos(θ1)

ye = L3 · sin(θ1 +θ2 +θ3)+L2 · sin(θ1 +θ2)+L1 · sin(θ1)
(4.8)

Each joint rotation affects the overall orientation of the end effector. The total orientation
φ is therefore the sum of the individual joint angles.

φ = θ1 +θ2 +θ3 (4.9)

Here are the final equations for finding (xe,ye), using equation 4.9:

xe = L3 · cos(φ)+L2 · cos(θ1 +θ2)+L1 · cos(θ1)

⇒ xe = L3 · cos(φ)+ x3

(4.10)

ye = L3 · sin(φ)+L2 · sin(θ1 +θ2)+L1 · sin(θ1)

⇒ ye = L3 · sin(φ)+ y3

(4.11)

Figure 4.54: inverse kinematics - 3 DOF robotic arm

102

KROMIUM 4.4 ROBOTIC ARM

The principles of inverse kinematics can now be explored. Here we are given (xe,ye) and
φ , and the motive is to find θ1, θ2, and θ3. Initially, from (xe,ye), we can find (x3,y3) with
the help of equation 4.10 and 4.11:

x3 = xe −L3 · cos(φ)

y3 = ye −L3 · sin(φ)

It is important to note that there are two possible configurations that an arm could be in
to reach a given end position- “elbow-up” or “elbow-down”. These terms describe the
position of the manipulator’s elbow joint (J2) relative to the rest of the arm when reaching
out for the specified end position. “Elbow-up” configuration refers to the position where
the elbow joint is above the line drawn between the base and the end effector whereas
“elbow-down” is where the elbow joint is below the line drawn between the base and the
end effector [90]. Therefore we will get two sets of possible angles for the joints. We use
the notation θ a

1 , θ a
2 , and θ a

3 for “elbow-down” angles and θ b
1 , θ b

2 , and θ b
3 for “elbow-up”

angles.
To mathematically determine the joint angles, we introduce two auxiliary angles, α and β ,
which represent angles within the triangle formed by the links L1,L2 and the line segment
C formed by x1,y1 and x3,y3 as shown in figure 4.54. The length of C is calculated by
using the Pythagorean theorem.

C =
√

x2
3 + y2

3

We find α and β by using the law of cosines, and the law of sines [91].

cosα =
L2

1 +L2
2 −C2

2 ·L1 ·L2

α = cos−1 (
L2

1 +L2
2 −C2

2 ·L1 ·L2
)

sinβ =
L2 · sinα

C

β = sin−1 (
L2 · sinα

C
)

(4.12)

Looking at the figure 4.54, we can see that:

α = π −θ
a
2

⇒ θ
a
2 = π −α

(4.13)

As θ b
2 is measured in the direction of the L2’s movement from the straight-line extension

L2, its value can calculated in this way:

θ
b
2 =−(π −α) (4.14)

103

KROMIUM 4.4 ROBOTIC ARM

To find θ a
1 and θ b

1 , we can look at the triangle formed by x3,y3 and C in figure 4.54.

tan(β +θ a
1) =

y3

x3

⇒ θ a
1 = tan−1 (

y3

x3
)−β

Similarly, θ b
1 = tan−1 (

y3

x3
)+β

(4.15)

Finally, θ a
3 and θ b

3 can be calculated. As we know from equation 4.9, all the three angles
are equal to φ , so we just solve for θ a

3 and θ b
3 .

θ a
3 = φ −θ a

1 −θ a
2

θ b
3 = φ −θ b

1 −θ b
2

(4.16)

4.4.6 Implementation OM | AD

The inverse kinematics are implemented in Python using the numpy package. For details
on the initial implementation presented in our second presentation, see J.7.4. The entire
implementation is available on our GitHub repository [92].

Inputs & outputs When the operator moves their hand in VR space, the robot receives
data as shown in the example below.

(a) Operator’s coordinate space

{

"x": 0.0000,

"y": 0.2000,

"z": 0.9500,

"strength": 0.4113

}

(b) JSON data received

Figure 4.55: VR operator’s hand and corresponding JSON data received

In this data, x and z range from [−1,1], while y and strength are in the interval [0,1].
The x, y, and z values represent the coordinates of the operator’s hand in VR space, and
strength indicates how strongly the operator is pinching their fingers, with 0 meaning the
fingers are far apart and 1 meaning the fingers are touching. Based on this input, the
system should output an angle for each servo, resulting in six angles in total. The inverse
kinematics calculation requires three inputs and produces three outputs.

If we imagine that x affects only the rotation of the arm, the y and z values serve as two
of the three inputs for the inverse kinematics, corresponding to xe and ye, respectively.

104

KROMIUM 4.4 ROBOTIC ARM

The final input, φ , is explained later in this section. These inputs represent the desired y
position, z position, and “attack angle” of the arm with respect to the y-axis.

Figure 4.56: Coordinate system showing the YZ-plane with the point (0, 0.5, 0.5)

The y and z coordinates are converted to physical coordinates by multiplying the values
by the length of the arm.

y: 0.2000 * 35.8 = 7.16

z: 0.9500 * 35.8 = 34.01

Since the length of the arm is defined in centimetres, the coordinates are now also speci-
fied in centimetres. This conversion simplifies working with the coordinates and defining
safety limits (see 4.6.9). The three outputs θ1, θ2, and θ3 correspond to servos 2, 3, and
4, respectively (see 4.53).

Rotating the arm The rotation of the arm is determined by the x value, which has to fall
within the interval [0, 180]. This calculation is performed prior to any inverse kinematics
operations to ensure responsive arm movement. However, it is important to note that
there are many points that the arm cannot reach, which will be explained later. Since the
x coordinate ranges from -1 to 1, it needs to be converted to degrees. The conversion
process is illustrated below:

105

KROMIUM 4.4 ROBOTIC ARM

Figure 4.57: Angles related to X value

This conversion can be implemented in Python using either of the following methods:

abs(-90 * x - 90)

or

np.rad2deg(np.pi - np.arccos(x))

The two implementations yield slightly different results, as shown in the plots below:

(a) Not using arccos (b) Using arccos

Figure 4.58: Precision differences in x to angle calculation

The linear option was chosen as the better fit because the x coordinate received is precise.
This choice leads to greater precision at the extrema angles (close to 0 and 180).

Calculating the attack angle Due to the lack of a reliable method for extracting the an-
gle of the hand in the VR space, the φ angle is calculated solely based on the Z-coordinate
(height) of the operator’s hand. The φ value is determined according to the plot below.

106

KROMIUM 4.4 ROBOTIC ARM

Figure 4.59: φ function based on Z-coordinate

This mapping can be interpreted as follows: the lower the Z-value, the more the end effec-
tor points towards the ground (down to -90 degrees relative to the Y-axis). The higher the
Z-value, the more the end effector points towards the sky (up to 90 degrees relative to the
Y-axis). When the Z-value is between these extrema, the end effector points horizontally
forward (0 degrees relative to the Y-axis).

The reasoning behind this is practical: if the arm needs to reach something on the ground
(low Z-value), the end effector should point downwards to see the object and grasp it from
above. Conversely, for a higher Z-value, the end effector should point upwards. For most
interactions, the end effector will point forward, making it easier to handle objects that
require rotation.

Calculating the θs The calculation of the three theta angles relies solely on the y and
z values, along with the previously calculated phi angle. The output of these calculations
varies based on arm configuration and can fall into one of several cases:

• Mathematically impossible with real numbers

• Physically impossible

• Impossible due to servo limitations

• Possible

Each case must be accounted for and handled. Additionally, two extra cases are checked:
whether the robot is fastening or if the end effector point is illegal, as elaborated in 4.6.5
and 4.6.9.

After obtaining the φ angle, a partial point is calculated to determine the correct end
effector position:

partial_point_y = y - LINK_THREE_LENGTH * np.cos(phi)

partial_point_z = z - LINK_THREE_LENGTH * np.sin(phi)

107

KROMIUM 4.4 ROBOTIC ARM

Using these values, the elbow-up configuration can be computed:

elbow_up_degrees = calculate_elbow_up_degrees(

partial_point_y, partial_point_z, phi

)

if not any_nan(elbow_up_degrees) and not out_of_range(elbow_up_degrees):

return elbow_up_degrees

Only if the calculation is impossible will the elbow-down configuration be computed, this
is due to how the arm is designed and mounted on the robot. Both configurations are
calculated to optimize the number of possible points, considering that there are already
many impossible points due to the arm’s design.

Figure 4.60: Elbow down is illegal for this point

If neither configuration yields feasible angles, (None, None, None) is returned, indi-
cating that the arm will not move and will wait for the next hand coordinate. Conversely,
if feasible angles are found, they must be converted to match the values expected by the
servos.

Converting the angles Two of the three θ angles cannot be directly set to the servos
because their values fall outside the expected range. The servos expect positive integers
within [0, 180], while the output from the calculation yields ±90 angles as float values.
However, θ1 can be converted to an integer and set directly to the servo as it falls within
the interval due to its relation to the y-axis.

For θ2 and θ3 angles, 90 degrees need to be added to the output, and then the result is
converted to a whole number.

Pinching The servo angle of the pinching mechanism is determined by the strength
value received from the VR application, which varies within [0, 1]. Calculating the angle
is straightforward:

int(strength * 180)

108

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

However, this particular servo tends to malfunction if the angle is less than 45 degrees,
even though 0 is technically an allowed angle. To prevent damage of the servo, the angle
is clamped within the [45, 180] interval.

4.4.7 Simulation SO | OM

To visualize and test the inverse kinematics code, we developed a Python script using the
matplotlib library. This script visualizes the output from the inverse kinematics calcula-
tions, which determine the angles for joints 1, 2, and 3 based on given (y, z) coordinate.
The resulting angles are then fed into the simulation to ensure that the robot’s end-effector
moves accurately to the specified (y, z) points.

Figure 4.61a shows the simulation result for point p(0, 30), and Figure 4.61b for point
p(-9, 30). We conducted the simulation with several (y, z) coordinates and animated the
sequence to demonstrate the robot arm’s response to each set of test angles.

(a) Simulation at point: p(0, 30) (b) Simulation at point: p(-9, 30)

Figure 4.61: Simulation of arm angles in Python

4.5 Artificial Intelligence: Object Detection AD | OM

Object detection is one of the most useful and practical applications of AI. It is a difficult
technique as one needs to do two things: classify the object from an image and localise it,
i.e., determine exactly where the object is in the image. Figure 4.62 shows a simple black
box of this process.

Figure 4.62: Object detection black-box

109

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.63: High-level representation of AI detection in the system

Figure 4.63 illustrates how the AI module interacts with the broader system. The ROS
node responsible for AI detection receives one frame at a time, from either the car camera
(when in “Drive” mode) or the arm camera (when in “Arm” mode). This frame is anal-
ysed through object detection models, which return an annotated frame with the detected
objects and their locations. In addition, information about the object is extracted from a
database and added to the frame (see 4.6.14). This frame is then sent to the VR applica-
tion (see 4.3.4).

To implement object detection in our project, a thorough understanding of how the tech-
nology works is required. Therefore, this subsection deals with how it is integrated into
the system, the explanation of neural networks which are the building bones of a detec-
tion model, types of object detectors, our implementation, and the database connection to
display information about the detected objects of interest. To see the early iterations of
how the object detection model was made and tested, see Appendix M.

4.5.1 Neural networks AD | OM

Object detection employs supervised learning as referred to in 1.3.3. One of the algo-
rithms typically used in this technology is called artificial neural networks (ANN). Di-
rected links connect the nodes in the neural network. Every node receives a form of
activation from the nodes it is connected to and each link has a weight that influences
how strong or weak the activation passed from one node to another is. The function that
processes the sum of the inputs is called an activation function. It decides how a node
should react to the sum of its inputs [6, p. 751]. If a node n outputs a value an, and the
weight between n and another node m is denoted by wn,m, then we have the equation:

an = gn(Σmwn,m ·am) (4.17)

where gn is the activation function [6, p. 752].
Another feature of a network is a bias. A bias represents the relevance of a node [93].
A bias term, often denoted as w0,n for node n, allows the network to adjust the activation
of a node independently of its inputs. Equation 4.18 is the updated representation of the
output value an for a node n with a bias bn:

an = gn(Σmwn,m ·am)+w0,n (4.18)

110

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.64: A simple neural network with two inputs (the boxes), one hidden layer of
two units and two outputs (circle 5) [6, p. 804]

An elementary neural network can be seen in figure 4.64. The network in Figure 4.64
has two input layers, two hidden layers and one output layer. Hidden layers are the
intermediary stages between a neural network’s input and output layers. The depth of a
network refers to the number of hidden layers it contains, whilst the width refers to the
number of neurons or nodes in each hidden layer. A network with multiple hidden layers
is called a deep neural network [94]. The activation function allows neural networks to
make complex decisions because they are nonlinear. The output one tries to predict does
not change linearly with the inputs. Therefore the activation functions are important to
neural networks [6, p. 803]. An example of an activation function is the Rectified Linear
Unit (ReLU) function which interprets the positive part of its argument:

ReLU(x) = max(0,x) (4.19)

An expression of the output ŷ that 5 produces can be expressed as follows:

ŷ = g5(w0,5 +w3,5a3 +w4,5a4) (4.20)
⇒ g5(w0,5 +w3,5g3(w0,3 +w1,31+w2,32)+w4,5g4(w0,4 +w1,41+w2,42) (4.21)

4.5.2 Loss functions and gradient descent AD | OM

After the Artificial Neural Networks (ANNs) have been formed, we need to train it so
that it can learn to perform the task it has been designed for. The training process also
allows the ANN to discover patterns and relationships in the data. When we start training
the network, the weights wi are all randomized. The key to this learning process lies in
adjusting the network’s weights so that its predictions closely match the known “correct”
and labelled data. This is where loss functions and the method of gradient descent are
used.
The loss function is a formula that quantifies the difference between the network’s predic-
tions and the actual target values [95]. Many loss functions are used in training an ANN.
An example of a loss function is the Cross-Entropy Loss or Categorical Cross Entropy
Loss. If we assume that we have a set of data for which the target value for a point is y,
and the output value produced by the network is ŷ, then cross-entropy loss states:

L =−y · log(ŷ) (4.22)

111

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

And the combined loss function for the whole network:

TotalL =
N

∑
i=1

−yi · log ŷi (4.23)

where N is the total number of data points [96].

The goal is to minimize this loss function as much as possible. This is achieved through
gradient descent, an optimization algorithm that iteratively adjusts the weights of the
neural network to move towards the minimum of the loss function [97]. Each adjustment
step is scaled by a learning rate, which controls the magnitude of the change. The learn-
ing rate can be decided when designing the network. To calculate the gradient of the loss
concerning the weights, we need to use the chain rule as seen in equation 4.24 [6, p. 805].

δg(f (x))
δx

= g′(f (x))
δ f (x)

δx
(4.24)

δ

δw4,5
L =

δ ŷ
δw4,5

·L′

The calculations in 4.25 show us the gradient of how the loss function will change if
we change w4,5 from the neural network in Figure 4.64. The notation ∆5 is equal to
L′ · g′5(in5) · a4, to represent the “perceived error” in an easier way. If ∆5 is negative,
that means we need to increase w4,5 to reduce the loss. The product ∆5 · a4 gives us
the direction and the magnitude of the weight adjustment for w4,5. a4 acts as a scaling
factor for the gradient. If a4 is big, then the gradient contribution from w4,5 is significant,
emphasizing that larger activations magnify the impact of changes in weights. The bias is
also a parameter that is learnt along with the weights [93].

=
L′

δw4,5
·δ (g5(in5)) (4.25)

=
L′ ·g′5(in5)

δw4,5
·δ (w0,5 +a3w3,5 +a4w4,5) (4.26)

= L′ ·g′5(in5) ·a4 ⇒ ∆5 ·a4 (4.27)

If we follow the same calculation logic from equations in 4.25 to calculate ∆3, then we
see that it is:

∆3 = ∆5 ·w3,5 ·g′3(in3)

We observe that the “error” from 5 is passed backwards. This is why this process is
called back-propagation for the way that the error at the output is passed back through
the network [6, p. 806]. By iteratively adjusting the weights of the network based on
the calculated gradients, the network is pushed towards minimizing the loss function and
making more accurate predictions. The back-propagation algorithm enables the efficient
computation of these gradients, propagating error information backwards through the net-
work’s layers.
While the fundamental principles outlined above provide a solid foundation, it is im-
portant to note that numerous advanced optimizations and variations of gradient descent
exist. For those seeking a deeper understanding, Chapter 19 of “Artificial Intelligence: A
Modern Approach” offers an extensive exploration of this topic [6, p. 669].
There are many types of ANNs. The type of ANN that is most relevant to our project, and
the one that is most used in object detection is called CNN, which is explained in 4.5.3.

112

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

4.5.3 Convolutional Neural Networks AD | OM

Several key parameters must be considered when choosing an ANN for analyzing images
and detecting objects. An important aspect to consider when analyzing an image is that it
cannot be treated as a mere vector of pixel values for input due to the significance of pixel
adjacency in making accurate predictions. For example, let us take a picture of a dog and
observe the area depicting its eyes. That area is not just a collection of random pixels but
an arrangement where each pixel is contextually linked to the pixels around it. Another
important feature of images is that the same features can be present in several parts of the
image. Continuing with the example of a dog, the eyes appear in different parts of the
picture but the network should still be able to recognize them as eyes. This is known as
translation/spatial invariance [6, p. 811].

So how does one tackle this when we want to recognize objects in an image or classify an
image? That is where we use an ANN called CNN which is a deep network that learns
features, such as an eye with the help of kernels/filters that systematically traverse the
entire image. A filter is just a pattern of weights (represented as a matrix of weights)
repeated across multiple regions and each filter has a bias [6, p. 811]. This solves the
spatial invariance problem as the filter is applied to the whole image and also solves the
issue of pixel adjacency as the filter is applied to a small, local region of an image at a
time. The process of applying filters to an image is called convolution, hence the name
of CNN [6, p. 811]. These characteristics make CNNs very powerful for tasks like object
detection, where understanding visual patterns is essential.

4.5.4 How convolution works AD | SO

We can try to understand the process of convolution with an example. As a filter slides
over an image, it computes the dot product between the filter and the local regions of the
input, creating a feature map called the output. An image is a matrix of pixels. Let us
assume that the image is black-and-white and a simple 5 x 5 matrix where each entry in
the matrix represents the intensity of a pixel, where values typically range from 0 (black)
to 255 (white). Let us also have a 3 x 3 matrix filter that contains randomized weights at
the start.
The first local region of the image corresponds to the top-left 3 x 3 segment of the image
matrix. This is then multiplied with the filter matrix. The region is then shifted right and
multiplied by the filter matrix again. When at the end of the row the region starts at the
next row and the same steps are followed. The result of the finished multiplication is a
feature map of dimension 3 x 3 [96]. The first two steps of the convolution process are
shown in 4.65.

113

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Image Matrix(I) =

0 0 0 0 0
0 10 7 15 0
0 9 14 8 0
0 12 17 5 0
0 0 0 0 0

Filter Matrix(F) =

−1 −1 −1
−1 8 −1
−1 −1 −1

⇒

0 0 0
0 10 7
0 9 14

 ·

−1 −1 −1
−1 8 −1
−1 −1 −1

=

50

(a) First convolution step

I =

0 0 0 0 0
0 10 7 15 0
0 9 14 8 0
0 12 17 5 0
0 0 0 0 0

F =

−1 −1 −1
−1 8 −1
−1 −1 −1

⇒

 0 0 0
10 7 15
9 14 8

 ·

−1 −1 −1
−1 8 −1
−1 −1 −1

=

50 0

(b) Second convolution step

Figure 4.65: Convolution example with 2 steps

This example shows how the process is done for a grey-scale image. Colour images are
different as they have three matrices (often referred to as channels) representing the Red
Green Blue (RGB) components of the image. For colour images, a filter is applied to each
matrix independently. The filter matrix for colour images thus has the dimensions of h x
w x 3, where h and w are the height and width of the network respectively. Each matrix’s
results are combined to produce a single two-dimensional feature map [96].

4.5.5 Architectural components of data transformation in CNNs AD | OM

In the realm of CNNs various architectural components play important roles in transform-
ing input data into desirable outputs. These components systematically modify the input
image to preserve important features while reducing dimensionality or adjusting the focus
to specific traits of the input. Listed below are some of the components.

114

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Padding: A process of adding layers of zeroes or other values outside the input matrix.
The main purpose is to ensure that the feature map also has the same size as the original
input matrix [96]. Figure 4.66 shows an example of padding.

(I) without padding =

1 1 1
1 1 1
1 1 1

(I) with padding layer of zeroes =

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

Figure 4.66: Padding example

Stride: A parameter that determines the way that the filter moves across the image. The
stride determines how many units the filter shifts at each step. So a stride of two moves
the filter two regions at a time [96].

Pooling: Pooling is the process of summarizing a set of adjacent values with a single
value. This operation is fixed, not learned. One way of pooling is called average pooling
(Figure 4.67), where the statistical mean is taken from all the inputs [6, p. 813].

Figure 4.67: Example of average pooling from 4 adjacent values

Fully connected layers: Fully connected means that all nodes in one layer are connected
to the outputs of the next layer. This layer is where the input matrix is flattened to create
a single vector which is the input for the next layer [96].

115

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.68: Fully connected layer

Softmax: The layer where decimal probabilities to each class are assigned. If one has
several classes in their network, this process assigns probabilities to each class, which all
need to add up to 1.0. Equation 4.28 shows the equation of the softmax:

Softmax(zi) =
ezi

∑
K
j=1 ez j

(4.28)

where zi is the probability for a particular score i, z is the matrix containing the raw output
scores for each class from the fully connected layer, K is the total number of classes in
the network, and e is the base of the natural logarithm. The denominator represents the
summation of the exponentials of all the output scores to normalize the probability value
[98].

4.5.6 Putting together a simple CNN AD | OM

Figure 4.69: A simple CNN

Figure 4.69 illustrates the architecture of a very simple CNN. The formula to calculate
the dimensions of a feature map:

(n×n)∗ (f × f) = (
n+2p− f

s
+1)× (

n+2p− f
s

+1) (4.29)

116

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

where n is the size of the input, f is the size of the feature map, p is the padding size, and
s is the stride size. We input a grey-scale image with dimensions 50 x 50 x 1 and apply
a series of 32 filters with size 3 x 3, which creates a feature map with size 48 x 48 x 32.
After each convolutional layer, the activation function ReLU is used.
The second convolution layer uses 64 filters with dimensions 3 x 3, resulting in a feature
map of 46 x 46 x 64. It is average pooled using 64 2 x 2 filters, flattened into a single
vector of size 33,856. This serves as input to a fully connected layer of 128 nodes. Lastly,
the softmax function converts the output to probability nodes based on the number of
predefined classes.
This is a very simple CNN. Modern CNNs used in object detection have multiple hidden
layers and use different ways of convolution, which is explained in 4.5.8.

4.5.7 Transfer learning AD | OM

Building an accurate CNN requires a huge amount of data. It also takes a long time when
one starts from random data to make the filters detect edges, patterns, features, etc. There-
fore in practice, it is rare to build an entire CNN from scratch. Instead, it is common to
use an already trained network that has been trained on a very large dataset.
Training large-scale networks on expansive image datasets such as the Common Objects
in Context (COCO) dataset often necessitates weeks-long computational efforts. This
dataset comprises 80 distinct object classes and encompasses a training corpus of approx-
imately 330,000 images [99]. A network that has been trained on that much data would
have useful filters such as edge detectors, pattern detectors, etc. that can be applied to
other image domains. For example, a network trained to detect apples and oranges can
be used to detect other similar fruits. This entire concept is called Transfer Learning,
and the network we build on top of is called a pre-trained or base model [96]. The word
model is a term that encompasses the entire system designed to detect objects [100]. It
is where we use pre-trained models in other domains to achieve faster training times and
great accuracy.

There are two major types of transfer learning, feature extraction and fine-tuning. Both
are quite similar, however, the transfer learning pipeline provided by the framework that
was used in our project (explained in 4.5.12) uses fine-tuning. Fine-tuning involves mod-
ifying and retraining a pre-trained model to adapt it to a specific task. It involves adjusting
the parameters of the pre-trained model to fit the end task. The first few layers or the lower
layers of the pre-trained model are frozen, which means that it is not changed. This is be-
cause the lower layers of the CNN are the layers where it learns to detect edges, patterns,
blobs etc which is what we wish to retain. However, the top layers are where it learns the
specifics of the objects it is trained to detect which we update to suit our dataset. Figure
4.70 shows an example of what the frozen and trainable layers could look like when using
fine-tuning.

117

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.70: Frozen and trainable layers in Fine tuning

4.5.8 CNNs for edge devices AD | OM

Our project utilizes a RPi which is an edge device. If we want to deploy a custom-made
object detection model using transfer learning, we cannot use a CNN as described in
4.5.6 as they are computationally intensive [96]. A CNN whose architecture is designed
for edge devices needs to be used.
MobileNet Version 2 (V2) is a CNN whose architecture is designed for mobile and edge
devices. It builds upon the original MobileNet architecture [7]. It has special features
that make it suitable for usage in edge devices. To achieve this, MobileNetV2 introduces
several key architectural innovations, listed below.

A cornerstone of MobileNetV2’s efficiency is the use of depthwise separable convolu-
tions. This is a way to perform convolutions that greatly reduce the number of operations
that the network needs. It has two parts, depthwise and pointwise. Depthwise convolution
is a spatial convolution performed independently over each channel of an input, followed
by a pointwise convolution, which is a 1 x 1 convolution. Figure 4.71 shows the difference
between the standard convolution operation and depthwise separable convolution, taking
a simple 12 x 12 x 3 colour image as an example.

118

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

(a) Standard convolution

(b) Depthwise separable convolution

Figure 4.71: Standard Convolution vs. depthwise separable convolution

ReLU6 as activation function: MobileNet V2 uses ReLU6 as the activation function,
which modifies equation 4.19. The difference is that the maximum output of the function
is 6. The reason this is used is because of its robustness in low-precision settings [7].

ReLU6(x) = min(max(0,x),6) (4.30)

Linear Bottleneck layer: This is a layer of convolutional blocks where some of the
blocks do not use an activation function (recall that activation functions are used to in-
troduce non-linearity). This reduces the computational power needed by ensuring the
dimensionality of information flow within certain network layers remains relatively low.
Figure 4.72 shows the blocks in the linear bottleneck layer from the paper published intro-
ducing MobileNet V2 [7]. It can be observed that the blocks before and after depthwise
separable convolutions do not use ReLU6.

119

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.72: Bottleneck layer visualisation [7, p. 4]

Residual blocks: Another feature of MobileNet V2 is the incorporation of residual blocks.
When training a deep neural network, it can sometimes struggle to learn complex features
or even forget what it learned earlier. During back-propagation, the gradients that update
the weights can become progressively smaller, or exactly zero. This can make it extremely
difficult to adjust the weights in the early layers of the network. Therefore the model may
get stuck. This is known as the vanishing gradients problem [6, p. 756].
Residual blocks are used to solve this problem, as they create a shortcut/skip connection.
This connection allows the network to bypass one or more layers, enabling the gradient to
flow more directly through the network during training. As a result, residual blocks help
to mitigate the vanishing gradient problem and facilitate the training of deeper networks
[7]. Figure 4.73 shows an example of the residual block with a linear bottleneck on the
right side. It is a visualisation of the custom model created for the project, using an ap-
plication called Netron [101]. Note that the visualiser shows four dimensions n x h x w
x c, where n represents the number of images processed. The full visualisation of all the
convolutions and steps can be found in the Appendix S.

Figure 4.73: Residual block

Figure 4.74 represents the architecture of MobileNet V2. The first column represents

120

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

the dimensions of the input and the second is the different operations or layers in the
network. The third column shows the expansion factor t, which represents the number of
channels that are expanded in the layer before applying depthwise-separable convolution
and c denotes the number of output channels from each layer. n represents the number of
bottleneck layers that have been repeated, and s represents the stride.

Figure 4.74: Full MobileNet architecture [7]

4.5.9 Object detector CNNs AD | OM

(a) Faster R-CNN, a two-shot detector [50]

(b) MobileNet V2, a single-shot detector [102]

Figure 4.75: Example architectures of two-shot and single-shot detectors

As seen from the black box in Figure 4.62, we wish to input a frame and get the classifi-
cation and localisation of the object in the frame. The term used to denote the category of
an object is referred to as the label, while its spatial extent is known as a bounding box,
representing the object’s boundary. Additionally, the model provides a probability score
indicating its confidence level in the correctness of the classification [103].

121

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

There are two types of object detectors: single-shot and two-shot. A two-shot detector
does the localization first and then the classification. In contrast, a Single-Shot Detector
(SSD) does both simultaneously with one single CNN. This makes SSDs much faster than
two-shot detectors. They are however less accurate when using the models on powerful
hardware, but when it comes to deploying these detectors on edge devices, SSDs outper-
forms the two-shot detectors [104]. Therefore, our group decided to use SSDs for our
project, namely MobileNet V2.

4.5.10 Loss functions in object detectors AD | OM

Since object detection is divided into two predictions, namely classification and localisa-
tion, it is natural to think that there are two loss functions [105]. Usually, for localisation,
the median absolute error (or L1 loss) function is used [95], and for classification, the fo-
cal loss is used [8] [106]. Focal loss is used because for long SSDs had a problem of class
imbalance, which is a problem where the number of background examples (or negative
examples) significantly outweighs the number of foreground examples (or positive exam-
ples) in the training dataset [8, p. 1]. This happens especially if the positive examples are
small compared to the size of the image. To solve this issue, the focal loss function is used.

Median Absolute Error (MAE): This loss function calculates the average absolute dif-
ferences between predicted values and the actual target values. The formula is as follows:

MAE =
1
n
·Σn

i=1|ŷi − yi|[95] (4.31)

where n is total number of data points.
To understand focal loss, Binary Cross-Entropy Loss needs to be understood.

Binary Cross-Entropy Loss: This is an extension of the cross-entropy loss from equa-
tion 4.22. This loss function quantifies the difference between the predicted probabilities
generated by the model (ŷ) and the actual labels (y which is 0 or 1). Specifically, for each
data point, the binary cross-entropy loss is calculated as:

L =−y · log ŷ+(1− y) · log(1− ŷ) (4.32)

This loss function penalizes incorrect predictions, with the penalty being more severe for
predictions made with high confidence that turn out to be wrong. Focal loss builds on the
binary cross-entropy loss. It essentially tells the model to give more weight to learning
the wrongly classified examples.

FL(ŷ,y) =−α · (1− ŷt)
γ · (y · log ŷ+(1− y) · log(1− ŷ))[8, p. 3] (4.33)

where α is a weighting factor to balance positive/negative examples, γ is a focusing pa-
rameter that controls how much to down-weight of correctly classified examples and ŷt is
the adjusted probability; if y = 1, then ŷt = ŷ, if y = 0, then ŷt = 1− ŷt . If γ increases,
then the focus is more on learning the misclassified examples, and if α increases, the
model gives more weight to the positive examples. Figure 4.76 shows the loss concerning
the ground truth for different γ values. Notice that when γ is 0, the function is the binary
cross-entropy loss.
The pipeline that has been used in our implementation lists more loss functions that are
built on top of the above loss functions, for further reading see the implementation in
GitHub [106].

122

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.76: Binary Cross-entropy versus Focal Loss [8, p. 1]

4.5.11 Framework for object detection AD | SO

It is beneficial a framework to create an ML model. An AI framework, or a ML frame-
work is the building block that aids in creating, implementing, and deploying models.
They come with pre-built functions and libraries that one can use instead of building a AI
model from scratch. Other advantages are that these frameworks are well-documented,
tested and they make integration of AI models to other platforms relatively straightfor-
ward.

Some of the popular frameworks in the field are TensorFlow and PyTorch. Both are
open-source and free and provide libraries mainly in Python and C++. They also support
computations via the CPU and the GPU. PyTorch is a framework developed by Meta AI
and is based on the Torch library. The advantages of using PyTorch are that it is flexible,
its deep integration with the Python language (thereby making it easier to use if one is
familiar with Python), and strong community support from the researchers at Meta and
other developers. TensorFlow is a framework developed by the Google Brain team for
Google’s internal use in ML and artificial neural networks. Its advantages are that it makes
deployment of AI models on other platforms like RPis easier and provides multiple levels
of abstraction [107].

Our group started this project by using the TensorFlow libraries in Python as it was known
that it had the libraries and tools necessary for not only making a model for object detec-
tion but also exporting it to a lighter version called TensorFlow Lite (TFLite) so that it
would be easier to deploy it on a mobile device or a single-board computer such as the
RPi [108]. However as this is a research project, the group has also experimented with us-
ing the PyTorch library to explore alternative approaches and compare their performance.
Ultimately, TensorFlow was used for the final implementation due to reasons mentioned
in the Challenges section, section 9.2.4.

4.5.12 TensorFlow object detection with MediaPipe AD | OM

When using the TensorFlow library for making our custom object detection model, our
group came across TensorFlow Lite Model Maker, a library that simplifies the process of
creating a custom TFLite model using transfer learning [109]. However, many problems

123

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

were encountered with the library, which has been discussed in 9.2.3. This led us to
look for other options, and that is where our group came across a GitHub issues page for
the official TensorFlow repository which addressed the issues with TFLite Model Maker
library by advising users to use a pipeline called MediaPipe instead [110]. A ML pipeline
is a set of steps that help automate and organize the process of creating, training, testing,
and using ML models [31].
MediaPipe has also been developed by Google and falls under the TensorFlow framework.
It is also built specifically for on-device ML, and it exports the model in TFLite format
[111]. Therefore, the project went forward with running this pipeline in Google Colab.

Figure 4.77: MediaPipe architecture [9]

MediaPipe operates using a graph-based architecture. These graphs are composed of
nodes and edges, where each node represents a computational step, referred to as a calcu-
lator, and edges define the data flow. Calculators are the building blocks within MediaPipe
graphs. Each calculator is designed to perform a specific task such as video decoding, im-
age transformations, executing a portion of a ML model, etc. Calculators can be easily
reused and connected in various configurations within a graph [9].
The data within a MediaPipe graph flows in the form of packets. Packets can contain
different data types, such as raw video frames, audio samples, ML models or metadata.
The design ensures that each packet is timestamped, supporting the synchronization of
multiple data streams within the graph.
Figure 4.77 shows the architecture of object detection deployment using MediaPipe. The
transparent boxes represent calculators in a graph, the solid boxes represent external in-
put/output to the graph, and the lines entering and exiting the calculators represent the
input and output streams respectively. The small round rectangles inside a calculator are
the input side packets [9].

4.5.13 Preparing the dataset AD | OM

The group prioritized the detection of people as a fundamental capability for our custom
model. By accurately identifying and locating people within the camera’s field of view,
the robot can potentially assist in collision avoidance, emergency response, etc. We de-

124

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

cided to use images already available on websites such as RoboFlow, Kaggle, and Open
Datasets. These sites have a lot of pre-made datasets that can serve as a solid foundation
for ML projects. After evaluating our options, RoboFlow was chosen as it provided a
platform not just for accessing a diverse array of images but also for labelling our dataset
and exporting it in various formats.
Such a dataset was found in the RoboFlow open-source computer vision projects [10].
This particular dataset was also luckily labelled with the bounding boxes. It contained
1327 images of three classes: person, person-like and null. Our group did not have to
use the latter two classes, so the dataset was modified only to have one class using the
workspace function that RoboFlow provides. Figure 4.78 visualises the labelling process.

Figure 4.78: Labelling an image with a person [10]

The dataset had to be exported in a certain format that was also acceptable by the Medi-
aPipe library. The documentation showed that the Pascal VOC (Visual Object Classes)
format and COCO format were accepted [112]. The dataset was exported in the Pas-
cal VOC format. Figure 4.79a shows the directory structure for the annotations(with the
bounding boxes and labels) and images and figure 4.79b shows the format of the .xml file
[113].

125

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

(a) Pascal VOC (b) The XML file format

Figure 4.79: The Pascal VOC directory structure and XML file format

4.5.14 Dataset augmentation AD | OM

Data augmentation is an important step when preparing the dataset. It is the process of
creating different variations from the existing dataset to give the ML model diversity in
the dataset. It artificially increases the amount of data by making small changes to the
data. This can help a model improve the accuracy of its predictions and decrease the
possibility of overfitting [114]. Therefore, it was decided to augment the data using the
interface that RoboFlow provides. Listed below are the techniques that were used.

• Flipping: Flipping the image horizontally and vertically. This is one of the earliest
and most widely used methods of data augmentation [115].

• Rotating: Randomly rotating the image.

• Blur: Adding blur to an image. One might think that only clear images should
be in the dataset, but adding imperfect images is also necessary as it will make
the model more resilient to the harsh realities they will encounter in real-world
situations [115].

• Bounding box brightness: Brightening the bounding box region of the image up
to a certain degree.

Figure 4.80 shows the results of data augmentation on an image. Figure 4.80b has been
rotated 77◦ degrees counter-clockwise, blurred 3.75px, and has 15 % brightness around
the region of the bounding box.

126

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

(a) Image without any augmentation (b) Image with augmentation

Figure 4.80: Difference without and with data augmentation [10]

4.5.15 Training the model AD | OM

The training process was followed according to the documentation for MediaPipe [112].
The activity diagram in figure 4.81 shows the training process. The T4 GPU offered by
Google Colab was used to train the model which decreased the training time significantly.
The data was downloaded directly using RoboFlow’s integration to Python and Google
Colab, and loaded into the model.
The dataset was to be divided into two sections, training and validation data. Training
data is used to train the model, where it learns to recognize patterns and make predictions
based on the dataset it gets as input. 80 % of the data were used for training the model.
Validation data is used to fine-tune model parameters and select the best model after
training. It can also be used iteratively to adjust the model and its parameters to avoid
overfitting to the training data. 20 % of the data were used for validating the model [6,
p. 666].
While training, a model cannot process all the images at once. Therefore, the training
dataset is divided into smaller, manageable chunks called batches. One entire passing of
data while training a model is called an epoch. Models are usually trained for multiple
epochs. This allows it to repeatedly “see” the same data so that it can adjust its parameters
each time to hopefully improve its predictions.
MobileNet V2 was chosen as the base model. The hyperparameters such as the number
of epochs was chosen to be 100, batch size 8 and learning rate as 0.1. The model was
exported as a float32 model, which is ideal for maintaining the balance between model
performance and precision. The float32 format provides high precision for the model’s
calculations as it saves the data in a single-precision floating-point format, which is a
standard computer number format [116]. The export method also includes metadata in
the model, which eliminates the need for an external label file for the classes. The results
of the training are discussed in section 7.2.1. Figure 4.81 shows an activity diagram
describing the training process.

127

KROMIUM 4.5 ARTIFICIAL INTELLIGENCE: OBJECT DETECTION

Figure 4.81: Training process

4.5.16 Displaying object information OM, AD | AEH

One of the requirements was to display information related to the recognized objects. Af-
ter discussing ideas with Kongsberg Maritime and considering the ability to recognize
objects, we decided to use a database to store object information and retrieve data from
there. However, since using a database was not a requirement, the explanation, installa-
tion, and implementation of this are detailed in 4.6.14.
The results of the recognition and information display are explained in the results section,
7.3.

128

KROMIUM 4.6 ADDITIONAL WORK

4.6 Additional work OM | AD

This section describes functionalities and work implemented beyond the set requirements
by Kongsberg Maritime. Although not being requirements, these features are relevant to
the thesis. This is due to the thesis being research-oriented and aiming to offer insights
into new technologies for Kongsberg Maritime. Prior to implementation, the additional
features mentioned in this section were discussed with supervisors and Kongsberg Mar-
itime.

4.6.1 Getting depth data OM | AD

Astra Pro Plus is the camera we are using. In addition to taking RGB pictures it has an
Infrared (IR) projector and an IR camera. This makes it possible to get depth information
from the camera.

Figure 4.82: Astra Pro Plus Diagram [11]

Why get depth data? The concept of integrating depth data into VR space was intro-
duced and implemented. This decision came from the belief that incorporating depth data
into VR could provide a better understanding of the robot’s environment, including the
relative dimensions and distances of objects within it. To the group’s best knowledge, this
integration has not been done before.

Astra driver The Astra camera is made by Orbbec and they have made an open-source
ROS wrapper which is available on GitHub [117]. However, the code is made for ROS
1, not ROS 2. After some searching, it was found that GitHub user Javier Monroy had
made a fork which indicated to be working for ROS 2 [118]. Due to running the ROS
environment in Docker, all of the depending packages used by this driver also needed to
be installed in the Docker image. These packages were not explicitly specified anywhere
but were found by running into errors when building and going through the source code
finding them on index.ros.org (see O.16). Given the substantial size of the driver, mainly
written in C/C++, the majority of the robot’s codebase is not in the Python language.

Getting raw data When launching the ROS node for the Astra camera, there are mul-
tiple options that can be specified, including the enabling of the depth camera. If the

129

KROMIUM 4.6 ADDITIONAL WORK

depth camera was enabled when launched, it was found that the ROS node would publish
PointCloud2 messages to the “/camera/depth/points” topic. The messages published to
this topic is subscribed to by the Depth data node, which processes the messages and
lastly sends them to the VR linker node.

Understanding the data The PointCloud2 message interface is apart of the “sensor msgs”
in ROS 2 and “holds a collection of N-dimensional points, which may contain additional
information such as normals, intensity, etc. [...] The point cloud data may be organized
2d (image-like) or 1d (unordered). Point clouds organized as 2d images may be produced
by camera depth sensors such as stereo or time-of-flight” [119]. Below is a shortened
version of one PointCloud2 message received from the Astra node.

PointCloud2(

header=Header(

stamp=Time(

sec=1713167964,

nanosec=751190626

),

frame_id='camera_depth_optical_frame'

),

height=480,

width=640,

fields=[

PointField(name='x', offset=0, datatype=7, count=1),

PointField(name='y', offset=4, datatype=7, count=1),

PointField(name='z', offset=8, datatype=7, count=1)

],

is_bigendian=False,

point_step=16,

row_step=10240,

data=[

0,

0,

192,

127,

...

],

is_dense=False

)

The data field is a one-dimensional array which consists of uint8 values and these val-
ues are the actual depth data. With the resolution specified, one will get 4,915,200 values.
The values range from 0 to 255, as this is the range an unsigned byte or 8 bits can hold.
The fields field tells the user what the data means. In this case data consists of three
values; x, y and z. Each of these PointFields being of the datatype 7 which correlates
to a FLOAT32 type [120]. offset tells the user the offset from the start of the point struct
to start reading that value.
point_step indicates the length of each point as bytes in data, which in this case is 16
bytes. As each value in data is a byte and x starts on index 0 (offset=0) it has to end
on index 3, as this is in total 4 bytes (32 bits), which is the size of the FLOAT32 type. y
and z are also 4 bytes in length, due to them having the same type as x. The 3 coordinates

130

KROMIUM 4.6 ADDITIONAL WORK

which are 4 bytes each adds up to a total of 12 bytes. The last 4 bytes of the point_step
(16 bytes in total) therefore needs to be ignored.

total pixels := height ·width ⇒ 480 ·640 = 307,200 (4.34)

total points :=
data values
point step

⇒ 4,915,200
16

= 307,200 (4.35)

total pixels = total points (4.36)

is_bigendian tells how the data is arranged. In this case, the values in the data array
are arranged as little-endian.

address 0 1 2 3
value 0 0 192 127

Table 4.3: Big-endian

address 0 1 2 3
value 127 192 0 0

Table 4.4: Little-endian

By converting each of these decimal values to 8 bit binary data, and then into a FLOAT32
we get Not a Number (NaN) for little-endian. However, if is_bigendian was true, the
FLOAT32 value would be 6.9055e−41 which in this case would be wrong, as the value of
this x coordinate could not be represented.

Figure 4.83: Astra Pro Plus RGB picture (1280x720)

Plotting Plotly was used for the plotting, as it performed better for bigger data than
Matplotlib did. This plotting was only done for testing purposes and to determine if the
data was sufficient or not. The VR application does not use Plotly nor Matplotlib for
plotting the actual points in VR space. Only 255,888 out of the total 307,200 points were
plotted as 51,312 of them were NaN.

131

KROMIUM 4.6 ADDITIONAL WORK

Figure 4.84: Depth data plot of 255,888 points (640x480)

This is the depth data for the image 4.82, and is the most detailed plot we can get at the
640x480 resolution. It is possible to increase the resolution, but this will make the image
bigger and lead to more points, which means even more data. Due to there being no
requirement for resolution, the dimensions were kept as is.

Issues transferring Size of the raw PointCloud2 data is ∼19MB at the (640x480) res-
olution, which leads to issues when transferring this data to the VR headset over the TCP
socket connection (see 9.2.7). Therefore multiple steps were taken in order to decrease
the size of the data enough to be able to transmit the depth data often, while still being
detailed enough to make sense of what the data represents. Brotli were chosen as the data
compression algorithm. “Brotli is a generic-purpose lossless compression algorithm that
compresses data using a combination of a modern variant of the LZ77 algorithm, Huff-
man coding and 2nd order context modelling, with a compression ratio comparable to the
best currently available general-purpose compression methods” [121]. How Brotli was
used is mentioned later in this section.

Picking random points Plotting all 255,888 points are not needed when the wanted
result is to be able to make up what the plot represents. The coordinates retrieved from

132

KROMIUM 4.6 ADDITIONAL WORK

the PointCloud2 data were found to be random. By simply looping through every 75th
valid point the data can be reduced from 255,888 valid points to only 3,412 points.

>>> len(range(0, 255_888, 75))

3412

At first, a step of 100 was used, but this could be increased to 75 as more data could fit
inside the socket message without affecting the max size for the receiving client end.

Decreasing the resolution Each coordinate consists of three float values being x, y
and z, with a high resolution. This resolution was deemed unnecessary when the points
are decreased substantially, losing important information. Therefore, the coordinates are
simplified by multiplying each coordinate value with ten and converting this to an integer.
This does not only make the size of the data smaller, as integers can be represented using
fewer bits than floats, but also significantly increases the compression-rate, due to the
Huffman-encoding.

-1.2974001169204712 -> -12

-1.2933393716812134 -> -12

-1.2981855869293213 -> -12

-1.3099732398986816 -> -13

Figure 4.85: Huffman encoding difference

With the values being represented as integers the data will be more similar than with
exact float numbers. As Huffman-encoding works the best for data which is repetitive the
compression is greater than for floats.

133

K
R

O
M

IU
M

4.6
A

D
D

IT
IO

N
A

L
W

O
R

K

Figure 4.86: Plot seen from front

Figure 4.87: Plot seen from the right-hand side

Figure 4.88: Compressed depth data plot of 3,412 points

134

KROMIUM 4.6 ADDITIONAL WORK

Structuring the JSON The dynamic nature of JSON allows for various methods of
structuring the data. Any chosen structure affects both readability and size of the message.
The points gets structured as a JSON file like shown below. The first list under the data

key are x, the second are y and the last are z values.

{

"type": "depth",

"time": 1274382748327432,

"data": [

[-12, -10, ...],

[-9, -10, ...],

[23, 26, ...]

]

}

Structuring it this way saves bytes, compared to for instance:

{

"type": "depth",

"time": 1274382748327432,

"data": [

{"x": -12, "y": -9, "z": 23},

{"x": -10, "y": -10, "z": 26},

...

]

}

Therefore, the first example is the one which is used.

Brotli compression When the JSON message is structured, Brotli is used to compress
the data. Compressing the data before sending makes using the TCP socket easier as
there is no need to split up the packets, it can be sent in one go with all of the data
included. The JSON shown above is ∼38.2KB (excluding newlines and indents), with
Brotli compression all of this data gets down to ∼2.0KB or a ∼94.7% decrease. Due to
Brotli being lossless no data is lost, but some milliseconds are used when compressing and
decompressing the contents. Before sending the compressed data over the TCP socket,
“bro” is prepended to the bytes string to work as a header to indicate the bytes data is
compressed with Brotli.

bro\x1b\'\x95D\x141\x00\x9c\x07\xb6\x8dl\xbb1\x86\x83\x81\xc6W\xde

\x8c\x91xn\xb3\xe8\xec\xf5q\xab\x81\xa9/\xff\xee\x00\x154\xe5\xdd

\xdc`lnZ\x03\xc4\xffw\xe6\'...

When the bytes are received it has to be checked if the data has been compressed or not.
This way a JSON decode error can be avoided, since the JSON decoder cannot decode
Brotli compressed data directly without decompressing the data first. Checking if the byte
string is compressed can be done by checking the first three characters of the byte string,
which was prepended before sending the message. This check is important to do within
the VR application. Below is an example in Python which is used in “robot-test-client”
(see 7.6).

135

KROMIUM 4.6 ADDITIONAL WORK

data = b"bro\x1b\'\x95D\x141\x00\x9c\x07..."

if data[:3] == b"bro":

data is compressed

else:

data might be uncompressed JSON

4.6.2 Showing depth data in the VR Space SO | OM

Data Processing Workflow: The process of visualizing depth data in the VR applica-
tion begins when the data is transmitted from the robot. As illustrated in Figure 4.89,
the depth data goes through several transformation steps before visualization. Initially,
the data, which includes a Brotli header labeled ‘bro’, is received by the network man-
ager. This header is removed, and the message is decompressed to convert the data into a
custom DepthData datatype suitable for further processing within the VR environment.

Figure 4.89: Sequence of activities between involved classes for mapping depth data

Mesh Creation and Normalization Following decompression, the Depth Point Cloud
class receives the transformed data. It collaborates with the Mesh Creator class to process
these data points and generate a mesh for visualization. Given that the raw depth data
from the robot encompasses actual (x, y, z) values within a 640x480 resolution and a
depth range of 0-30, these values are normalized between 0 and 1 to ensure consistency
in the visualization scale.

Visualization and Color Mapping Each normalized data point is represented as a rect-
angular quad within a virtual cube. The placement of each quad corresponds to its nor-
malized (x, y, z) coordinates. The color of each quad varies from dark blue (representing
a value of 0) to purple (representing a value of 1), based on the z-value, which indicates

136

KROMIUM 4.6 ADDITIONAL WORK

depth. Figures 4.90a and 4.90b showcase the normalized cube used for visualization and
the distribution of quads within the cube, respectively.

(a) Normalized cube used for depth data visual-
ization

(b) Quad distribution within the normalized
cube

Figure 4.90: Conceptual illustrations of depth data visualization

Example of Visualization An example of visualizing depth data captured by the robot
within the VR application is presented in Figure 4.91. The results are suboptimal due to
the time constraints of the project, and further improvements are recommended for future
work.

Figure 4.91: Real-time depth data visualization in the VR application showing a slightly
opened door.

4.6.3 Digital twin of the robot arm SO, OM | AEH

The digital twin offers a real-time visualization of the physical robot’s position within the
VR application. This virtual representation mirrors the actual movements and status of
the physical robot. More details on this feature can be seen in the video attached in the

137

KROMIUM 4.6 ADDITIONAL WORK

folder: Digital twin. The digital twin was developed from scratch by our team, starting
with a 3D model created by our mechanical engineering team members (see 6.10). This
model was then exported to the VR application, where functionalities to control each joint
angle were implemented. The digital twin is displayed in Figure 4.92.

Figure 4.92: Visualization of the Digital Twin in the VR Application

The interfaces for all joint angles are designed to replicate those of the actual robot. For
example, setting a 30-degree angle at a specific rotation point on the physical robot will
result in an identical appearance at the corresponding rotation point in the digital twin.
Figure 4.93 demonstrates the alignment of these rotation points and pinch mechanisms,
mirroring the actual physical structure of the robot.

138

KROMIUM 4.6 ADDITIONAL WORK

Figure 4.93: Digital twin rotation points and pinch

Figure 4.94 displays both the digital twin and the actual robot arm within the VR ap-
plication, showcasing the replication of the robot’s physical movements in the digital
environment.

139

KROMIUM 4.6 ADDITIONAL WORK

(a) (b)

(c) (d)

Figure 4.94: Examples of the digital twin alongside the real robot arm

Figure 4.95 illustrates the workflow between the robot operator and the digital twin sys-
tem. The red path highlights the data flow from the operator to the physical robot, trig-
gered by the operator’s hand movements. These movements are captured and processed
by the VR application to generate robot arm data 6.10, which is subsequently transmitted
to the robot’s ROS system. This system adjusts the angles on the robot’s arm servos. On
the other hand, the blue path illustrates the feedback loop, where the actual angles of the
robot arm are captured and sent back to the VR application. This ensures a continuous up-
date of the digital twin within the VR application, providing the operator with an accurate
and dynamic visualization of the robot’s current status.

140

KROMIUM 4.6 ADDITIONAL WORK

Figure 4.95: Workflow of the Digital Twin Data Visualization

However, for the digital twin to work correctly it needs to act on real data.

Getting the data A dict was implemented inside the Rosmaster code, which gets up-
dated every time an angle is set. Each key is the servo id and the value is the degrees as
an integer. The key is the servo id because when setting an angle it has to be an ID and
not a name.

class Rosmaster:

def __init__(self, *args):

self.servos = {

"1": 170,

"2": 90,

"3": 80,

"4": 70,

"5": 60,

"6": 50,

}

...

This data is only available inside the Controller node and has to be sent to the VR linker
node to be able to send this data to the VR application. The data is formatted to be
more explicit for what each of the keys mean, this way the VR application does not need
to know what each key value corresponds to (e.g. six being pinch). For how these get
mapped see O.12. Using the names, a ROS message is created and sent with the following
interface.

uint8 rotation

uint8 shoulder

uint8 elbow

uint8 tilt

uint8 wrist

uint8 pinch

The VR linker node receives this message, but the socket client (VR application) expects
a JSON, so this has to be formatted. There were not found any already implemented

141

KROMIUM 4.6 ADDITIONAL WORK

function which does this, so a dynamic function for getting ROS message contents as a
dictionary was implemented. The code for this is shown below.

class AnyMessage:

pass

def get_content_any_msg_type(msg) -> dict:

message = AnyMessage()

for slot in msg.__slots__:

key = slot[1:] # first char is _

value = getattr(msg, key)

setattr(message, key, value)

return message.__dict__

Figure 4.96: Dynamic content gathering of ROS 2 messages

This code creates an empty class instance (object) which gets filled by looping through
each slot (key) of the ROS message. Using the name of this slot, as well as getting the
value of this slot (value), a key-value pair is created within the class using attributes.
These pairs can be gathered using the built-in __dict__ class method, which as the name
implies returns a dictionary. By adding the message type to the dictionary, the message
below gets sent to the VR headset.

{

"type": "arm_angles",

"rotation": 170,

"shoulder": 90,

"elbow": 80,

"tilt": 70,

"wrist": 60,

"pinch": 50,

}

The JSON data gets sent over the TCP socket at a rate of 10 Hz. This frequency was
found to be often enough for the digital twin to be responsive, while not being excessive.

Updating the Digital Twin The digital twin is managed by the Digital Twin Controller,
which subscribes to the Network Manager event New arm angles. It updates the digital
twin whenever new data is received from the robot. The data distribution process is illus-
trated in Figure 4.97.

142

KROMIUM 4.6 ADDITIONAL WORK

Figure 4.97: Data Distribution by the Digital Twin Controller

4.6.4 Detection of bolts using a self-made dataset AD | OM

Automating bolt fastening and inspection can be a valuable addition to a potential offshore
robot. Automating these tasks can enhance safety by reducing the need for human workers
to perform repetitive operations. It can also improve efficiency and precision.
Detection: To show the fastening as a PoC, we decided to first detect the bolt. We found
a 3D model for three sets of nuts and bolts on Thingiverse which was 3D-printed by one
of our mechanical engineers [122].
Our group utilized Transfer Learning with MediaPipe, which was the same process that
was used to detect people for the object detection part of the project (see subsection 4.5).
There was, however, an extra major task, namely to create the dataset. This was done
with the help of the OpenCV library in Python. This involved capturing images of the
bolts from various viewpoints, including top-down, side-views, and a frontal perspective.
Additionally, images were captured at three distinct distances from the camera to account
for potential variations in working range. We had 168 images in total, and we labelled the
images using RoboFlow. The images can be found in the attachments. The dataset can
also be found in the RoboFlow universe (robowflow/bolt-dataset).

143

https://app.roboflow.com/test1-u7d5u/bolt-loosening/2

KROMIUM 4.6 ADDITIONAL WORK

(a) Far distance Image (b) Mid distance image

(c) Close range image

Figure 4.98: The different distance perspective

(a) Top perspective (b) Side perspective

(c) Front perspective

Figure 4.99: Top - side - front perspective

All the images were resized to 640x640 in height and width, with the centre crop. We
applied data augmentation to the images. We used saturation, which changes the intensity
of the image randomly from -15% to 15%. We also added brightness ranging from -15%
to 15%. This created a total of 404 images. 88% of the images (354 images) were used
for training and 12% were used for validation. The images were exported in the Pascal
VOC format.
During the training process in Google Colab, the hyperparameters from 4.5.15 were not
changed. The results of the training are discussed in section 7.

144

KROMIUM 4.6 ADDITIONAL WORK

4.6.5 Automated fastening of bolts OM | AD

The robot can “screw” and “unscrew” bolts using the VR voice interface, as detailed in
4.6.8. When the operator says “screw,” the JSON message below gets sent.

{

"screw": "right"

}

In this context, “right” signifies clockwise rotation, and “left” denotes counterclockwise.
This convention was established after implementing the interface. Upon receiving this
message, the robot verifies that it is in “arm mode”. If not, the message is discarded and
not acted upon. However, if in the correct mode, the robot disregards any external arm
commands to ensure the arm remains stationary during the operation.

The operation consists of timely pinching and unpinching while rotating around the bolt.
This process is hardcoded to repeat three times before completing the operation.

(a) Unpinched (b) Pinched

(c) Rotated

Figure 4.100: Arm camera perspective of fastening without bolt detection

4.6.6 Reversing camera OM | AD

Due to the robotic arm folding and being placed under the drive camera when the robot
switches to drive mode (see 4.3.7), the idea of using the arm camera as a reversing camera
came up. This feature was implemented, and an example image is shown below.

145

KROMIUM 4.6 ADDITIONAL WORK

Figure 4.101: Reversing camera

Although the visibility is limited, it provides a better view than the drive camera when
reversing. Since the camera is positioned upside down, the video feed is rotated 180
degrees to ensure it is oriented correctly, making it easier for the operator to control. This
adjustment makes the arm camera multifunctional, as it is also used when controlling the
arm (see 4.40).

4.6.7 Backup logging OM, SO | AD

After feedback from our second presentation, the idea of external logging for incidents or
data loss prevention was suggested. This was implemented by using the existing connec-
tion with the VR headset as a backup, which can be thought of as a cloud.

As explained in section 4.3.9, the system logs data to a local .log file. Before saving, it
sends a backup log message via the TCP socket to the VR headset. An example of this
message, using the dynamic dictionary getting (see 4.96), is shown below.

{

"type": "log",

"topic": "robot_data",

"message": "accelerometer=geometry_msgs.msg.Vector3(x=0.023...-",

"time": 1715801305009

}

The log time and data are sent to the VR application. By checking the type key, the VR
application can distinguish between robot_data, ping, and similar messages.

Logging in the VR application The VR application now includes capabilities to both
display the logs to the user on a virtual screen within the application and store all the logs
in the headset for later retrieval. This ensures access to previous data for troubleshooting
and analysis when necessary.

146

KROMIUM 4.6 ADDITIONAL WORK

4.6.8 Integration of voice commands in the VR application SO, AD | OM

Our external supervisor had expressed enthusiasm for the potential impact of incorpo-
rating voice commands. Voice command enhances the experience of human-robot inter-
action. Using voice commands through the VR headset to send commands to the robot
was then requested as an additional requirement. The voice command functionality we
implemented provides a hands-free alternative to manual inputs, allowing the operator to
issue commands without physical interactions. We have implemented a range of voice
commands that enable operators to easily switch between the robot’s operational modes
and execute specific tasks. The following commands are supported by the system:

• Idle: Puts the robot and VR application in a standby state where no actions are
performed.

• Drive: Changes the robot and VR application to drive mode.

• Arm: Switches the robot and VR application to arm control mode.

• Emergency: Sets the robot and the VR application to emergency mode.

• Screw: Informs the robot to start automated screwing.

• Unscrew: Informs the robot to start automated unscrewing.

Each command triggers a specific function or mode, requiring the operator only to say the
commands out loud for the VR headset to pick up, similar to how we use voice commands
on our cell phones. This functionality makes the application more flexible. For example,
the operator can pinch and hold an object with the robot’s hand and change to drive mode
with a voice command to hold and move the object to another place with the robot.

The voice commands were implemented with the help of Wit.ai, a natural language pro-
cessing (NLP) platform. Wit.ai allows us to translate spoken commands into actionable
instructions for the VR application [12]. With Wit.ai, we created a new application tai-
lored to our specific use case. The next step we did was to define intents, entities and
utterances.

Utterances: To train the application to recognize our desired voice commands and extract
the relevant details within them, we provided a set of diverse sample example phrases, i.e.
what the VR user might say to enable an action. For example, if the user intended to
screw a bolt, then their utterance would be the phrase, screw. From the commands list
mentioned above, we entered all the possible utterances a user might say.

Intent: Intents are used to understand the overall meaning of the phrase uttered. Intents
represent the goal of the user or the action they wish to perform. For example, if the user
says “Activate emergency mode”, they intend to change the mode of the robot. Therefore,
we defined the intent to “change mode”.

Entities: Entities are the specific details or parameters within the utterances. To recognize
the intent, we need to focus the application’s attention on looking for a specific word(s).
So if we look back at the example of a user saying “Activate emergency mode”, for the
sake of simplicity the application does not need to pay any attention to the words activate,
and mode. The most important word is emergency, as it means that the user intends to
change the mode to emergency mode. Therefore, the word is further labelled as an entity.

147

KROMIUM 4.6 ADDITIONAL WORK

All the modes were labelled as entities, along with the words “screw” and “unscrew”.
Figures 4.102 and 4.103 show the wit.ai application and the different entities used.

Figure 4.102: Wit.ai application interface

(a) Dropdown box menu (b) Dropdown box menu

Figure 4.103: The different entities available [12]

After defining the utterances, intents and entities, we trained and validated the application.
Wit.ai’s ML algorithms utilize this data to learn the underlying patterns and relationships
between the utterances, intents, and entities. The VR application integrates the wit.ai
application, utilizing Unity’s Voice Software development kit (SDK) to capture the VR
headset user’s voice. This technology provides essential functionalities for capturing vo-
cal inputs. Once captured, the voice is processed through the wit.ai application, which is
configured to recognize our predefined entities; idle, arm, drive, emergency, screw, and
unscrew (commands). Whenever one of these commands is recognized, the VR applica-
tion triggers an event in the Voice Controller. This controller is tasked with handling all
voice commands, utilizing the application’s interfaces to change modes and send com-
mands to the robot for execution. For a demonstration of this functionality, see the video
on folder: Digital twin—ensure your volume is on!

4.6.9 Arm safety limits OM | AEH

As mentioned in section 4.4.6, one important consideration is whether a point is illegal.
A point is considered illegal if it is likely to cause a collision with the front of the robot.

148

KROMIUM 4.6 ADDITIONAL WORK

These potential collisions were identified during testing and movement of the robot. Cer-
tain angles would result in colliding with the robot’s front, which could possibly cause
damage. Since the group intends for visitors at the USNexpo stand to try out the robot
themselves, it was important to minimize these collisions to reduce the risk of damaging
components.

Illegal points are determined using a defined box. The dimensions of this box are as
follows:

−26 ≤ x ≤ 0∩10 ≥ y∩−2 > z (4.37)

The values are in centimeters and were measured using a ruler by manually moving the
arm around and observing. If a point falls within this box, it is considered illegal, and
the robotic arm will not move there. This check is performed before any inverse kine-
matics calculations are made. If an illegal point is detected, the process is prematurely
terminated, and the robot will wait for the next hand coordinate.

Figure 4.104: Illustration of box containing illegal points

4.6.10 Optimizing the video stream OM | AD

The current solution for the video stream, as referenced in 4.3.4, utilizes a WebSocket
stream that continuously emits images. Initially, an alternative solution was implemented
using a Hypertext Transfer Protocol (HTTP) server with Flask, as described in O.15.
However, this was later changed due to concerns regarding overhead, latency, and suspi-
cion of causing a memory leak in the VR application.

Comparatively, the WebSocket solution appeared to perform better than the Flask ver-
sion, and the memory leak is assumed to have been resolved. Nonetheless, further video

149

KROMIUM 4.6 ADDITIONAL WORK

stream optimisation could be achieved by transitioning to a User Datagram Protocol
(UDP) stream or a similar protocol. This would minimize the TCP overhead inherent
in the WebSocket solution, resulting in reduced latency for the operator, which might be
crucial in a production environment.

It is worth noting that, due to the nature of UDP, the delivery of datagrams is not guaran-
teed, but occasional frame loss would likely have minimal impact. Despite the potential
benefits of optimizing the stream further, this was not deemed necessary, as the Web-
Socket implementation proved sufficient for the PoC, and there were no requirements for
a faster stream than what was already functional.

4.6.11 Caching of object detection boxes OM | AD

Due to performance concerns, a “caching” mechanism for object detection results was
developed and tested but did not make it into the final product. The concept involved
running a separate thread that would continuously analyze the latest available picture and
save the result in a variable. These results would then be applied to the final picture be-
fore sending it to the VR operator. The aim was to potentially accelerate the process by
running the analysis as frequently as possible, assuming it would be slower than the VR
application’s request rate for pictures from the Flask endpoint (see O.15), thereby increas-
ing the FPS.

It is worth mentioning that caching would have the side effect of making the detection
boxes lag one or more frames behind, as illustrated in the images below.

(a) Camera has not moved (b) Camera has moved

Figure 4.105: Caching of detection results

The detection box could also be misplaced if the camera remained stationary but the ob-
ject moved. The rationale behind this decision was to prioritize FPS for the operator, even
if it meant slightly inaccurate detection boxes. If precision was crucial, the operator could
stabilize the camera, and the detection box would update shortly afterwards.

Despite these considerations, the caching mechanism was not integrated into the final
product. There was uncertainty regarding whether it would improve FPS, and the object

150

KROMIUM 4.6 ADDITIONAL WORK

detection implementation underwent frequent model and implementation changes, which
made the caching implementation not carry over. The code for this is available on GitHub
[123].

4.6.12 Displaying latency of the robot OM, SO | AD

Determining the latency every second a “ping” TCP socket message is sent from the
VR application. This is a JSON message which includes the seconds since starting up the
application, which increments over time.

{

"type": "ping",

"ping": 1593187.52443142

}

When the robot receives this message, it is sent back to the VR application without mak-
ing any modifications to the original message. When it is received by the VR headset
again, the time difference is calculated by taking the current time since the application
was started and subtracting the received time to determine the delay between sending and
receiving. The ping is an indication for the operator of how responsive the connection and
system are.

private void ProcessPingData(OVRSimpleJSON.JSONNode jsonData)

{

float latency = Mathf.Round(

(

Time.realtimeSinceStartup - jsonData["ping"].AsFloat

) * 100000

) / 100;

...

}

The latency is originally in seconds, converted to milliseconds and multiplied by 100 to
not display more than two decimals of precision, which is often how latency is displayed.
Latency display in the VR application is explained in 4.2.7.

Figure 4.106: Ping command showing latency in milliseconds

4.6.13 Internal logging SO | OM

Although internal logging was not part of the initial requirements, we quickly realized
its necessity during the early stages of testing the VR application. Debugging and testing
were exhausting because debug logs were printed on the development computer, requiring

151

KROMIUM 4.6 ADDITIONAL WORK

developers to remove the VR headset to view the logs. To streamline the development pro-
cess and enhance efficiency, we implemented an internal logging monitor within the VR
application. This internal logging monitor allows developers to see useful debug informa-
tion directly in the VR environment, reducing interruptions and accelerating development.
The internal logging monitor is shown in Figure 4.107.

Figure 4.107: Internal logging monitor inside VR-application

4.6.14 Database integration with object detection AD, OM | AEH

Displaying information with Databases One of the requirements in our project was
to display information related to recognized objects. It was decided that a database that
stored information about the targeted objects/classes would be created. The reason for
opting a database was that databases provide a very structured way to organize informa-
tion [124]. Storing data within the code is also difficult to manage especially considering
the scale of the project. Databases are separate entities that can store data, therefore up-
dating and retrieving information becomes easier [125].

There are many types of databases, but our group chose to approach a NoSQL (non-
structured query language) or non-relational database, which allows unstructured and
semi-structured to be stored in a database. Normally, relational databases are more popu-
lar and the software engineering students in the group had experience with using them but
NoSQL databases were opted as they excel in managing unstructured and semi-structured
data [124]. This flexibility is particularly beneficial for our use case, where detected ob-
jects exhibit diverse data types and features. Relational databases are not as suitable for
handling the variability and non-uniformity of our data. With NoSQL, the data can be
stored as it is detected, without needing to conform to a strict schema that simplifies data
management.

152

KROMIUM 4.6 ADDITIONAL WORK

MongoDB database program A Database Management System (DBMS) software pro-
gram usually controls a database. It acts as an interface between the database and the user
using it. It allows users to insert, retrieve, update data and much more [125]. MongoDB
is a NoSQL DBMS that was chosen for our project because it offered a lot of features that
greatly benefited us. Firstly, it stores data in flexible JSON-like documents, so that data
can be added or changed easily without transforming. It also has a straightforward query
language and a lot of community support [126].

Creating the MongoDB database Since the robot is already running as a Docker con-
tainer, it was logical to install the database as a Docker container. The MongoDB database
operates within its own Docker container, separate from the robot container, to maintain
clear separation between the two. Connecting to the database does not require starting the
robot container. Specific commands for this setup are provided in O.8.

Example data was created and imported into the database using MongoDB Compass
[127]. This example data is shown below.

[

{

"class": "bolt",

"addtional_data": {

"length": 4

},

"color": "black"

},

{

"class": "person",

"additional_data": {

"age": 24,

"job": "Software Engineer"

}

}

]

Figure 4.108: Example JSON data used

Fetching data for detected objects When the object detection system identifies bolts
or humans, the corresponding data is fetched from the database. Although this data could
have been hardcoded, using a database demonstrates the ability to dynamically gather
data based on detected objects. The database can be updated to include unique informa-
tion such as installation time, manufacturer, previous issues, and dimensions, which can
be valuable for remote operators.

Using the Python package pymongo, it is straightforward to establish a connection to the
database and retrieve data.

from pymongo import MongoClient

client = MongoClient("127.0.0.1", 27017)

items = client["object_detection"]["items"]

153

KROMIUM 4.6 ADDITIONAL WORK

Here, 127.0.0.1 is the localhost address of the system, and the default MongoDB port
is 27017. The database is named object_detection and the data is stored in the items
collection. To fetch data, you can call:

items.find_one({"class": "bolt"})

This will return:

{

"class": "bolt",

"addtional_data": {

"length": 4

},

"color": "black"

}

The retrieved data is then displayed for the operator as explained in the results section
7.3.

154

KROMIUM 5. ELECTRICAL

5 Electrical

5.1 Electrical components

5.1.1 Yahboom Battery AEH | HB

The main battery used to power the robot is a custom-made lithium battery pack delivered
by Yahboom as part of the ROSMASTER X3 PLUS. The battery has a capacity of 9600
mAh at 12 volts, a rated capacity of 6 amperes, and a maximum discharge current of 10
amperes. It comes with a female T-type discharge port and 4017 charge port. The battery
pack BMS also protects against over-current, over-charge, over-discharge, short-circuit
and power-off. [74]

5.1.2 Custom built battery HB | AEH

The process of creating the custom battery was started after the project group received
a new requirement from the client. To create the battery, the project group were handed
some components that could be used to create the battery. The components were 21
battery cells from old laptop batteries, a bunch of short wires, six battery cell holders
with some wires attached from previous projects, and some single-cell BMSs of the type
03962A.

To make this battery, several iterations were designed. The first iteration was a battery
without the BMSs, and there was started to design a charger for the battery cells as well.
Then the project group found out that it would be smart to use the BMSs and the first
iteration was scraped. For the second iteration, some research had to be done because of
the BMSs. This was because the BMSs were meant only for one cell each, and connecting
them in series and parallel seemed like the only option at the start. But after researching
a bit, it was found that connecting these in series would not be possible. The solution had
to be that the cells themselves were connected in series and parallel and at the same time
the BMSs were connected to each cell. Then a switch would be connected in between
this to function as a “mode changer” to switch between charging mode and use mode.
The switch was designed to look like a fork, that slides in and out to switch the different
modes. The problem with this design was that the battery would have short-circuited ev-
ery time the fork was taken out or put in. One solution that was designed to try to fix this
was that the fork had to be inserted all the way, and then slide to the side to make contact,
but this idea was scrapped.

The next iteration of the battery had the same electrical circuit as the one with the fork
switch, but the fork switch was swapped out with proper switches. The switches were of
the category Double Pole Singe Throw (DPST). This meant that three separate switches
were needed to be able to disconnect the battery cells from each other. The reason the
battery cells had to be disconnected from each other is that the BMSs is not able to mon-
itor the battery while connected in series, with more batteries.

Now the battery was built and tested. The first test was simply plugging the battery cells
into the cell holder, and checking if there were any short-circuits, this test was a success.
The next test was a simple voltage test, where the voltage was measured. This test was
carried out to see if the battery gave the amount of voltage it was supposed to give. This
test was also a success. The last test was the charging test. The battery was connected to

155

KROMIUM 5.1 ELECTRICAL COMPONENTS

a charger, and the charger was plugged into an electrical outlet from the wall. Unfortu-
nately, this test failed due to a short circuit that fried a component on one of the BMSs.

As the last iteration had failed, the project group had two options. One of them was to
make a new, different circuit or make a battery without any BMS. As the deadline of the
project was closing in, it was decided to go for a battery without the BMSs and that the
cells either must be swapped out or recharged in a separate battery cell charger when the
battery is flat.

To read more about the battery design and building process, see appendix J (Battery).

SOLIDWORKS Educational Product. For Instructional Use Only.

(a) Final battery design (b) Finished battery

Figure 5.1: Final battery design complete

5.1.3 DC motors AEH | HB

The DC motors used to drive the robot are the 520 DC gear motor with 1:56 gear reduction
ratio. The max speed provided by these motors is 0.45 m/s and the max load capacity is
7-10 kg. [128]

5.1.4 Servos AEH | HB

To operate the robotic arm we use the YB-P15M 15 kg- and 6 kg- torque servos from
Yahboom. The servos are connected in serial and communicate by single-bus with a baud
rate of 115200. The servos have their own ID for communication which can be changed
in the software provided by Yahboom [129].

5.1.5 USB 3.0 HUB expansion board AEH | HB

The USB 3.0 HUB expansion board is connected to the ROS robot control board and
acts as a link between the expansion board (which does not have USB 2.0/3.0 type A
connectors) and the RPi [130].

5.1.6 ROS robot expansion board AEH | HB

The ROS robot control board works as the link in the system by being connected to the
Raspberry Pi, battery pack, servos, USB 3.0 HUB, and motors.[131]

156

KROMIUM 6. MECHANICAL HARDWARE DEVELOPMENT

6 Mechanical hardware development
This chapter contains the development process for the robot design from the equipment
we were given at the start of the project to the final robot. At the end of the chapter is a
section dedicated to the production of the different parts of the system.

(a) Start (b) End

Figure 6.1: The robot at the start and end of the project

6.1 Given equipment AEH | HB

In addition to the budget, we got the hardware from two previous bachelor projects which
we could use the parts from. The first robot we got was the K-Spider[132] which had a
lot of servos and some old electronics. The other robot we got was the ROSMASTER X3
PLUS from the K-AIoT[133] project. The ROSMASTER had a lot of different electronic
components where most of it was usable but not necessary within the scope of the project.
An example of this is the Lidar.

(a) The K-spider (b) The ROSMASTER X3 PLUS from K-AIoT

Figure 6.2: Equipment from previous projects

157

KROMIUM 6.2 ROBOT DESIGN REQUIREMENTS

6.2 Robot design requirements AEH | HB

The design of the robot is affected by the requirements defined in Appendix C. In addition
to the requirements defined by the project, we have some internal requirements that will
be defined in this chapter.

Camera position: The camera must be positioned such that the camera feed is not ob-
structed by the robotic arm and has visibility for steering.

Low centre of gravity: The heaviest components should be placed at the bottom of the
robot to create a low centre of gravity. A low centre of gravity will give better traction,
balance, and counterweight when lifting an object.

Space between components: To make sure that the components can work at the highest
capacity possible without overheating, the components need enough room for air to flow
throughout the case.

Space for two Raspberry Pi: The robot needs to have space for two Raspberry Pi in
case the tasks have to be divided from one over to two, communicating via Ethernet.

Cable management: Enough space is needed inside the robot to line the cables.

Padding/shock absorber: Padding and shock absorbers is needed to protect both the
robot and the environment from collision damage.

6.3 Robot design ideas AEH | HB

We discussed many ideas both internally and with the first external supervisor regarding
the design and capabilities of the robot. Figure 6.3a shows a robot using two arms, we
concluded that the system needs to control one arm first before researching the possibility
of adding more. This was more relevant as a possible later bachelor project. Before
losing our electrical engineer 9.1.1 we also discussed the possibility of having a robot
arm that can change between different hands and change the battery itself. To be able to
change its battery we would need an internal power supply to power the system while the
battery gets changed or two battery packs installed at the same time that it could change
between while swapping the other. The consensus we got was a robot using a single
arm to perform simple actions that may simulate offshore operations like turning a bolt,
flipping a switch, or picking up something. The robot should not be too big so that it
can be used to showcase the concept in small meeting rooms or offices. It should also be
able to manoeuvre with a small turn radius ideally rotating around its own axis for this
reason. The robot should have an outer shell that both protects the electronics but also
looks good for spectators when showcasing the concept. With the robot structure at the
beginning of the project, you have to dismantle most of the robot to access and change
electronic components that are stacked on top of each other. Therefore a modular design
where the electronic components can be interacted with individually is needed both during
development and for checking the system during demonstrations.

158

KROMIUM 6.4 ROBOT ITERATION ONE

(a) Design idea: robot with two arms (b) Design idea: arm front, tech back

Figure 6.3: Some of the design ideas

6.4 Robot iteration one AEH | HB

For the first iteration of our robot, we wanted to get a better understanding of the compo-
nents we acquired and which were relevant. We removed a lot of the electronics such as
the lidar, voice module, Jetson NANO, Raspberry Pi screens, LED strip and extra USB
expansion board. Instead, we added the Raspberry Pi 5 8 GB to control the robot. The
remaining components did not need the whole structure of the robot so we removed the
top floor as well as the large 20 mm x 40 mm profile that held the Astra Pro camera and
the screen. We made a bracket T.1.1 to fasten the robot arm at the front of the car, a cover
T.1.2 to protect the electronics during testing, and a new support for the camera T.1.3.

6.4.1 Robot iteration one, assembly AEH | HB

After modifying the robot as discussed in the previous section and painting the plywood
black for the second presentation, it looked like the picture 6.4. The results from testing
the first iteration can be found here: 7.8.1.

Figure 6.4: Robot at 02.03.2024

159

KROMIUM 6.5 ROBOT ITERATION TWO

6.5 Robot iteration two AEH | HB

The second robot design was made in SOLIDWORKS. In this new design, the arm is
placed on the front right of the robot. This placement has multiple purposes; firstly, plac-
ing the arm on the right side makes it more intuitive since the operator controls the arm
with his or her right arm; secondly, when the arm is moved backwards it gives the op-
erator better visibility when driving the car. Storing the arm backwards also makes it
possible for us to use the arm camera as a reversing camera. The robot design assembly is
comprised of models made by us, models made following technical drawings, and models
downloaded from GrabCad and Yahboom.

(a) Isometric view (b) Opposite isometric view

Figure 6.5: Iteration two SOLIDWORKS model

The Raspberry Pi 5 [134], Raspberry Pi 5 fan [135], and mecanum wheels [136] used in
the assembly were downloaded from GrabCad.

(a) Raspberry Pi 5 model (b) Mecanum wheel model

(c) Raspberry Pi 5 fan model

Figure 6.6: Models downloaded from GrabCad

160

KROMIUM 6.5 ROBOT ITERATION TWO

The arm model was acquired from a different robot sold by Yahboom, we downloaded the
model from a Google Drive [137] linked to the website and modified it to fit our model.

Figure 6.7: Robot arm assembly from Yahboom

The 520 DC motors and Raspberry Pi 5 case were made by measuring the physical parts
and recreating them in SOLIDWORKS.

(a) 520 DC motor simple model (b) Raspberry Pi 5 simple case model

Figure 6.8: Simple models motor and case

The motor expansion board and USB hub expansion board were designed individually as
one part following the technical drawings acquired from the Yahboom website in addition
to physical measurements. These models were used to design the brackets around as well
as visual aid in designing the robot. The mass properties in SOLIDWORKS are measured
by the volume and material weight of the model. For the parts with unknown material,
the weight was found by scale and the mass properties in the program were overwritten
to match the real weight.

161

KROMIUM 6.5 ROBOT ITERATION TWO

(a) Motor expansion board model (b) USB hub model

(c) Motor expansion board bracket (d) USB hub bracket

Figure 6.9: Expansion board models and brackets

6.5.1 Iteration two assembly AEH | HB

To test the second design the sheets were cut out of plywood and the brackets for the motor
expansion board, USB hub and motors were 3D-printed from Polylactic acid (PLA). For
more details regarding the testing, see 7.8.2

(a) Front left view (b) Front right view

(c) Right side view

Figure 6.10: Iteration two assembled

162

KROMIUM 6.6 ROBOT ITERATION THREE

6.6 Robot iteration three AEH | HB

In this iteration of the robot, we made a friction-fit bracket for the Raspberry Pi case.
We designed a bracket for the power switch and designed walls and brackets 7.15. Most
importantly we integrated the new battery drawer assembly 6.9.

Figure 6.11: Robot iteration three design

6.6.1 Robot iteration three redesigns AEH | HB

The overhang over the arm was meant to protect the camera when changing operational
modes in case a fault in the system caused the arm to go straight up instead of following
the assigned path. This has been removed to make space for the arm. We decided that
it’s better to bump into the camera than have the servos try to push against resistance and
possibly burn out.
We made a circular shape on the roof to make space for the arm to rotate when partially
upright. The expansion board brackets were changed to a snap lock rail design for easier
access. For easier access to the components we also removed part of the edge on the
middle and top floor to make an entryway for the cables.
The robot arm 6.7 we got from yahboom gives us a lot of error messages in the 3D
assembly and can also not be manipulated. Therefore we designed a simplified version of
the robotic arm 6.13 that we could use in the main assembly as a reference and export to
use as a digital twin 6.10.

(a) New expansion board bracket (b) New USB hub bracket

Figure 6.12: New expansion board brackets

163

KROMIUM 6.7 ROBOT ITERATION FOUR

Figure 6.13: Simple robot arm model

6.6.2 Robot iteration three assembly AEH | HB

The assembly of iteration three also used plywood sheets and 3d printed parts. The testing
can be found here: 7.8.3.

Figure 6.14: Robot iteration three assembly

6.7 Robot iteration four AEH | HB

In this iteration, we added hinges and a magnet bracket to the right wall.

164

KROMIUM 6.8 ITERATION FIVE DESIGN

Figure 6.15: Robot iteration four design

6.7.1 Robot iteration four redesigns AEH | HB

The front of the roof had to be redesigned again to be a straight cut instead of a half circle
because the arm collided with it 7.8.3. The pathway for the cables also got adjusted larger.

6.7.2 Robot iteration four assembly AEH | HB

The testing of iteration four can be read here: 7.8.4.

Figure 6.16: Robot iteration four assembly

6.8 Iteration five design AEH | HB

In the fifth iteration of the robot design, we added a vent at the top of the roof for the
Raspberry Pi fan to blow out of. For the front and rear of the car, we added the crash
pads with the Kromium name extruded on them, these are meant to be 3D printed from
a rubber-like material and act as a layer between the robot and whatever it may collide
with.

165

KROMIUM 6.8 ITERATION FIVE DESIGN

Figure 6.17: Robot iteration five design

6.8.1 Robot iteration five redesigns AEH | HB

As a result of the iteration four tests 7.8.4 we had to adjust the pathway for the wires and
make it larger. The Raspberry Pi bracket T.67 was changed from sliding backwards to
sideways. The power switch bracket T.66 was changed to point upwards and the standoffs
in the middle of the cable pathways were moved to the outer edges.

6.8.2 Robot iteration five assembly AEH | HB

The fifth iteration of the robot is built using aluminium sheets for the floors, carbon fibre
sheets for the outer shell and 3D-printed components for brackets. Information regarding
the production of these parts can be found in chapter 6.11. All the parts in the system and
how to assemble the robot can be found in chapter T.3.

166

KROMIUM 6.9 BATTERY DESIGN

Figure 6.18: Robot iteration five assembly

6.9 Battery design HB | AEH

The battery design had several iterations before the final design. The reasons for this are
new decisions being made during the development process, and some improvements had
to be implemented.

6.9.1 Battery iteration one HB | AEH

The first design of the battery was a 3S2P battery that did not have BMS, a charger was
also designed. This was so that the BMSs could be used. The reason the BMSs were not
added to the battery was that the space required from the battery would be too wide to
fit in the robot. Because the battery had no BMSs it would not be able to charge them.
Therefore, the cells had to be taken out of the battery and charged in a separate charger,
before they could be inserted into the battery, and then the battery could be used again.
Another reason was that the BMSs had not been properly researched at the time, and how
they worked was not clear.

167

KROMIUM 6.9 BATTERY DESIGN

Figure 6.19: A part of the first iteration. Arrow 1 points towards a block representing
the attachment between the charger wires and wires leading to the BMSs. Arrow 2 points
towards a hole where the wires from the end will appear. Arrow 3 points towards one of
the attachment holes for the cover

6.9.2 Battery iteration two HB | AEH

In the second iteration of the battery, BMSs were added. The reason for this was so that
the battery could be charged without the need for removal of the cells. However, due to
the way the BMSs were designed, they could not connect the outputs together in a series.
This would lead to at least one BMS being fried. Because of this, the BMSs can not use
their output connectors. The batteries themselves have to be connected directly to each
other and the BMSs must be connected to each cell at the same time. Because of this,
the battery needs a switch which can disconnect the cells from each other so the BMSs
can monitor the cells, so they wo not overcharge. However, with this solution, the cells
cannot be monitored while the battery is in use because the cells are connected to each
other. Luckily the expansion board on the robot has a built-in alarm when the voltage is
below 9.6 volts[84, p. 1].

The second iteration of the battery has a BMS for each cell in the battery. This makes the
connections inside the battery a bit more complicated than in the first iteration. This is
because the BMSs can not be connected in series because they are single-cell BMSs. This
means they will not be able to monitor the designated battery cell when the battery is in
use and will therefore not have a purpose when the battery is in use.
When charging, the BMSs will be disconnected in such a way that they will only be
connected to the designated battery cell. This way the battery can safely be charged and
overcharging is avoided. The only disadvantage of this battery is the battery cells are not
protected from over-discharging. Luckily the expansion board on the robot has an inbuilt
alarm if the battery voltage drops below 9.5 volts.

168

KROMIUM 6.9 BATTERY DESIGN

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 6.20: The second design iteration of the battery

6.9.3 Battery iteration three HB | AEH

In the third design iteration of the battery, the handle was removed from the switch mech-
anism, and the two switches were reduced to one switch. This was made possible by
making the connector plate bracket hold four connector plates each instead of two. One
of the reasons for this was that the battery would not fit within the robot car. Another
thing that was done to save space was to rotate the battery cell holders 90 degrees. This
way the battery could be even shorter than by just removing one of the switches.

(a) Battery design iteration three. (b) Battery box from iteration 3

Figure 6.21: In figure a: Arrow 1 points towards the holder for the mechanical switch.
Arrow 2 points towards the magnetic connector. Arrow 3 points towards the mechanical
switch

169

KROMIUM 6.9 BATTERY DESIGN

6.9.4 Battery iteration four HB | AEH

In the fourth iteration, the mechanical switch received an improvement. The reason for
this was that the switch was sliding over the connectors in the battery. This would have
led to a short circuit every time the switch would be taken in or out.

To prevent a short circuit when inserting or removing the switch, the opening for the
switch was made larger and there was added some taps to the switch. The larger hole
in the battery box made it possible to slide the switch in and through the whole box,
then slide the switch into position without the connectors on the switch touching other
connector plates than they are supposed to. The taps on the switch make it possible to at-
tach the switch to the battery box, so the switch will not move while in use and disconnect.

A side effect of switching to proper switches rather than the makeshift switch was that
the connector bracket that was between the BMSs and the battery cell holders could be
removed. This led to that the length of the battery could be reduced further. In total, the
battery with the BMSs had reduced its length from 161.5 mm from the second design
iteration to 145mm for this design iteration.

(a) The mechanical switch, or fork switch (b) Marked area is entry hole for the switch

Figure 6.22: Arrow 1: area for connector plates. Arrow 2: wedging mechanism

6.9.5 Battery iteration five HB | AEH

The fifth iteration was swapping out the large fork-like switch, to three separate switches
of the type DPST. This type of switch has two separate inbuilt switches that are controlled
by a single trigger. This change meant that the battery box had to get a redesign as
well. The holes for the previous switch had to be removed, and new holes for the new
switches had to be made. Because the new switches were placed on the top of the battery,
the battery had to be made slimmer. This was because the height of the space for the
battery was limited to 57 mm, and the battery height exceeded this with the new switches.
A side effect of changing to proper switches rather than the makeshift switch was that
the connector bracket that was between the BMSs and the battery cell holders could be
removed. This led to that the length of the battery could be reduced further. In total, the
battery with the BMSs had reduced its length from 161.5 mm from the second design
iteration to 145 mm for this design iteration.

170

KROMIUM 6.9 BATTERY DESIGN

(a) Moddel of iteration five (b) Battery iteration five cover

Figure 6.23: Battery iteration five

The production of the battery started once the designing process was complete. The first
part made was the separator plate for the battery cell holders, this was to attach the battery
cell holders. This part was laser-cut from a 3.5 mm thick plywood plate. When the battery
cell holders were attached, the BMSs were attached using double-sided tape. Due to the
reduced space, three BMSs were attached to each side. Then the wires were soldered to
the components and arranged in proper order. Then the cable lugs were attached to the
wires, and then the cable lugs were attached to the switches. While these operations were
done, the battery box and the lid for the battery box were being 3D printed. This ended
up being scrapped due to a failed test. See 7.9.2 for the reason this battery was scrapped.

(a) Attaching cable lugs (b) Soldering wire to cell holder

(c) BMS without wires (d) Marking of polarity

Figure 6.24: Producing battery iteration five

6.9.6 Battery iteration six HB | AEH

The sixth iteration was almost a complete redesign of the battery. This was because of a
failed test of the previous iteration. The BMSs were removed, which meant much simpler

171

KROMIUM 6.9 BATTERY DESIGN

wiring and a smaller battery. At the same time, the battery box and the separator plate got
a new design. The fifth iteration ended up being almost the same as iteration one. The
main difference was that the first design had a 3S2P design and this battery has a 2P3S
design.

(a) SOLIDWORKS model of final design (b) Final battery

Figure 6.25: Final battery design

The production of the fifth design iteration was just like the previous design started right
after the design was finished. Because the BMSs and switches were removed from the
previous design, the battery could be made smaller. Therefore it was decided to make
a smaller battery box. The separator plate was redesigned to fit the new design of the
battery box. The production steps were similar to the production of the previous battery
iteration, except for the cable lugs, BMSs, and switches. The battery box was 3D printed
while the other steps were completed.

(a) Inside the battery top side (b) Inside the battery under

(c) How the battery is charged

Figure 6.26: Inside of final battery

172

KROMIUM 6.10 EXPORTING THE MODEL FOR THE DIGITAL TWIN

6.10 Exporting the model for the digital twin AEH | HB

The 3d model we downloaded from the Yahboom website was exported as a single rigid
part. We could therefore not change any of the components or move the arm. To develop
and implement a digital twin we needed a Unified Robotics Description Format (URDF)
of the robotic arm. We made a simple model of the robotic arm that has the correct di-
mensions between the joint and the correct weight but not all the details.
After making the simple robotic arm the file needed to be exported as a URDF file. To do
this we used the solidworks plugin URDF exporter [138].

(a) Selected link on robot arm (b) Selected link in menu

(c) Selecting joint type (d) Selecting reference geometry for links

Figure 6.27: Configure links and joints

173

KROMIUM 6.10 EXPORTING THE MODEL FOR THE DIGITAL TWIN

Using the plugin menu and starting from the base of the robot arm, each link and joint
needed to be defined. Our robot arm uses revolute joints and we used the auto generate
for the coordinate system and reference axis.
When the links and joints were defined we could go to the next step where the reference
axis and coordinate systems are automatically generated. This step was a success but the
final step was to export and this did not work as it should. The pictures below are the
result of the export where the model would move away from its coordinate systems and
reference axis as well as redefine parts of the system from revolute to fixed.
The file got exported anyway to see how it would look and if it would work when exported

(a) Basic robot arm URDF export (b) Basic robot arm URDF export

Figure 6.28: Robot arm moved during export

174

KROMIUM 6.11 PRODUCTION

6.11 Production AEH | HB

This chapter will discuss the production method of different components in the system.

6.11.1 Robot car sheet floors AEH | HB

The bottom, middle and top floors are aluminium sheet metal 5052. We ordered the
parts from “Vannskjæresenteret AS” which had aluminium 5052, 5754 and 6082 sheets
in stock. The 6082 aluminium under 5 mm thickness is not normally stocked in Norway
but they had some we could buy, but this would be quite expensive. Between aluminium
5052 and 5754 the 5052 has a higher hardness and stiffness. We therefore chose to order
the parts in 3 mm thick aluminium 5052.

“Vannskjæresenteret AS” uses a water jet to cut the sheet metal parts. This method is
both quick, accurate and easy to prepare. The water jet machine functions as a laser cutter
and uses a 2D DXF file. The exported parts sent for production were a 1:1 scale, 2D
drawing with no markings and annotations. This is because the machine cuts whatever
lines or text on the drawing.

(a) Bottom floor sheet (b) Middle floor sheet

(c) Top floor sheet

Figure 6.29: Aluminium sheet parts

6.11.2 Robot car cover AEH | HB

The cover for the robot car is made of Hexply 8552 [139], which is a pre-preg carbon
fibre.
The plan was to produce a seven-layer thick 500 mm x 700 mm sheet. This would make it
about 2,5 mm thick and is a good amount of layers to keep it as light as possible while min-
imizing the risk of warping. However when discussing with the lab supervisor concerning
production; Computer numerical control (CNC) machining of parts; and post-processing,
he informed us that he would be away in the coming weeks and would not be able to help
with the CNC machining. Lucky for us he was going to help another bachelor group the
next day with their machining and he had an extra sheet comprised of nine layers and a 2,9
mm thickness we could use. The sheet was leftover from a teaching lesson and he could
machine our parts as well, as long as we had the machining assembly ready by the next
day and we could help him with all the preparations, observing and cleaning afterwards.

175

KROMIUM 6.11 PRODUCTION

Machining assembly refers to an assembly in solidworks which has to be prepared before
utilizing Computer aided manufacturing (CAM). In this assembly, there needs to be a
coordinate system where the origin is in the bottom left with the x-axis as the short end
with 350 mm and the y-axis as the long end with 500 mm length the z-axis has to point
straight up and all the parts that were to be machined needed to be spaced on the same
plane with a clearing of preferably 12 mm. The work area on the CNC machine was not
big enough for the whole 500 mm x 700 mm sheet so it needed to be cut in half. Using a
angle grinder we cut the sheets in two so that they were roughly 500 mm x 350 mm. We
also went over all the parts in the assembly and changed the thickness to 4 mm and hole
diameters to 3,175 mm, this made it easier for the machine and software to machine the
holes since we used a 3,175 drill bit and the extra thickness ensured that the machine cuts
all the way through.

(a) CNC assembly solidworks (b) CNC assembly cut

Figure 6.30: CNC assembly in solidworks and after cut

In the first session, we managed to cut out most of our parts but not all of them. So it
was decided that if we prepared everything he could come back for a short period a week
later to fix the CAM pathways. When this day came we, unfortunately, found out that the
machine was not working correctly and had to be fixed. Troubleshooting could take a day
or two, which had to wait, so we needed to find another solution.

We spoke to the other team that needed the rest of their parts and they could check if
Kongsberg Defence & aerospace could cut the parts for all of us using a water jet. They
learned that the qualified personnel were away and would not be back for a couple of
weeks.

Since our team already were in dialogue with “Vannskjæresenteret AS” about our alu-
minium sheet production we asked if they could cut our carbon fibre parts if we provided
the sheets.

They agreed to this, however, they informed us that holes in the middle of the parts were
problematic because the chance of delamination was so high. We agreed that they would
cut the outline of the parts and we would drill the holes ourselves. This also meant that
we had to make a pathway for the water jet if we wanted something cut in the middle of

176

KROMIUM 6.11 PRODUCTION

the part.

(a) Roof before adjustment (b) Roof after adjustment

Figure 6.31: Before and after adjusting the roof for water jet production

(a) The CNC machined parts (b) The water jet parts

Figure 6.32: Cover parts after production

6.11.3 Post processing AEH | HB

The feed rate during machining was set to low and as a result, we got burn marks and heat
damage to the carbon fibre parts.

177

KROMIUM 6.11 PRODUCTION

Figure 6.33: Burn marks on edge of front cover

The post-processing of the carbon fibre parts consisted of sanding away the burn marks
using a kitchen swamp. The swamp was abrasive enough to remove the burnt epoxy
without damaging the part itself. To remove the sharp edges we sanded them using 400
and 2000 grit paper. For the holes, we used a grinding head to smooth the edges.

(a) Swamp (b) Grinding head

Figure 6.34: Post processing tools

After cleaning up the parts we could see a large improvement. We can still see the blue-
green colour in the matrix of the parts which is a result of the heat damage. But the burns
on the surface were removed and the edges were no longer sharp.

178

KROMIUM 6.11 PRODUCTION

(a) Open wall before (b) Open wall after

(c) Overview before (d) Overview after

Figure 6.35: Before and after clean up

The parts that were cut using the water jet had smooth edges and did not need sanding
but the holes had to be drilled. We secured the parts to a wooden slab so that they would
not move. During the drilling of the 17 holes, we broke three drill bits because the high
hardness of the material quickly wore down the bits. First, we drilled the holes using a 2
mm bit and then with a 4 mm bit, this was because the smaller bits grabbed the surface
better. After drilling we smoothed the hole edges using the grinding head.

179

KROMIUM 6.11 PRODUCTION

Figure 6.36: Drilling the holes for the roof

6.11.4 3D printed components

Some of the components used in our system were 3D printed using an Ender 3-V2 printer.
These are the parts marked in section T.3 with the material as Clas Ohlson PLA.

180

KROMIUM 7. TESTING & RESULTS

7 Testing & Results
In this section, we have discussed testing of the project implementation and development.
This includes using unit testing, deployment of object detection models, battery test, in-
tegration and user survey testing. Consequently, we have written about the results we
received.

7.1 Integration testing SO | OM

Integration testing was conducted throughout the VR application and extended to the
robot system. This testing ensured that functionalities involving components from the VR
application, robot system, AI, and the physical robot were working together seamlessly.
Detailed documentation of these tests can be found in our test template in Appendix E.

7.2 Object detection model performance AD | OM

This section will evaluate the performance of the object detection models developed in
the previous sections. The group will start by discussing the evaluation metrics used to
assess the models’ performance, and then present the results of our experiments.

7.2.1 People detection AD | OM

Average Precision (AP) and Average Recall (AR) are two metrics that are used to analyse
an object detection model’s performance. Average Precision indicates the accuracy of the
positive predictions. High precision means that the model returned more relevant than
irrelevant results [140]. Equation 7.1 shows the precision calculation for one class A, if
there is more than one class, then the statistical mean is taken.

PrecisionA =
True PositiveA

True PositiveA +False PositiveA
[140] (7.1)

Average Recall indicates the ability of the model to find all the positive/relevant cases.
High recall means that the model returned most of the relevant results [140].

RecallA =
True PositiveA

True PositiveA +False NegativeA
(7.2)

Figure 7.1 represents the AP and AR of the people detection model across different Inter-
section over Union (IoU) thresholds and object size categories (small, medium, large).
The IoU threshold determines how much a predicted bounding box must overlap with the
ground truth bounding box to be considered a true positive. So, the 0.50:0.95 all shows
that AP and AR are calculated across all sizes and IoU thresholds ranging from 0.5 to
0.95 [141].
The AP for all categories is high, ranging from 0.7 and higher. This means the model
performs well across the data across all sizes and performs exceptionally well for small
and medium objects, which means the dataset was well distributed.
The AR is also high, ranging from 0.7 and higher for all thresholds. It is also very high for
small and medium objects, which again proves that the dataset was very well distributed.

181

KROMIUM 7.2 OBJECT DETECTION MODEL PERFORMANCE

Figure 7.1: Precision and Recall of people detection model

182

KROMIUM 7.2 OBJECT DETECTION MODEL PERFORMANCE

(a) Box loss (b) Class loss (c) Model loss

(d) Validation box loss (e) Validation class loss (f) Validation model loss

Figure 7.2: Loss functions

The above graphs represent the different loss functions of the model.
Box loss: Box loss is better known as bounding box loss function (L1 loss mentioned
in 4.5.10). It measures how accurately the model localizes the object [95]. The curve
starts with a low box loss value but still decreases quickly for 20 epochs. It then slowly
decreases, coming closer to 0 with some minor fluctuations.
Class loss: This is the classification loss, which measures how accurately the model clas-
sifies the object (focal loss function explained in 4.5.10). The class loss in 7.2 starts with
a high value, which suggests that the initial predictions were inaccurate, but it also de-
creases quickly and approaches 0. This suggests that the model is approaching its best
possible performance.
Model loss: Model loss is the error calculated for a single training example [142]. This
also moves the same way as the class loss, which suggests that the model is becoming
increasingly accurate in predicting the locations and sizes of bounding boxes.
Validation box, class and model loss: These terms mean the same as above but only for
the validation dataset, which is unseen data for the model. The validation box loss ini-
tially decreases rapidly, then fluctuates with an overall downward trend, suggesting that
the model is learning and improving its predictions over time, but not as smoothly as in
the initial stages.
The validation class loss and model losses develop similarly because the loss value drops
quickly for 20 epochs, but after the initial drop, the losses fluctuate while showing a grad-
ual decrease over time. These fluctuations could be due to the model finding it challenging
to learn specific patterns in the validation set. The plateauing suggests the model may be
reaching its limit in improving on this specific dataset.

183

KROMIUM 7.2 OBJECT DETECTION MODEL PERFORMANCE

(a) Total loss (b) Validation total loss

Figure 7.3: Total losses

Figure 7.3 represents the total loss of the training data and validation data. It is a weighted
sum of all the individual losses (from 7.2) calculated during one epoch. The total loss de-
creases rapidly then after epoch 20 it continues to decrease but very slowly and plateauing,
reaching its peak performance. The validation total loss also decreases like the total loss
but has an upward trend which may be due to overfitting.

7.2.2 Bolt detection AD | OM

Figure 7.4: AP and AR (Bolt)

Figure 7.4 represents the AP and AR for the object detection model for bolt detection.
The AP for the ‘all objects’ category is high, ranging from 0.7 to 0.9. This means the
model performs well across the data without considering the object size. It also detects
objects in the medium and large size category. However, the AP significantly drops for
small objects, which means it has difficulty recognizing smaller objects.

184

KROMIUM 7.2 OBJECT DETECTION MODEL PERFORMANCE

The AR is weak for IoU thresholds 0.5-0.95 and small objects, otherwise it is over 0.7,
which is high. This suggests that the dataset was not varied enough.

(a) Box loss (b) Class loss (c) Model loss

(d) Validation box loss (e) Validation class loss (f) Validation model loss

Figure 7.5: Loss functions

Figure 7.5 represents the many loss values of the model.
Box loss: We can observe that the loss value is already minute when it starts learning, and
it gradually decreases with minor fluctuations.
Class loss and model loss: The class loss starts off being a very high value but drops
significantly. It holds itself stable after that. The model loss has the same change as the
class loss.
Validation box loss: This graph shows a decreasing trend initially, indicating that the
model is better at predicting bounding boxes. However, after around 40 epochs, the loss
fluctuates and plateaus, suggesting the model’s ability to improve localization has stag-
nated. This can be because of the limited amount of data.
Validation class and model Loss: Initially, the loss functions decrease rapidly, showing
that the model is learning to classify objects better. However, after about 20 epochs, the
losses start increasing and fluctuating. This could indicate overfitting. Again, this could
be because of the small validation data.

185

KROMIUM 7.3 RUNNING INFERENCE

(a) Total loss (b) Validation total loss

Figure 7.6: Total losses

The graph 7.6a representing total loss shows that the model learns rapidly initially, but
plateaus around epoch 20, which suggests that the model approached its optimal perfor-
mance on training data. The graph 7.6b shows that the total loss in validation data also
decreases at the start, but increases after around epoch 20-30. This suggests overfitting,
thereby struggling to generalize to new examples.

7.2.3 Analyzing the results AD | OM

Analyzing the model performance, it is reasonable to say that overall, the people detection
performed very well across various IoU thresholds and excelled with small and medium-
sized objects. It also had high APand AR values. The loss also consistently decreased
and stabilized. However, there were some fluctuations in the box loss values. The bolt
detection model had high APvalues except for small objects. The ARwas also low for
IoU thresholds 0.5-0.95. The validation loss showed fluctuations and an increase after a
point.
Some ways of increasing the people detection model performance could have been to have
more varied and diverse data using more data augmentation which could have decreased
the fluctuations [114]. The hyperparameters like batch size, learning rate and number of
epochs could also be changed to increase performance [28].
The bolt detection model performance could have increased if the dataset had been bigger,
and more varied. To avoid overfitting, more data augmentation could have been applied.
Another technique called early stopping could also have been used, where we stop the
training of the model once the validation loss begins decreasing and stabilising [114].

7.3 Running inference AD | OM

Inference is the process that follows the training of a ML model. Here, the model is
in action [143] and we can test the model and observe how it performs. Our project
was required to detect objects from a live stream sent by the camera. A live stream is
essentially a series of frames/images moving quickly. Therefore, inference has to run on
every frame.

186

KROMIUM 7.3 RUNNING INFERENCE

Figure 7.7: Simple inference process

The frames are captured by the OpenCV library. Each frame needs to be pre-processed
before detection and post-processed after to achieve the best results. Figure 7.8 shows the
steps of pre and post-processing.

(a) Preprocessing (b) Postprocessing

Figure 7.8: Pre- and post-processing steps

7.3.1 Pre-processing AD | OM

Pre-processing is all the steps taken to ensure that the raw frame data is converted into
a suitable format that the detection model understands. Here is a list of pre-processing
steps:

• Colour format : OpenCV captures a frame with a Blue-Green-Red (BGR) format.
MediaPipe models use the RGB format; therefore, the frame needs to be converted.
Luckily, OpenCV itself provides a method to do this.

• Resizing: A model is trained on images with a specific input size. Therefore it is
a requirement that the input frame it gets while performing the detection has to be
resized. MediaPipe does the resizing for us.

• Flip: The flipped frame is a data augmentation technique used to make the data
more varied as the object is now in a different place. OpenCV has a method to flip
an image as well.

7.3.2 Detection and post-processing AD | OM

The MediaPipe library offers a package called vision which creates a detector object using
the options that the user creates. The user has the following choices:

187

KROMIUM 7.3 RUNNING INFERENCE

• The TFLite model path

• The maximum amount of objects to detect in one frame

• The confidence threshold

• The input data mode: a) An image, b) A video, c) Live stream

• A method that saves the results

Post-processing: Post-processing is where the raw detection results are refined and inter-
preted. Here are the steps of post-processing:

• Non-Maximum Supression (NMS): This process eliminates redundant bounding
boxes that might overlap around the same object, keeping only the most confident
prediction. MediaPipe does this for us, as it has a calculator made for NMS [144].

• Labelling: Extracting the class index from the detector object, finding the value
from the metadata, and visualising it with OpenCV.

• Bounding Box Visualization: Extracting the bounding boxes from the detector
object, and drawing them using OpenCV.

• Confidence scores: Extracting the confidence score from the detector object, con-
verting the probability score to percentage and displaying it on the frame using
OpenCV.

Figure 7.9: The annotated frame after post-processing

188

KROMIUM 7.3 RUNNING INFERENCE

Figure 7.10: Person

Figure 7.11: Object detection recognition and displaying of information

Figure 7.9 shows a frame captured while testing the whole project. It can be observed that
NMS has been applied as we see only one bounding box, we also see the label, confidence
score and additional information from the database. We can also see the result in 7.10,
even though the data goes out of the frame.

189

KROMIUM 7.3 RUNNING INFERENCE

Figure 7.12: Full activity diagram of testing the model

The activity diagram in 7.12 shows the process of capturing and processing a frame in the
totality of the system. After capturing a frame, the system checks if detection is enabled.
If so, it determines the robot’s mode (Drive or Arm) and switches to the corresponding
camera. Based on the mode, it performs either people detection (in Drive mode) or bolt
detection (in Arm mode). Finally, it adds relevant data from a database and sends the
processed frame.

190

KROMIUM 7.4 PRODUCTION MODE

7.4 Production mode OM | AD

Due to the amount of testing, a “production mode” functionality was added. This mode
determines whether the expansion board will be utilized and is simply represented as a
boolean value specified in a JSON file.

{

"production": false

}

The rationale behind using a JSON file instead of a variable within the Python code or
elsewhere lies in the principle discussed in 4.3.1. By altering the contents of the JSON
file, there is no need to rebuild the code. This approach allows for the execution of the
same code while enabling the switching of production mode on or off, thereby saving
time without requiring code rebuilding.

When production mode is disabled, the serial connection with the expansion board is
not established. This allows for the testing of functionality without the need to have
the expansion board connected, thereby mitigating the risk of damaging any physical
components on the robot. This aspect is crucial for conducting unit tests on portions of
the code without encountering exceptions.

7.5 Unit tests OM | AD

Unit tests have significantly sped up the system development process. It has facilitated
the testing of functionalities and concepts without the need to set up a physical test en-
vironment each time. A physical test involves preparing the robot, connecting devices,
establishing a connection with the VR application, and so forth. While each setup may
only require a few minutes in total, the cumulative time spent adds up throughout devel-
opment, resulting in slowdowns. In our system, this kind of testing requires two people
at minimum. Unit testing has ensured that the code-base segments are correct without
necessitating this setup. All of Kromium’s unit tests can be found on GitHub [145].

7.5.1 Writing an unit test OM | AD

Every ROS package in the codebase includes a test/ folder where corresponding unit
tests for that package are written if found applicable. The default Python package unittest
was used for writing and running these unit tests.

Every test file in this directory should start with “test”, as should the classes and methods
within these files. If they do not, the tests will not be executed. The test class inherits
from the TestCase class, making commonly used methods like assertEqual(a, b)

and assertTrue(c) available. These methods are used to verify that variables and values
are as expected.

from unittest import TestCase

class TestSomething(TestCase):

def test_equal(self):

self.assertGreater(4, 3)

self.assertEqual(4, 3)

191

KROMIUM 7.5 UNIT TESTS

def my_test(self):

self.assertAlmostEqual(2.9999, 3.0000, places=2)

def test_true(self):

self.assertFalse(True)

To run the tests, the command python3 -m unittest is used. The output of the tests is
as follows:

FF

==

FAIL: test_equal (test_something.TestSomething.test_equal)

--

Traceback (most recent call last):

File "C:\Users\oscar\kromium\test\test_something.py", line 7, in tes

self.assertEqual(4, 3)

AssertionError: 4 != 3

==

FAIL: test_true (test_something.TestSomething.test_true)

--

Traceback (most recent call last):

File "C:\Users\oscar\kromium\test\test_something.py", line 13, in te

self.assertFalse(True)

AssertionError: True is not false

--

Ran 2 tests in 0.001s

FAILED (failures=2)

Here we can see that all tests failed, along with the reasons for their failure. If a unit
test fails, it indicates that either the code being tested is incorrect or the expected value
in the unit test is wrong. In this example, only static values were used, but typically one
would import functionality from other files and compare it with the expected result. The
static values could be replaced with function calls and class attributes. When changing
the implementation of the code, the output might be intended to remain the same, or it
may change, as the previous code written was wrong. Therefore, unit tests need to be
updated accordingly. If the output was not supposed to change but did, the code within
the function is likely incorrect.

Typically, a unit test function would contain multiple assertions. If the unit test output
shows OK, the functionality likely being tested works correctly, provided that the tests are
written to represent possible inputs and states accurately. Due to the file structure when
working with ROS packages (see 4.3.1), there might be issues with paths, as discussed in
O.14.

7.5.2 Ignoring messages in wrong mode OM | AD

When starting the robot, it initially enters idle mode, which is verified through testing.

192

KROMIUM 7.5 UNIT TESTS

from master.master_node import MasterNode

from unittest import TestCase

class TestModes(TestCase):

def test_master_mode(self):

master = MasterNode()

self.assertEqual(master.mode, Mode.IDLE)

master.handle_unsafe_vr_arm(None)

master.mode = Mode.ARM

master.handle_unsafe_vr_drive(None)

self.assertRaises(

AttributeError,

master.handle_unsafe_vr_arm,

None

)

In this test, None is passed because the function requires a ROS message argument, which
is not accessible.

Since the master node operates in unit test mode (UNITTEST=True, see O.14), the Python
interpreter will raise an AttributeError when the master node is in the correct mode,
which is the expected behaviour. When the master node is in the wrong mode, nothing
happens when a message is received, which is also the expected behaviour.

If the interpreter were to raise an AttributeError when the master node is in the wrong
mode, it would indicate there was an issue, as the message would be processed even
though in the wrong mode. This could lead to dangerous situations, such as the operator
being able to drive the robot while it is in emergency mode.

7.5.3 Battery percentage verification OM | AD

Before physically testing the battery percentage estimation, unit tests were conducted.
Below is the test that was used:

from controller.robot import Robot

from unittest import TestCase

class TestRobot(TestCase):

@classmethod

def setUpClass(cls):

cls.robot = Robot(production=False)

def test_battery_percentage(self):

self.assertEqual(self.robot.estimate_percentage(12.6), 100)

self.assertEqual(self.robot.estimate_percentage(9.6), 0)

self.assertEqual(self.robot.estimate_percentage(11.15), 51)

These tests were successful, as shown in the output below:

193

KROMIUM 7.6 ROBOT-TEST-CLIENT

--

Ran 14 tests in 0.001s

OK

The battery percentage is defined as 0% at 9.6V, which is when the robot stops and beeps
to indicate low voltage [84]. However, if it was assumed that 0% is at 9.7V instead while
keeping the implementation the same, the output would look like this:

==

FAIL: test_battery_percentage (test.test_robot.TestRobot)

--

Traceback (most recent call last):

File "/robot/src/controller/test/test_robot.py", line 15, in test_ba

self.assertEqual(self.robot.estimate_percentage(9.7), 0)

AssertionError: 3 != 0

--

Ran 14 tests in 0.003s

FAILED (failures=1)

Since the actual calculation returns 3% at 9.7V, this test fails because the implementation
still considers 9.6V as 0%. In this case, the test is incorrect, not the code.

7.6 robot-test-client OM | AD

A smaller program was developed to test communication with the robot, simulating a ba-
sic VR socket client. This tool was made to manually send and receive data, eliminating
the need to launch the VR application and reducing reliance on the presence of the VR
headset and other team members when testing. The test client possesses the capability to
receive various data types from the robot, including depth data compressed using Brotli.
Upon reception, the test client decompresses the data for processing.

The test client was frequently used during the testing of depth data and the enhancements
of predefined arm movements. As testing could be conducted without the VR headset,
this fine-tuning occurred in parallel with the implementation of voice commands, which
naturally required the use of the headset. Consequently, this test client enabled parallel
development of features, reducing the development time.

Furthermore, the test client was instrumental in validating the compression of depth data.
Plotly was configured to generate plots each time the test client received depth informa-
tion, allowing for the evaluation of live plotting before integration into the VR application.
If the depth data could not be compressed enough before transmission, developing a plot-
ting algorithm on the receiving end would have resulted in inefficient use of time. This
was proved not to be the case, and the implementation on the VR application followed
shortly thereafter.

194

KROMIUM 7.7 SIMULATIONS

7.7 Simulations AEH | HB

We have utilized SolidWorks simulation to run these simulations. To get as accurate a
reading as possible we performed a tensile test[146] of the PLA we were going to use and
made our custom material in SolidWorks based on these values.

7.7.1 Testing of 520 DC motor brackets AEH | HB

The brackets (T.45) used for the 520 DC motors should be able to withstand the weight of
the robot car. The brackets are made of PLA and since the car weighs 5.4 kg, each bracket
should hold at least 1.35 kg each. We have done a static simulation of the motor bracket
and found that they are more than strong enough. The report from the simulation[147]
states that the part has a factor of safety of 79 or higher. This does not account for faults
in layer adhesion or other defects, but the brackets should still be more than enough.

7.7.2 Arm camera bracket HB | AD

The original arm camera bracket that came with the robot could not adjust the angle of
the camera. Because the camera was mounted in a position that did not show the grippers
on the arm, it would be very hard to use the arm and gripper. Therefore the arm camera
bracket was replaced with a newly designed arm camera bracket. There were two itera-
tions of the arm camera bracket. The first design could adjust the angle of the bend on the
bracket. In the second design iteration, the bracket had a fixed angle that was at a specific
angle.

First iteration, arm camera bracket
The first arm camera bracket consisted of four parts. The base plate that attached the
bracket to the arm, the plate that holds the camera, a screw that holds the two plates
together, and finally a nut that tightens the screw so the angle of the bracket will be con-
sistent.

During use, the nut gradually came looser and the angle started to change during use.
This was because of the vibrations created by the wheels, and the tension in the camera
cable constantly changed due to the arm movements. It was decided to ditch the design
when the bracket broke off. This was because the camera cable got pulled so hard that it
broke the attachment mechanism between the two plates. The reason the cable got pulled
so hard was because the robot changed mode, from arm mode to drive mode. When the
arm moved to the drive mode position, the camera cable hooked itself to the robot, and
therefore ripped off the arm camera bracket.

Second iteration, arm camera bracket
The second arm camera bracket design consisted of one part which has a fixed angle. In
addition to the bracket, a cable holder was made to prevent the arm camera cable from
attaching itself to the robot and possibly breaking anything. To find the optimal angle for
the camera bracket, a picture was taken to measure the angle. See O.10 for more.

195

KROMIUM 7.7 SIMULATIONS

SOLIDWORKS Educational Product. For Instructional Use Only.Figure 7.13: The fixed angle bracket. The hole is square to remove the need for support
when 3D printing the part.

The cable attachment is attached to one of the arm brackets a couple of steps behind the
camera. To make it possible to attach and detach the camera cable without damaging the
cable, the attachment point has rounded-off edges on the inside and the outside of the
cable holder.

Figure 7.14: This way the cable for the arm camera does not hook itself to the robot.

A static simulation of the arm camera bracket was made, this was to simulate the camera
cable attaching itself to the robot and therefore dragging in the camera bracket. The
force here was sat to 2.5N dragging backwards. The calculations gave a safety factor of
approximately 1.5. This sounds quite low, but it is better if the bracket breaks instead of
the cable ripping apart. This is because it is much easier to replace the 3D-printed bracket
than the camera cable. For the simulation results, see [148].

7.7.3 Wall attachment bracket assembly HB | AD

The “Wall attachment bracket assembly” is the assembly of the wall attachment brackets.
Each end has a similar shape, so they fit each other. Parts of the walls are also angled,
so the pieces fit easier with each other. Because these pieces are load-bearing, a static
simulation has been made to make sure that the brackets hold the weight of the walls.
The load was put to 5N, this is more than what each of the walls weighs. Still, some
extra forces are added when attaching the walls to the robot. Still, the factor of safety
was calculated to be just above 7.5, which is more than enough. Still, the brackets did not
have a redesign because of their small size and they were 3D printed. Because the parts
are 3D printed the quality varies from part to part. The factors playing a role here are; the
adhesion between the printing layers vary from print to print and printer to printer, and
the dimensional tolerances. The dimensional tolerances play a role because the part is

196

KROMIUM 7.8 VISUAL PHYSICAL TESTING

first produced in one program, then transferred to another program, in the end, the printer
also has its limits to the resolution. Because of this, the part loses accuracy and because
it is already so small, it would not be smart to reduce its size. For the simulation results,
see [149].

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 7.15: This is how the pieces fit together.

7.8 Visual physical testing AEH | OM

Utilizing Rapid Prototyping (RP) we have made a lot of iterations of the physical robot
as discussed in chapter 6.5. This was a quick and easy way to find mistakes, modify and
correct them. Next, we will go through the different iterations of the robot and what needs
to be fixed for each one. The areas marked by blue on the pictures are areas to remove.

7.8.1 Robot iteration one testing AEH | HB

In this iteration, we learned that the USB cable heads take up a lot of space and this needs
to be accounted for. We had to remove parts of the cover because the cables did not fit.
We also learned that the robot arm needs to be placed in relation to the camera such that
the arm does not block the view.

197

KROMIUM 7.8 VISUAL PHYSICAL TESTING

(a) Cover with section removed (b) Electronics view right

(c) Electronics view right

Figure 7.16: Iteration one testing

7.8.2 Robot iteration two testing AEH | HB

The overhang 7.17a from the roof over the robot arm collides with the end servo on
the arm. The section 7.17b removed to make space for the robot arm camera needs to
be larger so that the camera does not collide and the cable does not get caught on it.
When the robot arm is being controlled the roof 7.17c is in the way of the arm when bent
backwards. In this iteration the pathways 7.17d meant for the cables were closed off, thus
the components needed to be unplugged before removal, in the next iteration there needs
to be room for removing the cable without disconnecting.

198

KROMIUM 7.8 VISUAL PHYSICAL TESTING

(a) Back of the roof overhang (b) Top floor space for camera

(c) Front of roof (d) Cable pathways

Figure 7.17: Iteration two sections to remove

The holes on the roof shown in 7.18 were a way for us to test different placements for the
astra pro camera. The result of testing these was that the camera should be placed as far
back as possible.

199

KROMIUM 7.8 VISUAL PHYSICAL TESTING

Figure 7.18: Holes to find the best camera position.

7.8.3 Robot iteration three testing AEH | HB

The redesigned front section of the roof 7.19a had to be redesigned again and the corners
on the circular cut had to be removed since these still obstructed the path of the arm. The
standoffs in the middle on the middle 7.19c and top floor 7.19b need to be moved since
they currently obstruct the path for components and cables when these are changed. The
new entryway for the cables is too thin and the cables do not pass through smoothly and
therefore need to be made larger.

200

KROMIUM 7.8 VISUAL PHYSICAL TESTING

(a) Front of the roof (b) Top floor standoff

(c) Middle floor cable pathway standoff (d) Middle floor cable pathway entry

Figure 7.19: Iteration three sections to fix

7.8.4 Robot iteration four testing AEH | HB

In this iteration, we wanted to test different ways to fasten the cover walls. The female to
male brackets T.43 work but we wanted to test hinges and magnets as possible solutions.
The hinges 7.20a worked poorly in that they restricted access to the battery drawer. The
magnets however worked great. The space for the cables and the pathway 7.20b is still too
small and needs to be removed and made bigger. Since we moved the motor expansion
board up and the USB hub down the standoff under the USB hub which connects the
bottom and middle floors needs to be moved closer to the edge 7.20c.

201

KROMIUM 7.8 VISUAL PHYSICAL TESTING

(a) Hinges (b) Cable pathway and entry

(c) Standoff under USB hub

Figure 7.20: Iteration four sections to fix

7.8.5 Robot iteration five test AEH | OM

In the fifth and final iteration, we wanted to measure the robot’s weight. To get the weight
we used a case for the robot and a hook weight. We emptied the case, put it on the scale
to zero it, and put the robot in the case and got the measurement. The final weight for the
complete system is 5.4 kg.

202

KROMIUM 7.9 BATTERY TESTING

Figure 7.21: Weight of the robot

7.9 Battery testing

7.9.1 Test of battery cells HB | AD

Introduction
To make sure that the battery cells are still alive and have enough capacity to be used,
they are tested. To make sure that the capacity of the battery cells is good enough to be
used, they are tested using the OPTUS BT-C3100 V2.2, which is a battery cell tester with
other functions as well. If the battery cell has too little capacity left or they are dead, there
would be no use for them.

Equipment used for testing of battery cells The equipment that is being used for the
testing is a multimeter and a battery tester. The multimeter is a FLUKE 8010A Digital
Multimeter and the battery tester is an OPUS BT-C3100 V2.2.

Fluke 8010A Digital Multimeter is a portable bench-type digital multimeter that USN got
to their possession in 1992. Even though this is an old multimeter, it is reliable. It can
measure voltage, current and resistance in both AC and DC. For the creation of the bat-
tery, it is only needed to use the DC voltage function. The values measured are displayed
on a small 31

2 -digit LCD.

The OPUS BT-C3100 V2.2 is capable of charging, discharging, restoring and testing dif-
ferent types of battery cells. The capacity is four battery cells at a time, and it can have
different modes for each one at the same time. The different sections in the battery cell
tester consist of a positive and a negative pole. The positive pole is at the far end of the
tester, while the negative side is a spring-loaded metal plate that makes sure that the bat-
tery cell fits nicely and firmly in the tester.

203

KROMIUM 7.9 BATTERY TESTING

The test sequence consists of first charging the battery cells up to 4.20 V. Then a dis-
charging sequence is initiated, and the battery cells are discharged to 2.80 V. During this
discharging sequence the battery capacity is measured, and displayed in mAh when the
sequence is finished. The final step is charging the battery cells up to 4.20 V, so the bat-
tery cells do not die. All of these steps happen automatically when the device is set to test
mode.

The formula for measuring the capacity of a cell can be written like this:

mAh = mA ·h (7.3)

Where mA is the discharging current used during the testing, and h is the time, in hours,
it takes to discharge the battery.

Testing of battery cells
The testing process is divided into two tests. The first test is to check the voltage of the
batteries using a multimeter. The second test is to check the capacity that’s left of the
battery cells, measured in mAh. This test is carried out using a battery cell tester. To keep
track of each battery cell, they are numbered from “1” and up and then logged into a table.
This is to prevent mixing them if there are some of them are dead and to separate the cells
with the least capacity and most capacity.

The reason the voltage of the battery cells was checked is because if the cells are below
2.80 volts, the cells “die”. A battery cell that has died is a battery cell that has lost all of
its voltage and it is not possible to recharge the cell. Luckily only one of the given battery
cells was dead. This gives 20 battery cells that could be tested for their capacity. The
battery capacity test was a tedious process. The test consists of placing the cells in the
battery cell tester and then switching the battery cell tester into testing mode. The way
this testing process works is that the cell is charged all the way up to 4.20 volts. Then
a discharging-sequence is initiated and the cells are discharged all the way down to 2.80
volts. Then the test is finished. To prevent the cells from dying, the battery cell tester
automatically starts to charge the cells again after the test is finished. Because there was
20 battery cells that had to be tested, and the capacity test took at least six hours for the
cells with the least capacity. The total time for testing the cells was over two and a half
days to complete because the cells had to be watched when charged and tested.
As the cells were done with the capacity test, the result was logged into a table and ranged
from 1 to 20, where 1 was the cell with the most capacity and 20 was the cell with the
least amount of capacity.

Results of cell testing
The results from the battery check were quite promising. Only 1 out of 21 battery cells
were dead. This meant that 20 battery cells were possible candidates for the battery pack.
The results from the battery testing can be viewed in table 7.1.

204

KROMIUM 7.9 BATTERY TESTING

Cell №: Voltage: Tolerance: Capacity: Ranking:
1 3,84V +/- 0,0038V 1805mAh 20
2 3,84V +/- 0,0038V 1853mAh 19
3 4,09V +/- 0,0041V 1984mAh 14
4 4,1V +/- 0,0041V 2031mAh 7
5 4,1V +/- 0,0041V 1984mAh 14
6 4,1V +/- 0,0041V 2031mAh 7
7 4,1V +/- 0,0041V 1996mAh 13
8 4,13V +/- 0,0041V 2060mAh 4
9 4,09V +/- 0,0041V 2023mAh 10

10 4,09V +/- 0,0041V 2047mAh 5
11 0,01V +/- 0,V * *
12 4,07V +/- 0,0041V 2091mAh 1
13 3,88V +/- 0,0039V 2038mAh 6
14 4,07V +/- 0,0041V 1874mAh 18
15 3,96V +/- 0,004V 2086mAh 2
16 4,07V +/- 0,0041V 2082mAh 3
17 4,07V +/- 0,0041V 2028mAh 9
18 3,96V +/- 0,004V 2005mAh 12
19 3,81V +/- 0,0038V 1979mAh 16
20 3,82V +/- 0,0038V 1940mAh 17
21 3,88V +/- 0,0039V 2019mAh 11

Battery cell test

*The tolerance for DC-Voltage measurements is 0.1% at all
ranges in FLUKE 8010A Digital Multimeter
**The voltage listed is the voltage measured before the
capacity test

Table 7.1: Battery cell test results. Cell number 11 was dead.

7.9.2 Test of battery iterations HB | AEH

Two types of batteries were tested, one with BMS and one without BMS. The reason that
two different batteries were built and tested was that one of them failed a test it had to
pass. Therefore, some changes had to be made to the battery.

Test of battery iteration five The testing of the battery with BMS consisted of two stages.
The first test was attaching the battery cells before the charging wires were attached. The
negative and the positive wires were attached to the multimeter, then the battery was put
into “use mode”.
The second test was charging the battery. When the charging wires were attached, the
battery cells were inserted and the battery was put into charge mode. The charger was
plugged into the power outlet from the wall and the charging module LEDs lit up. All
seemed fine up until 30 seconds in when a burning smell occurred. The charger was
disconnected, but the component did not stop frying. So all of the cells were ripped out of
the charger to prevent further damage. This incident is one of the reasons the white band
is placed below the cells.

205

KROMIUM 7.9 BATTERY TESTING

(a) Voltage test of the battery with the BMSs. (b) Battery charging test top

(c) Battery charging test under (d) Battery connection to charger during test

Figure 7.22: Test of battery with BMS. The red light on the BMSs indicates that the cells
are charging.

Test of battery iteration six The battery without any BMS had only one power test, this
was a voltage test where the output voltage was measured. This test was done in the same
way as the battery with the BMSs. Inserting the cells, then measuring the output voltage.
This test was a success, just like with the other battery.

The next test was to check that all of the produced parts fitted each other and the other
parts that were provided to the project. To go through with this test, all of the parts were
assembled and the battery was put together. Then check the output voltage again, but this
time on the magnetic connector. The battery passed this test also.

The next test is checking if the battery fits in the battery drawer and that the pins align so
that the magnetic connectors attach themselves. This test was carried out by inserting the
battery, and then turning the robot on. This test was also a success.

The next and final test is to check the duration of the battery, one of the requirements
is that the robot should be operational for at least 20 minutes before the battery must be
changed. To test this, the battery cells were fully charged and inserted into the battery,
and the battery was inserted into the robot. Then the robot was driven for approximately
30 minutes, when the robot suddenly died.

It turned out that the output voltage from the battery was 0 volts when measuring the volt-
age with a multimeter. The battery was then dismantled and the voltage was measured
directly at each end of the battery cell holders. This was to locate the problem. Either the
battery cells and the wires connecting them, or the wiring from the battery cell holders

206

KROMIUM 7.9 BATTERY TESTING

to the magnetic connector. Luckily the battery cells still had a great amount of charge,
12.05 volts. This meant that the problem had to be the wiring from the cells to the mag-
netic connector. The wiring was checked to make sure that there was still contact between
the connection surface on the magnetic connector and the wires that are attached to this.
There was contact between these. The battery was then assembled again and the voltage
was measured again at the magnetic connector, still measured at 0 volts. The next thing
that was checked was the wiring going into the VAGO clips. It turned out that the isola-
tion around the negative wire going from the battery cells had not been properly stripped,
and the wires inside had been partially cut. These wires had fallen apart from each other.
This led to a poor connection in the VAGO connector, therefore, the electricity could not
flow through and the battery had zero output voltage. To fix the problem, the wire was
re-stripped and the battery was yet again assembled. Now the battery worked as normal
and the battery voltage was measured at 12.05 volts.

The battery cells were then swapped out with the cells from “Battery Cluster 2” and the
robot was driven for another 30 minutes. Then the remaining voltage of the battery was
measured. The voltage was measured at 11.98 volts. This means that the battery with
“Battery cluster 2” also meets the requirement for 20 minutes of operational time. With
the remaining amount of voltage in the battery and the time the battery was used, we can
calculate the battery’s operational time (see D).
The estimated operational duration of each battery cluster. See Q for the complete calcu-
lation of the estimated battery duration.

Test time: 30min ,50h Test time: 30min ,50h
Voltage start: 12,60v Voltage start: 12,60v
Voltage empty: 9,60v Voltage empty: 9,60v
Voltage end: 12,05v Voltage end: 11,98v
Voltage difference
start empty: 3,00v

Voltage difference
start empty: 3,00v

Voltage difference
start end: ,55v

Voltage difference
start end: ,62v

Drop per hour: 1,10v/h Drop per hour: 1,24v/h
Estimated duration: 2,73h Estimated duration: 2,42h

2h 44min 2h 25min

Battery cluster 1 Battery cluster 2

Table 7.2: Operational time based on 30 min operation, and calculations

Discussion
The reason that the battery with the BMS did not have the last test was that it failed on
a functional test which it was required to pass to be able to be used. It was therefore no
point in testing the parts to see if they fit.

The reason for the failed test can be several. The suspected reasons are; the design of the
BMS not being compatible with the way the battery was designed, or bad soldering. The
reason there might be the BMSs not being compatible is that the BMSs are designed to
monitor only one cell at a time. This may lead to problems when connecting several cells.
When researching the BMS type, it was discovered that the BMSs could not be connected
in series. This would lead to overloading the BMSs. This is the reason the battery cells
were directly connected, rather than through the BMSs. The reason it might be bad sol-
dering is that the group participant that did the soldering was not very experienced with
this. This led to a couple of bad connections, and probably applying too much heat when

207

KROMIUM 7.10 USER SURVEY TESTING

soldering the wires to the BMSs. If too much heat is applied to the BMS while soldering,
some of the components on the BMS can get destroyed and some connections get broken.
The connections might loosen between the different components and attach themselves to
a place where they are not supposed to have contact.

7.10 User survey testing SO | AD

We conducted full system testing with 11 students from software, mechanical, and elec-
trical engineering disciplines at the university to evaluate our application for controlling
the robot remotely through the Meta Quest 3 headset. The goal was to determine how
easily individuals who had not previously seen or used the application could drive the
robot, manipulate its arm, and switch modes using voice commands and the visual menu.

The results varied among the participants. Students with prior experience using VR head-
sets found the application intuitive and easy to use after a brief introduction. In contrast,
students who had never used a VR headset needed some time to acclimate and initially
found the process more challenging. However, after some practice, these students also
found the application intuitive and user-friendly.

208

KROMIUM 8. FUTURE WORK

8 Future Work
This section describes functionality which were sub-par and could have been made dif-
ferently, or features that could be useful additions but were ultimately not done or did not
make it into the final product. The reasons for this could be time constraints or it was
decided the current solution worked well enough for a PoC.

8.1 Software OM | AD

This section focuses on potential software enhancements or improvements that could be
implemented in the future.

8.1.1 3D mapping using depth information OM | AEH

To accurately map the 3D space, knowledge of the system’s time and position is essential.
While the accelerometer, positional, and velocity data can be obtained from the expansion
board, interpreting this data by observing it and moving the robot proved challenging. In-
tegrating a Global Positioning System (GPS) or similar positional sensor to the robot, or
tracking movement relative to camera frames, could provide the necessary information to
determine the robot’s position and trajectory.

By storing depth data relative to time with each movement, it becomes feasible to con-
struct a 3D environment of depth data, which can then be transmitted to the VR headset.
To manage the data volume, it would be practical to only transmit partial data or changes
at a time. As the robot moves in its surroundings, it gradually maps the environment.

Figure 8.1: 3D mapped environment with OctoMap [13]

209

KROMIUM 8.1 SOFTWARE

This approach offers several benefits for the operator, who could be virtually immersed in
the 3D environment without physically being there. By looking around or even moving
within the VR space, the operator gains insights into the environment’s layout, distances
between objects, and potential hazards to avoid. Moreover, this technology could aid
navigation in low visibility conditions, such as at night, in poor lighting or weather, when
the RGB data is subpar.

8.1.2 Autonomous movement, object avoidance and operation OM | AD

If an unmanned oil rig were assumed to be nearly static, a 3D map of the surroundings
could be generated once and stored. The 3D environment could enable autonomous nav-
igation, allowing the robot to manoeuvre around fixed obstacles like walls or pipes with
less or no reliance on a RGB camera. This autonomy could, as earlier mentioned, extend
to operation in diverse weather and lighting conditions, assuming the 3D mapping has
been stored and mapped under optimal conditions.

Frequently traversed paths could be pre-defined and automated, streamlining routine move-
ments. By integrating predefined arm movements, including rotations, entire operations
could be autonomously executed. An example could be turning a valve every 24 hours,
moving it back to the home station or charging port every time it is done.

However, real-world conditions introduce unpredictable factors, and having a dynamic
aspect to predefined instructions is often essential. For instance, the robot would have
to avoid unexpected obstacles like occasional workers or birds and adjust its position to
counteract external forces like strong winds by using a Proportional-Integral-Derivative
(PID) controller or like.

8.1.3 Avoid arm collisions with MoveIt OM | AEH

In its current state, the robot can avoid most collisions with itself, such as the arm crashing
into the front of the robot. This is implemented by hard-coding a range of coordinates
which are deemed illegal. By using a manipulator framework such as MoveIt it is possible
to have collision avoidance in a live dynamic environment based on sensor inputs and
other data. This could be beneficial in a live setting on an oil rig, as external objects such
as pipes or valves can be avoided and not collide. This avoidance works also for the actual
path the arm is moving and is being calculated live, so if a new object suddenly appears the
arm could move around it on the go [150]. In addition, by supplying an URDF file MoveIt
can know whether or not an arm movement would collide with the arm itself [151]. Due
to most of the servos on our robotic arm being limited to ±90 degrees of movement, it is
harder for it to collide with itself. However, if the servos could move further this would
be an issue, which could be solved with MoveIt.

8.1.4 Simultaneous driving and arm manipulation SO | AEH

While the group has tested both driving and arms control independently, the necessity
of simultaneous driving and arm manipulation has been identified for certain situations.
Specifically, when the operator moves the robot to a destination and begins an operation
such as picking up an object and placing it elsewhere, it is crucial to be able to drive the
robot while also controlling the arm. This is especially important when the arm does not
reach the desired location. The ability to drive while controlling the arm would enhance
the robot’s functionality.

210

KROMIUM 8.1 SOFTWARE

However, this feature was not developed within the project due to limited time and the
risk of damaging the robot or its arm. Further work is needed to implement and test this
capability.

8.1.5 Increase performance with Ubuntu OS OM | AD

When embarking on the thesis project, there was no Ubuntu LTS release compatible with
the RPi 5. This, coupled with concerns about potential camera compatibility issues, led
us to opt for RPiOS 64-bit with ROS 2 running within a Docker environment. This con-
figuration offered a fusion of advantages, including Tier 3 ROS 2 support [59], camera
compatibility and an OS deemed to be more stable.

Figure 8.2: Ubuntu support as of 9th of February 2024 [14]

However, during the thesis, LTS support was introduced for Ubuntu 24.04 on the RPi 5
[14]. The group believes that the cameras will remain functional on this OS, and ROS 2
can run natively. This shift potentially reduces the overhead associated with Docker and
might lead to slight performance improvements.

211

KROMIUM 8.1 SOFTWARE

Figure 8.3: Ubuntu support as of 6th of May 2024 [14]

Nevertheless, it is important to note that running the robot system within a Docker con-
tainer simplifies deployment on other systems. This is facilitated by bundling all neces-
sary packages within the Docker image, ensuring that the code operates within a stan-
dardized container environment, thereby mitigating compatibility concerns on alternative
platforms. Since Docker also functions on Ubuntu, evaluating performance disparities
between configurations should be feasible without requiring significant modifications.

8.1.6 Offload heavy computation OM | AD

If improved performance is desired for tasks such as object detection or heavier calcula-
tions, it is feasible to delegate these tasks to a separate station equipped with more pow-
erful hardware. Specifically, in the context of object detection, this approach is entirely
viable because raw images can be transmitted rapidly for analysis elsewhere, and the VR
operator can subsequently view the results of this analysis. This strategy has the potential
to accelerate the analysis process, optimize battery usage, and reduce costs, as acquiring a
powerful edge device is typically more costly than obtaining a larger stationary computer.

8.1.7 Tracking of object detection boxes AD | OM

The current implementation of the object detection system successfully identifies and
localizes objects in each frame. Still, a valuable enhancement for future improvements
would be the integration of object-tracking capabilities. Object tracking is a component
of computer vision that enables machines to track and follow objects in motion [152].
This enhancement would offer several advantages:

• Improved Accuracy: By essentially “fixing” the bounding box across frames,
tracking can help reduce false positives and improve the overall accuracy of ob-
ject detection, especially in challenging scenarios like changes in lighting.

• Enhanced Functionality: Tracking opens up possibilities for new features, such
as analyzing object movement patterns, predicting trajectories, generating alerts
based on object behaviour and much more. This could be particularly valuable for
safety applications, where tracking the movement of personnel or equipment can
potentially help prevent accidents.

212

KROMIUM 8.2 MECHANICAL

The pipeline we used for implementing object detection, MediaPipe, supports integration
with object tracking algorithms such as DeepSORT (Simple Online and Real-time Track-
ing with a Deep Association Metric) [153]. In addition, the OpenCV library also provides
tracking support. The system would transition from a purely detection-based approach to
a more comprehensive and dynamic perception system by incorporating object tracking.
This could offer great potential for safety enhancements and advanced analytics on an oil
platform.

8.1.8 3D object recognition with graph CNNs AD | OM

Extracting depth data and mapping the 3D space is a useful technology, explained in
4.6.1. The use of 3D mapping is increasing in daily life such as in VR and remote sensing
mapping, which require processing and analysis of the collected 3D data [154].
In current times, 3D data has been studied using deep neural networks. Different types of
CNNs can be used on 3D data, such as graph CNNs, which can operate directly on graph-
structured data [155]. This makes them well-suited for processing 3D shapes, which can
be represented as meshes, a type of graph where the vertices are the points in the shape
and the edges are the connections between them [154]. VR applications can also use
meshes to visualise the 3D data 9.2.7.
By accurately classifying 3D objects within the environment, the system could enable
more intelligent interactions and realistic simulations.

8.2 Mechanical

8.2.1 Increase lifting capacity of the arm OM | AD

As of now, the robotic arm is limited to carrying small and lightweight objects, such as
plastic bolts. It was earlier considered that redesigning the arm or acquiring stronger ser-
vos to address this limitation. However, these considerations were quickly shut down by
the software discipline due to limited knowledge about inverse kinematics at that stage of
the project. Moreover, the group anticipated using MoveIt, which required a URDF file
already available for the arm provided by Yahboom. Uncertainty surrounded the potential
difficulties and implications of changing dimensions or servo limitations.

In hindsight, with the knowledge acquired later in the project, it became evident that min-
imal software changes would have been necessary. This could have led to an even more
intriguing design process for the mechanical discipline if the arm were to be redesigned.

Nevertheless, if no additional time were to be spent on inverse kinematics, the arm would
have needed to be designed fairly similarly. Given the arm’s current design, inverse
kinematics is relatively straightforward compared to a more complex design. The ser-
vos would have to move in the same plane as the current version, albeit with increased
strength and possibly flexibility.

However, using other servos could necessitate changes to the code for driving the servos,
potentially requiring time to develop a servo driver. Additionally, the robot would likely
require new electronics to power these servos, which in turn might have necessitated a
larger battery.

213

KROMIUM 8.3 ELECTRICAL

8.3 Electrical

8.3.1 Upgrade hardware OM | AD

Some of the challenges encountered (see 9) could be mitigated by investing in more ex-
pensive hardware, which could enhance operations. A more powerful edge device or
increased bandwidth, as well as a dedicated depth-sensing device, could provide better
depth data results. Additionally investing in more reliable electronics would be beneficial
(see 9.2.5).

A more powerful VR headset could also be advantageous. Although the Meta Quest 3
offers many features at a relatively low cost, it may not be sufficient for more demanding
tasks. Constantly running passthrough to stay connected with the physical environment
around the operator while rendering a virtual environment with menus and buttons, and
listening for data, is a demanding task. Upgrading to a more capable VR headset could
improve performance and accuracy.

8.3.2 Battery HB | OM

The battery has several things that could be improved, one of these things is the switches
used in the battery. The switches are on/off switches, but instead switches with three poles
could have been used to properly disconnect the BMSs when the battery is put into use
mode.
The battery that was made was not ideal, because it ended up with not having a BMS.
Because of this, it would not be possible to charge the battery itself. However, the cells
have to be taken out and put in a battery cell charger or the cells have to be swapped out.
This should not be necessary, and would not be if there had been bought a 2P3S BMS.
This way, all of the cells could be monitored during use, and the battery could have been
charged without removing the cells. This way, the switches could have been ditched and
there would not be a need for a charging mode and a using mode, that would have been
sorted out by the BMS.

214

KROMIUM 9. CHALLENGES

9 Challenges
Kromium faced a lot of technical challenges and non-technical challenges during the
course of the project. The section will delve into the key challenges encountered. It
outlines the primary obstacles faced and highlights areas that require attention to ensure
continuous improvement and efficiency. Understanding these challenges has been cru-
cial for developing effective strategies to mitigate potential issues and enhance overall
performance.

9.1 Non-technical challenges

9.1.1 Electrical engineer could not continue AEH | OM

When we formed our group back in August 2023 we were six members. The group stayed
the same through discussions with the project client till the start of January 2024 when
we lost our electrical engineer and expert in LATEX. He could not continue the project,
unfortunately.

As a result, more time had to be devoted to understanding LATEXand developing our report
outline at the start of the project. The requirements from Kongsberg Maritime also had to
be re-discussed. This led to the removal of a requirement to design our circuit board. We
thought that this would affect the budget as we thought we needed to buy battery packs,
but as we built our own battery, it affected the budget minorly.

9.1.2 Previous report being exempt from public AEH | OM

Documentation of the last bachelor project using the ROSMASTER X3 PLUS was not
available. We wanted to know more about the equipment we had available from Kongs-
berg Maritime so we found the report from K-Spider (2016) but could not find the report
from K-AIoT (2023). The report was not available in the USN archive of previous projects
or on the web page for the group. After asking around we found out that the project was
not available and had to ask our client Kongsberg Maritime to access it.

9.1.3 Carbon CNC mill broken HB | AD

The walls on the robot are made from carbon fibre sheets. The sheets were made in ad-
vance by someone else, which meant the only thing that needed to be done to the plates
was to fabricate them in a milling machine. Because the lab engineer responsible for the
composite lab had limited time to help the project group, the milling process had to be di-
vided into two sessions, a week apart from each other. However, before the second session
with machining could begin, it was discovered that the milling machine was broken and
impossible to use. This meant that there had to be found another way to produce the parts.

The possible options were: to drop the last carbon fibre parts, to use an angle grinder on
the carbon plate to cut the parts out, or to find a company that could cut the parts. It was
decided to go for the last option. “Vannskjæresenteret AS” was already producing some
parts for the robot. After communicating with them, they said it was okay for them to
produce the parts from the carbon plates with their water jet. However, some changes had
to be made to the technical drawing to prevent delamination. Overall, it took one and a
half weeks extra to get the final carbon parts for the robot.

215

KROMIUM 9.2 TECHNICAL CHALLENGES

9.1.4 External supervisor changing job during the project OM | AD

Qui-Huu Le-Viet informed the group early on during the thesis that he would be changing
jobs. He made efforts to schedule this transition after the thesis had been delivered to
avoid interfering with our work. However, due to unforeseen circumstances, Qui-Huu
had to transition to his new job earlier than initially anticipated. This led the group to
receive a new external supervisor. Qui-Huu was replaced by Merethe Gotaas, whom the
group promptly informed and brought up to speed. Merethe was present during our initial
discussions about undertaking Kongsberg Maritime’s bachelor thesis and during our first
presentation. The group would like to thank Qui-Huu, Merethe, and Kongsberg Maritime
for making this transition as seamless as possible, given the circumstances.

9.2 Technical challenges

9.2.1 Corrupting one of our microSD cards OM | AD

Installing and setting up Ubuntu 23.10 on the RPi 5 was successful and got booted into the
desktop as normal. However, after a few minutes, the RPi did not respond to any mouse
or keyboard interaction. Measuring the heat of the CPU with our fingertips, we noticed it
was getting quite hot. With a suspicion that the RPi was overheating and limiting its per-
formance, the power source was unplugged to possibly prevent it from getting damaged.

After waiting some time, we powered the RPi up again. Instead of getting booted into
Ubuntu, BusyBox was instead noticed. Trying to exit this prompt, using the “exit” com-
mand, “Kernel panic!” could be observed in the terminal. Having little knowledge about
the error itself, we tried to reformat the microSD card to reinstall Ubuntu.

Trying to reformat the microSD card using Raspberry Pi Imager [57], the card claimed
to be “write protected”. It was made sure that the SD card adapter was open and not
locked. After searching around for a solution diskpart on Windows was said to be able
to disable this write protection. None of the commands failed, but the microSD card
remained write-protected.

9.2.2 Frying an expansion board diode OM | AD

Expansion board refers to the same as in 4.3.5. On the 1st of March 2024, while testing
some predefined arm movements the battery plug came loose and disconnected from the
expansion board. The battery plug was purposely not fully connected, as the plug sits
tight and is tough to disconnect if completely connected. Connecting the battery loosely
makes it more practical if unexpectedly have to disconnect it.

When the expansion board cannot drive power from the main power source, it will try
to drive power from the USB ports instead, where in our case the RPi was connected,
which again was connected to the wall outlet. The RPi cannot provide the expected 12V
of power, but instead only 5V. This is not enough power for the expansion board and the
buzzer will start to beep, indicating that not enough power is being provided.

Without turning the board off, we reconnected the 12V battery again. After which a
fuzzing sound could be heard and smoke was observed. A visual inspection on the back
side of the board was made, which concluded that the D3 mounted Zener diode ZMM5V1
got fried (see I.2). This diode is a safety feature and works as a fuse that protects the board.

216

KROMIUM 9.2 TECHNICAL CHALLENGES

The circuit is still closed and can work normally without this connection, but is not rec-
ommended. The group decided that testing without this safety was not applicable, and
efforts would instead go to get the diode replaced before our presentation at Kongsberg
Maritime (06.03.2024) and the second presentation (08.03.2024).

The group would like to thank Ole Eirik Solberg Seljordslia, who took time out of his
weekend to help us get this diode replaced. We did not have the skill set nor the tools
to do this ourselves, as our group had no electrical engineer. This incident led us to buy
an additional expansion board, to act as backup. We also changed to always have the
RPi powered through the expansion board and not an external power source. This slowed
down the testing process as the RPi changes power source and has to boot up again, but
increased safety.

(a) The damaged diode (b) The replaced diode

Figure 9.1: Both pictures show the back side of the expansion board.

9.2.3 Problems with downloading tflite-model-maker AD | OM

When creating a custom-dataset transfer learning model (see Appendix M), our group
encountered significant compatibility and dependency challenges while integrating the
package tflite-model-maker. Initially, the package was identified to be compatible with
Python 3.11. However, upon attempting installation within our primary development en-
vironment on the Windows OS, it became apparent that a downgrade to an earlier Python
version was necessary due to compatibility issues. But even this did not bring success as
there was still the incompatibility of a critical dependency package called Scann [156],
which lacked support for Windows. Subsequent efforts to resolve this issue by down-
grading the Python version within a cloud-based service called Google Colab also did not
yield positive results. The solution was eventually found by transitioning the development
environment to the WSL on Ubuntu 22.04 and installing Python 3.8 there, which enabled
the installation of tflite-model-maker. The encountered difficulties resulted in unforeseen

217

KROMIUM 9.2 TECHNICAL CHALLENGES

delays and long waiting times as downloading different versions took time.

9.2.4 Difficulties in using the PyTorch library AD | OM

Pytorch for edge devices: Deploying deep learning models on edge devices presents
unique challenges, particularly when using libraries initially designed with server-grade
resources in mind. Our project encountered obstacles while exploring PyTorch. One of
the most pressing issues was the lack of comprehensive documentation for PyTorch Mo-
bile which is the PyTorch library for deploying models on edge devices [157].

Despite PyTorch’s robust features and active community, PyTorch Mobile’s documenta-
tion remains scant. The documentation referred only to iOS and Android development
and not RPi [157]. This lack of detailed support hindered our ability to efficiently trou-
bleshoot and fix errors, leading to prolonged development times. We then found the You
Look Only Once (YOLO) algorithm, written below.

You Look Only Once algorithm (YOLO): In object detection, YOLO is considered a
standard and powerful detection algorithm because it detects objects with great precision
and speed [158]. The latest version of YOLO uses the PyTorch library to implement ob-
ject detection. The basic principle of YOLO is that it applies a single CNN to the full
image. It divides the image into regions and predicts bounding boxes and probabilities
for every region. It then uses complex post-processing methods and uses NMS to keep
only the bounding boxes and probabilities with the highest confidence scores while also
managing the IoU [158]. It was therefore why we considered using the algorithm for our
project. However, one of the downsides of the algorithm is that it needs a lot of com-
putational power. The official documentation recommends running YOLO with a GPU
[159]. The RPi 5 has a GPU called Broadcom VideoCore VII GPU [160], but neither
TensorFlow nor PyTorch has support to use this GPU.
So, we decided to export the YOLO model to a TFLite model as it is recommended for
edge devices such as the RPi. However, due to the nature of the YOLO model, it was
challenging to deploy it in the same way one would deploy a normal TFLite model made
from the TensorFlow library particularly because of the overlapping boxes and probabili-
ties. Figure 9.2 shows a frame where the custom YOLO model was applied without NMS.
The absence of NMS led to numerous duplicate detections. We attempted to create our

Figure 9.2: YOLO real-time detection without NMS

own method, but the documentation was not easy to understand and community solutions

218

KROMIUM 9.2 TECHNICAL CHALLENGES

were scarce. The NMS method used in the documentation [161], along with another im-
plementation we found, severely affected the speed of the inference, reducing it to 4-5
FPS [162]. It was like there was no difference between using the original YOLO model
with CPU support and using the TFLite model. This problem also resulted in significant
delays in our project timeline.
We wished we had access to more powerful hardware, such as an edge device with GPU
support, which could have potentially handled the computational demands of the model
more effectively. Ultimately, our group abandoned the YOLO approach and opted to use
MediaPipe, as mentioned earlier in our implementation. However, this change in strategy
set us back several days as we had to reconfigure our setup, but it was necessary to move
forward under the constraints we faced.

9.2.5 Robot randomly going unresponsive OM | AD

Shortly after the initial interaction with the expansion board, it became evident that the
Rosmaster code would randomly throw an exception, rendering it unresponsive to new
commands. Despite debugging efforts, the root cause of this exception remains unknown,
with no obvious pattern linking command execution to exception occurrence. The excep-
tion is also inconsistent as sometimes the exception does not surface throughout an entire
day of testing, and other times it might occur immediately upon the first command sent.
Checks are done to ensure that only valid types and values are transmitted.

In the event of this exception, commands sent to the expansion board will not be executed.
The origin of this issue remains uncertain, whether it stems from a flaw in the Rosmaster
code, a firmware issue with the expansion board, or a hardware-related anomaly. The re-
ported errors, namely set_servo_error, set_motor_error, get_servo_angle_error
and alike, persist as recurring issues. Additionally, no reliable solution has been identi-
fied. Sometimes restarting the robot code is enough, other times a complete reboot of all
electrical components is needed.

9.2.6 Issues with MoveIt OM | AD

A significant amount of time was dedicated to reviewing MoveIt documentation and ex-
perimenting with different solutions. Ultimately, it was concluded that implementing arm
movements independently would be more time-efficient.

Initially, there was uncertainty regarding the compatibility of MoveIt with the arm64 ar-
chitecture. Yahboom had a solution for MoveIt 1, but this version relies on ROS 1, which
differs and is incompatible with ROS 2 unless a ROS 1 bridge or similar workaround is
utilized [163].

Attempts to install MoveIt using the binary sudo apt install ros-humble-moveit

resulted in the RPi running out of space on the SD card overnight. This led to the purchase
of two new SD cards, followed by the installation of the OS, the addition of SSH keys
for Git handling, and the reinstallation of Docker. While MoveIt offers Docker images,
these are only available for the amd64 architecture, not arm64, which the RPi operates
on. After encountering some difficulties, MoveIt was eventually installed.

One of the significant features of MoveIt is its ability to simulate and provide a Graphi-
cal user interface (GUI) for configuration and verification purposes. However, due to the
complexity of MoveIt’s functionalities, understanding its setup was challenging. It was

219

KROMIUM 9.2 TECHNICAL CHALLENGES

unclear how to access RViz and other GUI applications within the Docker container when
the RPi was accessed remotely via SSH. Resources on setting up were difficult to under-
stand and configuring MoveIt was expected to be time-consuming. Additionally, there
were doubts about whether MoveIt would meet the project’s requirements, particularly in
defining custom movements such as assembling a bolt.

Ultimately, it was concluded that developing a custom solution for controlling the arm
would be more time-effective. MoveIt was deemed overly complex and unnecessary for
the PoC, as real-time obstacle avoidance and highly precise movements were not essential.
This decision allowed for learning about inverse kinematics, flexibility in adding features
as needed and achieving sufficient precision for the project’s objectives.

9.2.7 Trouble transferring ∼300,000 points of depth data OM | AD

Due to the large size of the depth data, it was not possible to send all of it in one message
without any compromises. This section describes different solutions that were tried or
considered but ultimately not used in the final product. The current implementation is
discussed in 4.6.1.

Splitting packages The raw depth data, totalling approximately 19MB, was initially
split into smaller packets to be sent more frequently. However, splitting the data into
1024-bit (1KB) packets resulted in around 19,000 packets, which proved impractical.
The VR headset struggled to receive all this data and would crash shortly after receiving
the first packets. Additionally, since the socket was a TCP connection, transferring the
data took significant time. Another issue was determining when a new frame was taken
or resetting the scene in the VR application. This could be addressed by checking if the
same x, y coordinate was already plotted, indicating a new frame. These challenges led
us to consider other options for sending the data.

Creating object files Creating 3D meshes or objects from point clouds was considered
a viable option. These objects would be .obj files that Unity can display directly. All ob-
jects were tested and created using the Open3D Python package [164]. However, to make
these meshes small enough, they needed to be simplified. Using Poisson surface recon-
struction and limiting the number of triangles helped with this. Running these processes
on the RPi took significant time, as doing so on a laptop took more than 15 seconds. The
size of these meshes was reduced to as low as 332KB, and could potentially be decreased
further, but still too large to be sent comfortably as one message. Open3D’s support for
arm64 was limited, as the RPi could produce a .obj file, but not consistently. This led the
group to search for another solution. An example mesh created using depth data is shown
below, with the code for the plot provided in O.13.

220

K
R

O
M

IU
M

9.2
T

E
C

H
N

IC
A

L
C

H
A

L
L

E
N

G
E

S

Figure 9.3: Mesh seen from front Figure 9.4: Mesh seen from the right-hand side

Figure 9.5: 3D mesh of depth data with highlighted objects

221

KROMIUM 9.2 TECHNICAL CHALLENGES

Broadcasting the points Another solution that was discussed but never implemented
was broadcasting the points using UDP or a similar protocol. This approach would lead
to some points being lost, but with so many points, missing a few would not significantly
impact the overall plotting. However, as with splitting the messages, this method would
result in a huge number of messages that the VR application would need to process.
Additionally, the issue of determining when a new frame was received persisted.

9.2.8 Frying a BMS HB | AEH

During the second test of the battery with BMS, the battery was charging, which it was
supposed to do. After approximately half a minute a burning smell occurred, quickly
followed by smoke coming from one of the Integrated circuit (IC) on one of the BMSs.
The charger was quickly disconnected but frying of the IC continued. The cells had to
be quickly disconnected before anything caught fire. Luckily, the ribbon placed under the
battery cells worked as intended and loosened the cells from the battery cell holders.

The reason the ribbon is placed between the battery cells and battery cell holders is to
make the removal of the battery cells easier. If the ribbon is not inserted there needs to be
used something to pry the cells out of the holders. This can possibly damage the battery
cells and make the cell useless.

Because there was only a short amount of time left before the deadline of the project and
the reason why the BMS got fried was unknown, it was decided to make a battery without
BMS. The reasons the BMS got fried are either that the schematics for the battery were
made wrong or that there was added too much heat when soldering the wires to the BMSs.
If too much heat was added to the BMS the components in the BMS can get damaged or
short-circuited.

Because it was decided to make a new design iteration of the battery, the battery needed
a redesign and its schematics had to be updated. The new design ended up being smaller
than the previous design, and the wiring was a lot simpler than the battery with BMS.

Figure 9.6: The BMS with the fried IC

222

KROMIUM 10. CONCLUSION

10 Conclusion
The project aimed to develop a PoC prototype that leverages VR, AI, and robotics to fa-
cilitate remote operations on offshore platforms. By integrating these cutting-edge tech-
nologies, the goal was to enhance operational safety, efficiency, and cost-effectiveness
while reducing the need for personnel to be physically present in hazardous offshore en-
vironments.

Throughout the project, we explored the use of VR for immersive interaction, AI for
object detection, and robotics for executing precise tasks. The combination of these tech-
nologies demonstrated significant potential in replicating human operations remotely. Key
achievements include successful integration of VR with the robot for real-time interaction,
allowing for driving the robot with hand movements and manipulating the robot arm, suc-
cessfully extracting depth data, AI detection of humans and bolts, digital twin replication
of the robot arm inside the VR application, voice control for robot commands, and exten-
sive physical design of the robot.

Despite the successes, the project faced several challenges, including technical limita-
tions in hardware and extensive troubleshooting due to random hardware failures. En-
suring real-time information exchange between the VR application, robot system, and AI
modules was also a significant challenge. These issues were addressed through iterative
testing and refinement, as documented in our integration testing section.

The project has laid a strong foundation for future work in this field. Future enhancements
could include improving the robot’s autonomous capabilities, enhancing the VR interface
for better user experience, and integrating more advanced AI algorithms for complex
decision-making. Additionally, exploring the scalability of this solution for larger and
more complex offshore operations could further validate its practical applicability.

In conclusion, the successful development and demonstration of the PoC prototype under-
score the potential of combining VR, AI, and robotics to transform offshore operations.
This project not only highlights the feasibility of such an integration but also paves the
way for future innovations that can significantly improve safety and efficiency in the off-
shore industry.

223

KROMIUM 11. REFERENCES

11 References

[1] Getting started with hand tracking on meta quest headsets | meta
store. [Online]. Available: https://www.meta.com/en-gb/help/quest/articles/
headsets-and-accessories/controllers-and-hand-tracking/hand-tracking/

[2] Raspberry pi 5 - 8 GB • RaspberryPi.dk. [Online]. Available: https:
//raspberrypi.dk/no/produkt/raspberry-pi-5-8-gb-2/

[3] RoboteQ. Driving mecanum wheels omnidirectional robots.
[Online]. Available: https://www.roboteq.com/applications/all-blogs/
5-driving-mecanum-wheels-omnidirectional-robots

[4] O. Robotics. Understanding nodes — ROS 2 documentation: Humble
documentation. [Online]. Available: https://docs.ros.org/en/humble/Tutorials/
Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.
html

[5] Amazon. Amazon.com: Yahboom robot arm kit 6dof for raspberry pi 4b AI
programmable electronic DIY robot hand building with camera for adults ROS
open source (nano-DOFBOT without nano) : Toys & games. [Online]. Avail-
able: https://www.amazon.com/Yahboom-Jetson-Nano-Identity-Programming%
EF%BC%88DOFBOT/dp/B08T6N36YR?th=1

[6] S. Russel and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, 3rd ed. Pearson Education, Inc. [Online]. Available: https:
//dl.ebooksworld.ir/books/Artificial.Intelligence.A.Modern.Approach.4th.Edition.
Peter.Norvig.%20Stuart.Russell.Pearson.9780134610993.EBooksWorld.ir.pdf

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted residuals and linear bottlenecks,” version: 4. [Online]. Available:
http://arxiv.org/pdf/1801.04381

[8] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” version: 2. [Online]. Available: http://arxiv.org/pdf/1708.02002

[9] C. Lugaresi, J. Tang, and C. McClanahan, “MediaPipe: A framework for building
perception pipelines,” p. 9. [Online]. Available: https://arxiv.org/pdf/1906.08172

[10] YoloDataset. Person dataset dataset overview. [Online]. Available: https:
//universe.roboflow.com/yolodataset/person-dataset-mvbk4

[11] Astra pro plus realsense depth camera support 3d mapping navigation fo. [Online].
Available: https://www.hiwonder.com/products/astra-pro

[12] wit. Wit.ai. [Online]. Available: https://wit.ai/

[13] C. Wang, L. Meng, S. She, I. M. Mitchell, T. Li, F. Tung, W. Wei-
wei, M. Q.-H. Meng, and C. de Silva. Autonomous mobile robot nav-
igation in uneven and unstructured indoor environments. [Online]. Avail-
able: https://www.researchgate.net/publication/321811453 Autonomous mobile
robot navigation in uneven and unstructured indoor environments

[14] Ubuntu. Install ubuntu on a raspberry pi. [Online]. Available: https:
//ubuntu.com/download/raspberry-pi

224

https://www.meta.com/en-gb/help/quest/articles/headsets-and-accessories/controllers-and-hand-tracking/hand-tracking/
https://www.meta.com/en-gb/help/quest/articles/headsets-and-accessories/controllers-and-hand-tracking/hand-tracking/
https://raspberrypi.dk/no/produkt/raspberry-pi-5-8-gb-2/
https://raspberrypi.dk/no/produkt/raspberry-pi-5-8-gb-2/
https://www.roboteq.com/applications/all-blogs/5-driving-mecanum-wheels-omnidirectional-robots
https://www.roboteq.com/applications/all-blogs/5-driving-mecanum-wheels-omnidirectional-robots
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://www.amazon.com/Yahboom-Jetson-Nano-Identity-Programming%EF%BC%88DOFBOT/dp/B08T6N36YR?th=1
https://www.amazon.com/Yahboom-Jetson-Nano-Identity-Programming%EF%BC%88DOFBOT/dp/B08T6N36YR?th=1
https://dl.ebooksworld.ir/books/Artificial.Intelligence.A.Modern.Approach.4th.Edition.Peter.Norvig.%20Stuart.Russell.Pearson.9780134610993.EBooksWorld.ir.pdf
https://dl.ebooksworld.ir/books/Artificial.Intelligence.A.Modern.Approach.4th.Edition.Peter.Norvig.%20Stuart.Russell.Pearson.9780134610993.EBooksWorld.ir.pdf
https://dl.ebooksworld.ir/books/Artificial.Intelligence.A.Modern.Approach.4th.Edition.Peter.Norvig.%20Stuart.Russell.Pearson.9780134610993.EBooksWorld.ir.pdf
http://arxiv.org/pdf/1801.04381
http://arxiv.org/pdf/1708.02002
https://arxiv.org/pdf/1906.08172
https://universe.roboflow.com/yolodataset/person-dataset-mvbk4
https://universe.roboflow.com/yolodataset/person-dataset-mvbk4
https://www.hiwonder.com/products/astra-pro
https://wit.ai/
https://www.researchgate.net/publication/321811453_Autonomous_mobile_robot_navigation_in_uneven_and_unstructured_indoor_environments
https://www.researchgate.net/publication/321811453_Autonomous_mobile_robot_navigation_in_uneven_and_unstructured_indoor_environments
https://ubuntu.com/download/raspberry-pi
https://ubuntu.com/download/raspberry-pi

KROMIUM 11. REFERENCES

[15] H. Technology, “18650 lithium battery charger with protection.” [Online]. Avail-
able: https://www.handsontec.com/dataspecs/module/18650-Lithium%20charger.
pdf

[16] H. , L. , and R. , “Magnetic 5a 2 contacts rotationg 360 degrees panel
sloder,” technical drawing. [Online]. Available: https://docs.rs-online.com/5cef/
0900766b8166fb65.pdf

[17] Kromium. ar-robotics/robot: Kromium’s code which controls the robot and
communicates with the VR headset. [Online]. Available: https://github.com/
ar-robotics/robot

[18] CodeTabs. Count LOC online. [Online]. Available: https://codetabs.com/
count-loc/count-loc-online.html

[19] U. Technologies. Unity - manual: Scenes. [Online]. Available: https:
//docs.unity3d.com/Manual/CreatingScenes.html

[20] ——. Unity - manual: GameObjects. [Online]. Available: https://docs.unity3d.
com/Manual/GameObjects.html

[21] ——. Unity - manual: Prefabs. [Online]. Available: https://docs.unity3d.com/
Manual/Prefabs.html

[22] Kromium, “ar-robotics/transfer-learning-training,” original-date: 2024-
02-28T09:32:55Z. [Online]. Available: https://github.com/ar-robotics/
transfer-learning-training

[23] ——, “ar-robotics/obj-detection-pi,” original-date: 2024-02-23T09:07:18Z. [On-
line]. Available: https://github.com/ar-robotics/Obj-detection-pi

[24] TronicsBench. The TP4056: Lithium ion/polymer battery charger IC. [Online].
Available: https://www.best-microcontroller-projects.com/tp4056-page2.html

[25] Closed-source software (proprietary software). [Online]. Available: https:
//encyclopedia.kaspersky.com/glossary/closed-source/

[26] Programiz. Python docstrings (with examples). [Online]. Available: https:
//www.programiz.com/python-programming/docstrings

[27] F. L. a. I. Lunden. Microsoft has acquired GitHub for
$7.5b in stock. [Online]. Available: https://techcrunch.com/2018/06/04/
microsoft-has-acquired-github-for-7-5b-in-microsoft-stock/

[28] A. Takyar. Hyperparameter tuning: Optimizing ML models for excellence.
[Online]. Available: https://www.leewayhertz.com/hyperparameter-tuning/

[29] Jetson nano. [Online]. Available: https://developer.nvidia.com/embedded/
jetson-nano

[30] Cambridge, Cambridge Dictionary. [Online]. Available: https://dictionary.
cambridge.org/dictionary/english/

[31] IBM. What is a machine learning pipeline? | IBM. [Online]. Available:
https://www.ibm.com/topics/machine-learning-pipeline

225

https://www.handsontec.com/dataspecs/module/18650-Lithium%20charger.pdf
https://www.handsontec.com/dataspecs/module/18650-Lithium%20charger.pdf
https://docs.rs-online.com/5cef/0900766b8166fb65.pdf
https://docs.rs-online.com/5cef/0900766b8166fb65.pdf
https://github.com/ar-robotics/robot
https://github.com/ar-robotics/robot
https://codetabs.com/count-loc/count-loc-online.html
https://codetabs.com/count-loc/count-loc-online.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/Prefabs.html
https://github.com/ar-robotics/transfer-learning-training
https://github.com/ar-robotics/transfer-learning-training
https://github.com/ar-robotics/Obj-detection-pi
https://www.best-microcontroller-projects.com/tp4056-page2.html
https://encyclopedia.kaspersky.com/glossary/closed-source/
https://encyclopedia.kaspersky.com/glossary/closed-source/
https://www.programiz.com/python-programming/docstrings
https://www.programiz.com/python-programming/docstrings
https://techcrunch.com/2018/06/04/microsoft-has-acquired-github-for-7-5b-in-microsoft-stock/
https://techcrunch.com/2018/06/04/microsoft-has-acquired-github-for-7-5b-in-microsoft-stock/
https://www.leewayhertz.com/hyperparameter-tuning/
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://dictionary.cambridge.org/dictionary/english/
https://dictionary.cambridge.org/dictionary/english/
https://www.ibm.com/topics/machine-learning-pipeline

KROMIUM 11. REFERENCES

[32] R. P. Ltd-os. Operating system images. [Online]. Available: https://www.
raspberrypi.com/software/operating-systems/

[33] Webflow. Wrapper – definition | webflow glossary. [Online]. Available: https:
//university.webflow.com/glossary/wrapper,https://webflow.com/glossary/wrapper

[34] Home - hydroplant. [Online]. Available: https://hydroplant.no/

[35] R. Sørensen, H. Moholth, H. M. Moholth, A. Moholth, and N. H. L. Håre,
“Hivemind,” accepted: 2023-11-01T12:42:20Z Publication Title: 518. [Online].
Available: https://openarchive.usn.no/usn-xmlui/handle/11250/3099988

[36] M. Smith-Solbakken and E. A. Dahle. Alexander kielland-ulykken. Store norske
leksikon. [Online]. Available: https://snl.no/Alexander Kielland-ulykken

[37] R. Ferguson and K. McMenemy, A Hitchhiker’s Guide to Virtual Reality.
[Online]. Available: https://learning.oreilly.com/library/view/a-hitchhikers-guide/
9781568814773/

[38] B. Marr. The important difference between virtual reality, aug-
mented reality and mixed reality. Section: Enterprise & Cloud.
[Online]. Available: https://www.forbes.com/sites/bernardmarr/2019/07/19/
the-important-difference-between-virtual-reality-augmented-reality-and-mixed-reality/

[39] C. Linn, S. Bender, J. Prosser, K. Schmitt, and D. Werth, “Virtual remote inspection
— a new concept for virtual reality enhanced real-time maintenance,” in 2017 23rd
International Conference on Virtual System & Multimedia (VSMM), pp. 1–6, ISSN:
2474-1485. [Online]. Available: https://ieeexplore.ieee.org/document/8346304

[40] E. Charniak and D. V. McDermott, Introduction to artificial intelligence. Addison-
Wesley.

[41] S. Srivastava. Top AI trends in 2023: Unveiling use cases across industries.
[Online]. Available: https://appinventiv.com/blog/ai-trends/

[42] M. Tatum. What is machine perception? [Online]. Available: https:
//www.easytechjunkie.com/what-is-machine-perception.htm

[43] I. . What is computer vision? | IBM. [Online]. Available: https:
//www.ibm.com/topics/computer-vision

[44] I. IBM. What is machine learning? | IBM. [Online]. Available: https:
//www.ibm.com/topics/machine-learning

[45] S. Daley, “Robotics.” [Online]. Available: https://builtin.com/robotics

[46] R. R. Murphy, Introduction to AI robotics, 2nd ed., ser. Intelligent Robotics
and Autonomus Agents Series. MIT Press, e-book. [Online]. Available:
https://ebookcentral.proquest.com/lib/ucsn-ebooks/reader.action?docID=6340541

[47] KongsbergM. About kongsberg maritime. [Online]. Available: https://www.
kongsberg.com/maritime/about-us/

[48] KongsbergG, “Kongsberg gruppen årsrapport.” [Online]. Avail-
able: https://www.kongsberg.com/globalassets/corporate/investor-relations/
annual-report-2022/kog-rapport-2022-no.pdf

226

https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://university.webflow.com/glossary/wrapper, https://webflow.com/glossary/wrapper
https://university.webflow.com/glossary/wrapper, https://webflow.com/glossary/wrapper
https://hydroplant.no/
https://openarchive.usn.no/usn-xmlui/handle/11250/3099988
https://snl.no/Alexander_Kielland-ulykken
https://learning.oreilly.com/library/view/a-hitchhikers-guide/9781568814773/
https://learning.oreilly.com/library/view/a-hitchhikers-guide/9781568814773/
https://www.forbes.com/sites/bernardmarr/2019/07/19/the-important-difference-between-virtual-reality-augmented-reality-and-mixed-reality/
https://www.forbes.com/sites/bernardmarr/2019/07/19/the-important-difference-between-virtual-reality-augmented-reality-and-mixed-reality/
https://ieeexplore.ieee.org/document/8346304
https://appinventiv.com/blog/ai-trends/
https://www.easytechjunkie.com/what-is-machine-perception.htm
https://www.easytechjunkie.com/what-is-machine-perception.htm
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://builtin.com/robotics
https://ebookcentral.proquest.com/lib/ucsn-ebooks/reader.action?docID=6340541
https://www.kongsberg.com/maritime/about-us/
https://www.kongsberg.com/maritime/about-us/
https://www.kongsberg.com/globalassets/corporate/investor-relations/annual-report-2022/kog-rapport-2022-no.pdf
https://www.kongsberg.com/globalassets/corporate/investor-relations/annual-report-2022/kog-rapport-2022-no.pdf

KROMIUM 11. REFERENCES

[49] J. M. Safi, “Module 12 system integration & qualification v23.”

[50] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning:
A review.” [Online]. Available: http://arxiv.org/pdf/1807.05511

[51] S. Srichitra and S. Sreeja, “Implementation of ROS-based mobile robots with few
shot object detection using TensorFlow API,” in Soft Computing: Theories and
Applications, R. Kumar, C. W. Ahn, T. K. Sharma, O. P. Verma, and A. Agarwal,
Eds. Springer Nature, pp. 457–468.

[52] A. Farasin, F. Peciarolo, M. Grangetto, E. Gianaria, and P. Garza, “Real-time
object detection and tracking in mixed reality using microsoft HoloLens,” pp.
165–172. [Online]. Available: https://www.scitepress.org/Link.aspx?doi=10.5220/
0008877901650172

[53] The mad inventor – perfect escape oslo. [Online]. Available: https://perfectescape.
no/oslo/en/spill/den-gale-oppfinneren/

[54] Lodge free website template | free CSS templates | free CSS. [Online]. Available:
https://www.free-css.com/free-css-templates/page283/lodge

[55] R. P. . Ltd. Buy a raspberry pi 5. [Online]. Available: https://www.raspberrypi.
com/products/raspberry-pi-5/

[56] Ubuntu release cycle. [Online]. Available: https://ubuntu.com/about/release-cycle

[57] R. P. Ltd. Raspberry pi OS. [Online]. Available: https://www.raspberrypi.com/
software/

[58] Kromium. Kromium’s GitHub organization. [Online]. Available: https://github.
com/ar-robotics

[59] ROS 2 on raspberry pi — ROS 2 documentation: Humble documen-
tation. [Online]. Available: https://docs.ros.org/en/humble/How-To-Guides/
Installing-on-Raspberry-Pi.html

[60] ROS 2 humble hawksbill release! [Online]. Available: https://www.openrobotics.
org/blog/2022/5/24/ros-2-humble-hawksbill-release

[61] Amazon. What is docker? | AWS. [Online]. Available: https://aws.amazon.com/
docker/

[62] Install docker engine on debian. [Online]. Available: https://docs.docker.com/
engine/install/debian/

[63] U. Technologies. Learn how to code in c# for beginners | unity learn. [Online].
Available: https://unity.com/how-to/learning-c-sharp-unity-beginners

[64] Google. Google colab. [Online]. Available: https://research.google.com/
colaboratory/faq.html

[65] Unity. Unity hub – manage editor versions and collaborate with other creators |
unity. [Online]. Available: https://unity.com/unity-hub

[66] styleguide. [Online]. Available: https://google.github.io/styleguide/pyguide.html

227

http://arxiv.org/pdf/1807.05511
https://www.scitepress.org/Link.aspx?doi=10.5220/0008877901650172
https://www.scitepress.org/Link.aspx?doi=10.5220/0008877901650172
https://perfectescape.no/oslo/en/spill/den-gale-oppfinneren/
https://perfectescape.no/oslo/en/spill/den-gale-oppfinneren/
https://www.free-css.com/free-css-templates/page283/lodge
https://www.raspberrypi.com/products/raspberry-pi-5/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://ubuntu.com/about/release-cycle
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/
https://github.com/ar-robotics
https://github.com/ar-robotics
https://docs.ros.org/en/humble/How-To-Guides/Installing-on-Raspberry-Pi.html
https://docs.ros.org/en/humble/How-To-Guides/Installing-on-Raspberry-Pi.html
https://www.openrobotics.org/blog/2022/5/24/ros-2-humble-hawksbill-release
https://www.openrobotics.org/blog/2022/5/24/ros-2-humble-hawksbill-release
https://aws.amazon.com/docker/
https://aws.amazon.com/docker/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/debian/
https://unity.com/how-to/learning-c-sharp-unity-beginners
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://unity.com/unity-hub
https://google.github.io/styleguide/pyguide.html

KROMIUM 11. REFERENCES

[67] sphinx.ext.autodoc – include documentation from docstrings — sphinx doc-
umentation. [Online]. Available: https://www.sphinx-doc.org/en/master/usage/
extensions/autodoc.html

[68] sphinx.ext.napoleon – support for NumPy and google style docstrings — sphinx
documentation. [Online]. Available: https://www.sphinx-doc.org/en/master/usage/
extensions/napoleon.html

[69] P. Gedam, “pradyunsg/furo,” original-date: 2020-09-01T21:08:17Z. [Online].
Available: https://github.com/pradyunsg/furo

[70] GitHub. About workflows. [Online]. Available: https://docs.github.com/en/
actions/using-workflows/about-workflows

[71] ——. GitHub copilot · your AI pair programmer. [Online]. Available:
https://github.com/features/copilot

[72] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile
Process, 1st ed. Addison-Wesley Professional. Part of the Addison-Wesley
Signature Series (Cohn) series. [Online]. Available: https://www.informit.com/
store/essential-scrum-a-practical-guide-to-the-most-popular-9780137043293

[73] N. H. ASA and DNV, “Methology for rapid risk ranking of h2 refuelling station
concepts,” p. 9. [Online]. Available: http://www.eihp.org/public/documents/
RRR%20methodology final SEP2002.pdf

[74] rosmasterx3. ROSMASTER x3 PLUS ROS robot for jetson NANO 4gb/xavier
NX/orin NX/orin NANO/RPi 4b. [Online]. Available: https://category.yahboom.
net/products/rosmaster-x3-plus

[75] B. Wu. 2.2. degrees of freedom of a robot – modern robotics. [On-
line]. Available: https://modernrobotics.northwestern.edu/nu-gm-book-resource/
2-2-degrees-of-freedom-of-a-robot/

[76] U. Technologies. Unity - manual: VR development in unity. [Online]. Available:
https://docs.unity3d.com/2022.3/Documentation/Manual/VROverview.html

[77] o. developer. Set up development environment and headset | oculus devel-
opers. [Online]. Available: https://developer.oculus.com/documentation/unity/
unity-env-device-setup/

[78] Docker. What is a container? | docker. [Online]. Available: https:
//www.docker.com/resources/what-container/

[79] Unity-Technologies, “Unity-technologies/ROS-TCP-connector,” original-
date: 2020-09-22T20:40:02Z. [Online]. Available: https://github.com/
Unity-Technologies/ROS-TCP-Connector

[80] json.org. Introducing JSON. [Online]. Available: https://www.json.org/json-en.
html

[81] A. Augustin. websockets. [Online]. Available: https://websockets.readthedocs.io/
en/stable/index.html

[82] Orbbec. Astra series. [Online]. Available: https://www.orbbec.com/products/
structured-light-camera/astra-series/

228

https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://github.com/pradyunsg/furo
https://docs.github.com/en/actions/using-workflows/about-workflows
https://docs.github.com/en/actions/using-workflows/about-workflows
https://github.com/features/copilot
https://www.informit.com/store/essential-scrum-a-practical-guide-to-the-most-popular-9780137043293
https://www.informit.com/store/essential-scrum-a-practical-guide-to-the-most-popular-9780137043293
http://www.eihp.org/public/documents/RRR%20methodology_final_SEP2002.pdf
http://www.eihp.org/public/documents/RRR%20methodology_final_SEP2002.pdf
https://category.yahboom.net/products/rosmaster-x3-plus
https://category.yahboom.net/products/rosmaster-x3-plus
https://modernrobotics.northwestern.edu/nu-gm-book-resource/2-2-degrees-of-freedom-of-a-robot/
https://modernrobotics.northwestern.edu/nu-gm-book-resource/2-2-degrees-of-freedom-of-a-robot/
https://docs.unity3d.com/2022.3/Documentation/Manual/VROverview.html
https://developer.oculus.com/documentation/unity/unity-env-device-setup/
https://developer.oculus.com/documentation/unity/unity-env-device-setup/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://websockets.readthedocs.io/en/stable/index.html
https://websockets.readthedocs.io/en/stable/index.html
https://www.orbbec.com/products/structured-light-camera/astra-series/
https://www.orbbec.com/products/structured-light-camera/astra-series/

KROMIUM 11. REFERENCES

[83] 3. install rosmaster driver library. [Online]. Avail-
able: http://www.yahboom.net/public/upload/upload-html/1689913026/3.
%20Install%20Rosmaster%20driver%20library.html

[84] YahboomTechnology. Precautions for battery. [Online]. Available:
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/01.About%
20ROSMASTER%20X3/2.%20Precautions%20for%20battery/Precautions%
20for%20battery.pdf

[85] A. Stevens, “Forward kinematics,” book Title: Modeling, Motion Planning,
and Control of Manipulators and Mobile Robots. [Online]. Available: https:
//opentextbooks.clemson.edu/wangrobotics/chapter/forward-kinematics/

[86] A. Lunia, “Inverse kinematics,” book Title: Modeling, Motion Planning,
and Control of Manipulators and Mobile Robots. [Online]. Available: https:
//opentextbooks.clemson.edu/wangrobotics/chapter/inverse-kinematics/

[87] MoveIt motion planning platform. [Online]. Available: https://picknik.ai/moveit/

[88] moveit2. MoveIt 2 documentation — MoveIt documentation: Rolling documenta-
tion. [Online]. Available: https://moveit.picknik.ai/main/index.html

[89] ros-planning/moveit2 at humble. [Online]. Available: https://github.com/
ros-planning/moveit2

[90] A. Kieu. 3-dof-planar/InverseKinematics.py at master · aakieu/3-dof-
planar. [Online]. Available: https://github.com/aakieu/3-dof-planar/blob/master/
InverseKinematics.py

[91] KhanAcademy. Laws of sines and cosines review (article). [Online]. Avail-
able: https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:trig/
x9e81a4f98389efdf:solving-general-triangles/a/laws-of-sines-and-cosines-review

[92] Kromium. arm kinematics.py at main · ar-robotics/robot. [Online].
Available: https://github.com/ar-robotics/robot/blob/main/robot/src/controller/
controller/arm kinematics.py

[93] S. Berge, R. Eckholdt, M. Leander, S. Løver, J. Søbstad, and M. Sørensen, “An
indirect method for predicting bending moments with machine learning,” p. 216.
[Online]. Available: https://hdl.handle.net/11250/3030483

[94] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” p. 10. [Online]. Available:
https://hal.science/hal-04206682/file/Lecun2015.pdf

[95] R. Alake. Loss functions in machine learning explained. [Online]. Available:
https://www.datacamp.com/tutorial/loss-function-in-machine-learning

[96] R. Ratan. Modern computer vision GPT, PyTorch, keras, OpenCV4 in 2024!
[Online]. Available: https://www.udemy.com/course/modern-computer-vision/

[97] R. Alake. A data scientist’s guide to gradient de-
scent and backpropagation algorithms | NVIDIA techni-
cal blog. [Online]. Available: https://developer.nvidia.com/blog/
a-data-scientists-guide-to-gradient-descent-and-backpropagation-algorithms/

229

http://www.yahboom.net/public/upload/upload-html/1689913026/3.%20Install%20Rosmaster%20driver%20library.html
http://www.yahboom.net/public/upload/upload-html/1689913026/3.%20Install%20Rosmaster%20driver%20library.html
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/01.About%20ROSMASTER%20X3/2.%20Precautions%20for%20battery/Precautions%20for%20battery.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/01.About%20ROSMASTER%20X3/2.%20Precautions%20for%20battery/Precautions%20for%20battery.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/01.About%20ROSMASTER%20X3/2.%20Precautions%20for%20battery/Precautions%20for%20battery.pdf
https://opentextbooks.clemson.edu/wangrobotics/chapter/forward-kinematics/
https://opentextbooks.clemson.edu/wangrobotics/chapter/forward-kinematics/
https://opentextbooks.clemson.edu/wangrobotics/chapter/inverse-kinematics/
https://opentextbooks.clemson.edu/wangrobotics/chapter/inverse-kinematics/
https://picknik.ai/moveit/
https://moveit.picknik.ai/main/index.html
https://github.com/ros-planning/moveit2
https://github.com/ros-planning/moveit2
https://github.com/aakieu/3-dof-planar/blob/master/InverseKinematics.py
https://github.com/aakieu/3-dof-planar/blob/master/InverseKinematics.py
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:trig/x9e81a4f98389efdf:solving-general-triangles/a/laws-of-sines-and-cosines-review
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:trig/x9e81a4f98389efdf:solving-general-triangles/a/laws-of-sines-and-cosines-review
https://github.com/ar-robotics/robot/blob/main/robot/src/controller/controller/arm_kinematics.py
https://github.com/ar-robotics/robot/blob/main/robot/src/controller/controller/arm_kinematics.py
https://hdl.handle.net/11250/3030483
https://hal.science/hal-04206682/file/Lecun2015.pdf
https://www.datacamp.com/tutorial/loss-function-in-machine-learning
https://www.udemy.com/course/modern-computer-vision/
https://developer.nvidia.com/blog/a-data-scientists-guide-to-gradient-descent-and-backpropagation-algorithms/
https://developer.nvidia.com/blog/a-data-scientists-guide-to-gradient-descent-and-backpropagation-algorithms/

KROMIUM 11. REFERENCES

[98] Softmax function. [Online]. Available: https://deepai.org/
machine-learning-glossary-and-terms/softmax-layer

[99] cocodataset. COCO - common objects in context. [Online]. Available: https:
//cocodataset.org/#home

[100] QuinnRadich. What is a machine learning model? [On-
line]. Available: https://learn.microsoft.com/en-us/windows/ai/windows-ml/
what-is-a-machine-learning-model

[101] Netron. [Online]. Available: https://netron.app/

[102] goozit. How to train your object detection model using tensorflow | GOOZIT
tutorial. [Online]. Available: https://www.goozit.com/tutorial/ObjectDetection

[103] J. Nelson. How to label image data for computer vision models. [Online].
Available: https://blog.roboflow.com/tips-for-how-to-label-images/

[104] AllegroAdmin1. The battle of speed vs. accuracy: Single-shot vs two-
shot detection meta-architecture. [Online]. Available: https://clear.ml/blog/
the-battle-of-speed-accuracy-single-shot-vs-two-shot-detection

[105] Ida. How object detectors learn. [Online]. Available: https://ambolt.io/en/
how-object-detectors-learn/

[106] Github. mediapipe-loss functions. [Online]. Available: https:
//github.com/google/mediapipe/blob/master/mediapipe/model maker/python/
core/utils/loss functions.py

[107] F. Alvi. PyTorch vs TensorFlow in 2024: A comparative guide of AI frameworks.
[Online]. Available: https://opencv.org/blog/pytorch-vs-tensorflow/

[108] TensorFlow lite | ML for mobile and edge devices. [Online]. Available:
https://www.tensorflow.org/lite

[109] tflitemodelmaker. TensorFlow lite model maker. [Online]. Available: https:
//www.tensorflow.org/lite/models/modify/model maker

[110] github. TFlite model maker installation issue with python 3.10 in colab. ·
issue #62942 · tensorflow/tensorflow. [Online]. Available: https://github.com/
tensorflow/tensorflow/issues/62942

[111] mediapipe. MediaPipe. [Online]. Available: https://developers.google.com/
mediapipe

[112] ——. Object detection model customization guide | MediaPipe | google
for developers. [Online]. Available: https://developers.google.com/mediapipe/
solutions/customization/object detector

[113] p. roboflow. Pascal VOC XML annotation format. [Online]. Available:
https://roboflow.com/formats/pascal-voc-xml

[114] AWS. What is overfitting? - overfitting in machine learning explained - AWS.
[Online]. Available: https://aws.amazon.com/what-is/overfitting/

230

https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://cocodataset.org/#home
https://cocodataset.org/#home
https://learn.microsoft.com/en-us/windows/ai/windows-ml/what-is-a-machine-learning-model
https://learn.microsoft.com/en-us/windows/ai/windows-ml/what-is-a-machine-learning-model
https://netron.app/
https://www.goozit.com/tutorial/ObjectDetection
https://blog.roboflow.com/tips-for-how-to-label-images/
https://clear.ml/blog/the-battle-of-speed-accuracy-single-shot-vs-two-shot-detection
https://clear.ml/blog/the-battle-of-speed-accuracy-single-shot-vs-two-shot-detection
https://ambolt.io/en/how-object-detectors-learn/
https://ambolt.io/en/how-object-detectors-learn/
https://github.com/google/mediapipe/blob/master/mediapipe/model_maker/python/core/utils/loss_functions.py
https://github.com/google/mediapipe/blob/master/mediapipe/model_maker/python/core/utils/loss_functions.py
https://github.com/google/mediapipe/blob/master/mediapipe/model_maker/python/core/utils/loss_functions.py
https://opencv.org/blog/pytorch-vs-tensorflow/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/models/modify/model_maker
https://www.tensorflow.org/lite/models/modify/model_maker
https://github.com/tensorflow/tensorflow/issues/62942
https://github.com/tensorflow/tensorflow/issues/62942
https://developers.google.com/mediapipe
https://developers.google.com/mediapipe
https://developers.google.com/mediapipe/solutions/customization/object_detector
https://developers.google.com/mediapipe/solutions/customization/object_detector
https://roboflow.com/formats/pascal-voc-xml
https://aws.amazon.com/what-is/overfitting/

KROMIUM 11. REFERENCES

[115] Roboflow. Create augmented images | roboflow docs. [Online]. Available:
https://docs.roboflow.com/datasets/image-augmentation

[116] java. Primitive data types (the java™ tutorials > learning the java language >
language basics). [Online]. Available: https://docs.oracle.com/javase/tutorial/java/
nutsandbolts/datatypes.html

[117] Orbbec, “orbbec/ros astra camera,” original-date: 2016-05-12T05:50:25Z. [On-
line]. Available: https://github.com/orbbec/ros astra camera

[118] J. Monroy. JGMonroy/ros2 astra camera: ROS2 wrapper for astra camera.
[Online]. Available: https://github.com/JGMonroy/ros2 astra camera

[119] ros. sensor msgs/PointCloud2 documentation. [Online]. Available: https://docs.
ros.org/en/melodic/api/sensor msgs/html/msg/PointCloud2.html

[120] ——. sensor msgs/PointField documentation. [Online]. Available: https://docs.
ros.org/en/melodic/api/sensor msgs/html/msg/PointField.html

[121] Google, “google/brotli,” original-date: 2014-10-09T14:35:14Z. [Online]. Avail-
able: https://github.com/google/brotli

[122] Thingiverse.com. Knurling bolt and nut by akira3dp0. [Online]. Available:
https://www.thingiverse.com/thing:1460364

[123] Kromium. ar-robotics/obj-detection-pi at offish. [Online]. Available: https:
//github.com/ar-robotics/Obj-detection-pi/tree/offish

[124] oracle. What is a database? [Online]. Available: https://www.oracle.com/database/
what-is-database/

[125] I. Hosting. Database management systems: Organizing and ac-
cessing data. [Online]. Available: https://www.inmotionhosting.com/blog/
what-is-a-database-management-system/

[126] mongodb. NoSQL vs SQL databases. [Online]. Available: https://www.mongodb.
com/nosql-explained/nosql-vs-sql

[127] MongoDB. MongoDB compass | MongoDB. [Online]. Available: https:
//www.mongodb.com/products/tools/compass

[128] yb. 520 DC gear motor with encoder 205rpm 333rpm 550rpm. [Online]. Available:
https://category.yahboom.net/products/md520

[129] yahboomarm. Yahboom 15kg serial bus smart servo and driver debugging
board for robotic arm. [Online]. Available: https://category.yahboom.net/products/
15kg-serial-bus-servo

[130] USB3.0 HUB expansion board 1 to 4 support 5a current 9-24v power for raspberry
pi jetson. [Online]. Available: https://category.yahboom.net/products/usb-hub

[131] Yahboom. [Online]. Available: http://www.yahboom.net/study/rosmaster-x3-plus

[132] A. Tokle Poverud, M. Shah Pasand, T. G. Finnerud, H. Kåsastul, P. Knutson Sæther,
and A. Senkaya, “K-spider, designdokument,” p. 66. [Online]. Available:
https://openarchive.usn.no/usn-xmlui/handle/11250/2396944

231

https://docs.roboflow.com/datasets/image-augmentation
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://github.com/orbbec/ros_astra_camera
https://github.com/JGMonroy/ros2_astra_camera
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointField.html
https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointField.html
https://github.com/google/brotli
https://www.thingiverse.com/thing:1460364
https://github.com/ar-robotics/Obj-detection-pi/tree/offish
https://github.com/ar-robotics/Obj-detection-pi/tree/offish
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.inmotionhosting.com/blog/what-is-a-database-management-system/
https://www.inmotionhosting.com/blog/what-is-a-database-management-system/
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.mongodb.com/products/tools/compass
https://www.mongodb.com/products/tools/compass
https://category.yahboom.net/products/md520
https://category.yahboom.net/products/15kg-serial-bus-servo
https://category.yahboom.net/products/15kg-serial-bus-servo
https://category.yahboom.net/products/usb-hub
http://www.yahboom.net/study/rosmaster-x3-plus
https://openarchive.usn.no/usn-xmlui/handle/11250/2396944

KROMIUM 11. REFERENCES

[133] K-AIoT. [Online]. Available: https://itfag.usn.no/grupper/D02-23/index.html

[134] M. Zelek. Raspberry pi 5 | 3d CAD model library | GrabCAD. [Online]. Available:
https://grabcad.com/library/raspberry-pi-5-2/details?folder id=13858786

[135] K. Piekutowski. LD3007ms FAN | 3d CAD model library | GrabCAD. [Online].
Available: https://grabcad.com/library/ld3007ms-fan-1

[136] N. Naranjo. Yahboom ros master x3 | 3d CAD model library | GrabCAD. [Online].
Available: https://grabcad.com/library/yahboom-ros-master-x3-1

[137] Yahboom. Robot arm 3d model file - google drive. [Online]. Available: https:
//drive.google.com/drive/folders/1rfVteXm0RxCnI9E3B7XQJjLv7kHEIvXD

[138] sw urdf exporter - ROS wiki. [Online]. Available: http://wiki.ros.org/sw urdf
exporter

[139] HexTow laminate properties in HexPly® 8552 | hexcel.
[Online]. Available: https://www.hexcel.com/Products/Resources/1664/
hextow-laminate-properties-in-hexply-8552

[140] E. A. Team. Accuracy, precision, and recall in multi-class classification. [Online].
Available: https://www.evidentlyai.com/classification-metrics/multi-class-metrics

[141] D. Shah. Intersection over union (IoU): Definition, calculation, code. [Online].
Available: https://www.v7labs.com/blog/intersection-over-union-guide,https:
//www.v7labs.com/blog/intersection-over-union-guide

[142] Google. Descending into ML: Training and loss | machine learning. [On-
line]. Available: https://developers.google.com/machine-learning/crash-course/
descending-into-ml/training-and-loss

[143] Cloudfare. AI inference vs. training: What is AI inference? | cloudflare. [Online].
Available: https://www.cloudflare.com/learning/ai/inference-vs-training/

[144] Google. Mediapipe-non max suppression calculator. [Online]. Avail-
able: https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/
non max suppression calculator.cc

[145] Kromium. Code search results. [Online]. Available: https://github.com/search?q=
repo%3Aar-robotics%2Frobot+path%3A*.py+path%3A*test%2F*&type=code

[146] A. E. Haugjord and H. Bertelsen, “Tensile test report of polylactic acid (PLA).”

[147] A. E. Haugjord, “520 DC motor bracket weight simulattion,” p. 11.

[148] H. Bertelsen, “Simulation of arm cam holder fixed angle.”

[149] ——, “Simulation of wall attachment bracket assy.”

[150] MoveIt. Hybrid planning — MoveIt documentation: Rolling documentation.
[Online]. Available: https://moveit.picknik.ai/main/doc/concepts/hybrid planning/
hybrid planning.html

[151] ——. URDF and SRDF — MoveIt documentation: Rolling documentation.
[Online]. Available: https://moveit.picknik.ai/main/doc/examples/urdf srdf/urdf
srdf tutorial.html#urdf

232

https://itfag.usn.no/grupper/D02-23/index.html
https://grabcad.com/library/raspberry-pi-5-2/details?folder_id=13858786
https://grabcad.com/library/ld3007ms-fan-1
https://grabcad.com/library/yahboom-ros-master-x3-1
https://drive.google.com/drive/folders/1rfVteXm0RxCnI9E3B7XQJjLv7kHEIvXD
https://drive.google.com/drive/folders/1rfVteXm0RxCnI9E3B7XQJjLv7kHEIvXD
http://wiki.ros.org/sw_urdf_exporter
http://wiki.ros.org/sw_urdf_exporter
https://www.hexcel.com/Products/Resources/1664/hextow-laminate-properties-in-hexply-8552
https://www.hexcel.com/Products/Resources/1664/hextow-laminate-properties-in-hexply-8552
https://www.evidentlyai.com/classification-metrics/multi-class-metrics
https://www.v7labs.com/blog/intersection-over-union-guide, https://www.v7labs.com/blog/intersection-over-union-guide
https://www.v7labs.com/blog/intersection-over-union-guide, https://www.v7labs.com/blog/intersection-over-union-guide
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://www.cloudflare.com/learning/ai/inference-vs-training/
https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/non_max_suppression_calculator.cc
https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/non_max_suppression_calculator.cc
https://github.com/search?q=repo%3Aar-robotics%2Frobot+path%3A*.py+path%3A*test%2F*&type=code
https://github.com/search?q=repo%3Aar-robotics%2Frobot+path%3A*.py+path%3A*test%2F*&type=code
https://moveit.picknik.ai/main/doc/concepts/hybrid_planning/hybrid_planning.html
https://moveit.picknik.ai/main/doc/concepts/hybrid_planning/hybrid_planning.html
https://moveit.picknik.ai/main/doc/examples/urdf_srdf/urdf_srdf_tutorial.html#urdf
https://moveit.picknik.ai/main/doc/examples/urdf_srdf/urdf_srdf_tutorial.html#urdf

KROMIUM 11. REFERENCES

[152] encord. Object tracking definition | encord. [Online]. Available: https:
//encord.com/glossary/object-tracking-definition/

[153] Deci. Object tracking with DeepSORT and YOLO-
NAS. [Online]. Available: https://deci.ai/blog/
object-tracking-with-deepsort-and-yolo-nas-practitioners-guide/

[154] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition.” [Online]. Available:
http://arxiv.org/abs/1505.00880

[155] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” vol. 6, no. 1, p. 11. [Online]. Available:
https://doi.org/10.1186/s40649-019-0069-y

[156] G. Inc. scann: Scalable approximate nearest neighbor search library. [Online].
Available: https://github.com/google-research/google-research/tree/master/scann

[157] PyTorch. Home. [Online]. Available: https://pytorch.org/mobile/home/

[158] YOLO: Real-time object detection. [Online]. Available: https://pjreddie.com/
darknet/yolo/

[159] Ultralytics. Frequently asked questions (FAQ). [Online]. Available: https:
//docs.ultralytics.com/help/FAQ

[160] R. P. Ltd. Raspberry pi for home. [Online]. Available: https://www.raspberrypi.
com/for-home/

[161] Ultralytics. yolov5/utils/general.py. [Online]. Available: https://github.com/
ultralytics/yolov5/blob/21f8f94d1169bd28c5d59fe6ccc23b13ddb997e2/utils/
general.py

[162] K. Jakhar, “karanjakhar/yolov5-export-to-cpu,” original-date: 2021-
07-07T04:41:02Z. [Online]. Available: https://github.com/karanjakhar/
yolov5-export-to-cpu

[163] ros2, “ros2/ros1 bridge,” original-date: 2015-06-17T18:36:47Z. [Online]. Avail-
able: https://github.com/ros2/ros1 bridge

[164] isl org, “isl-org/open3d,” original-date: 2016-12-02T16:40:38Z. [Online].
Available: https://github.com/isl-org/Open3D

[165] Tensorflow. tf.lite.interpreter | TensorFlow v2.15.0.post1. [Online]. Available:
https://www.tensorflow.org/api docs/python/tf/lite/Interpreter

[166] O. Robotics. Quality of service settings — ROS 2 documentation: Humble
documentation. [Online]. Available: https://docs.ros.org/en/humble/Concepts/
Intermediate/About-Quality-of-Service-Settings.html

[167] pypa. pip documentation v24.0. [Online]. Available: https://pip.pypa.io/en/stable/

[168] Yahboom. ROS robot expansion board. [Online]. Available: http://www.yahboom.
net/study/ROS-Driver-Board

233

https://encord.com/glossary/object-tracking-definition/
https://encord.com/glossary/object-tracking-definition/
https://deci.ai/blog/object-tracking-with-deepsort-and-yolo-nas-practitioners-guide/
https://deci.ai/blog/object-tracking-with-deepsort-and-yolo-nas-practitioners-guide/
http://arxiv.org/abs/1505.00880
https://doi.org/10.1186/s40649-019-0069-y
https://github.com/google-research/google-research/tree/master/scann
https://pytorch.org/mobile/home/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://docs.ultralytics.com/help/FAQ
https://docs.ultralytics.com/help/FAQ
https://www.raspberrypi.com/for-home/
https://www.raspberrypi.com/for-home/
https://github.com/ultralytics/yolov5/blob/21f8f94d1169bd28c5d59fe6ccc23b13ddb997e2/utils/general.py
https://github.com/ultralytics/yolov5/blob/21f8f94d1169bd28c5d59fe6ccc23b13ddb997e2/utils/general.py
https://github.com/ultralytics/yolov5/blob/21f8f94d1169bd28c5d59fe6ccc23b13ddb997e2/utils/general.py
https://github.com/karanjakhar/yolov5-export-to-cpu
https://github.com/karanjakhar/yolov5-export-to-cpu
https://github.com/ros2/ros1_bridge
https://github.com/isl-org/Open3D
https://www.tensorflow.org/api_docs/python/tf/lite/Interpreter
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Quality-of-Service-Settings.html
https://pip.pypa.io/en/stable/
http://www.yahboom.net/study/ROS-Driver-Board
http://www.yahboom.net/study/ROS-Driver-Board

KROMIUM 11. REFERENCES

[169] A. Rosebrock. OpenCV getting and setting pixels. [Online]. Available:
https://pyimagesearch.com/2021/01/20/opencv-getting-and-setting-pixels/

[170] Reddit. install ros2 on debian 12 and ubuntu 23. Post URL:
www.reddit.com/r/ROS/comments/14axhdt/install ros2 on debian 12 and ubuntu 23/.
[Online]. Available: www.reddit.com/r/ROS/comments/14axhdt/
install ros2 on debian 12 and ubuntu 23/kaed05m/

[171] Set up hand tracking | oculus developers. [Online]. Available: https:
//developer.oculus.com/documentation/unity/unity-handtracking/

234

https://pyimagesearch.com/2021/01/20/opencv-getting-and-setting-pixels/
www.reddit.com/r/ROS/comments/14axhdt/install_ros2_on_debian_12_and_ubuntu_23/kaed05m/
www.reddit.com/r/ROS/comments/14axhdt/install_ros2_on_debian_12_and_ubuntu_23/kaed05m/
https://developer.oculus.com/documentation/unity/unity-handtracking/
https://developer.oculus.com/documentation/unity/unity-handtracking/

KROMIUM A. USER STORIES

A User stories

235

ID US-1

Title: Robot movement

User story: As an operator

I want control the robot (movement drive mode)

So that I can inspect the environment and perform operations

Acceptance
criteria:

Given that the operator is wearing a VR headset and Kromium software is
running

When the operator makes hand gestures

Then the robot will act accordingly

ID US-2

Title: Control change

User story: As an operator

I want to change the robot’s mode

So that I can perform an operation

Acceptance
criteria:

Given that the camera and controls are connected to steering the robot

When changing operational control

Then I can see the camera feed from the arm and control the arm

ID US-3

Title: Camera feed

User story: As an operator

I want to see the camera feed

So that I can drive and control the robot

Acceptance
criteria:

Given the cameras are connected and the robot is turned on

When I wear the VR headset

Then I see the camera feed

ID US-4

Title: Control the robot's arm

User story: As an operator

I want to control the robot arm

So that I can perform “tasks with the arm”

Acceptance
criteria:

Given that the system is in “arm mode”

When I make signature hand movements

Then the robot arm performs the desired action

ID US-5

Title: Robot’s status

User story: As an operator

I want to see the robot’s status

So that I’m updated about the robot’s status such as battery percentage,
connection something

Acceptance
criteria:

Given the robot is in operation

When I see the live feed

Then I can estimate time for battery change and maintenance

ID US-6

Title: Spectator view

User story: As a spectator

I want to see the live video feed from the operator’s perspective

So that I can follow along what is happening

Acceptance
criteria:

Given that there is an external monitor connected (that the VR headset is
connected to external monitor)

When there is a live feed sent to the VR headset (I press “stream” from the
Meta Quest app and choosing the monitor device)

Then the monitor displays the same live feed

ID US-7

Title: Battery change

User story: As a technician

I want a seamless and quick battery replacement process

So that I can minimize downtime and ensure the robot is always powered

Acceptance
criteria:

Given robot's low power status and the availability of a charged battery

When I press the "get out battery" button and swap the batteries

Then the robot should have full power and can resume its operation

ID US-8

Title: Recognize objects

User story: As an operator

I want the robot to recognize objects

So that I have more information

Acceptance
criteria:

Given the robot is on

When it recognizes an object

Then I should see information about the object

ID US-9

Title: Emergency stop

User story: As an operator

I want the robot to have an emergency stop feature

So that I can prevent an accident

Acceptance
criteria:

Given the robot is on

When I interact with the emergency stop interface

Then the robot should stand still and ignore incoming commands

KROMIUM B. USE CASES

B Use cases

241

ID UC-1.1

Use case The operator wants to move the robot in a given direction

Description If the operator signals the robot to move using their hands which gets picked
up by the VR headset, the robot should move in the direction which were
intended.

Actor Operator, robot

ID UC-2.1

Use case The operator wants to change the robot's mode

Description There should be an interface for the operator to change the robot’s mode (idle,
drive, arm, emergency). When interacted with, the robot should change mode.

Actor Operator, robot

ID UC-3.1

Use case The operator wants to change the robot’s camera feed independent of mode

Description The operator should be able to change the robot’s camera view and see this,
no matter what mode the robot is currently in. This could be used in order to
get a better perspective of an operation or object.

Actor Operator, robot

ID UC-4.1

Use case The operator wants the robot arm to imitate their hand gestures picked up by
the VR headset

Description When the operator moves their hand, the VR headset should pick this up and
the robotic arm on the robot should be able to perform a movement which has
been translated from the operator’s movement.

ID UC-4.2

Use case The operator wants to be able to pick up an object with the robot’s arm using
hand imitation

Description If the operator imitates picking up an imaginary object with their hands, the
robotic arm on the robot should be able to mimic this movement to pick up a
physical object which fits the constraints.

Actor Operator, robot

ID UC-4.3

Use case The operator wants to be able to rotate an object using hand imitation

Description If the operator imitates rotating an imaginary object with their hands, the
robotic arm on the robot should be able to mimic this movement to rotate a
physical object which fits the constraints.

Actor Operator, robot

ID UC-4.4

Use case The operator wants to be able to press an external button using hand imitation

Description If the operator imitates pressing an imaginary button with their hands, the
robotic arm on the robot should be able to mimic this movement to press a
physical button which fits the constraints.

Actor Operator, robot

ID UC-5.1

Use case The operator wants to see the live status of the robot

Description The operator should be able to view the live status of the robot when wearing
the VR headset.

Actor Operator, robot

ID UC-6.1

Use case The spectator wants to follow along the live feed from the VR headset

Description A spectator which does not wear the VR headset and watches an external
monitor should be able to follow along and see the same live feed which the
operator wearing the VR headset sees.

Actor Spectator

ID UC-7.1

Use case The technician wants to easily change batteries

Description If a technician wants to change the batteries of the robot, it should be a quick
and easy process.

Actor Technician, robot

ID UC-7.2

Use case The operator wants the robot to change its own battery

Description When the operator interacts with some interface in the VR headset, the robot
should be able to use its own robotic arm to change its own battery without
external interaction.

Actor Operator, robot

ID UC-7.3

Use case The operator wants to manually change the batteries using the robotic arm

Description The operator should be able to remotely control the robotic arm such that the
robot can change its own battery without external interaction.

Actor Operator, robot

ID UC-8.1

Use case The operator wants the robot to recognize objects

Description If the robot recognizes a physical object using its cameras, the operator should
be able to see this recognition.

Actor Operator, robot

ID UC-9.1

Use case The operator wants to stop the entire operation in case of an emergency

Description There should be an interface for triggering an emergency stop. If emergency
stop is triggered, the robot should enter emergency mode. In emergency mode
the robot should physically not move and ignore almost all commands. This
mode requires an exit-emergency-stop-command to go out of emergency
mode to operate normally again.

Actor Operator, robot

KROMIUM C. SYSTEM REQUIREMENT SPECIFICATION

C System requirement specification

246

ID User story ID Use case ID Requirement Priority
Technical performance
parameters

Test method Verification Test ID Status

R-1.1.1 The VR headset should capture the
operator's hand gesture. A

Constraints:
- Cannot control the arm while
its driving

Make hand gesture for the VR
and wait for confirmation

A sign should appear in the VR
headset and show that a hand
gesture has been captured.

T-1 Success

R-1.1.2 The Kromium software must be
able to convert the hand gesture
to a robot command.

A

Requirement driving commands:
- Left
- Right
- Forward
- Backward

Compare the hand gesture made
by the operator and the
command result

A sign should appear in the VR
headset showing the command
result which matches the hand
gesture made by the operator

T-2 Success

R-1.1.3 The converted command should
be sent to the robot. A

Not applicable The command is printed out by
the VR (sender) and the robot
(receiver)

The printed command from both
sides should be equal

T-1, T-2 Success

R-1.1.4 The robot should act on the sent
command.

A

Operating area:
- Be able to navigate within a
minimum of one square meter
Latency:
- Maximum 2 seconds latency
from the operator does a
movement till the robot arm
responds

Send a specific command to the
robot and observe the action

The action from the robot
matches the intended command

T-2, T-3 Success

R-2.1.1 The software should provide an
interface for switching modes

A

Constraints:
- Cannot drive while its
controlling the arm
- Modes:
- Driving
- Arm
- Idle

Change mode in the VR
application through the menu or
voice command

Verify that the robot indicates
change to the corresponding
mode

T-3, T-4,
T5

Success

R-2.1.2 The software should change the
camera view according to the
given mode automatically

A
Not applicable Switch mode Verify that the camera view now

matches the current mode
T-5 Success

R-2.1.3 The VR headset should change
mode for interpreting hand
movements

A
Using either or both:
- Hand interactable menu
- Voice command

Switch mode to arm or drive
mode and make hand
movements

The hand movements is
converted to drive and arm
commands

T-6 Success

US-3 Camera feed UC-3.1 The operator wants to
change the robot’s
camera feed
independent of mode

R-3.1.1 The software should provide an
interface to change camera feed

C

Not applicable Switch camera feed by changing
mode from arm mode to drive
mode

Visually verify that the camera
feed is changed correctly

Not viable Not vaiable

R-4.1.1 The Kromium software should
convert hand movement into
positional data . A

Constraints:
- Positional data in form of the
cartesian coordinate system

Move hands around within the
VR’s hand detection boundaries
and print out the positional data

Verify that the printed data
corresponds to the positional
data datatype

T-7 Success

R-4.1.2 The robot arm should move
according to the given positional
data. A

Latency:
- Maximum 2 seconds latency
from the operator does a
movement till the robot arm
responds

Send some predefined positional
data examples to the robot

Verify that the robotic arm
moves in the expected
predefined position

T-7, T-8 Success

UC-1.1 The operator wants to
move the robot in a
given direction

Control changeUS-2 UC-2.1 The operator wants to
change the robot's
mode

The operator wants the
robot arm to imitate
their hand gestures
picked up by the VR
headset

Control the
robot's arm

US-1 Robot movement

US-4 UC-4.1

UC-4.2 The operator wants to
be able to pick up an
object with the robot’s
arm using hand
imitation

R-4.2.1 The robot arm should have a
pinching mechanism.

A

Constraints:
- Maximum object width: 5 cm
- Minimum object width 1 cm
- Maximum object weight: 200g

Visual inspection and send a
pinch command while holding
an object with fits the
constraints

Verify that the robotic arm can
hold and move the object and
does not break or lose the object

T-14 Success

UC-4.3 The operator wants to
be able to rotate an
object using hand
imitation

R-4.3.1 The robot arm should have a wrist
tool enabling the robot to rotate
an object. C

Constraints:
- Maximum object width: 5 cm
- Minimum object width 1 cm

Visual inspection and send a
rotate command for the arm to
rotate an object which fits the
constraints

Verify that the robotic arm can
rotate the object and does not
break

T-14 Success

UC-4.4 The operator wants to
be able to press an
external button using
hand imitation

R-4.4.1 The robot arm should be designed
such that it can press a button.

B

Not applicable Visual inspection and imitate
pressing a button

Verify that the robotic the
button gets pressed

Not viable Not vaiable

R-5.1.1 The software should display the
battery level of the robot. B

Constraints:
- Format: percentage

Visual inspection of the VR’s GUI Verify that there is a battery
level indicator

T-9 Success

R-5.1.2 The software should display the
speed of the robot. C

Constraints:
- Format: percentage of
maximum speed

Visual inspection of the VR’s GUI Verify that there is a speed
indicator

T-9 Success

R-5.1.3 The software should display
connection information between
the robot and Kromium’s software
system.

B

Constraints:
- Latency in milliseconds
- Connection in boolean

Visual inspection of the VR’s GUI Verify that there is a connection
status indicator

T-9 Success

R-5.1.4 The software should display the
mode the robot is in.

A

Modes:
- Idle
- Drive
- Arm
- Emergency

Visual inspection of the VR’s GUI Verify that there is a mode
indicator and it shows the
correct mode

T-9 Success

US-6 Spectator view UC-6.1 The spectator wants to
follow along the live
feed from the VR
headset

R-6.1.1 The system should display a live
feed from the operator’s
perspective on an external
monitor.

A

Constraints:
- The monitor should be
connected to the network.
- perspective:
- Camera view from the robot
- Operators pass-through
- All the GUI elements:
- statuses

Connect an external monitor,
and have two developers. One
of the developers should
observe the monitor, while the
other wears the VR headset.
They should verbally explain
what they see at the current
time.

Verify that the visual elements
on the VR and external monitor
match

T-15 Success

UC-7.1 The technician wants to
easily change batteries

R-7.1.1 The robot's design should allow for
easy access to the battery
interface. A

Constraints:
- Easy:
- less than 5 operations
- Total time less than 2 minutes

A developer manually changes
the battery

Verify that the process matches
the constraints

T-16 Failed

R-7.2.1 The robot should have access to a
power source while changing
batteries.

C

Constraints:
- the arm must be able to carry
the battery
- affordable batteries (update
this)
- access to charged batteries

Observe the autonomous
process of changing the battery

Verify that the robot does not
shut down while changing its
own battery

Not viable Not viable

R-7.2.2 The robot should have a software
implementation for changing the
batteries autonomously. C

Constraints:
- When the robot’s batter goes
below 10%.

Observe the autonomous
process of changing the battery

Visually verify that the new
battery is correctly inserted and
observe that the battery level
indicator updates

Not viable Not viable

The operator wants to
see the live status of
the robot

UC-5.1

The operator wants the
robot to change its own
battery

UC-7.2

US-5 Robot’s status

US-7 Battery change

UC-7.3 The operator wants to
manually change the
batteries using the
robotic arm

R-7.3.1 The operator should be able to
change the battery using the
robotic arm with hand imitation. C

Not applicable Observe the process of changing
the battery

Visually verify that the new
battery is correctly inserted and
observe that the battery level
indicator updates

Not viable Not viable

R-8.1.1 The robot should have
functionality for visually
recognizing objects. A

Constraints:
- Predefined object classes
- Accuracy over 60%
- Using machine learning

Placing an object in front of the
robot’s camera

Verify that there is a border
around the object and the
description corresponds to the
object

T-10 Success

R-8.1.2 The robot should have
functionality for displaying data
related to recognized objects. A

Constraints:
- Label
- boundary box
- Object-specific information
- Accuracy

Placing an object in front of the
robot’s camera

Verify that the data displayed
matches the object’s data

T-13 Success

R-9.1.1 The robot should have
functionality for stopping
immediately.

A
Constraints:
- independent of setting

Activate the emergency stop and
send commands to the robot

Visually verify that the robot
stops and does not respond to
commands afterwards

T-2, T-11 Success

R-9.1.2 The robot should have an interface
for remote emergency activation. A

Constraints:
- Requires less than two
operations

Activate the emergency stop
through the VR headset and
send commands to the robot

Visually verify that the robot
stops and does not respond to
commands afterwards

T-11 Success

R-9.1.3 The robot should have an interface
for physical emergency activation. A

Constraints:
- Requires less than two
operations

Physically activate the
emergency stop and send
commands to the robot

Visually verify that the robot
stops and does not respond to
commands afterwards

Not viable Not viable

R-9.1.4 The robot should log important
information. A

Important information:
- Commands received and sent
- Current mode the robot is in

Log data from all the relevant
components

Verify that the log data is saved
to the file it was indented to

T-12 Success

US-9

US-8 Recognize objects The operator wants the
robot to recognize
objects

UC-8.1

The operator wants to
stop the entire operation
locally and remotely in
case of an emergency

UC-9.1Emergency stop

KROMIUM D. GLOBAL REQUIREMENTS

D Global requirements

250

Global requirements

Description Requirement
Requirement

ID

Priority
Performance

Robot

operational

time

The robot should have at least 20 minutes of

uptime.
R-G.1

A

-

Component

access

The robot should be modular and interchangeable.

We can change one component of the robot

without it affect the rest of the system.

R-G.2

A

-

Software

architecture

Modular design for adding new functionality on

top
R-G.3

B have to make minimal adjustments

to current code in order to expand

with additional functionality

Physical

appearance

The robot should have a physical design such that

it looks presentable for demonstrations.
R-G.4

A
-

Budget The project has been given ~25,000 NOK budget. R – G.5
Not

applicable
-

KROMIUM E. SOFTWARE TESTING DOCUMENTATION

E Software testing documentation

252

Test ID T-1

Requirements
tested

R-1.1.1, R-1.1.3

Description Testing hand gesture performed by the operator and sent to ROS
master node.

Steps

1. Both applications running(ROS master and VR application)
2. System mode has to be in arm mode
3. The operator makes a hand gesture

Verification

1. The application indicates hand gesture captured
2. ROS master prints out the result

Validate that the ROS master node prints data

Performed by SO, OM

Related
components

Hand gesture controller (VR), ROS VR-linker node (Robot), ROS
master node (Robot)

Status Success

Test ID T-2

Requirements
tested

R-1.1.2, R-1.1.3, R-1.1.4, R-1.1.9

Description

Converting hand gestures to a robot command.

Requirement driving commands:

1. Left
2. Right
3. Forward
4. Backward

Steps

1. Both applications running(ROS master and VR application)
2. System mode in drive mode
3. The operator makes a hand gesture within the robot control

boundary signalizing all four driving commands

Verification

1. The ROS master receives a JSON command
2. Validate that the JSON data is related to the hand gesture
3. ROS master node converts the data into a direction
4. The hand motion matches the printed command from ROS

master node

Performed by SO, OM

Related
components

Hand gesture controller (VR), ROS VR-linker node (Robot), ROS
master node (Robot)

Status Success

Test ID T-3

Requirements
tested

R-1.1.4, R-2.1.1

Description
Sending specific commands to the robot and observe that the
robot does accordingly

Steps

1. Both applications running(ROS master and VR application)
2. Set the robot and VR application to drive mode
3. Send following commands

1. LEFT, RIGHT, FORWARD, STOP

Verification
1. Wait for the robot to indicate it is in drive mode
2. Verify that the robot acts correctly to the sent command

Performed by SO, OM

Related
components

Hand gesture controller (VR), ROS VR-linker node (Robot), ROS
master node (Robot), ROS controller node (Robot, Expansion
board)

Status Success

Test ID T-4

Requirements
tested

R-2.1.1

Description

Switch the robot modes from the VR application.

 Modes:
o Drive
o Arm
o Idle
o Emergency

Steps
1. Both applications running(ROS master and VR application)
2. Click on the mode in the VR menu

Verification
1. Verify that the robot beeps (signal for drive mode) and

prints out the correct mode

Performed by SO, OM

Related
components

Hand gesture controller (VR), ROS VR-linker node (Robot), ROS
master node (Robot)

Status Success

Test ID T-5

Requirements
tested

R-2.1.2, R-2.1.1

Description
Switch to arm or drive mode and make sure the camera feed in the
VR changes.

Steps

1. Both applications running(ROS master and VR application)
2. If the robot is in drive mode, change to arm mode, if in arm

mode change to drive mode

Verification
1. Verify that the robot beeps
2. Verify that the VR feed changes to the correct camera

Performed by None

Related
components

VR

 Hand gesture controller

Robot

 ROS VR-linker node
 ROS master node
 ROS camera node

Status Success

Test ID T-6

Requirements
tested

R-2.1.3

Description
Switch mode to drive or arm mode and make hand movements to
control the robot.

Steps

1. Change mode to drive mode
2. Make hand movements for controlling the robot
3. Change mode to arm mode
4. Make hand movements for controlling the robot

Verification
1. Verify that the robot drives correctly in drive mode
2. Verify that the arm moves correctly in arm mode

Performed by SO, OM

Related
components

VR

 Hand gesture controller

Robot

 ROS VR-linker node
 ROS master node
 ROS controller node

Status Success

Test ID T-7

Requirements
tested

R-4.1.1, R-4.1.2

Description
Converting hand movements to positional data to control the
robot’s arm.

Steps

1. Switch mode to arm mode
2. Make hand movements in in the “arm boundary” inside the

VR application

Verification

1. Verify that the positional data visually
2. Visually verify that the robot arm moves according to the

hand movements

Performed by SO, OM

Related
components

VR

 Hand gesture controller

Robot

 ROS VR-linker node
 ROS master node
 ROS controller node

Status Success

Comment

Tested following:

1. Pinching mechanism - Complete
2. Tilting the “wrist” - Complete
3. Tilting the “shoulder” - Complete
4. Rotating the arm - Complete

Test ID T-8

Requirements
tested

R-4.1.2

Description

Testing the latency from an operator performs a movement until
the robot arm responds. Test T-7 has to be complete before
starting this test.

Required performance(Latency):

 Maximum 2 seconds

Steps

1. Follow the steps in T-7
2. Manually take the time when the operator makes a hand

movement
3. Stop the time when the robot responds

Verification
1. Verfy that the time measured is below 2 seconds

Performed by SO, OM

Related
components

VR

 Hand gesture controller

Robot

 ROS VR-linker node
 ROS master node
 ROS controller node

Status Success

Test ID T-9

Requirements
tested

R-5.1.1, R-5.1.2, R-5.1.3, R-5.1.4

Description

Testing and verification to display robot status

1. Mode
2. Speed
3. Battery level (percentage)
4. Latency

Steps
1. Change mode to an arbitrary mode

Verification
1. Verify that the VR headset shows the correct mode after

changing the mode

Performed by SO, OM

Related
components

VR

 Mode controller

Robot

 ROS VR-linker node
 ROS master node
 ROS controller node

Status Success

,

Test ID T-10

Requirements
tested

R-8.1.1

Description

Testing of machine learning algorithms to recognize objects.

Constraints:

 Predefined object classes
 Accuracy over 60%
 Using machine learning

Steps

1. Make sure you have a camera connected to the computer
2. Start the object detection application
3. Place a predefined object in front of the camera
4. Observe the result displayed on the screen

Verification

1. Verify that the algorithm has a bounding box around the
object

2. Verify that the label of the recognized object is correct
3. Verify that the accuracy is according to the minimum

requirement

Performed by AD

Related
components

Object detection

Status Success

Comment

Tested the following

 Custom model with MediaPipe
 Objects:

o Mentioned in the COCO dataset (Ref: Github/object-
detection)

o Custom dataset of object class “People” and “bolt”
 Success rate

o Custom: over 70%

Test ID T-11

Requirements
tested

R.9.1.1, R.9.1.2

Description Testing of the emergency mode activation from the VR application.

Steps

1. Switch mode to emergency
2. Make other hand movements or change mode to another

mode

Verification

1. Verify that the reboot stops immediately
2. Verify that the robot does not respond to any new

commands after the emergency mode is activated

Performed by SO, OM

Related
components

VR

 Mode controller
 Emergency controller

Robot

 ROS VR-linker node
 ROS master node

Status Success

Test ID T-12

Requirements
tested

R-9.1.4

Description Testing of log functionality in the system.

Steps
1. Both applications running
2. Open the log file

Verification

1. Verify that the logdata is written to [TIME].log file.
2. Verify that the [TIME] corresponds the UNIX integer time

datatype.
1. For example: 170951600.log where the

time(170951600) is the time when you started the
application

3. Verify that the data logged is written to the file

Performed by OM

Related
components

Robot

 ROS VR-linker node
 ROS logger node

Status Success

Test ID T-13

Requirements
tested

R-8.1.2

Description

Testing the robot’s functionality for displaying data related to
recognized objects.

Constraints:

1. Label
2. Boundary box
3. Object-specific information
4. Accuracy

Steps

1. Make sure you have a camera connected to the computer
2. Make sure the database is running
3. Start the object detection application
4. Place a predefined object in front of the camera
5. Observe the result displayed on the screen

Verification

1. Verify that the frame shows the label of the object
recognized

2. Verify that the frame draws a boundary box around the
object

3. Verify that the data(object-specific information displayed
matches the object’s data

4. Verify that the frame shows the accuracy of the prediction,
in percentage

Performed by AD

Related
components

Object detection

Camera

Status Success

Test ID T-14

Requirements
tested

R-4.2.1, R-4.3.1

Description Testing rotating an object

Steps

1. Switch to arm mode
2. Move the arm and pinch an object
3. Say “screw” to the VR headset

Verification

1. Verify that the VR application activating the screw
mechanism

2. Observe and verify that the arm pinches and rotate the
object

Performed by SO, OM

Related
components

Voice command, robot arm

Status Success

Test ID T-15

Requirements
tested

R-6.1.1

Description Displaying live video to an external monitor

Steps

1. Connect the VR application
2. Make sure the VR headset is connected to the internet
3. On the external screen open oculus casting
4. Connect the headset

Verification
1. Observe and verify the stream on the external monitor is

live

Performed by SO, OM

Related
components

VR application

Status Success

Test ID T-16

Requirements
tested

R-7.1.1

Description

Changing battery manually

Constraints:

 Easy:
 less than 5 operations
 Total time less than 2 minutes

Steps
 Turn off the robot
 Change battery

Verification
1. verify that the process and compare to the constraints

Performed by SO, OM

Related
components

Robot, Battery

Status
Success for total time less than 2 minutes, failed more than 5
operations

KROMIUM F. ESTIMATED PROJECT TIMELINE

F Estimated project timeline

269

10/6
Final presentation

8/3
Second presentation

5/2
First presentation

21/5
Submission

Project modeling

Requirements

Analysis & design

Implementation

Testing

Report & documentation

28/3 - 1/4
Påske 8/4 - 22/4

MVP

08/01/2024 10/06/2024
Feb Mar Apr May Jun

8/1 - 23/1
Inception

23/1 - 5/2
Elaboration

21/5 - 10/6
Final presentation

preperation

5/2 - 21/5
Construction

KROMIUM G. BUDGET

G Budget

271

Component Description Supplier URL Price (NOK) Amount Cost Status

Cover (materials car) 1,752 1 1,752 Delivered
Magnets and hinges Clas Ohlson 150 1 150 Delivered

SUM kr 1,902
ELECTRONICS

Meta Quest 3 VR Headset Elkjøp 6,795 1 6,795 Delivered

Raspberry Pi accessories
Micro SD Card, Power
supply, case

Raspberrydk 652 1 652 Delivered

Raspberry Pi 5 - 8 GB Raspberry Pi 5 - 8 GB Raspberrydk 1,224 2 2,448 Delivered
Expansion board Control board 1,042.38 1 1,042 Delivered

Magnetic Connector 2P 5A - Panel mount RS online Norway https://no.rs-online.com/web/p/magnetic-connectors/1760897 281.05 2 562 Delivered

Arcolectric (Bulgin) Ltd DPST
On-Off Rocker Switch
Panel Mount

RS online Norway https://no.rs-online.com/web/p/rocker-switches/0811800 16.09 1 16 Delivered

RS PRO Magnetic Connector RS online Norway https://no.rs-online.com/web/p/magnetic-connectors/1760896 336.74 1 337 Delivered
SD-card 219.00 2 438
RS Components Switches DPST On-off rocker switch RS Components AS 263.90 1 264 Delivered

SUM kr 12,554
MISCELLANEOUS

EXPO 900 1 1,000 Budgeted
Delivery expenses Customs 90 1 90 Delivered
Team building 1,378 1 1,378 Delivered
Merch 395 5 1,975 Delivered
Overleaf license 659 1 659 Delivered
Stickers Kromium & KM stickers 250 1 250 Delivered

Domain Kromium & KM stickers 95 1 95

SUM kr 5,447

UPDATED: 20 May 2024

CONSTRUCTION

Budget

All sections Cost

CONSTRUCTION kr 1,902
ELECTRONICS kr 12,554
MISCELLANEOUS kr 5,447

Sum TOTAL kr 19,903

Balance left kr 5,097

Summary

NOK 25,000

CONSTRUCTION ELECTRONICS MISCELLANEOUS

Serie1 kr 1,902 kr 12,554 kr 5,447

kr 0

kr 2,000

kr 4,000

kr 6,000

kr 8,000

kr 10,000

kr 12,000

kr 14,000

Co
st

Costs per section

KROMIUM H. RAPID RISK RANKING

H Rapid risk ranking

274

K
R

O
M

IU
M

H
.R

A
PID

R
ISK

R
A

N
K

IN
G

Rev.3 Updated: 2024.03.13

Developers Environment Kongsberg Maritime Material values People

1 Catastrophic

Loss of multiple group
members. Loss of all
work.

The robot burns to the
ground. (Toxic gasses
& CO2)

Loss of all documentation
and parts.

Total loss of robot and
headset. Project room
burns down.

Fatalities. Permanent
disability.

2 Severe

Loss of one group
member. Loss of most
work. Section of robot
burn.

Large part of the robot
burns. (Toxic gasses &
CO2)

Loss of most documentation
and parts.

Loss of main part of
robot or headset.
Considerable
structural damage.

Prolonged hospital
treatment.

3 Major

Loss of section of work.
Multiple group
members gets reduced
work capacity. Multiple
electronics gets fried.

Section of robot burn.
(Toxic gasses & CO2)

Loss of some documentation
and parts.

Minor structural
damage. Section of
robot burn.

Medical treatment.

4 Moderate

The group looses up to
one half day of work.
One group member gets
reduced work capacity.
One component gets
fried.

Multiple electronics
burns. (Toxic gasses &
CO2)

Loss of some documentation
or parts.

Larger scratch or dent.
Multiple electronics
gets fried.

Injury.

5 Minor

Reduced component
functionality. Loss of
some work.

Multiple electronics
gets fried. (CO2)

Loss of minor documentation
or parts.

One component gets
fried.

Minor injury.

6 Minimal
Annoyance.
Disturbance.

Gas release from fried
component. (CO2)

Loss of minimal
documentation or parts.

Scratch or dent. Annoyance.
Disturbance.

Consequence severity

Level Description
Definition

Figure H.1: Consequence severity

275

KROMIUM H. RAPID RISK RANKING

Rev.2 Updated:2024.02.07
Level Description

A IMPROBABLE
B REMOTE

C OCCASIONAL

D PROBABLY

E FREQUENT
Will occur frequently during
development or demonstration.

Definitions
Probability levels

Possible, but highly unlikely.
Unlikely to occur during project.
May occur several times during
development or demonstration.

Will occur several times during
development or demonstration.

Figure H.2: Probability levels

Rev.4

A B C D E
Improbable Remote Occasional Probable Frequent

1 (Catastrophic) H H H H H
2 (Severe) H H H H H
3 (Major) M M H H H
4 (Moderate) L L M M H
5 (Minor) L L L M H
6 (Minimal) L L L L M

Risk matrix Updated:2024.02.07
PROBABILITY (per month)

SE
VE

RI
TY

Figure H.3: Risk Matrix

Risk levels Rev.1 Updated:2024.01.24
Level Level name Description

H High

High risk, not acceptable. Further analysis should be performed to
give a better estimate of the risk. If this analysis still shows
unacceptable or medium risk redesign or other changes should be
introduced to reduce the criticality.

M Medium

The risk may be acceptable but redesign or other changes should be
considered if reasonably practical. Further analysis should be
performed to give a better estimate of the risk. When assessing the
need of remedial actions, the number of events of this risk level
should be taken in to consideration.

L Low
The risk is low and further risk reducing measures are not
necessary.

Figure H.4: Risk levels

276

K
R

O
M

IU
M

H
.R

A
PID

R
ISK

R
A

N
K

IN
G

Hazardous event allocated to stakeholders Rev.2 Updated: 2024.03.13

Developers Environment Kongsberg Maritime (KM) Material values (MV) People
Robot arm hits car Battery catches

fire
Battery catches fire Robot arm hits car Battery catches fire

Battery catches fire Fire Break in/burglary Battery catches fire Crash between robot and
bystander

Break in/burglary * Drops headset Break in/burglary Drops headset
Component delivery time * Fire Crash between robot and bystander Electric shock

Crash between robot and bystander * Loss of developers/group
participants

Crash between robot and wall/
object

Fire

Crash between robot and wall/ object * Loss of progress Drops headset Motion sickness

Bad connection headset * Meta quest software problems Fire *

Bad connection robot * No/low battery power Fried circuit *
Drops headset * Out of budget Short circuit *
Electric shock * Drops headset Static shock *
Fire * Theft Theft *
Fried circuit * * * *
Loose electrical connectors * * * *
Loss of developers/group participants * * * *

Loss of progress * * * *
No connection to robot during
demonstration

* * * *

Meta quest software problems * * * *
Motion sickness * * * *
No/low battery power * * * *
Out of budget * * * *
Production time * * * *
Short circuit * * * *
Theft * * * *

Hazardous events

Figure H.5: Hazardous events allocated to stakeholders

277

KROMIUM H. RAPID RISK RANKING

Rev.2 Updated: 2024.03.13
ID. Hazard

1
Robot am hits car

2 Battery catches fire

3
Break in/burglary

4 Component delivery time

5
Crash between robot and bystander

6
Crash between robot and wall/ object

7
Bad connection headset

8 Bad connection robot

9
Drops headset

10
Electric shock

11
Fire

12
Fried circuit

13
Loose electrical connectors

14 Loss of developers/group participants.
15 Loss of work progress

16
No connection to robot during
demonstration

17
Meta quest software problems

18 Motion sickness
19 No/low battery power
20 Out of budget

21
Production time

22
Short circuit

23 Static shock
24 Theft

The project room containing all components could get
broken into.

Possible hazards and description
Description
The robots arm could hit camera, wire, etc. when operated
due to narrow view
The battery powering the robot could catch fire

Documentation, code, technical drawings, models, etc.

When ordering components or material for production
The robot could hit someone during testing and
demonstration or someone could hit the robot if they
don't pay attention
The robot could hit the environment around it due to bad
or slow connection, or due to lack of control from
operator.
Headset doesn't get camera feed or doesn't pick up
operator movements
Robot car or arm does not respond
It's possible to drop the headset due to bumping into it,
during handover or when placing it back after use.
Bad isolation in the robot could shock someone during
modifications and building.
The robot catches fire externally or from internal
component. This will effect the robot and the building
around it.
One or more of the circuits on the robot gets destroyed

from overloading.
Bad connection between ports because of poorly
connected cable.
People could fall off the project

We could damage electronics by giving of a static shock.

From equipment malfunction
Someone could steal our equipment.

We can't get a stable connection between the headset and
robot.
Problems can arise between our own program and the
internal software of the VR headset.
Operator can get motion sickness from headset
Forgot to charge batteries
The team could run out of money
It's a possibility that production time exceeds necessary
completion date.

Figure H.6: Possible hazards and description

278

KROMIUM H. RAPID RISK RANKING

Rev. 3

1
Robot arm hits car No restriction to movement and

limited view
4 - - 4 - E H - - H -

2

Battery catches fire Wrong connection or external
damage. Charges to long. Direct
sunlight. 2 2 2 2 3 D H H H H H

Batteries from
previous projects,
after reading the

user manuals

3
Break in/burglary Someone breaks into the

project room and steals
components

2 - 3 1 - B H - H H -
This will also
affect USN

4
Component delivery time We order to late or the

shipment gets delayed
3 - - - - D H - M - -

5
Crash between robot and
bystander

Either the robot drives into a
person or someone walks into
the robot

4 - - 3 4 D M - - H M

6
Crash between robot and wall/
object

The robot hits some inanimate
object during testing or
demonstration

5 - - 4 - E H - - H -

7 Bad connection to headset Damaged or loose connectors 4 - - - - C M - - - -

8
Bad connection robot Damaged or loose connectors,

low power
4 - - - - C M - - - -

9
Drops headset Headset gets dropped when

changing operators
3 - 4 2 6 C H - M H L

10
Electric shock Components have open electric

sources that gives of shock 4 - - - 4 C M - - - M

11
Fire Components starts a fire.

Material catches fire from ovens
in project room.

2 1 2 1 2 B H H H H H
This will also
affect USN

12
Fried circuit Wrong power output, wrong

connector
4 - - 5 - D M - - M -

13
Loose electrical connectors Something nicks a wire, blunt

force or vibrations loosens
connection

4 - - - - E H - - - -

14
Loss of developers /group
participants

Injury, fatality, kicked out for
cheating, unable to meet
criteria for bachelor

2 - 3 - - B H - M - -

15
Loss of work progress Software crash (SolidWorks,

IDEs), overleaf gets corrupted
1 - 2 - - D H - H - -

16
No connection to robot during
demonstration

Router disfunction
4 - - - - C M - - - -

17

Meta quest software problems The internal software of the
meta quest could produce
unforeseen problems with our
own developed program.

3 - 3 - - C H - H - -

18
Motion sickness The operator could get motion

sickness from wearing the
headset.

6 - - - 6 D L - - - L

19

No/low battery power We can forget to charge
batteries before demonstration.
Problems in wiring could drain
the batteries to early .

4 - 4 - - C M - M - -

20 Out of budget We can run out of money 4 - 4 - - C M - M - -

21

Production time If we are to late when starting
production of parts, there is a
possibility of not finishing in
time

3 - - - - C H - - - -

22
Short circuit Wrong wiring could short circuit

electronics
3 - - 4 - C H - - M -

23
Static shock We can damage electronics

through static shock if we don't
ground ourself

- - - 4 6 C - - - M L

24
Theft Someone could run up and steal

equipment during
demonstration.

2 - 3 1 - B H - M H -

Risk main form - Part 1/2 Updated: 2024.02.07

Area/ID

Hazard Cause

Inherent consequenceD
evelopers

Environm
ent

K. M
aritim

e

M
. Value

People Inherent
probability

Inherent Risk

Comment

D
evelopers

Environm
ent

K. M
aritim

e
M

. Value
People

Figure H.7: RRR-main form 1/2

279

KROMIUM H. RAPID RISK RANKING

Rev. 3 Updated: 2024.02.07

1
Robot arm hits car No restriction to movement and

limited view
Set up virtual movement
restrictions, limiters or padding. 6 - - 6 - C L - - L -

2

Battery catches fire Wrong connection or external
damage. Charges to long. Direct
sunlight.

Don't charge to max capacity.
Shade from sunlight. Don't leave
the battery when charging.
Store the battery in a non-
flammable environment.

4 4 5 5 6 A L L L L L

Batteries from
previous projects,
after reading the

user manuals

3
Break in/burglary Someone breaks into the

project room and steals
components

Lock doors and windows when
leaving the room. 2 - 3 1 - A H - M H -

This will also
affect USN

4
Component delivery time We order to late or the

shipment gets delayed
Order components with a large
time buffer.

3 - 6 - - B M - L - -

5

Crash between robot and
bystander

Either the robot drives into a
person or someone walks into
the robot

Install emergency stop, kill
switch, keep area clear when
operating robot. Place the robot
in protected area when not in
use. Add padding to robot shell.

5 - - 6 6 C L - - L L

6
Crash between robot and wall/
object

The robot hits some inanimate
object during testing or
demonstration

Drive slow and set up boundary.
Add padding to robot shell. 6 - - 5 - D L - - M -

7
Bad connection to headset Damaged or loose connectors Double check connections

before use. Handle with care.
4 - - - - B L - - - -

8

Bad connection robot Damaged or loose connectors,
low power

Double check connectors before
use. Use proper fastening when
building robot. Handle with
care.

4 - - - - B L - - - -

9
Drops headset Headset gets dropped when

changing operators
Security band fastened to
operator and headset.

6 - 4 3 6 B L - L M L

10

Electric shock Components have open electric
sources that gives of shock

Protect cables and electronics
when building robot. Turn of all
power when checking or
modifying robot.

4 - - - 4 B L - - - L

11

Fire Components starts a fire.
Material catches fire from ovens
in project room.

Keep work stations clean. Build
with non flammable materials.
Find out where the closest fire
extinguisher is located.

3 3 3 3 3 A M M M M M
This will also
affect USN

12

Fried circuit Wrong power output, wrong
connector

Make proper power diagrams
and electrical preparation.
Check all connections before
powering on.

4 - - 5 - B L - - L -

13
Loose electrical connectors Something nicks a wire, blunt

force or vibrations loosens
connection

Organize cables. Fasten wires to
components properly. 4 - - - - C M - - - -

14

Loss of developers /group
participants

Injury, fatality, kicked out for
cheating, unable to meet criteria
for bachelor

Be careful. Always write down
sources and citations
immediately when writing so
you don't forget it. Take breaks
to avoid burnout. Work
together to have a open and
good work environment.

4 - 3 - - A L - M - -

15
Loss of work progress Software crash (SolidWorks,

IDEs), overleaf gets corrupted
Download security copies daily
or weekly. Save models and
code hourly.

4 - 4 - - C M - M - -

16
No connection to robot during
demonstration.

Router disfunction Have a backup router.
5 - - - - C L - - - -

17

Meta quest software problems The internal software of the
meta quest could produce
unforeseen problems with our
own developed program.

Research and testing.

3 - 3 - - B M - M - -

18
Motion sickness The operator could get motion

sickness from wearing the
headset.

Frequent brakes and slow speed
for new users. First time users
should be seated.

6 - - - 6 C L - - - L

19

No/low battery power We can forget to charge
batteries before demonstration.
Problems in wiring could drain
the batteries to early .

Double check charge early on
presentation days.

4 - 4 - - B L - L - -

20

Out of budget We can run out of money Don't waste money on
unnecessary equipment. Use
what we have to the best
extent. Prioritise purchases.

4 - 4 - - B L - L - -

21

Production time If we are to late when starting
production of parts, there is a
possibility of not finishing in
time

Be prepared with backup
solutions. When 3D-printing do
so with a buffer of at least 3x
estimated printing time.

3 - - - - B M - - - -

22
Short circuit Wrong wiring could short circuit

electronics
Double check wiring before
turning on power.

3 - - 4 - B M - - L -

23
Static shock We can damage electronics

through static shock if we don't
ground ourself

Ground yourself while working.
Don't wear clothing that cause
static build up.

- - 4 6 B - - L L

24
Theft Someone could run up and steal

equipment during
demonstration.

Don't leave equipment
unsupervised. 6 - 6 4 - A L - L L -

People

D
evelopers

Environm
ent

K. M
aritim

e

Mitigating measures

Residual consequence

Residual
probability

Residual RiskD
evelopers

Environm
ent

K. M
aritim

e

M
. Value

Risk main form - Part 2/2

A
rea/ID

Hazard Cause Comment

M
. Value

People

Figure H.8: RRR-main form 2/2

280

KROMIUM H. RAPID RISK RANKING

Revision no. &
date

Changes Revision no. &
date

Changes Revision no. &
date

Changes

Rev.2, 2024.01.30 Added catastrophic level.
Adjusted the
consequences for each
stakeholder

Rev.2, 2024.01.24 Adjusted the
probabilities to nearest
tenth

Rev.3, 2024.02.07 Fixed some double
meaning words.

Rev.3, 2024.01.30 Added catastrophic and
readjusted after .

Rev.3, 2024.03.13 Specified moderate,
developers

Rev.4, 2024.02.07 Adjusted matrix to new
consequence and
probability

Revision no. &
date

Changes Revision no. &
date

Changes Revision no. &
date

Changes

Rev.2,2024.02.07 Removed the percentage
of frequency

Rev.2, 2024.02.09 Changed the names of
some hazards.

Rev.2, 2024.01.31 Updated the hazards

Rev.2, 2024.03.13 Enlarged the writing Rev.2, 2024.03.13 Enlarged the writing,
made boxes and filled
the empty boxes with
" * "

Consequence severity Risk Matrix Risk levels

Probability levels Hazardous events; descriptions Hazardous events; allocated

Figure H.9: RRR-revision overview

281

KROMIUM I. SCHEMATIC DIAGRAMS

I Schematic diagrams

I.1 Expansion board schematics

282

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize

A3

Date: 2022/3/11 Sheet of
File: E:\YB-ERF01(ROS)\..\ERF01.SchDocDrawn By:

1OE1

1A2

1Y3

2OE4

2A5

2Y6

GND7 3Y 83A 93OE 104Y 114A 124OE 13VCC 14U14

74
H

C
12

6D

TXEN

1 2R49 1K

12 R43 10K

12 R47 1K

GND

NC1

A2

GND3 Y 4

VCC 5
U15

SN74AHC1G04DBV

DATA
TXD3

DATA

DATA

RXD3

1
2
3 J10

PH-3P

Servo
1 2F2

MF-NSMF300/8V

GND

+6.8V

GND

Servo

TXEN

5V

5V

1 2R45 4.7K
5V

VCC 1

D- 2

D+ 3
4

GND 5

J3

M
IC

R
O

U
SB

GND

C23
16V/226

R28 22R
R26 22R

UD+
UD-

GND
GND 1

OUT 3.3V 2
IN 3U8

AMS1117-3.3V
GND

+3.3V

C26
16V/226

5V

C25
16V/226

Vout=0.8*(1+R16/R11)
VOUT=6.8V

C12

10
4P

C6

333P

C19

10
4P

2
1

D7

SS34

R1615K

R22
10K

1
2

D10

blue

VIN5

EN
4

G
N

D
1

FB 2

SW 3

U7
XL4005

+6.8VL2 33UH

GND
5V

Vout=0.8*[1+(R9+R15)/R13]
VOUT=5.164V

VM

C10

10
4P

C5

333P

C15

10
4P

R181K 2
1

D6

SS34

R13 2K

R15 911

1
2

D9
Red

R19
10K R21

10K

1
2

D8

blue

2 1
D5

SMAJ5A

VIN5

EN
4

G
N

D
1

FB 2

SW 3

U6
XL4005

GND

GND

L1 33UHR17
10K

POW 1

GND 2

J1

T

G

D

S

Q4
NCE3080K

G

D

S

Q5
NCE3080K

N
C

1
IN

2
B

A
T

3

S3
SS12D11

ON

2 1
D4

SMAJ15A

5V

S1 Q4/Q5

VM GND

C21

104P

R3
10K

C1 104PR1

4.7K
12

D1 green

RXD1 21
D2 SS14

GND
+3.3V

+3.3V

R8
1K C2 104P

C45
104P

C49
104P

C50
104P

+3.3V

+3.3V

OSC_IN1
OSC_OUT1

GND
+3.3V

+3.3V
GND

BOOT0

+3.3V

JTMS/SWDIO

JTCK/SWCLK

C48 104P

C36 104P

RESET

GND
+3.3V

GND

BOOT1

GND

R34 4.7K
R38 4.7K

+3.3V

VBAT1

PC13/RTC2

PC14/OSC323

PC15/OSC324

PD0/OSCIN5

PD1/OSCOUT6

NRST7

PC0/ADC108

PC1/ADC119

PC2/ADC1210

PC3/ADC1311

VSSA12

VDDA13

PA0/WKUP/ADC014

PA1/ADC115

PA2/U2_TX/ADC216

PA3/U2_RX/ADC317

VSS_418

VDD_419

PA4/ADC420

PA5/ADC521

PA6/ADC622

PA7/ADC723

PC4/ADC1424

PC5/ADC1525

PB0/ADC826

PB1/ADC927

PB2/BOOT128

PB10/U3_TX29

PB11/U3_RX30

VSS_131

VDD_132 PB12 33PB13 34PB14 35PB15 36PC6 37PC7 38PC8 39PC9 40PA8/MCO 41PA9/U1_TX 42PA10/U1_RX 43PA11/USBDM 44PA12/USBDP 45PA13/SWDIO 46VSS_2 47VDD_2 48

PA14/SWCLK 49PA15 50PC10 51PC11 52PC12 53PD2 54PB3 55PB4 56PB5 57PB6 58PB7 59BOOT0 60PB8 61PB9 62VSS_3 63VDD_3 64
U11

STM32F103RCT6
+3.3V
GND

+3.3V
GND

H3A

H4B
H4A

M3+
M3- M4-

M4+

R37 1K
R35 1K R41 1K

R42 1KH3B

M+6

M-5

GND4

VCC3

B2

A1

J4

PH-6P

M+6

M-5

GND4

VCC3

B2

A1

J6

PH-6P

+3.3V
GND

H1B
H1A

M1-
M1+

R44 1K
R46 1K

M+6

M-5

GND4

VCC3

B2

A1

J8

PH-6P

+3.3V
GND

H2B
H2A

M2-
M2+

R51 1K
R52 1K

M+6

M-5

GND4

VCC3

B2

A1

J9

PH-6P

1
2

3
4

5
6

7
8 J5

1
2
3
4

J7

C37 16V/10UF

1 2R39

1K
1 2R40

1K

1 2R33

1K
1 2R36

1K

S4

S3

S2

S1

GND

Buzzer

2
1

D11

1N
41

48

R30

1K

+1

-2

U10

Buzzer

5V

b1 c
3

e
2

Q6

S8050

5V ()

1
2
3
4GND

VCC
SCL
SDA

J2

OLED 0.86 4PIN

SDA
SCL

5V

GND

D1

GND2

VCC3

R4
VREF 5
CANL 6CANH 7RS 8

U2

SN65HVD230DR

+3.3V

D

R

CANH
CANL

GNDB1 GND A12

GND A1GNDB12

VBUSB4 VBUS A9

CC2B5

DP2(D+)B6

DN2(D-)B7

SBU2B8

VBUSB9 VBUS A4CC1 A5DP1 A6DN1 A7SBU1 A8

G
N

D
0

USB1

TYPE-C16PIN

YB-ERF01-V1.0

5V

5V 5V

5V
1

2

Y2
8M

C30 20P

C35 20P

R32
1M

OSC_IN1

OSC_OUT1

R31 100K
GND BOOT1

R27 100K
GND BOOT0

R25
4.7K

LED

GND

1
2

D12

red

GND

1 2R7 10K
+3.3V

C4
104P

GND

RESET 12

S2

3*6*2.5
12

S1

3*6*2.5

RXD2

LED

BAT

GND

C29
104P

VM

R24
10K

R29
3.3K

BAT

C31

104P

C32

104P

C33

104P

C34

104P

+3.3V

GND

R50 22R TXD1
R48 22R

C8

10
7P

C9

10
7P C13

10
7P

C14

10
7P

C11

10
7P

VM

C18
107P

C43
107P

INT12 FSYNC11 REFOUT10 AD0/SDO9 VDDIO8 AUX_CL7 NC6 NC5 NC4 NC3 NC2 NC1 SDA/SDI 24

EXP 25VDD 13NC 14NC 15NC 16NC 17GND 18RESV 19RESV 20AUX_DA 21nCS 22SCL/SCLK 23

U5

ICM20948

+3.3V

C20

104P

C7

103P

C16
104P

R23 0R

R5 1K
b1 c

3
e

2

Q1

S8050

R2
10K

+3.3V

RXD2

SBUS

C44104P

1
2
3

U4

XH 3P

1
2

J11

PH 2P
5V

ON 1
2
3

U3

CON3

5V

GND

M2B

RXD16.8V

R65 120RCANH
CANL

C51

104P

C52

104P

C53

104P

C54

104P

5V

GND

5V

6.8V

GND

*1

C55

104P

H3A
H3B

H4B
H4A

H1A

H2B
H2A

S4
S3
S2
S1

H1B

SDO
SDI

SCLK
NSS

NSS
SCLK
SDI

SDO

INT1

+3.3V

KEY1

KEY1

1
2

J12

XH 2P

VM

UD+1

UD-2

GND3

RTS4 VCC 5
TXD 6
RXD 7

V3 8
U1

CH340N

UD+
UD-

+3.3V
GND

TXD1
+3.3V

M1B
M1A

M2A

1
2
3

J13

Header3

power5V

6.8V

R11 2K
GND

1 2

S4

KEY 2P
BOOT0

1 2R4 10K

C3
104P

GND

+3.3V

GND

6.8V

power

C22104P

C24104P

1
2

J14

XH 2P

VM

+

C27

25V/220UF

+C28

10V/470UF

C56

106P

+
C57

25V/220UF

1
2
3

J15

PH-3P

GND

5V

RGB

R6 1K

Buzzer

SBUS

R9 10K

C17 104P GND

BOOT0

R10 0R+3.3V

使用ICM20948陀螺仪的时候，
R10/R53/R54/R55不贴片，R23
为10K,C7为104。

C59

104P

IA1

IB2

GND3

VCC4 OB 5OB 6OA 7OA 8U12

AM2857

GND

C38
104P

C39
104P

VM

R12 1K
R14 1K M3+

M3-

M3

GND

GND

M3A
M3B

1 2F1

MF-NSMF300/13.2V

GND C46

107P

IA1

IB2

GND3

VCC4 OB 5OB 6OA 7OA 8U13

AM2857

GND

C41
104P

C42
104P

VM

R20 1K
R66 1K M4+

M4-

M4

GND

GND

M4A
M4B

1 2F3

MF-NSMF300/13.2V

GND

C62

107P

IA1

IB2

GND3

VCC4 OB 5OB 6OA 7OA 8U16

AM2857

GND

C47
104P

C61
104P

VM

R67 1K
R68 1K M1+

M1-

M1

GND

GND

M1A
M1B

1 2F4

MF-NSMF300/13.2V

GND
C65

107P

IA1

IB2

GND3

VCC4 OB 5OB 6OA 7OA 8U17

AM2857

GND

C63
104P

C64
104P

VM

R69 1K
R70 1K M2+

M2-

M2

GND

GND

M2A
M2B

1 2F5

MF-NSMF300/13.2V

GND

SCL
SDA

INT1

D
R

RXD3
TXD3

RGB

M3B

M3A

12.6v*(R29/R24+R29)=3.126v

KEY1

M4A
M4B

C40

104P C66

104P

C67

104P C68

104P

2
1

D3 ZM
M

5V
1

+3.3V R53 0R

R54
4.7K

R55
4.7K

+3.3V

Voltage
detection

DC 5V power supply

3.3V power supply RGB light

PWM servo

Serial servo

Clock crystal BOOT Status Indicator

Coprocessor Motor driver chip

OLED Buzzer mico USB port

Servo 6.8V power supply Raspberry Pi Type-c
power supply interface ICM 9-axis gyroscope

DC power
socket Function button SBUS bus CAN communication USB communication

Figure I.1: Schematic of the robot expansion board YB-ERF01-V1.

KROMIUM I.1 EXPANSION BOARD SCHEMATICS

Figure I.1: Schematic of the robot expansion board YB-ERF01-V1.

Figure I.2: Crop out from YB-ERF01-V1. D3 diode is observable in the bottom right
corner.

284

KROMIUM J. BATTERY

J Battery

J.1 Introduction HB | AEH

The group was given a new requirement after the second presentation on March 8. The
client wants the project group to build a battery from some old battery cells. This is
because the robot should be operating for as long as possible, with as little downtime as
possible. The group were handed a bag of old battery cells that came from old computer
batteries. Some of these battery cells are Lithium Polymer (LiPo) cells but it is unknown
which, the rest of the batteries are Lithium-ion (Li-ion) batteries. Some other components
the group received were single-cell BMS’, battery cell holders that hold four 18650 battery
cells, and a bunch of short wires.

J.2 Design

J.2.1 General design HB | AEH

The battery which is being made is a 12-volt battery. To make this with 3.7-volt cells,
it is needed to connect these in a series of three. Because the cell capacity is quite low
compared to the battery that came along with the robot, there must be added more cells to
the battery. Because the desired voltage is already reached and the only thing that needs
to be increased is the capacity, the rest of the cells are added in parallel. This gives the
option of two possible configurations. The first configuration is a 3S2P configuration,
while the second one is a 2P3S configuration.
In the 3S2P battery setup, the cells are organised such that there are two series of three,
connected in parallel. In the 2P3S battery setup, two cells are connected in parallel. Then
three of these sets are connected in a series of three. Theoretically, there are no differ-
ences between the two configurations. Both the capacity and the voltage will be the same.
However, the way they are connected makes a huge difference when it comes destruction
or removal of one of the cells in the battery. In the 3S2P configuration, the battery loses
half of its capacity when one cell is destroyed or removed. In the 2P3S configuration,
the battery can operate at a slightly reduced capacity if one of the cells is damaged or re-
moved. This is because the cells need to be in place and working, for the electrons to flow
freely through the battery. As seen in the provided schematics, J.1 and J.2, it is visible
how the battery capacity gets reduced with the different types of configurations.

Series connection involves connecting the negative terminal of one cell to the positive
terminal of another cell, this way the output voltage increases. Parallel connection is con-
necting the positive terminals together and the negative terminals together, this way the
capacity increases while obtaining the voltage.

In a 2P3S battery package, both connection methods are combined. There are three par-
allel pairs connected in series. To achieve 12 volts from 3.7-volt cells, they must be
connected in a series of three. In this case, the three pairs of parallel are connected in
series.

285

KROMIUM J.2 DESIGN

Figure J.1: This is how a 3S2P battery is connected

Figure J.2: This is how a 2P3S battery is connected

J.2.2 Components HB | AEH

The components the project group received were 21 18650 battery cells, 6 battery cell
holders with a capacity of 4 cells per holder, 12 charging/discharging modules (also
known as BMS) of the type 03962A, and a bunch of short wires. Below is a quick de-
scription of the BMS type.

“5V microUSB 1A 18650 Lithium Battery Charging Board Charger Module with
Protection. This versatile charger module is based on TP4056 IC, a

constant-current/constant-voltage linear charger chip for single-cell lithium-ion batteries.
This charger module can be powered by USB or a wall adapter. The features include a

current monitor, under voltage lockout, automatic recharge and two status LEDs to
indicate charge termination and the presence of an input voltage.”[15]

J.2.3 Research HB | AEH

Before the designing process could begin, the functions and capabilities of the BMS had
to be known. The reason for this was that the BMS is a single-cell BMS, which means
that it is designed to only monitor one battery cell at a time. If the BMS gets input from
any other cells, it might not be able to detect if the cell is fully charged or completely
discharged, and in that way, the battery cells can be destroyed. The reason the cells get
destroyed if they are discharged completely is that they will no longer be able to obtain any
charge and thereby not able to recharge. If the cells get overcharged, they will overheat
and catch fire or even explode. This is because they receive more energy than they are
designed to hold and therefore they become unstable.

286

KROMIUM J.2 DESIGN

Figure J.3: Functional diagram of the charging module [15]

There are three IC ’s on the module:

• straight under the LED indicators (TP4056)

• to the left of the connector to the positive battery cell terminal (DW01A)

• to the left of the connector to the negative battery cell terminal (FS8205A)

TP4056
The TP4056 is an IC designed to charge a single battery cell.

DW01A
The DW01A is an IC designed to protect a single Li-ion battery cell from overcharging
and over-discharging (or undercharging). If the battery cells overcharge they could poten-
tially explode, and if they over-discharge the battery cells will die.

FS8205A
The FS8205A is a PMOSFET used for controlling the charging and discharging sequence
of the battery. It turns on and off depending on the polarity of the current. If the current is
negative the PMOSFET turns on and the battery starts charging. If the current is positive,
the PMOSFET turns off and the battery stops charging.

The BMS is also programmable, by changing the resistor located at R3 at the PCB. In
figure fig: Charging module, R3 is marked as “Charging Current Setting Resistor”. This
resistor can be swapped out so it will fit the battery cell capacity. This is not necessary
in this case, because the battery cells have a greater capacity than the current charging
current setting.

287

KROMIUM J.2 DESIGN

Table J.1: The resistance (in kilo Ω) for the different charging currents [24]

As seen in table J.2, the capacity of each cell surpasses the 1000 mA charging current
which is the standard swappable resistor on the BMS.

J.2.4 Design HB | AEH

The design process of the battery went through several iterations. This was because some
new decisions were made during the designing process, and some improvements had to
be implemented.

• Iteration one
The first design of the battery was a 3S2P battery that didn’t have BMS, a charger
was also designed. This was so that the BMSs could be used. The reason the BMSs
were not added to the battery was that the space required from the battery would be
too wide to fit in the robot. Because the battery had no BMSs it would not be able
to charge them. Therefore, the cells had to be taken out of the battery and charged
in a separate charger, before they could be inserted into the battery, and then the
battery could be used again. Another reason was that the BMSs hadn’t been prop-
erly researched at the time, and how they worked was not clear.

288

KROMIUM J.2 DESIGN

Figure J.4: A part of the first iteration. Arrow 1 points towards a block representing the
attachment between the charger wires and wires leading to the BMSs. Arrow 2 points
towards a hole where the wires from the end will appear. Arrow 3 points towards one of
the attachment holes for the cover

Figure J.5: The mounting plate for the battery cell holders for the first battery design

• Iteration two
In the second iteration of the battery, BMSs were added. The reason for this was so
that the battery could be charged without the need for removal of the cells. However,
due to the way the BMSs were designed, they could not connect the outputs together
in a series. This would lead to at least one BMS being fried. Because of this, the
BMSs can not use their output connectors. The batteries themselves have to be
connected directly to each other and the BMSs must be connected to each cell at
the same time. Because of this, the battery needs a switch which can disconnect the
cells from each other so the BMSs can surveil the cells, so they won’t overcharge.

289

KROMIUM J.2 DESIGN

However, with this solution, the cells can’t be surveilled while the battery is in use
because the cells are connected to each other. Luckily the expansion board on the
robot has a built-in alarm when the voltage is at 9.5 volts or below.

The second iteration of the battery has a BMS for each cell in the battery. This
makes the connections inside the battery a bit more complicated than in the first
iteration. This is because the BMSs can’t be connected in series. After all, they
are single-cell BMSs. This means they will not be able to surveil the designated
battery cell when the battery is in use and will therefore not have a purpose when
the battery is in use.

When charging, the BMSs will be disconnected in such a way that they will only be
connected to the designated battery cell. This way the battery can safely be charged
and overcharging is avoided. The only disadvantage of this battery is the battery
cells are not protected from over-discharging. Luckily the expansion board on the
robot has an inbuilt alarm if the battery voltage drops below 9.6 volts [84].

Figure J.6: Battery iteration 2. Arrow 1 points towards the holder for the mechanical
switch. Arrow 2 points towards the magnetic connector. Arrow 3 points towards the
mechanical switch

290

KROMIUM J.2 DESIGN

Figure J.7: Mounting plate for battery cell holders, for the second design

Figure J.8: The cover for the second iteration

• Iteration three
In the third iteration, the mechanical switch received an improvement. The reason
for this was that the switch was sliding over the connectors in the battery. This
would have led to a short circuit every time the switch would be taken in or out.

To prevent a short circuit when inserting or removing the switch, the opening for
the switch was made larger and there was added some taps to the switch. The
larger hole in the battery box made it possible to slide the switch in and through the
whole box, then slide the switch into position without the connectors on the switch
touching other connector plates than they are supposed to. The taps on the switch
make it possible to attach the switch to the battery box, so the switch won’t move
while in use and disconnect.

291

KROMIUM J.2 DESIGN

Figure J.9: The mechanical switch. Arrow 1 points towards the space for the connectors.
Arrow 2 points towards the taps that keep the switch attached to the battery box.

Figure J.10: The red markings show the added cut to the holes for the switch

292

KROMIUM J.2 DESIGN

Figure J.11: The mounting plate had to be made longer for this iteration because the fork
switch had to be slid in the length direction. The small cut in the bottom right corner is to
make space for the notch in the battery cover lid.

Figure J.12: The circuit for the battery with BMS in a 2P3S configuration. Wires for
charging are not drawn into this circuit.

• Iteration four
The fourth iteration was swapping out the large fork-like switch, to three separate
switches of the type DPST. This type of switch has two separate inbuilt switches
that is controlled by a single trigger. This change meant that the battery box had
to get a redesign as well. The holes for the previous switch had to be removed,
and new holes for the new switches had to be made. Because the new switches
were placed on the top of the battery, the battery had to be made slimmer. This was
because the height of the space for the battery was limited to 57 mm, and the battery
height exceeded this with the new switches. See D for the reason this battery was
scrapped.

293

KROMIUM J.3 BUILDING THE BATTERY WITH BMS

Figure J.13: The battery cover for design iteration four

• Iteration five
The fifth iteration was almost a complete redesign of the battery. This was because
of a failed test of the previous iteration. The BMSs were removed, which meant
much simpler wiring and a smaller battery. At the same time, the battery box and
the separator plate got a new design. The fifth iteration ended up being almost the
same as iteration one. The main difference was that the first design had a 3S2P
design and this battery have a 2P3S design.

Figure J.14: Mounting plate for the final design iteration

J.3 Building the battery with BMS HB | AEH

The building process of this battery can be divided into four main steps; 3D printing, laser
cutting, wiring, and assembling.

294

KROMIUM J.3 BUILDING THE BATTERY WITH BMS

The 3D printing consisted of printing 2 parts. The cover of the battery and the lid of the
battery. To prevent waste of filament the parts were sat in the position which required the
least amount of support. The lid was placed flat on the printing surface, while the battery
box was placed standing on the printing surface, with the back of the battery box down.
This way the print only required support for the holes on what became the sides of the
box while printing.

The laser-cut part is a piece of plywood that acts like a separator and mounting plate for
the battery cell holders, at the same time it keeps the battery cell holders in place inside
of the battery.
The wiring part was a bit more tedious process. First, all of the components that were
handed out had a lot of short wires attached to them. These had to come off because
many of them were way too short or would have no purpose at all in the battery. All of
the wires were removed with the help of a soldering iron. After this, the process of wiring
could start.

When soldering the wires together, a lot of the wires became exposed. To make sure
that the wires were isolated and did not touch any other components that they were not
supposed to touch, shrink tubes were placed above the exposed area and heated up with
a heat gun. As the shrink tubes became hot, they shrank and attached themselves to the
areas it was placed. When all of the soldering was finished, cable shoes had to be attached
to the wires that should be connected to the switches. In the end, wires were attached to
the magnetic connector, so it could more easily be attached and detached from the output
from the battery. The wires from the connector were not yet attached to the wires from
the battery itself, because it is one of the last steps of the assembly process of the battery.

Figure J.15: The switches used for battery iteration four, in this position the switch is
turned on

295

KROMIUM J.4 BUILDING THE BATTERY WITHOUT BMS

Figure J.16: The switches used for battery iteration four, in this position the switch is
turned off

Assembling the battery was the last step before it could be tested. The first step of the
assembly process was to attach the battery cell holders and the BMSs to the operator
plate. The cell holders were attached using four M3 machine screws and nuts. To attach
the BMSs to the operator plate, double-sided tape was applied. The battery so far was a
mess, because the wires were soldered to the cell holders and the BMSs before they were
attached to the separator plate. Because of this, the wires went everywhere.

The next step in the assembly process was inserting the cells, then insert the cattery com-
ponents into the battery box.
The parts that were bought for the battery were a magnetic cable connector and some
switches to change between charging mode and use mode. This is because of the single-
cell BMS. If a regular 2P3S BMS had been used, there would not be a need for the
switches to change between charging mode and use mode.

J.4 Building the battery without BMS HB | AEH

The battery without BMS was a backup solution after the battery with BMS didn’t work
as thought. This battery has a simpler circuit than the battery with BMSs because the only
parts in the battery consist of the battery cells, wires, and a connector to the robot.

J.5 Test of battery cells

J.5.1 Introduction HB | AEH

To make sure that the battery cells are still alive and have enough capacity to be used,
they are tested. To make sure that the capacity of the battery cells is good enough to be
used, they are tested using the OPTUS BT-C3100 V2.2, which is a battery cell tester with
other functions as well. If the battery cell has too little capacity left or they are dead, there
would be no use for them.

J.5.2 Equipment HB | AEH

The equipment that is being used for the testing is a multimeter and a battery tester. The
multimeter is a FLUKE 8010A Digital Multimeter and the battery tester is an OPUS BT-

296

KROMIUM J.5 TEST OF BATTERY CELLS

C3100 V2.2.

Fluke 8010A Digital Multimeter
The FLUKE 8010A Digital Multimeter is a portable bench-type digital multimeter that
USN got to their possession in 1992. Even though this is an old multimeter, it is reliable.
It can measure voltage, current and resistance in both AC and DC. For the creation of
the battery, it is only needed to use the DC voltage function. The values measured are
displayed on a small 31

2 -digit LCD.

OPUS BT-C3100 V2.2
The OPUS BT-C3100 is capable of charging, discharging, restoring and testing different
types of battery cells. The capacity is four battery cells at a time, and it can have differ-
ent modes for each one at the same time. The different sections in the battery cell tester
consist of a positive and a negative pole. The positive pole is at the far end of the tester,
while the negative side is a spring-loaded metal plate that makes sure that the battery cell
fits nicely and firmly in the tester.
The test sequence consists of first charging the battery cells up to 4.20 V. Then a dis-
charging sequence is initiated, and the battery cells are discharged to 2.80 V. During this
discharging sequence the battery capacity is measured, and displayed in mAh when the
sequence is finished. The final step is charging the battery cells up to 4.20 V, so the bat-
tery cells don’t die. All of these steps happen automatically when the device is set to test
mode.

J.5.3 Testing HB | AEH

The testing process is divided into two tests. The first test is to check the voltage of the
batteries using a multimeter. The second test is to check the capacity that is left of the
battery cells, measured in mAh. This test is carried out using a battery cell tester. To
keep track of each battery cell, they are numbered from “1” and up and then logged in to
a table. This is to prevent mixing them if any of them are dead and to separate the cells
with the least capacity and most capacity.

The reason the voltage of the battery cells was checked is because if the cells are below
2.80 volts, the cells “die”. A battery cell that has died is a battery cell that has lost all of
its voltage and it is not possible to recharge the cell. Luckily only one of the given battery
cells was dead. This gives 20 battery cells that could be tested for their capacity. The
battery capacity test was a tedious process. The test consists of placing the cells in the
battery cell tester and then switching the battery cell tester into testing mode. The way
this testing process works is that the cell is charged all the way up to 4.20 volts. Then
a discharging-sequence is initiated and the cells are discharged all the way down to 2.80
volts. Then the test is finished. To prevent the cells from dying, the battery cell tester
automatically starts to charge the cells again after the test is finished. Because 20 battery
cells had to be tested, the capacity test took at least six hours for the cells with the least
capacity. The total time for testing the cells was over two and a half days to complete
because the cells had to be watched when charged and tested.
As the cells was done with the capacity test, the result was logged into a table and ranged
from 1 to 20, where 1 was the cell with the most capacity and 20 was the cell with the
least amount of capacity.

297

KROMIUM J.6 TESTING OF BATTERIES

J.5.4 Results HB | AEH

The results from the battery check were quite promising. Only 1 out of 21 battery cells
were dead. This meant that 20 battery cells were possible candidates for the battery pack.
The results from the battery testing can be viewed in table J.2.

Cell №: Voltage: Tolerance: Capacity: Ranking:
1 3,84V +/- 0,0038V 1805mAh 20
2 3,84V +/- 0,0038V 1853mAh 19
3 4,09V +/- 0,0041V 1984mAh 14
4 4,1V +/- 0,0041V 2031mAh 7
5 4,1V +/- 0,0041V 1984mAh 14
6 4,1V +/- 0,0041V 2031mAh 7
7 4,1V +/- 0,0041V 1996mAh 13
8 4,13V +/- 0,0041V 2060mAh 4
9 4,09V +/- 0,0041V 2023mAh 10

10 4,09V +/- 0,0041V 2047mAh 5
11 0,01V +/- 0,V * *
12 4,07V +/- 0,0041V 2091mAh 1
13 3,88V +/- 0,0039V 2038mAh 6
14 4,07V +/- 0,0041V 1874mAh 18
15 3,96V +/- 0,004V 2086mAh 2
16 4,07V +/- 0,0041V 2082mAh 3
17 4,07V +/- 0,0041V 2028mAh 9
18 3,96V +/- 0,004V 2005mAh 12
19 3,81V +/- 0,0038V 1979mAh 16
20 3,82V +/- 0,0038V 1940mAh 17
21 3,88V +/- 0,0039V 2019mAh 11

Battery cell test

*The tolerance for DC-Voltage measurements is 0.1% at all
ranges in FLUKE 8010A Digital Multimeter
**The voltage listed is the voltage measured before the
capacity test

Table J.2: Battery cell test results. Cell number 11 was dead.

J.6 Testing of batteries HB |

J.6.1 Battery with BMS HB | AEH

The testing of the battery with BMS consisted of two stages. The first test was attaching
the battery cells before the charging wires were attached. The negative and the positive
wires were attached to the multimeter, then the battery was put into “use mode”.

298

KROMIUM J.6 TESTING OF BATTERIES

Figure J.17: The voltage test was a success. The white ribbon under the battery cells is
used to detach the battery cells easily.

The second test was charging the battery. When the charging wires were attached, the
battery cells were inserted and the battery was put into charge mode. The charger was
plugged into the power outlet from the wall and the charging module LEDs lit up. All was
fine up until 30 seconds in when a burning smell occurred. The charger was disconnected,
but the component did not stop frying. So all of the cells were ripped out of the charger
to prevent further damage. This incident is one of the reasons the white band is placed
below the cells.

J.6.2 Battery without BMS HB | AEH

The main test of the battery without BMS is checking the output voltage. This was done
the same way as the battery with BMS. Inserting the cells, then measuring the output
voltage. This test was a success as well.

The next test for this battery is to check if all of the components that were made, actually
fit. This was done by assembling all of the parts of the battery. The battery passed this
test as well, but there was some room for improvement. The positive wire going from the
battery cell holder towards the magnetic connector was not long enough to attach to the
clip that connects to the magnetic connector. However, this can be solved by not inserting
the cell holder all the way before attaching the wire to the clip.

J.6.3 Discussion HB | AEH

The reason that the battery with the BMS did not have the last test was that it failed on
a functional test which it was required to pass to be able to be used. It was therefore no
point in testing the parts to see if they fit.

The reason for the failed test may have been the way the BMSs are designed, they would
short-circuit. Another reason could be that there was too much heat when soldering the
wires to the BMSs which led to some of the conducting material in the BMS flowing and

299

KROMIUM J.7 USING THE BATTERY

connecting to each other, and in that way create a short circuit.

After studying the schematics of the BMS again and going through what was done when
soldering the wires, it looks like the reason for the short circuit to appear was applying
too much heat when soldering the wires.

J.7 Using the battery

J.7.1 General use HB | AEH

To use the battery is simple. First, the cells have to be inserted into the battery, then the
battery has to be assembled. After the assembly of the battery, the battery is inserted
into the battery drawer in the robot. When the voltage level becomes too low, the voltage
alarm on the expansion board starts sounding. Then the battery has to be swapped, or the
battery cells have to be swapped.

Because the battery cells are old, the capacity varies from cell to cell. Because of this,
the cells being used are the 12 cells with the highest capacity. The reason for choosing 12
cells to use is so that the battery cells can be swapped out and the battery can quickly be
put into use again. The 12 cells are split into two groups, this is to make sure that the cells
that are in the battery are as close to each other as possible when it comes to capacity.
This is because the battery has no BMS, and if the capacity of the cells varies a lot, the
cells with the lower capacity have a higher risk of getting over-discharged and dying.

Cell №: Capacity Cell №: Capacity
8 2060mAh 4 2031mAh

10 2047mAh 6 2031mAh
12 2091mAh 9 2023mAh
13 2038mAh 17 2028mAh
15 2086mAh 18 2005mAh
16 2082mAh 21 2019mAh

Avg: 2067mAh Avg: 2023mAh

Battery cluster 1 Battery cluster 2

Table J.3: The two groups of battery cell clusters used for the battery

J.7.2 Assembly HB | AEH

To assemble the battery some components need to be assembled, then the cells must be
inserted, and then the rest of the components need to be assembled.
The first step in assembling the battery is to attach the two battery cell holders and the
operator plate to each other. They are kept together by four M3 screws and four matching
nuts. The cell holder that keeps four of the battery’s cells is located at the top of the plate.
The screws are first inserted through this, then through the separator plate, and in the end,
the battery cell holder that keeps two of the six battery cells.

300

KROMIUM J.7 USING THE BATTERY

Figure J.18: Step one of assembling the battery

The second step is to wire the battery as shown in the schematics in figure J.2. This is the
basic setup for a 2P3S battery.

The third step is to insert the battery cells. It is very important to insert the cells correctly.
If they are inserted the wrong way around, the battery might short circuit or the polarity
of the battery becomes inverted. Also, make sure that the ribbon is placed between the
cells and the holder so the cells can easily be removed. This also prevents from damaging
the cells.

The next step is to insert the cell holder into the battery box itself. Line the separator plate
up with the guide tracks inside of the battery box. Then slide it all the way in.

Figure J.19: Insert the battery into the battery box

The next step is to attach the magnetic connector to the battery box. Unscrew the large
plastic nut from the back of the connector, insert the connector in the hole on the right side
of the battery box, and then screw the nut onto the magnetic connector from the inside of
the battery box.

301

KROMIUM J.7 USING THE BATTERY

Then attach the wires from the battery to the connector. Attach the positive wire to the
middle pin, and the negative wire to the pin on the side. See the provided schematics for
better understanding. It is recommended to use cable shoes or clips like VAGO to connect
the wires to the magnetic connector. This is because the battery needs to be partially
disassembled to switch the cells. To make the assembly/disassembly process easier, there
should be attached wires to the pins on the magnetic connectors.

Figure J.20: Close-up picture of the back side of the connector, from the datasheet for
the magnetic connector[16]

Figure J.21

The last step is to attach the battery box lid, and the battery is ready for use.

302

KROMIUM J.7 USING THE BATTERY

Figure J.22: The finished battery

J.7.3 Swapping cells HB | AEH

To swap the battery cells, the battery has to be disassembled following the last five steps
of the assembly process, in reverse. To get the lid off the battery box, it might be helpful
to use a flathead screwdriver in one of the notches. To remove the cells, pull on the ribbon
that is placed between the cells and the cell holders to loosen the cells. Remove the cells
and insert a new set of cells, then follow the normal assembly process and the battery is
ready to use again.

J.7.4 Charging HB | AEH

The charging of the battery consists of removing the cells from the battery and then insert-
ing the cells into a battery cell charger. In this case, the charger is the battery cell tester
that was used to test the capacity of the cells, the OPUS BT-C3100.

303

KROMIUM K. INITIAL SOFTWARE IMPLEMENTATION FOR ARM

K Initial software implementation for arm OM | AEH

The first implementation of robotic arm movements was simple but good enough for a
demonstration. The VR operator could only control servo 1, 4 and 6 (see 4.49).

Figure K.1: VR hand control area

If the operator’s hand was in the origin, the end-effector (pinch mechanism) was pointing
forwards
For (point) the end effector would point -

• (0, Y, 0) forwards (0 degrees)

• (1, Y, 0) 90 degrees to the right

• (-1, Y, 0) 90 degrees to the left

• (X, Y, 1) 90 degrees upwards

• (0.5, Y, 0.5) 45 degrees to the right and 45 degrees upwards

For any point in between the end-effector would point accordingly. The Y-axis was irrel-
evant, only the X-Z plane affected the position of the arm. The code uses X and Y values,
but Y is mapped to Z in the diagram, as this was easier to work with.

class Controller:

... code

@staticmethod

def convert_x_to_angle_difference(x: float) -> int:

"""Converts x to angle difference.

Args:

x: x

Returns:

angle difference

304

KROMIUM K. INITIAL SOFTWARE IMPLEMENTATION FOR ARM

"""

return int(x * 90)

@staticmethod

def convert_y_to_angle_difference(y: float) -> int:

"""Converts y to angle difference.

Args:

y: y

Returns:

angle difference

"""

y_abs = abs(y)

if y_abs > 1:

return 90

return int(y_abs * 90)

@set_last_message

def handle_vr_hand(self, msg) -> None:

"""Handles VRHand messages.

Args:

msg: VRHand message

"""

x, y, strength = msg.x, msg.y, msg.strength

print(f"got {x=} {y=} {strength=}")

x_angle = self.convert_x_to_angle_difference(x)

self.robot.set_arm_rotation_difference(x_angle)

y_angle = self.convert_y_to_angle_difference(y)

self.robot.set_arm_tilt(y_angle)

pinch_angle = self.convert_pinch_to_angle(strength)

self.robot.set_pinch(pinch_angle)

print(f"- {x_angle=} {y_angle=} {pinch_angle=}")

Corresponding unittests to the code written above.

class TestController(TestCase):

@classmethod

def setUpClass(cls):

cls.c = Controller(production=False)

def test_angle_x_conversion(self):

self.assertEqual(self.c.convert_x_to_angle_difference(0), 0)

self.assertEqual(self.c.convert_x_to_angle_difference(1), 90)

305

KROMIUM K. INITIAL SOFTWARE IMPLEMENTATION FOR ARM

self.assertEqual(self.c.convert_x_to_angle_difference(-1), -90)

self.assertEqual(self.c.convert_x_to_angle_difference(0.5), 45)

self.assertEqual(self.c.convert_x_to_angle_difference(-0.5), -45)

def test_angle_y_conversion(self):

self.assertEqual(self.c.convert_y_to_angle_difference(0), 0)

self.assertEqual(self.c.convert_y_to_angle_difference(1), 90)

self.assertEqual(self.c.convert_y_to_angle_difference(-1), 90)

self.assertEqual(self.c.convert_y_to_angle_difference(0.5), 45)

self.assertEqual(self.c.convert_y_to_angle_difference(-0.5), 45)

self.assertEqual(self.c.convert_y_to_angle_difference(1.1), 90)

306

KROMIUM L. ELECTRONICS INTERFACE DESCRIPTION

L Electronics interface description

L.1 Motor expansion board YB-ERF01-V1.0 interface description

Figure L.1: Motor expansion board YB-ERF01-V1.0 interface description

307

KROMIUM M. EARLIER ITERATIONS OF OBJECT DETECTION

M Earlier iterations of object detection
In this section, we detailed our initial exploration using a pre-trained object detection
model from the TensorFlow Lite Model Zoo. Building upon those results, we went
through a second iteration aimed at creating a more tailored and potentially higher-performing
model. This section delves into the process of developing a custom object detection model
using TensorFlow’s tflite model maker library, leveraging the concept of transfer learn-
ing. We outlined our dataset preparation, model training, and deploying the model on
a RPi connected to a camera. We have written about why we did not continue with us-
ing tflite model maker for making the custom object detection model in the Challenges
section 9, sub-sub section 9.2.3.

M.1 First iteration AD | AEH

Doing some quick research we found out that there were quite a few pre-trained models on
the official TFLite website hub. Some of these models were also trained on a dataset called
the COCO (Common Objects in Context) dataset, which is a large-scale object detection
dataset [99]. The COCO dataset has several objects of interest, and they also provide a
label file. The model used was MobileNet Version 2. It is a popular CNN algorithm in
object detection. Using the COCO dataset label file, we aligned them together on the
raspberry Pi, achieving satisfying results as seen in Figure M.1.

Figure M.1: Object detection with the COCO dataset and MobilenetV2

M.2 Second iteration AD | AEH

Building upon the results from deploying the pre-trained model, we progressed to tai-
loring a custom object detection model to suit our project’s specific requirements better.
TensorFlow provides a library within its framework called tflite model maker which sim-
plifies the model-making process.
The tflite model maker library uses a concept called transfer learning. Transfer learning
is a technique that shortcuts the training of ML models by taking hold of a model that has
already been trained on a related task and reusing it in a new model [108]. Figure M.2
represents the architecture for doing this.

308

KROMIUM M.2 SECOND ITERATION

Dataset

Training
data

Test
data

Validate
data

Load
data

Train model

Training data

Validate data

Epochs

Base model

Evaluate model

Test data

Trained model

Export as
Tflite model

Evaluate
Tflite model

Test model

Figure M.2: System architecture for Transfer Learning

As shown in the above diagram, we needed to start by creating a dataset with accompa-
nying bounding box coordinates that define the boundaries of a bounding box around an
object within an image or a video frame. A bounding box is a rectangular box that can
be drawn around the detected object to identify its location. The coordinates are usually
defined in terms of the box’s corners or the top-left corner along with the box’s width and
height, often annotated as(x min, y min, x max, y max). They are also normalized values
ranging from 0 to 1. As we wanted to work out how the library worked, we leveraged a
comprehensive dataset from TensorFlow Hub, consisting of 3000 images of people, each
annotated with precise bounding box coordinates. The dataset was to be divided into three
sections:

1. Training: 80 per cent of the data (roughly 2400 pictures) were used for training the
model.

2. Test: 10 per cent of the data (roughly 300 pictures) were used for testing the model.

3. Validation: 10 per cent of the data (roughly 300 pictures) were used for validating
the model.

The coordinates were listed in a comma-separated values (CSV) file, and table M.1 shows
the file format with an example.

Set name Image Path Label X Min Y Min X Max Y Min
Training 0679.jpg Person 0.25 0.29282 0.40820 0.4758

Table M.1: Example of the dataset CSV file looks like

The data has to be loaded now. This means the training data is divided into smaller batches
so that the model can learn more quickly. The data is also resized and shuffled so that the
model gets random data.
The next step was the biggest one, to train the data. The package function that trains the
model requires some prerequisites such as the training data, test data, and the base model
that the custom model is to be trained upon. Our group chose to start with the model
that TensorFlow recommended, efficient det (version 0) [109]. It also requires the number

309

KROMIUM M.3 TESTING OF THE CUSTOM MODEL

of epochs the model needs to train on, which is typically set to 50. While training, the
package outputs the total loss function. This is the difference between the actual output
and the predictions made by the model. It is the metric for evaluating how well the model
is learning [6, p. 710].
The model needs to be tested. This is quite straightforward, as the model maker provides
a function for it, using the test data. The model is then exported as a TFLite model, and
again evaluated. Finally, we test the model by deploying it on the RPi which is connected
to a camera.

M.3 Testing of the custom model AD | AEH

Testing the model in itself is a big process. Luckily the TensorFlow website provides help
for deploying the model, and also how to display the detection on a camera and stream to
a web browser. Figure M.3 represents how the testing works with the help of a sequence
diagram. A sequence diagram shows the sequence of messages passed between objects
or functions in a program. There are three main objects: the detection object, the camera,
and the model.

The detection object waits for the ROS master node to activate object detection. After it
receives confirmation, it initializes the camera video capture. Then a sequence of func-
tions occurs in a loop; the camera frames are read, captured, and sent to the model object.
The model object has interpreted the model and has retrieved the input and the output
details. The output details contain information about the prediction accuracy (ranging
from 0 to 1), the bounding box coordinates, and the object label. The input details con-
tain information about the data dimensions that the model expects [165]. After receiving
the frame, the model object interprets the frame and adds the predicted bounding box
coordinates, label, and prediction score. It sends the frame back to the camera for display.

:Detection:Detection :Camera :Camera :Model:Model

Start_video_capture():bool

return done: bool

Retreive_output

and_input_details()

send_frame()

Make_boxes_display()

show_boxedframe()

Read_&_capture frame()

return

Interpret_frame()

Activate_object

detection():bool

LOOP

until

'q' pressed

LOOP

until

'q' pressed

Initialize_Video

Capture()

Figure M.3: Testing the custom-made model

M.4 Previous bolt detection dataset AD | SO

As mentioned in 4.6, our group took upon an additional task of automated bolt inspection
and fastening. In an initial exploration of this task, a dataset was constructed by capturing
images of bolts found in the local environment. These images were categorized as either
“loose” or “tight” bolts and subsequent labelling and testing were conducted. 82 pictures
were collected, and after data augmenting with saturation and noise, the dataset consisted

310

KROMIUM M.4 PREVIOUS BOLT DETECTION DATASET

of 198 images. However, the resulting model performance proved to be sub-optimal,
exhibiting signs of overfitting due to limited variation within the dataset. Furthermore, the
practical applicability of this dataset was questioned as the robot’s fastening capabilities
were not suitable for the small bolt sizes predominantly found in the collected images.
The dataset can be found here :(robowflow/old-bolt-dataset).

(a) Loose bolt (b) Loose bolt

(c) Tight bolt (d) Tight bolt

Figure M.4: Example images from dataset

Consequently, a decision was made to abandon this initial dataset. Instead, a new dataset
was generated utilizing 3D-printed bolts, offering greater control over bolt size and con-
figuration. The concept of differentiating between “loose” and “tight” bolts was also
discarded due to challenges in reliably distinguishing these states based on visual cues
alone, especially given the varied orientations in which bolts might be encountered in the
robot’s operating environment. Moreover, the ability of the robotic arm to successfully
tighten a bolt depended heavily on the initial positioning and alignment of the bolt, which
further complicated the task of automating the process.
Therefore, the focus shifted towards a simpler yet more achievable objective: developing
a model capable of accurately detecting the presence of a bolt, regardless of its tightness.
This streamlined approach offered a more practical and robust solution for the robot’s
intended functionality. This approach aimed to address the shortcomings of the previous
dataset and provide a more reliable dataset for training an object detection model tailored
to the specific requirements of the project. Read more about the final implementation in
4.6.4.

311

https://universe.roboflow.com/test1-u7d5u/bolt-loosening

KROMIUM N. IMPLEMENTATION OF DETECTION CACHING

N Implementation of detection caching
Every time the endpoint is requested (think while true) a new frame is read from the cam-
era. This frame gets saved inside the class. There is a thread running all the time which
analyzes the currently saved frame and the result of this analysis is also saved within the
class. So when the actual frame is given as a response to the request the currently saved
result of the analysis is added onto the frame before sending it.

This code can be improved by checking if the current frame within the def detect_in_frame

is equal to the last, this way the code does not analyze a frame which is already analyzed.
If there is no new frame set (the VR application is off for instance), the current code
will continue to analyze the current frame over and over even though this frame does not
change, and the result would be the same all the time, therefore wasting resources.

from threading import Thread

import cv2

from flask import Flask, Response

import numpy as np

import tflite_runtime.interpreter as tflite

from PIL import Image

app = Flask(__name__)

Load model and labels

model_path = "/home/pi/Obj-detection-pi/custom-transfer-learning/tflite_models/

people_detection_2.tflite"

label_path = "/home/pi/Obj-detection-pi/custom-transfer-learning/labels/labels.txt"

interpreter = tflite.Interpreter(model_path=model_path)

interpreter.allocate_tensors()

input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

Function to load labels from the labels file

def load_labels(label_path):

"""Loads the labels file. Supports files with or without index numbers.

Args:

label_path: path to the labels file.

Returns:

A list with the labels.

If the file contains index numbers, then the index number is removed from the

label.

"""

312

KROMIUM N. IMPLEMENTATION OF DETECTION CACHING

with open(label_path, "r") as file:

labels = [line.strip() for line in file.readlines()]

return labels

labels = load_labels(label_path)

cap = cv2.VideoCapture(-1)

class AIBox:

def __init__(self):

self.ret = None

self.frame = None

self.num_detections = 0

self.scores = {}

self.threshold = 0.4

self.boxes = {}

self.classes = {}

self.height = 480

self.width = 640

def set_frame(self, ret, frame):

self.ret = ret

self.frame = frame

def get_drawn_frame(self) -> bytes:

"""Draw bounding boxes on the frame.

Args:

frame: the frame to draw on.

num_detections: the number of detections.

boxes: the bounding boxes.

classes: the class of the detected object.

scores: the confidence scores of the detected object.

labels: the labels of the detected object.

threshold: the confidence threshold to use.

"""

for i in range(self.num_detections):

if self.scores[i] < self.threshold:

continue

y_min, x_min, y_max, x_max = self.boxes[i]

x_min = int(x_min * self.width)

x_max = int(x_max * self.width)

y_min = int(y_min * self.height)

y_max = int(y_max * self.height)

313

KROMIUM N. IMPLEMENTATION OF DETECTION CACHING

cv2.rectangle(self.frame, (x_min, y_min), (x_max, y_max),

(0, 255, 0), 2)

object_name = labels[int(self.classes[i])]

label = "%s" % (object_name)

label_size, base_line = cv2.getTextSize(

label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2

) # Get font size

y_min = max(y_min, label_size[1])

cv2.rectangle(

self.frame,

(int(x_min), int(y_min - round(1.5 * label_size[1]))),

(int(x_min + round(1.5 * label_size[0])), int(y_min + base_line)),

(255, 255, 255),

cv2.FILLED,

)

cv2.putText(

self.frame,

label,

(int(x_min), int(y_min)),

cv2.FONT_HERSHEY_SIMPLEX,

0.7,

(0, 0, 0),

2,

)

Convert the frame to JPEG format

ret, buffer = cv2.imencode(".jpg", self.frame)

if not ret:

return None

return buffer.tobytes()

do calculation

def detect_in_frame(self):

height = input_details[0]["shape"][1]

width = input_details[0]["shape"][2]

Prepare the frame for model input

input_frame = cv2.resize(self.frame, (width, height))

input_frame = np.expand_dims(input_frame, axis=0).astype(np.uint8)

Run inference

interpreter.set_tensor(input_details[0]["index"], input_frame)

interpreter.invoke()

self.num_detections = int(interpreter.get_tensor(output_details[2]["index"])[0])

self.scores = interpreter.get_tensor(output_details[0]["index"])[0]

self.boxes = interpreter.get_tensor(output_details[1]["index"])[0]

314

KROMIUM N. IMPLEMENTATION OF DETECTION CACHING

self.classes = interpreter.get_tensor(output_details[3]["index"])[0]

def analyze(self):

while True:

if self.frame is None or self.ret is None:

continue

self.detect_in_frame()

ai_box = AIBox()

thread = Thread(target=ai_box.analyze, daemon=True)

thread.start()

def get_frame() -> tuple:

ret, frame = cap.read()

return ret, frame

@app.route("/snapshot")

def snapshot():

ret, frame = get_frame()

ai_box.set_frame(ret, frame)

if frame is None:

return "Failed to capture frame", 400

return Response(ai_box.get_drawn_frame(), mimetype="image/jpeg")

if __name__ == "__main__":

app.run(host="0.0.0.0", port=5000)

315

KROMIUM O. ROBOT: DETAILED IMPLEMENTATION AND CONFIGURATION

O Robot: Detailed Implementation and Configuration

O.1 Example code a ROS 2 node OM | AEH

A basic Python ROS 2 node that fills in a message and publishes it to a topic can be seen
below.

example_publisher

from interfaces.msg import RobotData

import rclpy

from rclpy.node import Node

class MyNode(Node):

def __init__(self):

super().__init__(self.__class__.__name__)

self.pub_robot_data = self.create_publisher(

RobotData, "robot_data", 1

)

self.create_timer(1, self.publish_robot_data)

def publish_robot_data(self):

msg = RobotData()

msg.gyroscope.x = 1.0

msg.gyroscope.y = -2.0

msg.gyroscope.z = 3.0

msg.voltage = 12.4

more data...

self.pub_robot_data.publish(msg)

def main(args=None):

rclpy.init(args=args)

node = MyNode()

rclpy.spin(node)

rclpy.shutdown()

First, the interfaces and the rclpy Python package are imported. rclpy is the Python
Application Programming Interface (API) for ROS 2, enabling ROS functionality. The
class MyNode is the ROS node that publishes to the robot_data topic with the interface
type RobotData. The 1 indicates the Quality of Service (QoS) policy [166]. Without
any subscriptions or loops, this node would not publish anything, so a timer is created
to execute the def publish_robot_data method every second. Inside this method, a
message is created, populated with data, and then published to the robot_data topic. The
main method initializes the node and keeps it running using the spin(node) function.

316

KROMIUM O.2 EXAMPLE OF ROSMASTER LIBRARY CODE MODIFICATIONS

This node cannot receive data externally as it does not subscribe to anything. An example
of a subscriber written in Python is shown below.

example_subscriber

from interfaces.msg import RobotData

import rclpy

from rclpy.node import Node

class MySecondNode(Node):

def __init__(self):

super().__init__(self.__class__.__name__)

self.sub_robot_data = self.create_subscription(

RobotData, "robot_data", self.handle_robot_data, 1

)

def handle_robot_data(self, msg):

voltage, mode = msg.voltage, msg.mode

print(f"Received {voltage=}, {mode=}")

do something with the data...

def main(args=None):

rclpy.init(args=args)

node = MySecondNode()

rclpy.spin(node)

rclpy.shutdown()

This node works similarly to the publisher but instead subscribes to the robot_data

topic. Every time a message is sent to this topic, the def handle_robot_data method
is triggered, which prints some of the data to the terminal.

O.2 Example of Rosmaster Library code modifications OM | AEH

This is the original code created by Yahboom, which assigns a particular angle to one of
the servo motors in the robotic arm.

Set bus steering gear Angle interface: s_id:[1,6], s_angle:

1-4:[0, 180], 5:[0, 270], 6:[0, 180], set steering gear to

move to the Angle.

run_time indicates the running time (ms). The shorter the time,

the faster the steering gear rotates. The minimum value is 0

and the maximum value is 2000

def set_uart_servo_angle(self, s_id, s_angle, run_time=500):

try:

if s_id == 1:

317

KROMIUM O.2 EXAMPLE OF ROSMASTER LIBRARY CODE MODIFICATIONS

if 0 <= s_angle <= 180:

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

else:

print("angle_1 set error!")

elif s_id == 2:

if 0 <= s_angle <= 180:

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

else:

print("angle_2 set error!")

elif s_id == 3:

if 0 <= s_angle <= 180:

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

else:

print("angle_3 set error!")

elif s_id == 4:

if 0 <= s_angle <= 180:

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

else:

print("angle_4 set error!")

elif s_id == 5:

if 0 <= s_angle <= 270:

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

else:

print("angle_5 set error!")

elif s_id == 6:

if 0 <= s_angle <= 180:

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

else:

print("angle_6 set error!")

except:

print('---set_uart_servo_angle error! ID=%d---' % s_id)

pass

The absence of type annotations and the lack of comments in the form of a docstring
make it challenging for users to understand the limitations of each servo without delving
into the source code. By incorporating docstrings, users could conveniently access the
documentation by hovering over the function name in their IDE. Moreover, the function’s
logic appears repetitive and less adaptable to potential changes.

The revised code maintains the same functionality while reducing redundancy. It includes
type hints and a docstring to facilitate user comprehension during development. Addition-
ally, the try/except block could be eliminated, as the only potential failure point within
the self.set_uart_servo function is already covered by try/except functionality.

def set_uart_servo_angle(

318

KROMIUM O.3 INSTALLING DOCKER

self, s_id: int, s_angle: int, run_time: int = 500

) -> None:

"""Sets the angle of one of the servos (on the arm).

Degrees: 1-4, 6:[0, 180], 5:[0, 270]

1 - Rotation of the arm

2 - Shoulder of the arm

3 - Elbow of the arm

4 - Tilt of the arm

5 - Wrist of the arm (rotation)

6 - Fingers of the arm (pinch)

Args:

s_id: the id of the servo

s_angle: the angle of the servo

run_time: the running time in milliseconds

"""

for i in range(1, 6 + 1):

if s_id != i:

continue

out of range for all servos

if 0 > s_angle or s_angle > 270:

print(f"angle_{i} set error!")

return

only servo 5 can rotate up to 270 degrees

if s_angle > 180 and i != 5:

print(f"angle_{i} set error!")

return

value = self.__arm_convert_value(s_id, s_angle)

self.set_uart_servo(s_id, value, run_time)

return

O.3 Installing Docker OM | AEH

To install Docker on RPiOS 64-bit, the following script was used.

Add Docker's official GPG key:

sudo apt-get update

sudo apt-get install ca-certificates curl

sudo install -m 0755 -d /etc/apt/keyrings

sudo curl -fsSL https://download.docker.com/linux/debian/gpg

-o /etc/apt/keyrings/docker.asc

sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:

echo \

"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/debian \

$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \

319

KROMIUM O.4 PERMISSIONS TO USE DOCKER

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

docker-buildx-plugin docker-compose-plugin -y

O.4 Permissions to use Docker OM | AEH

To avoid the need to use sudo every time when executing Docker commands, the follow-
ing commands were utilized to mitigate this issue.

sudo groupadd docker

sudo usermod -aG docker $USER

O.5 Dockerfile OM | AEH

Below is the Dockerfile used, which includes all the necessary packages and libraries
required for the Docker container and the robot to function. For a comprehensive list of
all Python packages, see O.6.

FROM arm64v8/ros:humble

ARG USERNAME=ros

ARG USER_UID=1000

ARG USER_GID=${USER_UID}

create a non-root user

RUN groupadd --gid ${USER_GID} ${USERNAME} \

&& useradd -s /bin/bash --uid ${USER_UID}

--gid ${USER_GID} -m ${USERNAME} \

&& mkdir /home/${USERNAME}/.config &&

chown ${USER_UID}:${USER_GID} /home/${USERNAME}/.config \

&& apt-get update \

give sudo

&& apt-get install -y sudo \

&& echo $USERNAME ALL=\(root\) NOPASSWD:ALL >

/etc/sudoers.d/$USERNAME \

&& chmod 0440 /etc/sudoers.d/$USERNAME

RUN apt-get update --fix-missing && apt-get upgrade -y

RUN apt-get install ros-humble-magic-enum -y

RUN apt-get install ros-humble-camera-info-manager -y

RUN apt-get install ros-humble-vision-opencv -y

RUN apt-get install ros-humble-image-pipeline -y

RUN apt-get install libuvc-dev -y

RUN apt-get install nlohmann-json3-dev -y

RUN apt-get install libgoogle-glog-dev -y

RUN apt-get install python3-opencv -y

RUN apt-get install python3-pip -y

ENV SHELL /bin/bash

install python packages

320

KROMIUM O.6 REQUIREMENTS.TXT

WORKDIR /robot

COPY requirements.txt .

RUN python3 -m pip install -r requirements.txt

WORKDIR /robot/src

O.6 requirements.txt OM | AEH

Below are all the utilized package installer for Python (pip) [167] packages necessary for
the robot to operate.

pyserial

numpy

brotli

pymongo

mediapipe

websockets

O.7 Expansion board symlink OM | AEH

The following steps were carried out according to the instructions provided by Yahboom
under “2. Python basic control”, “2.0 Bind PCB port devices” using Method-1 [168].

Firstly, a rules file was created:

sudo nano /etc/udev/rules.d/expbrd.rules

Subsequently, a symlink was added based on vendor, product, and kernel:

KERNEL=="ttyUSB*", ATTRS{idVendor}=="1a86", ATTRS{idProduct}=="7523",

MODE:="0777", SYMLINK+="expbrd"

Ensuring that the symlink can be accessed:

sudo chmod a+x /etc/udev/rules.d/expbrd.rules

Finally, services were restarted for the changes to take place:

sudo udevadm trigger

sudo service udev reload

sudo service udev restart

O.8 MongoDB database implementation

O.8.1 Installing the Docker image OM | AEH

MongoDB provides a Docker image, which can be installed using the following com-
mand:

docker pull mongodb/mongodb-community-server:latest

321

KROMIUM O.9 MEASURING THE SPEED OF THE ROBOT

O.8.2 Running the container OM | AEH

To establish a connection with the database for data insertion or retrieval, the MongoDB
image needs to run within a container. The container can be initiated with the following
command:

docker run --name mongodb

--network host -d mongodb/mongodb-community-server:latest

The container should operate using the host’s network to enable connection. Additionally,
the default port for MongoDB is 27017, which can be exposed if needed. Underlyingly,
the container employs a volume or a similar technology to persist data, ensuring that data
is retained even when the container is terminated. Without this persistence mechanism,
data would be lost each time the container is terminated, including reboot of the system.

O.9 Measuring the speed of the robot

O.9.1 Speed at 0% OM | AEH

If speed is set to 0%, the robot stands still or 0cm/s.

O.9.2 Speed at 50% OM | AEH

Figure O.1: 50% speed: start time

322

KROMIUM O.9 MEASURING THE SPEED OF THE ROBOT

Figure O.2: 50% speed: end time

2 : 48,88−2 : 51,76 = 2,88
100cm
2.88s

≈ 34.72cm/s

O.9.3 Speed at 100% OM | AEH

Figure O.3: 100% speed: start time

323

KROMIUM O.10 FINDING ARM CAMERA ANGLE

Figure O.4: 100% speed: end time

3 : 37,48−3 : 38,73 = 1,25

100cm
1.25s

= 80cm/s

O.9.4 Errors with estimation OM | AEH

These tests were done prior to the completion of the final robot, which is heavier than
the one used for measurements. This difference in weight may have had an impact on the
robot’s speed. It is anticipated that the current version of the robot is likely slower than the
one tested during these trials. Furthermore, it should be noted that the measurements ob-
tained are not highly accurate, but they are considered sufficient for estimation purposes.
There were no specific requirements regarding the accuracy of speed estimation.

O.10 Finding arm camera angle OM | AEH

The camera arm angle was determined through a trial-and-error process while observing
the screen with the connected camera. When satisfied with the angle, a picture was taken.
Initially, the horizontal line was drawn on the image, and the image was rotated until
this line was close to 0 degrees rotation. Subsequently, another line was added to the
image, and the angle of this line was measured. All measurements were conducted using
paint.net software.

324

KROMIUM O.11 FINDING AND DRAWING END EFFECTOR POINT

Figure O.5: Enter Caption

−71,11+180 ≈ 109

In this representation, the horizontal line corresponds to 0 degrees, while the angle of 109
degrees is positively oriented counterclockwise.

O.11 Finding and drawing end effector point OM | AEH

To address the discrepancy between the centre of the image and the location of the end
effector, this point was determined.

325

KROMIUM O.12 MAPPING SERVO IDS TO NAMES

Figure O.6: Enter Caption

The identified point was found to be (370, 200), measured from the top left corner, con-
sistent with OpenCV’s coordinate system [169]. These coordinates were utilized to plot
the dot in the camera feed when in arm mode.

O.12 Mapping servo ids to names OM | AEH

when the angles are gathered the json looks like this

{

"1": 170,

"2": 90,

"3": 80,

"4": 70,

"5": 60,

"6": 50,

}

by having an enum with the stored names and IDs, the mapping can be done dynamically
as shown below

class Arm(enum.IntEnum):

ROTATION = 1

SHOULDER = 2

326

KROMIUM O.13 MESH PLOTTING CODE

ELBOW = 3

TILT = 4

WRIST = 5

PINCH = 6

class Controller(Node):

...

def get_arm_angles(self) -> None:

"""Gets the arm angles and publishes them."""

msg = ArmAngles()

angles = self.controller.robot.get_stored_angles()

for servo in angles.copy():

arm_name = Arm(int(servo)).name.lower()

value = angles[servo]

setattr(msg, arm_name, int(value))

self.pub_arm_angles.publish(msg)

the message published will then look like what shown below if the angles are as shown in
the json above.

ArmAngles()

O.13 Mesh plotting code OM | AEH

Below is the code for creating mesh objects using Open3D. However, during testing on
theRPi, this code was inconsistent in producing .obj files.

import open3d as o3d

import numpy as np

Convert point cloud data to NumPy array

point_cloud_array = np.array(

[-1.2974001169204712, -0.9725425243377686, 2.31600022315979],

[-1.2933393716812134, -0.9725425243377686, 2.31600022315979],

...

)

Create a point cloud object

point_cloud = o3d.geometry.PointCloud()

point_cloud.points = o3d.utility.Vector3dVector(point_cloud_array)

Compute normals

point_cloud.estimate_normals(

search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30)

)

Run Poisson surface reconstruction

327

KROMIUM O.14 DEALING WITH DIFFERENT PATHS

mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(

point_cloud, depth=9

)

Simplify the mesh

mesh = mesh.simplify_quadric_decimation(target_number_of_triangles=5_000)

Save the mesh as a .obj file

o3d.io.write_triangle_mesh("mesh.obj", mesh)

O.14 Dealing with different paths OM | AEH

Issues arise from the structure outlined in 4.3.1, particularly when locating specific im-
ports during unit testing.

robot/src/

interfaces/

msg/

RobotData.msg

VRDrive.msg

master/

master/

__init__.py

master_node.py

test/

__init__.py

test_master.py

The issue stems from the fact that during regular code execution, the interfaces are found
and function correctly. However, during unit testing, the path to the interfaces is not
resolved correctly. This was addressed by employing a try-except block and setting a
variable within the master node being tested.

try:

from interfaces.msg import RobotData, VRDrive

UNITTEST = False

except ModuleNotFoundError:

UNITTEST = True

As a result of these challenges, most of the nodes are structured such that the logic is
separated into another file that does not import the interfaces directly.

robot/src/

controller/

controller/

__init__.py

controller_node.py

controller.py

... more files

test/

__init__.py

test_controller.py

328

KROMIUM O.15 FLASK VIDEO STREAM IMPLEMENTATION

O.15 Flask video stream implementation OM | AEH

Originally, the solution opted for involved hosting a HTTP server using Flask. This server
provided a /snapshot endpoint, which served the most recent frame captured by the cam-
era. By having the VR headset request this GET endpoint frequently, it effectively worked
as a video stream. However, this approach had several drawbacks. Firstly, it introduced
considerable overhead and unnecessary delays due to the amount of requests. Addition-
ally, it may have contributed to a memory leak within the VR application, ultimately
leading to crashes after prolonged use.

The server was implemented to run in its own thread. This was necessary because the
rcply.spin(node) function is blocking, preventing other operations from executing,
the same goes for the running of the Flask server.

O.16 Missing packages for the Astra driver OM | AEH

The specified packages were:

ros-humble-magic-enum

libuvc-dev

Meanwhile, the missing packages included:

ros-humble-camera-info-manager

ros-humble-vision-opencv

ros-humble-image-pipeline

nlohmann-json3-dev

libgoogle-glog-dev

Identifying and resolving these missing dependencies took some time. It involved ex-
amining the source code, building, running, and debugging to pinpoint where crashes
occurred. Additionally, determining the correct ROS packages added another layer of
complexity to the task. Adjustments were also made to the CMake file, to get the Astra
node to work.

O.17 Docker robot container options OM | AEH

docker run --rm -it --user ros --network host --name robot

-v /dev/:/dev -v $PWD/robot:/robot ros2_humble

The Docker image named ros2_humble is used in the command. The --rm flag is spec-
ified to remove the container after exiting, preventing stopped containers from accumu-
lating. The -it flag indicates that the container should be interactive with the command
line. The container is named “robot”. Two volumes are shared: the /robot/ directory
containing the source code, and the /dev/ directory providing access to connected USB
devices and alike.

O.18 Building ROS 2 from source OM | AEH

Using a community solution, ROS 2 was successfully compiled from source and opera-
tional on RPiOS 64-bit [170]. However, attempting the same steps on a second RPi did
not result in a successful installation. The decision to opt for a Docker solution was made

329

KROMIUM O.19 BUILDING CODE DOCUMENTATION

instead.

The compilation process on aRPi 5 8GB took approximately 2-3 hours.

sudo apt install -y git colcon python3-rosdep2 vcstool wget

python3-flake8-docstrings python3-pip python3-pytest-cov

python3-flake8-blind-except python3-flake8-builtins

python3-flake8-class-newline python3-flake8-comprehensions

python3-flake8-deprecated python3-flake8-import-order

python3-flake8-quotes python3-pytest-repeat

python3-pytest-rerunfailures python3-vcstools

mkdir -p ~/ros2_humble/src

cd ~/ros2_humble

vcs import

--input https://raw.githubusercontent.com/ros2/ros2/humble/ros2.repos src

sudo rm /etc/ros/rosdep/sources.list.d/20-default.list

sudo apt upgrade

sudo rosdep init

rosdep update

rosdep install --from-paths src --ignore-src -y

--skip-keys "fastcdr rti-connext-dds-6.0.1 urdfdom_headers"

colcon build --symlink-install

O.19 Building code documentation OM | AEH

The docs/ folder is placed outside of the shared volume for the robot container. This
means that when entering the container, this folder is inaccessible. Since the container
is the only place where the packages are installed, mock packages must be specified to
build the documentation without errors. This is configured in the conf.py file that Sphinx
reads. The mock packages are as follows:

autodoc_mock_imports = [

"rclpy",

"interfaces",

"numpy",

"cv2",

"sensor_msgs",

"flask",

"brotli",

"pymongo",

"mediapipe",

"serial",

"websockets",

]

Another issue arises from the implementation of function decorators, which are used to
avoid repetitive code while maintaining the same security. A function decorator might
look something like this:

def in_production_mode(func):

def function_wrapper(self, *args, **kwargs):

330

KROMIUM O.19 BUILDING CODE DOCUMENTATION

if self.production:

return func(self, *args, **kwargs)

raise NotInProductionMode("Enable production mode")

return function_wrapper

The Python interpreter runs the decorator before the actual function. If the decora-
tor @in_production_mode returns nothing or throws an exception, the code inside the
set_arm_shoulder method is never executed.

class Robot:

...

@in_production_mode

def set_arm_shoulder(self, angle: int) -> None:

"""Sets the arm shoulder angle.

Args:

angle: angle

"""

self.ros_master.set_uart_servo_angle(Arm.SHOULDER, angle)

However, when building the documentation with Sphinx, there are difficulties in deter-
mining the arguments of the original method due to the decorator obscuring them. This
leads to the generated documentation missing crucial information. The result is:

set_arm_shoulder(*args, **kwargs)

The arguments should be angle: int, not *args, **kwargs, which are the arguments
of the def function_wrapper. Additionally, due to the incorrect arguments, the for-
matted docstring is not shown. To resolve this, all wrapper functions need to include
@functools.wraps(x).

def in_production_mode(func):

@functools.wraps(func)

...

This adjustment ensures that the code documentation builds successfully and correctly
displays the method signature and docstring.

set_arm_shoulder(angle: int) → None

Sets the arm shoulder angle.

PARAMETERS:

angle - angle

331

KROMIUM O.20 ROBOT REPOSITORY TIMELINE & LINES OF CODE

O.20 Robot repository timeline & lines of code OM | AEH

Figure O.7: Commits timeline [17]

The aliases “smokingkrillz” and “offish” correspond to Aditi and Oscar, respectively.

332

KROMIUM O.20 ROBOT REPOSITORY TIMELINE & LINES OF CODE

Figure O.8: Lines of code [18]

Most of the C/C++ code is from the Astra driver as mentioned in 4.6.1.

333

KROMIUM P. VR APPLICATION

P VR application
The VR application is the visual interface for controlling the robot in a 3D space using
a headset. It contains visual elements such as screens, menus, and control elements to
interact with the robot through hand gestures. The main responsibility of the application
is to translate hand movements from the operator into interface-specific data and send it
to the robot through the robot control logic and provide the operator an intuitive way to
control the robot.

334

K
R

O
M

IU
M

P.V
R

A
PPL

IC
A

T
IO

N

Model (Data)

Controller (Logic)

View (Rendering & input)

Master

Camera

AI

VR linker

Logger

Controller

Stream

Stream data

Overlay data

Stream

Socket Client

Wireless communication

Receiving data
from all nodes

Robot view
Monitor

Update UI elements

Menu
(Control inputs)

Hand gesture
detection

Menu
(Control inputs)

Hand gesture
controller

Data manipulation

Notify data changeVR User action

Robot Car
Controller

Robot Arm
Controller

Emergency
Controller

Logs Hand detection
data

Master

Bidirectional communication

Unidirectional communication

ROS nodes AI

Robot driving
motors

Component
(Physical and logical)

Local network

Wireless communication

Robot driving motors

Robot arm servos

Commands

Car camera

Arm camera

VR application user

InteractView information

Figure P.1: High-level system architecture

335

KROMIUM P.1 UNITY SCENE AND GAME OBJECT ELEMENTS

P.1 Unity Scene and Game Object Elements SO | AD

This subsection provides an overview of key elements in Unity that are fundamental to
building VR applications, including scenes, game objects, and prefabs.

P.1.1 Scene SO | AEH

A scene in VR applications is the graphical space that contains all or part of the appli-
cation. Figure P.2 shows the default scene in Unity that shows a camera and directional
light. A scene is where one builds application contents such as buttons, screens, text,
menus, and other custom-designed graphical elements. An application can contain a sim-
ple scene, while large applications can contain multiple scenes representing different en-
vironments, for example, if one creates a game inside a house with multiple rooms, one
can create a scene for each room [19].

Figure P.2: Default Unity empty scene [19]

P.1.2 Game objects SO | HB

In Unity, designed primarily for game application development, every object in the appli-
cation is a game object. A game object is the fundamental element in Unity scenes and
can represent a wide range of entities, from characters to advanced 3D models such as
robots. However, a game object on its own is inert; it acts as a container for components
that implement functionality [20]. It is a common misconception that game objects only
represent visual elements. A game object can also represent purely software components,
which can provide interfaces and functionalities that other game objects or components
can utilize. A prime example of such an object is a singleton network manager class. This
class can be added as a component to a non-visual game object, allowing other objects
to access the singleton instance for communication purposes. Examples of visual game
objects can be seen in Figure P.3.

P.1.3 Prefab SO | HB

A prefab in Unity represents a modular and reusable asset that encapsulates a game ob-
ject along with its components, properties, values, and child objects. Prefabs serve as
predefined and configured objects from which developers can instantiate instances across
various scenes or projects. Any game object in Unity can be converted into a prefab, fa-
cilitating uniform behaviour and characteristics across different scenes and projects [21].
An example of a prefab representing a tree is shown in Figure P.4.

336

KROMIUM P.2 FIRST TWO ITERATIONS

Figure P.3: Different game objects: animated character, a light, a tree, and an audio
source [20]

Figure P.4: Tree prefab example in a scene [21]

P.2 First Two Iterations SO | AD

The first two iterations for the development of the VR application are detailed here. These
iterations cover the initial stages of the project, including setup, foundational elements,
and primary functionalities.

P.2.1 First iteration: Initial design SO | AD

Figure P.5 illustrates the initial iteration. In this phase, we successfully established com-
munication between the VR application and the robot, including showing an external
video feed inside the VR application, tracking the user’s hand movements, and converting
the tracked motion into driving commands for the robot. The learning process was also an
important aspect of the iteration, given that the group lacked experience in creating VR
applications or using C# as the programming language. The development of each feature
involved programming on both the VR and the robot components, followed by multiple
testing and debugging sessions. We proceeded to the next feature only after the current
system had passed all tests.

P.2.2 Conceptualization SO | AEH

Meta Quest 3 offers various functionalities through different SDK. Hand tracking is one
of the features provided by the Interaction SDK which grants VR applications access to
a wide range of user data such as estimated hand size and hand pose data. [171]. Using
the Interaction SDK, we were able to track the hand motion and bring to life the initial
concept of converting tracked hand motion into driving commands, as illustrated in Fig-
ure P.6.

337

KROMIUM P.2 FIRST TWO ITERATIONS

Establish communication
with the ROS 2

Show external video
feed inside the VR

Test the feature

Track and send hand
coordinates to ROS 2

Convert hand coordinates
into driving commands

Testing

Testing

Testing

Testing

Ready for
next step

Fix bugs

Learning
process

Initial point

Figure P.5: Initial iteration of VR application development

The robot control boundary within the VR application is conceptualized as a rectangular
zone, divided into four different areas for directional control: Left (L), Forward (F), Right
(R), and Stop (S). When the user’s hand enters this boundary, its position marked by a red
dot within the boundary box, the application dispatches corresponding commands to the
robot. This approach enables dynamic command adjustment by continuously monitoring
and recalculating the hand’s location relative to the boundary and giving visual feedback
to the user through the red dot. This approach proved to be sufficient for the testing phase,
enabling early hands-on experience with controlling the robot via the VR headset. It was
also important for understanding the user experience and collecting valuable insights for
future improvements.

X

Z

-1 0

1

Area S: Stop

0.3-0.3

0.3

Area F: Forward

Robot control boundary
in VR 3D space

Red dot reflects hand
position on the boundry

Threshold Z axis

Area L: Left Area R: Right

1

1

Figure P.6: Command conversion from Hand tracking

338

KROMIUM P.2 FIRST TWO ITERATIONS

P.2.3 Second Iteration: New feature and improvements SO | AEH

The second iteration is an extension of the first iteration where we used collected knowl-
edge and experience to improve our functionalities and implement new functions based
on our customer requirements. Figure P.7 illustrates the process of the second iteration.

Improve directional
command calculation

Calculate speed for all
directional commands

Test the feature

Implement log screen and
log functionality

Improve user interface

Testing

Testing

Testing

Testing

Ready for
next step

Fix bugs

Learning
process

Initial point

Figure P.7: Second iteration of VR application development

Improving Directional Command Calculation
The system’s capability to calculate hand position within the designated control boundary
for the robot (see Figure P.6) and to translate them into driving commands is crucial. The
directional calculation process is important for achieving a high level of accuracy and
precision, enabling the translation of the position into robot commands. Figures P.8 and
P.9 illustrate the differences between the first and second versions. In the first version, we
used the entire hand as an object to calculate its position relative to the control boundary,
then mapped this position into X , and Z values on the boundary where X ∈ [−1,1] and
Z ∈ [0,1]. These X and Z values were then used to create driving commands based on the
area of the hand, as indicated in P.6. The precision was not the optimal solution, since a
small change in hand rotation or tilt resulted in significant changes in the hand position
data. In Figure P.8, you can see an example of the relative distance between the hand
and the left edge of the control boundary, where the distance varies between 0.8 and 1.2,
based on a slight left and right tilt of the hand.

In the second iteration, we decided to track just one specific point on the hand instead
of the whole hand. With this approach, we increased the precision of our calculations as
illustrated in P.9. Focusing on one point, like the tip of the index finger, helped us avoid
problems caused by small hand movements or rotations that used to make our data less
precise.
This method has several benefits:

• It simplifies the tracking process, making it faster and more accurate.

• It makes our measurements more stable and consistent.

• We can control the robot with more precise and accurate data.

339

KROMIUM Q. CALCULATIONS

X

Z

-1 0

1

0.3-0.3

0.3

1

1

Distance: 1.2

Distance: 1

Distance: 0.8

Red dot reflects hand
position on the boundry

Figure P.8: Hand tracking version one

X

Z

-1 0

1

0.3-0.3

0.3

1

Distance: 0.99

Distance: 1

Distance: 1.01

Green dot indicates
Tip middle finger position

Red dot reflects hand
position on the boundry

Figure P.9: Hand tracking version two

X

Z

X

Z

-1 0

1
Area L: Left Area R: Right

Area S: Stop

0.3-0.3

0.3

A
re

a F: Fo
rw

ard

X

Z

-1 0

1
Area L: Left Area R: Right

Area S: Stop

0.3-0.3

0.3

A
re

a F: Fo
rw

ard

30100

Speed range

Sp
ee

d
 r

an
ge

30

100

50 Sp
ee

d
 r

an
ge

30

100

50

Figure P.10: Speed control

Q Calculations

Q.1 Degrees of freedom for robot arm AEH | HB

] In the information about the Rosmaster x3 plus [74] it states that the robotic arm has
six degrees of freedom (DOF). We wanted to understand better what DOF mean in the
context of robotic arms and verify that the information is correct.
In this context, the arm has six DOF means it can exhibit six independent motions. To cal-
culate the degrees of freedom we can use Grüblers formula (all constraints independent)
[75]:

N = number o f bodies, including ground

J = number o f joints

m = 6 f or spatial bodies, 3 f or planar

C = constraints between two rigid bodies

fi = m−C

340

KROMIUM Q.2 BATTERY DURATION CALCULATION

do f = m(N −1− J)+
J

∑
i=1

fi

Calculation of the degrees of freedom in our robotic arm:

N = 7, J = 6, m = 6

do f = 6(7−1−6)+
6

∑
i=1

1

do f = 6(7−1−6)+6 = 6

Figure Q.1: Robot arm simple drawing of joints and bodies. Joints (J) = blue & bodies
(N) = Red

Q.2 Battery duration calculation HB | AEH

The duration of the two different battery clusters is calculated after they both completed
a 30-minute test each. The duration of the battery clusters is calculated by charging the
battery cells fully. This way the battery reaches a voltage of 12.6 volts. After the battery
had been used for 30 minutes, the voltage was measured. The battery is assumed empty at
9.6 volts when the voltage alarm on the expansion board starts beeping. By knowing these
values, the battery duration can be assumed by calculating how many volts the battery is
from triggering the alarm after the elapsed time. Below is how the battery duration was
calculated.

U f = Maximum voltage o f the battery (12.60v)

Ue = Minimum voltage o f the battery (9.60v)

Us = Battery voltage at the end o f the test

t = duration o f the test in hours (0.5h)

341

KROMIUM Q.2 BATTERY DURATION CALCULATION

The equation to find the voltage difference between full and empty battery

Ud =U f −Ue = 12.60v−9.60v = 3.00v

The voltage after 1
2hour

U f −Us =U0.5h

U0.5h

t
=Udrop per hour[

v
h
]

Duration =
Ud[v]

Udrop per hour[
v
h]

Calculation of the duration of “Battery cluster 1”

U0.5h = 12.60v−12.05v

Udrop per hour =
0.55v
0.5h

= 1.10v/h

Duration =
3.00v

1.10v/h
= 2.73h

Duration ≈ 2h 44min

Calculation of the duration of “Battery cluster 2”

U0.5h = 12.60v−11.98

Udrop per hour =
0.62v
0.5h

= 1.24v/h

Duration =
3.00v

1.24v/h
= 2.42h

Duration ≈ 2h 25min

The duration of “Battery Cluster 1” is estimated to last 2 hours and 44 minutes, while the
duration of “Battery Cluster 2” is estimated to last 2 hours and 25 minutes.

342

KROMIUM R. CODE STATISTICS

R Code statistics
Add additional experimental contents here, like images, tables and equations that support
the experimental outcome.

R.1 Repositories timeline OM | AD

Figure R.1: transfer-learning-training commits timeline [22]

343

KROMIUM R.1 REPOSITORIES TIMELINE

Figure R.2: obj-detection-pi commits timeline [23]

The aliases “smokingkrillz” and “offish” correspond to Aditi and Oscar, respectively.

344

KROMIUM S. NETRON OBJECT DETECTION MODEL ANALYZATION

S Netron Object detection model analyzation

345

K
R

O
M

IU
M

S.1
B

O
LT

D
E

T
E

C
T

IO
N

S.1 Bolt detection

346

1×256×256×3

1×128×128×32

1×128×128×32

1×128×128×16

1×128×128×96

1×64×64×96

1×64×64×24

1×64×64×24

1×64×64×144

inputs

Conv2D

filter〈32×3×3×3〉
bias〈32〉

Relu6

DepthwiseConv2D

weights〈1×3×3×32〉
bias〈32〉

Relu6

Conv2D

filter〈16×1×1×32〉
bias〈16〉

Conv2D

filter〈96×1×1×16〉
bias〈96〉

Relu6

DepthwiseConv2D

weights〈1×3×3×96〉
bias〈96〉

Relu6

Conv2D

filter〈24×1×1×96〉
bias〈24〉

Conv2D

filter〈144×1×1×24〉
bias〈144〉

Relu6

DepthwiseConv2D

weights〈1×3×3×144〉
bias〈144〉

Relu6

1×64×64×144

1×64×64×24

1×64×64×24

1×64×64×144

1×32×32×144

1×32×32×32

1×32×32×32

1×32×32×192

1×32×32×192

1×32×32×32

1×32×32×32

1×32×32×192

Conv2D

filter〈24×1×1×144〉
bias〈24〉

Add

Conv2D

filter〈144×1×1×24〉
bias〈144〉

Relu6

DepthwiseConv2D

weights〈1×3×3×144〉
bias〈144〉

Relu6

Conv2D

filter〈32×1×1×144〉
bias〈32〉

Conv2D

filter〈192×1×1×32〉
bias〈192〉

Relu6

DepthwiseConv2D

weights〈1×3×3×192〉
bias〈192〉

Relu6

Conv2D

filter〈32×1×1×192〉
bias〈32〉

Add

Conv2D

filter〈192×1×1×32〉
bias〈192〉

Relu6

1×32×32×32

1×32×32×192

1×32×32×32

1×32×32×32

1×32×32×192

1×16×16×192

1×16×16×64

1×16×16×64

1×16×16×384

1×16×16×384

1×16×16×64

1×16×16×64

DepthwiseConv2D

weights〈1×3×3×192〉
bias〈192〉

Relu6

Conv2D

filter〈32×1×1×192〉
bias〈32〉

Add

Conv2D

filter〈192×1×1×32〉
bias〈192〉

Relu6

DepthwiseConv2D

weights〈1×3×3×192〉
bias〈192〉

Relu6

Conv2D

filter〈64×1×1×192〉
bias〈64〉

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

Conv2D

filter〈64×1×1×384〉
bias〈64〉

Add

1×16×16×64

1×16×16×384

1×16×16×384

1×16×16×64

1×16×16×64

1×16×16×64

1×16×16×384

1×16×16×384

1×16×16×64

1×16×16×64

1×16×16×384

1×16×16×384

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

Conv2D

filter〈64×1×1×384〉
bias〈64〉

Add

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

Conv2D

filter〈64×1×1×384〉
bias〈64〉

Add

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

1×32×32×32

1×16×16×96

1×16×16×96

1×16×16×576

1×16×16×576

1×16×16×96

1×16×16×96

1×16×16×96

1×16×16×576

1×16×16×576

1×16×16×96

1×16×16×96

1×16×16×576

Conv2D

filter〈96×1×1×384〉
bias〈96〉

Conv2D

filter〈576×1×1×96〉
bias〈576〉

Relu6

DepthwiseConv2D

weights〈1×3×3×576〉
bias〈576〉

Relu6

Conv2D

filter〈96×1×1×576〉
bias〈96〉

Add

Conv2D

filter〈576×1×1×96〉
bias〈576〉

Relu6

DepthwiseConv2D

weights〈1×3×3×576〉
bias〈576〉

Relu6

Conv2D

filter〈96×1×1×576〉
bias〈96〉

Add

Conv2D

filter〈576×1×1×96〉
bias〈576〉

Relu6

D th i C 2D

1×16×16×96

1×8×8×576

1×8×8×160

1×8×8×160

1×8×8×960

1×8×8×960

1×8×8×160

1×8×8×160

1×8×8×160

1×8×8×960

1×8×8×960

1×8×8×160

1×8×8×160

DepthwiseConv2D

weights〈1×3×3×576〉
bias〈576〉

Relu6

Conv2D

filter〈160×1×1×576〉
bias〈160〉

Conv2D

filter〈960×1×1×160〉
bias〈960〉

Relu6

DepthwiseConv2D

weights〈1×3×3×960〉
bias〈960〉

Relu6

Conv2D

filter〈160×1×1×960〉
bias〈160〉

Add

Conv2D

filter〈960×1×1×160〉
bias〈960〉

Relu6

DepthwiseConv2D

weights〈1×3×3×960〉
bias〈960〉

Relu6

Conv2D

filter〈160×1×1×960〉
bias〈160〉

Add

Conv2D

1×32×32×32

1×32×32×128

1×16×16×96

1×16×16×128

1×8×8×960

1×8×8×960

1×8×8×320

1×8×8×320

1×8×8×1281×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×16×16×128

1×16×16×128

1×16×16×128

1×32×32×128

1×32×32×128

1×32×32×128

DepthwiseConv2D

weights〈1×1×1×32〉
bias〈32〉

Conv2D

filter〈128×1×1×32〉
bias〈128〉

DepthwiseConv2D

weights〈1×1×1×96〉
bias〈96〉

Conv2D

filter〈128×1×1×96〉
bias〈128〉

filter〈960×1×1×160〉
bias〈960〉

Relu6

DepthwiseConv2D

weights〈1×3×3×960〉
bias〈960〉

Relu6

Conv2D

filter〈320×1×1×960〉
bias〈320〉

DepthwiseConv2D

weights〈1×1×1×320〉
bias〈320〉

Conv2D

filter〈128×1×1×320〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
Mul

B〈128〉

Mul

B〈128〉

ResizeNearestNeighbor

2〈2〉

Add

DepthwiseConv2D

weights〈1×3×3×128〉

ResizeNearestNeighbor

2〈2〉

Add

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

1×2×2×128

1×2×2×1281×2×2×128

1×4×4×128

1×4×4×1281×4×4×128

1×8×8×128

1×8×8×1281×8×8×128

1×16×16×128

1×16×16×1281×16×16×128 1×32×32×1281×32×32×128

1×32×32×128 1×16×16×128 1×8×8×128 1×4×4×128 1×2×2×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×32×32×128 1×16×16×128 1×8×8×128 1×4×4×128 1×2×2×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

〈 8〉

Add

B〈128〉

〈 8〉

Add

B〈128〉

bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D DepthwiseConv2D DepthwiseConv2D DepthwiseConv2D DepthwiseConv2D

1×32×32×128

1×32×32×36

1×16×16×128

1×16×16×36

1×8×8×128

1×8×8×36

1×4×4×128

1×4×4×36

1×2×2×128

1×2×2×36

1×32×32×128

1×32×32×18

1×16×16×128

1×16×16×18

1×8×8×128

1×8×8×18

1×4×4×128

1×4×4×18

1×2×2×128

1×2×2×18

1×9216×2 1×9216×41×2304×2 1×2304×41×576×2 1×576×41×144×2 1×144×41×36×2

1×12276×2

1×12276×2

1×36×4

1×12276×4

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Concatenation

Logistic

Reshape

shape〈3〉

Concatenation

detection_boxes

detection_scores

K
R

O
M

IU
M

S.2
PE

O
PL

E
D

E
T

E
C

T
IO

N

S.2 People detection

356

1×256×256×3

1×128×128×32

1×128×128×32

1×128×128×16

1×128×128×96

1×64×64×96

1×64×64×24

1×64×64×24

1×64×64×144

inputs

Conv2D

filter〈32×3×3×3〉
bias〈32〉

Relu6

DepthwiseConv2D

weights〈1×3×3×32〉
bias〈32〉

Relu6

Conv2D

filter〈16×1×1×32〉
bias〈16〉

Conv2D

filter〈96×1×1×16〉
bias〈96〉

Relu6

DepthwiseConv2D

weights〈1×3×3×96〉
bias〈96〉

Relu6

Conv2D

filter〈24×1×1×96〉
bias〈24〉

Conv2D

filter〈144×1×1×24〉
bias〈144〉

Relu6

DepthwiseConv2D

weights〈1×3×3×144〉
bias〈144〉

Relu6

1×64×64×144

1×64×64×24

1×64×64×24

1×64×64×144

1×32×32×144

1×32×32×32

1×32×32×32

1×32×32×192

1×32×32×192

1×32×32×32

1×32×32×32

1×32×32×192

Conv2D

filter〈24×1×1×144〉
bias〈24〉

Add

Conv2D

filter〈144×1×1×24〉
bias〈144〉

Relu6

DepthwiseConv2D

weights〈1×3×3×144〉
bias〈144〉

Relu6

Conv2D

filter〈32×1×1×144〉
bias〈32〉

Conv2D

filter〈192×1×1×32〉
bias〈192〉

Relu6

DepthwiseConv2D

weights〈1×3×3×192〉
bias〈192〉

Relu6

Conv2D

filter〈32×1×1×192〉
bias〈32〉

Add

Conv2D

filter〈192×1×1×32〉
bias〈192〉

Relu6

1×32×32×32

1×32×32×192

1×32×32×32

1×32×32×32

1×32×32×192

1×16×16×192

1×16×16×64

1×16×16×64

1×16×16×384

1×16×16×384

1×16×16×64

1×16×16×64

DepthwiseConv2D

weights〈1×3×3×192〉
bias〈192〉

Relu6

Conv2D

filter〈32×1×1×192〉
bias〈32〉

Add

Conv2D

filter〈192×1×1×32〉
bias〈192〉

Relu6

DepthwiseConv2D

weights〈1×3×3×192〉
bias〈192〉

Relu6

Conv2D

filter〈64×1×1×192〉
bias〈64〉

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

Conv2D

filter〈64×1×1×384〉
bias〈64〉

Add

1×16×16×64

1×16×16×384

1×16×16×384

1×16×16×64

1×16×16×64

1×16×16×64

1×16×16×384

1×16×16×384

1×16×16×64

1×16×16×64

1×16×16×384

1×16×16×384

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

Conv2D

filter〈64×1×1×384〉
bias〈64〉

Add

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

Conv2D

filter〈64×1×1×384〉
bias〈64〉

Add

Conv2D

filter〈384×1×1×64〉
bias〈384〉

Relu6

DepthwiseConv2D

weights〈1×3×3×384〉
bias〈384〉

Relu6

1×32×32×32

1×16×16×96

1×16×16×96

1×16×16×576

1×16×16×576

1×16×16×96

1×16×16×96

1×16×16×96

1×16×16×576

1×16×16×576

1×16×16×96

1×16×16×96

1×16×16×576

Conv2D

filter〈96×1×1×384〉
bias〈96〉

Conv2D

filter〈576×1×1×96〉
bias〈576〉

Relu6

DepthwiseConv2D

weights〈1×3×3×576〉
bias〈576〉

Relu6

Conv2D

filter〈96×1×1×576〉
bias〈96〉

Add

Conv2D

filter〈576×1×1×96〉
bias〈576〉

Relu6

DepthwiseConv2D

weights〈1×3×3×576〉
bias〈576〉

Relu6

Conv2D

filter〈96×1×1×576〉
bias〈96〉

Add

Conv2D

filter〈576×1×1×96〉
bias〈576〉

Relu6

D th i C 2D

1×16×16×96

1×8×8×576

1×8×8×160

1×8×8×160

1×8×8×960

1×8×8×960

1×8×8×160

1×8×8×160

1×8×8×160

1×8×8×960

1×8×8×960

1×8×8×160

1×8×8×160

DepthwiseConv2D

weights〈1×3×3×576〉
bias〈576〉

Relu6

Conv2D

filter〈160×1×1×576〉
bias〈160〉

Conv2D

filter〈960×1×1×160〉
bias〈960〉

Relu6

DepthwiseConv2D

weights〈1×3×3×960〉
bias〈960〉

Relu6

Conv2D

filter〈160×1×1×960〉
bias〈160〉

Add

Conv2D

filter〈960×1×1×160〉
bias〈960〉

Relu6

DepthwiseConv2D

weights〈1×3×3×960〉
bias〈960〉

Relu6

Conv2D

filter〈160×1×1×960〉
bias〈160〉

Add

Conv2D

1×32×32×32

1×32×32×128

1×16×16×96

1×16×16×128

1×8×8×960

1×8×8×960

1×8×8×320

1×8×8×320

1×8×8×1281×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×16×16×128

1×16×16×128

1×16×16×128

1×32×32×128

1×32×32×128

1×32×32×128

DepthwiseConv2D

weights〈1×1×1×32〉
bias〈32〉

Conv2D

filter〈128×1×1×32〉
bias〈128〉

DepthwiseConv2D

weights〈1×1×1×96〉
bias〈96〉

Conv2D

filter〈128×1×1×96〉
bias〈128〉

filter〈960×1×1×160〉
bias〈960〉

Relu6

DepthwiseConv2D

weights〈1×3×3×960〉
bias〈960〉

Relu6

Conv2D

filter〈320×1×1×960〉
bias〈320〉

DepthwiseConv2D

weights〈1×1×1×320〉
bias〈320〉

Conv2D

filter〈128×1×1×320〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
Mul

B〈128〉

Mul

B〈128〉

ResizeNearestNeighbor

2〈2〉

Add

DepthwiseConv2D

weights〈1×3×3×128〉

ResizeNearestNeighbor

2〈2〉

Add

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

1×2×2×128

1×2×2×1281×2×2×128

1×4×4×128

1×4×4×1281×4×4×128

1×8×8×128

1×8×8×1281×8×8×128

1×16×16×128

1×16×16×1281×16×16×128 1×32×32×1281×32×32×128

1×32×32×128 1×16×16×128 1×8×8×128 1×4×4×128 1×2×2×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×32×32×128 1×16×16×128 1×8×8×128 1×4×4×128 1×2×2×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×32×32×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×16×16×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×8×8×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×4×4×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

1×2×2×128

bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

〈 8〉

Add

B〈128〉

〈 8〉

Add

B〈128〉

bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈128×1×1×128〉
bias〈128〉

Relu6

DepthwiseConv2D DepthwiseConv2D DepthwiseConv2D DepthwiseConv2D DepthwiseConv2D

1×32×32×128

1×32×32×36

1×16×16×128

1×16×16×36

1×8×8×128

1×8×8×36

1×4×4×128

1×4×4×36

1×2×2×128

1×2×2×36

1×32×32×128

1×32×32×18

1×16×16×128

1×16×16×18

1×8×8×128

1×8×8×18

1×4×4×128

1×4×4×18

1×2×2×128

1×2×2×18

1×9216×2 1×9216×41×2304×2 1×2304×41×576×2 1×576×41×144×2 1×144×41×36×2

1×12276×2

1×12276×2

1×36×4

1×12276×4

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈36×1×1×128〉
bias〈36〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

DepthwiseConv2D

weights〈1×3×3×128〉
bias〈128〉

Conv2D

filter〈18×1×1×128〉
bias〈18〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Reshape

shape〈3〉

Concatenation

Logistic

Reshape

shape〈3〉

Concatenation

detection_boxes

detection_scores

KROMIUM T. TECHNICAL DRAWINGS

T Technical drawings

T.1 Robot design iteration one

T.1.1 Arm cover iteration one

 90,00

 66,00

 40,00

 R5,00 R2,00

 5,00

 10,00

 4,00

 5
,0

0
 1

5,
00

 1

5,
07

 2

0,
42

 3

1,
08

 56,00

 4
0,

00

 6
4,

93

 7
1,

28

 7
6,

00

 8
0,

00

 76,00

 49,85

 18,20

 5
9,

58

 7
0,

00
 A

A

SCALE 1.5:1
 7,00

 3,00

 7,00
 3,00

 6,00

 2,00

 3,00

SECTION A-A
SCALE 1.5 : 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 3

A3

WEIGHT:

Adrian Elias Haugjord

Car to arm interface

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.1: Car to arm interface technical drawing

366

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

 5,00

 5
,0

0

 5
0,

00

 5
5,

00

 53,31

 3
0,

00

 R1,00

 2,00

 R1,00
 38,00

 1
9,

58
 3
9,

17

 76,00

 R2,50
 1

,0
0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 2 OF 3

A3

WEIGHT:

Car to arm interface cover

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.2: Car to arm interface cover technical drawing

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 3 OF 3

A3

WEIGHT:

Car to arm interface
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.3: Car to arm interface assembly technical drawing

367

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

T.1.2 Car cover iteration one

 1
15

,0
0

 160,00

 122,00

 7
5,

00

 153,00
 140,00

 10,00

 30,00

 9
0,

00

 1
2,

50

 3
,5

0 4x 3,50

 5
,0

0 1
0,

00

 1
0,

00

 40,00

 1
0,

00

 3
0,

00

 4x 4,00

 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A3

WEIGHT:

Wood top
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.4: Top of the temporary cover

 6
0,

00

 10,00

 30,00

 153,00
 160,00

 3
,5

0
 1

0,
00

 2
0,

00

 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A3

WEIGHT:

Wood rear
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.5: Rear part of the temporary cover

368

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

 1
10

,0
0 6

0,
00

 1
0,

00

 10,00

 2
0,

00

 20,00

 115,00

 30,00

 60,00

 R56,67

 3,50 3
,5

0

 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A3

WEIGHT:

Wood side
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.6: Rear side piece of the temporary cover

 0
 3,50

 110,00

 0

 9
,0

0
 1

9,
00

 2

9,
00

 3

9,
00

 4

9,
00

 5

9,
00

 6

9,
00

 7

7,
00

 3,50

 2
5,

00

 30,00

 R10,00

 38,50

Left side

Right side

Left side

Right side

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A3

WEIGHT:

Wood front side
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.7: Front side part of the temporary cover

369

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.8: Assembly of the temporary cover

T.1.3 Camera holder iteration one

 5,75
 22,75
 50,00

 2
,5

0
 1

7,
50

 35,00
 40,00

 1
0,

00

 4,00

 4x R5,00 40,00

 3
0,

00

 4x 4,00

 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:2:1 SHEET 1 OF 1

A3

WEIGHT:

Leg holder base
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.9: Base for temporary camera support

370

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

 2
0,

00

 5
,0

0

 2
5,

00

 17,50
 22,50
 40,00

 1
1,

50

 10,00

 R5,00

 2x R10,00

 2,50
 25,00

 4,00

 1
5,

00

 5,00 2x R5,00

 1
6,

30

 6,50
 2x R10,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A3

WEIGHT:

Small cam attach
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.10: Holder for the temporary camera

 30,00

 1
0,

00

 4
0,

00

 5
,0

0
 5

,0
0

 8
7,

50

 R15,00

 2x 4,00

 8
5,

00

 3,50

 1
00

,0
0

 3,25

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A3

WEIGHT:

Cam attach leg
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.11: Legs for the temporary camera

371

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

 11,00
 17,50

 2
0,

00

 1
5,

00

 5
,0

0

 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:2:1 SHEET 1 OF 1

A3

WEIGHT:

Cam attach leg stabilizer
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.12: Stabilizer for the camera legs

 5,00

 8,00 11,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:5:1 SHEET 1 OF 1

A3

WEIGHT:

Leg spacer
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.13: Spacer for the camera legs

372

KROMIUM T.1 ROBOT DESIGN ITERATION ONE

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.14: Temporary camera support assembly

T.1.4 Shock absorber iteration one

 4
4,

00

 90,00

 2
3,

50

 R3,0
0

 50,00
B

B

 2,00
 5,00

2,

00

5,

00

SECTION B-B

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 2 OF 2

A3

WEIGHT:

Front shock absorber
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.15: Shock absorber front short

373

KROMIUM T.2 ELECTRONICS

 4
4,

00

 125,00

 2
3,

50

 R3,0
0

 50,00
A

A

 2,00
 5,00

2,

00

5,

00

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 2

A3

WEIGHT:

Front shock absorber
SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.16: Shock absorber front long

T.2 Electronics

T.2.1 Motor expansion board YB-ERF01-V1.0 dimensions

Figure T.17: Caption

374

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

T.3 Final parts technical drawings

T.3.1 Floors

 4xR2,00

 180,00

 3
00

,0
0

A1

A2

A3
A4

B1

B2

C1

C2

A5

A6

A7
A8

B3

B4

B5

B6

C3

C4

B7

B8

B9

B10

B11

B12

A9

A10

A11

A12

C5

B13
B14

B15
B16

A13

A14

A15

A16

C6

X

Y

0
0

 3,00

See table for
x- and y- location,
and dimensions
for holes

TAG X LOC Y LOC SIZE
A1 8 10 3,50 THRU
A2 8 40 3,50 THRU
A3 8 260 3,50 THRU
A4 8 290 3,50 THRU
A5 32 10 3,50 THRU
A6 32 40 3,50 THRU
A7 32 260 3,50 THRU
A8 32 290 3,50 THRU
A9 148 10 3,50 THRU
A10 148 40 3,50 THRU
A11 148 260 3,50 THRU
A12 148 290 3,50 THRU
A13 172 10 3,50 THRU
A14 172 40 3,50 THRU
A15 172 260 3,50 THRU
A16 172 290 3,50 THRU
B1 19,95 56,25 3,10 THRU
B2 19,95 243,75 3,10 THRU
B3 62,50 17,50 3,10 THRU
B4 62,50 282,50 3,10 THRU
B5 72,50 17,50 3,10 THRU
B6 72,50 282,50 3,10 THRU
B7 107,50 17,50 3,10 THRU
B8 107,50 282,50 3,10 THRU
B9 117,50 17,50 3,10 THRU

B10 117,50 282,50 3,10 THRU
B11 130,05 56,25 3,10 THRU
B12 130,05 243,75 3,10 THRU
B13 162,50 80 3,10 THRU
B14 162,50 90 3,10 THRU
B15 162,50 210 3,10 THRU
B16 162,50 220 3,10 THRU
C1 30 55 3,00 THRU
C2 30 245 3,00 THRU
C3 90 8 3,00 THRU
C4 90 292 3,00 THRU
C5 155 245 3,00 THRU
C6 174 70 3,00 THRUA A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Robot car bottom floor

5052-H32 431.58

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.18: Robot car bottom floor

375

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 93,50

 183,50
 133,50 4

,0
0

 1
26

,5
0

 2
01

,5
0

 1
99

,0
0

 2
34

,0
0

 3
04

,0
0

 3
08

,5
0

 71,50

 3,50

 3,00

 R1,00

 2 x R17,50

 2 x R2,00

 3 x R1,00
 R1,00

 R1,00 R2,00

 2 x R1,00

 2 x R1,00

 R1,00

Page one contains
meassurements for
the plate, while
page two contains
locations and
dimensions for
the holes

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

2

Robot car middle floor

5052-H32 408.86

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

32 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.19: Robot car middle floor

 190,00
 150,00

 R42,50

 4
0,

50

 1
47

,0
0

 2
12

,0
0

 2
19

,0
0

 3
06

,0
0

 52,50

 3,50
 114,50

 1
54

,5
0

 R17,50

 R17,50

 R10,00

 R10,00

 8xR2,00

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

X

Y

0
0

 3,00

TAG X LOC Y LOC SIZE
A1 -171 99,50 3,00 THRU
A2 -171 204,50 3,00 THRU
A3 -135 129,50 3,00 THRU
A4 -135 169,50 3,00 THRU
A5 -106,50 199,50 3,00 THRU
A6 -86 24,50 3,00 THRU
A7 -85 129,50 3,00 THRU
A8 -85 169,50 3,00 THRU
A9 -65 299,50 3,00 THRU
A10 -60 224 3,00 THRU
A11 -60 284 3,00 THRU
A12 -52,50 303 3,00 THRU
A13 -20 224 3,00 THRU
A14 -20 284 3,00 THRU
A15 -13,50 138 3,00 THRU
A16 -10 9,50 3,00 THRU
A17 -10 299,50 3,00 THRU
A18 -7 215,50 3,00 THRU
A19 -6,50 141,50 3,00 THRU

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Robot car top floor Rev. 2

5052-H32 334.89

1:2

17.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

2

57 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.20: Robot car top floor

376

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 38,14°

 49,65

 117,50

 92,50
 101,50

 5
5,

00

 5
0,

00

 15,00

 5,00

 3
,0

0

 5,00

 9xR2,50
 R1,00

 R2,50

 16,25

 61,25

 8xR1,00

 R1,00

 R1,00

 5 x R1,00

 8xR2,00

 3xR2,00

 R1,00

 5
2,

70

 1
02

,2
5

 1
62

,7
5

 1
19

,2
5

 3
,0

0

 1
46

,5
5

 97,50

 109,90

 100,70
 106,70

 1
80

,5
0

 1
71

,7
5

 3,00

Revision 2: added
entryway for waterjet.

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

2

Robot roof house roof Rev. 3

HexPly 8552 81.48

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

3

66 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.21: Robot car roof

T.3.2 Walls

 193,00

 76,50

 116,50

 110,00

 165,00

 61,50

 73,50

 66,50

 93,50

 81,50
 111,50

 126,50

 124,00
 139,00

 131,50

 4
,5

0
 1

8,
00

 4
3,

00

 6
7,

50

 1
5,

00

 2
5,

00

 3
5,

00
 8

0,
00

 9

0,
00

 1

00
,0

0

 4xR1,00 8 x 3,18

 7
8,

50

 4 x 4,00

 12xR2,50

 3,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Front wall Rev. 2

HexPly 8552 101.28

1:1,5

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

2

84 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.22: Robot car front wall

377

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 6
6,

00

 6
6,

50
 1

19
,0

0 1
72

,0
0

 30,00

 50,00
 70,00

 82,50
 97,50

 90,00
 105,00

 180,50

 212,50
 227,50

 244,00
 310,00

 8x 3,18

 R2,00

 R2,00 R2,00

 7xR1,00

 7
7,

50

 3
,5

0

 3,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Left lower wall Rev. 2

HexPly 8552 176.24

1:2

15.05.2024 A3 1

Detial

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

2

90 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.23: Robot car left wall

 242,00

 170,00

 20,00

 47,50
 62,50

 78,50
 98,50

 122,50
 137,50

 6
0,

00

 6
5,

00
 1

19
,0

0

 6
6,

50

 7
8,

00

 R2,00

 R2,00

 6xR1,00 3,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Right wall

HexPly 8552 109.98

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

92 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.24: Robot car right wall

378

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 40°

 20x 5,00

 8
3,

59

 18,75

 33,00

 48,00
 60,50

 73,00

 88,00

 65,50

 80,50

 110,50
 125,50
 130,50

 118,00

 191,00

 5
,0

0
 1

8,
00

 4

3,
00

 6

8,
00

 1
73

,0
0

 R2,00

 5xR1,00

 1
10

,4
1

 82,50

 40°

 1
56

,4
1

 1
29

,5
9

 3,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO2768-mK

1

Rear wall

HexPly 8552 109.91

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

91 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.25: Robot car rear wall

 1
03

,0
0

 1
1,

50

 4
1,

50

 5
3,

00

 6
1,

00

 9
5,

00
 R2,00

 5xR1,00

 4x 3,18

 90,00
 80,00

 118,50

 127,00

 3
,0

0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian ELias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Raspberry pi house side wall

HexPly 8552 52.23

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

67 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.26: Raspberry Pi house large wall

379

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 5
0,

00

 50,50 4xR1,00

 2x 3,18

 5,00

 8
,0

0

 1
7,

00

 25,25

 1
6,

50

 2xR13,00
 4

2,
00

 26,00

 3
,0

0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian ELias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Robot roof house wall with hole

HexPly 8552 7.23

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

68 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.27: Raspberry Pi house open wall

 5
3,

00

 72,50

 4xR1,00

 1
1,

50

 4
1,

50

 7,50

 2 x 3,18

 3
,0

0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Small wall behind arm camera

HexPly 8552 18.02

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

79 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.28: Wall behind robot arm camera

380

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 80,00

 9,50

 68,00

 1
1,

00

 4
2,

00
 4x 3,18

 5
0,

00

 9
,0

0

 66,00
 10,00

 3
,0

0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Vegg tak

HexPly 8552 18.69

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

69 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.29: Raspberry Pi house middle wall

T.3.3 Expansion board brackets

 8
,0

0
 8

,5
0

 4
,0

0

 2xR1,00
AA

 40,00

 5
0,

00

 6
0,

40

 77,00
 49,40

 71,00

 42,00
 6,00

 4
6,

00

 6
,0

0

 24xR2,00

 3
8,

00

 26,00

 4xR2,00

 1
5,

00

 53,40

B

B

F

G

SECTION A-A

 8,50

 2,00
 4,00

3,

00

7,

00

SECTION B-B
 4xR1,50

 1
,0

0

DETAIL F
SCALE 2 : 1

 10° 5
,6

7

DETAIL G
SCALE 2 : 1

 4xR1,00 5,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Motor expansion board snap fastener bottom Rev. 2

Clas Ohlson PLA 19.12

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

2

58 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.30: Motor expansion board snap bracket bottom

381

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 89,40

 6,00

 15,00

 1
4,

20

 2
0,

20

 4
2,

20

 4
6,

20

 6
0,

40

 85,40

 6,20

 6
,2

0

 7,40

 7
,4

0

 8,00
 6,00

 8
,2

0
 9

,4
0

 8xR0,50
 1

5,
00

 5
8,

40

A

A

 4
,5

0

 2xR1,00

 2
,0

0

 2
,0

0

 4,80

 2,00

 65,40
 53,80

 4
9,

00

 5,70

 63,70

 2xR1,50

 8xR4,00

 8xR2,00
 2xR2,00

C

C

 2
,0

0

 2
,0

0
 3

,0
0

 R1,0
0

 2
,0

0

 5,00
 3,00

 6
,0

0

SECTION A-A

 4xR1,50

 8xR2,00

SECTION C-C

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Motor expansion board snap fastener top

Clas Ohlson PLA 10.89

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

59 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.31: Motor expansion board snap bracket top

 11,70

 15,00

 R1,00

 2
,5

0

 2,00
 4,80

 73,40
 65,40
 60,00

 45,00

 6
4,

40

 5
6,

40

 5
2,

00

 4
2,

00

 4
9,

50

 58,00

 12xR2,00

 4xR1,00

 2xR5,00

 2
,0

0

AA

 R2,00

 2,00

 2
0,

00

 4
,0

0
 4

,5
0

 45,00

 3,00

 1
,8

0
 3

,0
0

 4
,0

0

 4x 5,00
 4x 3,00

SECTION A-A
A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian ELias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

USB hub snap fastener top

Clas Ohlson PLA 10.49

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

54 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.32: USB hub snap bracket top

382

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 2,00

 2
,0

0 2xR1,00

 4,00

 4
,0

0

 75,00

 40,00

 5
0,

00

 6
4,

40

 6
0,

00

 4
2,

00

 1
5,

00

 49,40
 1

,0
0

 71,00

 4xR1,00

 4xR1,00

 32,00
 12xR2,00

AA

B

C

 3
,0

0 4x 3,00
 4x 5,00

SECTION A-A
 80° 5

,8
7

DETAIL B
SCALE 2 : 1

 4xR1,50

DETAIL C
SCALE 2 : 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

USB hub snap fastner bottom

Clas Ohlson PLA 14.54

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

52 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.33: USB hub snap bracket bottom

T.3.4 Raspberry Pi case bracket

 3
,0

0
 1

,5
0

 9
,0

0

 25,25

 39,50

 49,75

 35,25

 59,75

 2
3,

00

 2
7,

00

 3
1,

00

 2
5,

00

 2
9,

00

 3
3,

00

 45,50

A

A

 3
,0

0
 6

,0
0

 8,50
 14,00

 5
6,

00

 85,00

 2
3,

00

 3
3,

00

 6,00
 17,50

 27,50
 35,25

 49,75
 75,50
 79,00

 39,50
 45,50

 22,50 80,50

 3
,5

0

 5
2,

50

 4 x 3,00

 6xR1,00

 8
,5

0
 1

8,
00

 8xR1,00

 4xR2,00

 1
0,

00

 4
6,

00

 1,50

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Raspberry pi r and w case sideways fastener top Rev. 2

Clas Ohlson PLA 20.85

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

2

63 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.34: Raspberry Pi bracket top

383

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 4
2,

00

 4
3,

00

 5
2,

00

 8
,0

0
 4

8,
00

 5
6,

00

 85,00

 12,50
 72,50

 32,00
 35,00

 50,00
 53,00

 4xR5,00

 4x 3,00

 3,00
 6,50

 9,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian ELias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Raspberry pi red and white case sideways fastener bottom

Clas Ohlson PLA 20.86

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

64 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.35: Raspberry Pi bracket bottom

T.3.5 Magnet brackets

 20,00
 14,00

 1
4,

00

 5
,0

0

 2x 3,00

 2x 5,00

 4xR1,00

 2
,0

0

SCALE 2:1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Magnet fastener wall bottom

Clas Ohlson PLA 0.59

5:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

86 3MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.36: Magnet bracket wall bottom

384

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 10,40
 14,00

 1
4,

00

 1
0,

40

 2x 3,00

 2xR2,50

 4xR1,00

 20,00

A

A

 7
,0

0
 2

,0
0

 5,20

SECTION A-A

SCALE 2:1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Magnet fastener wall top

Clas Ohlson PLA 1.12

5:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

87 3MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.37: Magnet bracket wall top

 23,20
 25,00

 1
7,

00

 1
,8

0

 1
5,

00

 7
,5

0

 7,20

 17,20

 2x 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Magnet house car back

Clas Ohlson PLA 1.33

2:1

10.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

50 3MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.38: Magnet bracket car back

385

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 10,40

 7
,0

0

 1
0,

40

 2,30

A

A

 7
,0

0 1
7,

00

 7,50

 15,00

 2
5,

00

 3
2,

00

 2x 3,50

 5,20

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Magnet house car front

Clas Ohlson PLA 3.31

2:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

48 3MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.39: Magnet bracket car front

T.3.6 Brackets

 1
7,

00

 18,50

 2,00

 2
,0

0

 10,00

 1
2,

00

 R5,00

 3,50

 5,00

 13,50

 R5,00 3,50

 5
,0

0

SCALE: 2:1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

L bracket

Clas Ohlson PLA 0.75

5:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

80 2MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.40: L bracket

386

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 4
1,

00

 3
,5

0

 3
7,

50

 8
,0

0
 3

3,
00

 9,22
 4,54

 38,14°

 1
,5

0 2,00

 2
,0

0

 19,31

 7,31

 2xR2,00

 6
,5

0

 3
7,

50

 4
1,

00

 9,00

 1
,5

0

 8
,0

0

 3
3,

00

 5x 4,50 4xR3,00

 8,25

 1,
50

 1
2,

00

 6
,5

2

 12,92

 9,00

 R5,00

 2xR3,00

 R6,00

 14,06

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Top floor opening to wall fastener

Clas Ohlson PLA 3.04

2:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

96 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.41: Top floor opening to wall bracket

 4xR3,00

 43,00
 38,50

 4,50
 3,50

 2,00

 1
0,

00

 5x 3,50

 9,00
 6,29

 7
,8

6

 3
,0

0

 R2,00

 R2,00

 2,00

 2,00

 1
4,

03

 11,03

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Other bent connector top

Clas Ohlson PLA 2.96

2:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

71 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.42: Top floor other bracket

387

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 2 x 3,10

 1
0,

00

 17,50

 1
5,

00

 15,00

 1
0,

10

 1
4,

10

 10,00
 9,10

AA

 5
,0

0
 2

,5
0

 2
,5

0

 5,10
 9,10

 2,45 SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Wall attachment bracket female

Clas Ohlson PLA 0.82

5:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

31 12MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.43: Wall attachment bracket female

 15,00

 2 x 3,10

 7
,0

0

 25,00

 10,00

 15,00

 8,00

 17,00

 2
,5

0
 5

,0
0

 7
,5

0

 1
0,

00

 2
,5

0
 7

,5
0

 1
7,

50

 45°

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Wall attachment bracket male

Clas Ohlson PLA 1.97

2:1

15.05.2024 A3 1

Detail

2nd itteration

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

85 12MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.44: Wall attachment bracket male

388

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 4
4,

00

 4
0,

00

 3
0,

00

 8,25
 32,25

 40,50
 38,50

AA

 R20,00

 2xR6,50

 6x 3,20

 1
3,

00

 4
4,

00

 3
1,

00

 14,00
 13,50 2

,0
0

 2,00

 2
2,

00

 40,50
 4

2,
00

 R2,74

 2
,0

0

 90
°

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

520 DC motor fastener

Clas Ohlson PLA 9.21

1:1

15.05.2024 A3 1

Detail

3d printable

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

97 4MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.45: 520 DC motor bracket

 30,00

 71°

 2
,0

0

 4
5,

00

 45,75

 R2,74

 24,00

 2
4,

00

 1
0,

00

 25,00 19,80

 1
9,

80

 14,00

 7,50

 5,00

 4x 3,10

 4x 2,10

UP
 1

09
°

R
0.

74

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Arm cam holder fixed angle

Clas Ohlson PLA 6.27

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

98 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.46: Arm cam holder fixed angle

389

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 27,50

 15,00

 1
0,

00

 5
,4

0

 5,50

 4 x R1,00

 26,64

 7,06

 4x 3,50

A

A

 22,00
 32,00
 52,00

 2
9,

50
 2

,0
0

 2,00

 5 x R1,00

 6
,0

0

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Cam cable holder

Clas Ohlson PLA 6.31

2:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

99 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.47: Cam cable holder

23

,0
0

17

,0
0

30

,0
0

15

,0
0

10

,4
3

18

,8
0

8,

51

 R1,50

 0

 7
,2

0
 9

,2
8

 1
0,

57

 1
2,

19

 1
3,

19

 1
5,

83

 1
5,

00

 1
9,

83

 2
7,

50

 3
0,

00

 4
5,

00

 3
7,

50

 2 x 3,10

 10,00

 0

 2
5,

00

 2
7,

50

 3
0,

00

Two configurations,
one from each config.
Top drawing is the
config. "Lower", while
the bottom drawing is
the config. "Upper".

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Female connector holder

Clas Ohlson PLA 6.03

1:1

15.05.2024 A3 1

Detail

Lower

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

26 2MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.48: Female magnet connector bracket

390

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

 30,00

 41,39
 35,00

 3
7,

59

 4
0,

00

 3
7°

 47,54

 2
4,

51

 4xR2,00

 2x 3,50

 2xR4,00

 2,00

 27,20

 90°

A

A

 1
0,

00

 22,00

 13,00
 2x 3,50

 2xR4,50

 1
0,

00

 3
,8

0
 7

,0
0

 8,00

 3
,0

0

 2xR2,00

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Switch fastener left side

Clas Ohlson PLA 6.85

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

82 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.49: Power switch bracket left side

 30,00

 35,00

 41,39
 47,54

 4
0,

00

 2,00

 2
4,

51

 8
,0

0

 2x 3,50

 2xR4,00

 R2,00

 3
7,

59

 9
0°

 27,20
A

A

 3
,0

0

 1
0,

00

 6
,2

0

 8,00

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

ISO 2768-mK

1

Switch fastener right side

Clas Ohlson PLA 6.00

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

83 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.50: Power switch bracket right side

391

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

T.3.7 Battery drawer

 162,30
 167,50

 4 x 3,10

 177,50
 187,50
 197,50

 2 x R2,50

 8 x R2,50

 8 x R0,50

 5
,0

0

 1
15

,1
0

 1
25

,1
0

 1
30

,1
0 2 x R0,75

 7
,6

0

 1
0,

00

 1
20

,1
0

 1
5,

00

 4
1,

10

 1
27

,6
0

 2 x R1,00

 5
,0

0
 2

,5
0

 2
,6

0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian ELias Haugjord

ISO 2768-mK

1

Battery drawer rails

Clas Ohlson PLA 17.99

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

8 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.51: Battery drawer rails

 31,00

 37,50

 27,50

 2 x 3,10

 3
0,

00

 4
,5

0
 2

,5
0

 5
0,

00

 42,75
 9,50

 112,75

 165,00

 1
22

,5
0

 4 x R2,50

 4
3,

00

 7
3,

00

 16 x R1,50

 160,00

 2,50
 2,50

 8
9,

00

 2 x R0,75

 9
,5

0

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Battey drawer

Clas Ohlson PLA 122.54

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

9 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.52: Battery drawer

392

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

T.3.8 Yahboom battery case

 95,00

 9
5,

00

 4 x R5,00

 4 x R2,50

 90,00

 9
0,

00

 85,00

 8
5,

00
 AA

 5
,0

0

 2
,5

0

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Yahboom battery holder lid

Clas Ohlson PLA 31.35

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

110 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.53: Yahboom battery case lid

 9
5,

00

 95,00

 4 x R5,00

 4 x R2,50 80,00

 2
5,

00

 1
0,

00

 3
7,

50

 5
7,

50

 2
,5

0

 2,50

 50,00 10,00

 71,50

 2
7,

50

 20,75

 19,20

 5
0,

00

A

A

 2
,5

0

 4
0,

00

 10,00

 10,00

 1
7,

50

SECTION A-A

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Yahboom battery holder

Clas Ohlson PLA 88.28

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

111 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.54: Yahboom battery case

393

KROMIUM T.3 FINAL PARTS TECHNICAL DRAWINGS

T.3.9 KROMIUM battery

 0
 12,75
 24,75

 82,75
 94,75

 124,00
 126,50

 0

 2
6,

50

 3
8,

50

 4
5,

00

 5
6,

50

 6
5,

00

 6
8,

50

 1
10

,0
0

A

A

 4 x R2,50

 2,00

 20,75

 1
9,

20

 1
05

,0
0

 7,50
 3,50

 2
,0

0

 8
3,

50

 15,00

 2
,5

0

 2,00

B

SECTION A-A

 0
,7

5

 45°

 0,75

 5
,0

0

DETAIL B
SCALE 2 : 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

Battery assy box

Clas Ohlson PLA 112.56

1:2

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

108 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.55: KROMIUM battery case

 1
23

,0
0

 8
3,

00

 30,00
 80,00
 105,00

 55,00

 1
5,

00

 6 x R10,00

 3
4,

30

 5
3,

60

 7
2,

90

 8x 3,10

 3,50

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian ELias Haugjord

ISO 2768-mK

1

Battery cell holder seperator big Krom

Oak 19.39

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

102 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.56: KROMIUM battery cell separator holder

394

KROMIUM T.4 SUBASSEMBLY DRAWINGS

 110,00

 20,00

 5
5,

00

 60,00

 1
5,

00

 2
5,

00

 4
8,

00

 103,00

 4 x R2,50

A

A

 6,50

 1,50
 5,00

 45°

SECTION A-A

 5
1,

00

 106,00

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

ISO 2768-mK

1

End cover w. mag Krom

Clas Ohlson PLA 12.99

1:1

15.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

109 1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.57: KROMIUM battery case lid

T.4 Subassembly drawings

6

6

2

1

4

53

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 520 DC motor
fastener Clas Ohlson PLA 9.21 1

2 JGB-520 DC motor Material <not
specified> 150.00 1

3 MecanumWheel.stp 1

4 Wheel covers HexPly 8552 20.21 1

5 Washer 0.11 10

6 M2,5 screw 0.55 10
A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Motor assembly Front left & back right

336.03

1:1

16.05.2024 A3 1

Assembly

Front left & back right

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

2MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.58: Motor assembly Front left & back right

395

KROMIUM T.4 SUBASSEMBLY DRAWINGS

3
6 5

4

1

2

6

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 520 DC motor
fastener Clas Ohlson PLA 9.21 1

2 JGB-520 DC motor Material <not
specified> 150.00 1

3 MecanumWheel.stp 1

4 Wheel covers HexPly 8552 20.21 1

5 Washer 0.11 10

6 M2,5 screw 0.55 10
A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Motor assembly Front right & back left

336.03

1:1

16.05.2024 A3 1

Assembly

Front right & back left

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

2MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.59: Motor assembly Front right & back left

7

9

11

8

1

2

10

12

ITEM NO. PART NUMBER QTY.
1 Battery cell holder 2

2 Battery cell holder
seperator big 1

3 Wire short 6
4 Wire short 1
5 Negative to out 1
6 pos to neg 1
7 M2.5 x12 mm 4
8 Nut M2.5 4

9 RS PRO magnetic
male connector 1

10 Battery assy box 1
11 End cover w. mag 1
12 18650 cell 6

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian ELias Haugjord

1

Battery assy

1:2

15.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.60: KROMIUM battery assembly

396

KROMIUM T.4 SUBASSEMBLY DRAWINGS

2
7

8

1

4

6

5

3

ITEM NO. PART NUMBER QTY.
1 Battery drawer rails 1
2 Battey drawer 1

3 Female connector
holder 1

4 Female connector
holder 1

5 Female connector 1
6 M2.5 x10 mm 2
7 Nut M2.5 2
8 Battery assy 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Betrtelsen

Adrian ELias Haugjord

1

Battery drawer assy

661.46

1:2

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.61: KROMIUM battery drawer assembly

3

2

4

1

5

ITEM NO. PART NUMBER QTY.
1 Battey drawer 1
2 Female connector 1

3 Female connector
holder 1

4 Female connector
holder 1

5 Yahboom battery
assy 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian ELias Haugjord

1

Battery Yahboom drawer assy

1:2

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.62: Yahboom battery drawer assembly

397

KROMIUM T.4 SUBASSEMBLY DRAWINGS

3

1

2

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 Magnet house car
front Clas Ohlson PLA 3.31 1

2 Magnet 1

3 Magnet house car
back Clas Ohlson PLA 1.33 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Magnet car mount assembly

Material <not specified> 9.09

2:1

10.05.2024 A3 1

Assembly overview

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

3ITEM NO.: QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.63: Magnet car mount assembly

2

3

1

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 Magnet fastener
wall bottom Clas Ohlson PLA 0.59 1

2 Magnet fastener
wall top Clas Ohlson PLA 1.12 1

3 Magnet 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Magnet wall mount assembly

Material <not specified> 6.15

2:1

10.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

3ITEM NO.: QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.64: Magnet wall mount assembly

398

KROMIUM T.4 SUBASSEMBLY DRAWINGS

5

3

1

2

4

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 Motor expansion board
snap fastener bottom Clas Ohlson PLA 19.12 1

2 Motor expansion board
snap fastener top Clas Ohlson PLA 10.89 1

3 Motor control board Material <not
specified> 46.00 1

4 M2 screw Plain Carbon Steel 0.36 4

5 Nut 0.31 4

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Motor expansion board snap fastener assembly

78.69

1:1

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.65: Motor expansion board snap bracket assembly

4

5

2

1

3

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 Power switch 10.45 1

2 Switch fastener left side Clas Ohlson PLA 6.85 1

3 Switch fastener right
side Clas Ohlson PLA 6.00 1

4 M2,5 screw 0.55 2

5 Nut 0.29 2

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Power switch assembly

24.97

1:1

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.66: Power switch bracket assembly

399

KROMIUM T.4 SUBASSEMBLY DRAWINGS

4

1

3

5

6

2

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 Red and white case Material <not
specified> 13.38 1

2 RASPBERRY_PI_5 1

3
Raspberry pi r and w
case sideways fastener
top

Clas Ohlson PLA 20.85 1

4
Raspberry pi red and
white case sideways
fastener bottom

Clas Ohlson PLA 20.86 1

5 M2 screw Plain Carbon Steel 0.36 4

6 Nut 0.31 4

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Raspberry pi with red and white case

76.58

1:2

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.67: Raspberry Pi bracket assembly

1

3

2

4

5

ITEM NO. PART NUMBER Material Weight(grams) QTY.

1 USB hub snap fastner
bottom Clas Ohlson PLA 14.54 1

2 USB hub Material <not
specified> 36.50 1

3 USB hub snap fastener
top Clas Ohlson PLA 10.49 1

4 M2 screw Plain Carbon Steel 0.29 4

5 Nut 0.31 4

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

USB hub assembly

63.91

1:1

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.68: USB hub snap bracket assembly

400

KROMIUM T.4 SUBASSEMBLY DRAWINGS

2

1

ITEM NO. PART NUMBER QTY.

1 Wall attachment
bracket female 1

2 Wall attachment
bracket male 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

1

Wall attachment bracket assy

Material <not specified> 2.79

2:1

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

12MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.69: Wall attachment bracket assembly

4

1

3

2

ITEM NO. PART NUMBER DESCRIPTION QTY.

1 Yahboom battery
holder 1

2 Yahboom battery
holder lid 1

3 Yahboom batery
pack 1

4 RS PRO magnetic
male connector 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Henrik Bertelsen

Adrian Elias Haugjord

1

Yahboom battery assy

576.13

1:2

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.70: Yahboom battery case assembly

401

K
R

O
M

IU
M

T.4
SU

B
A

SSE
M

B
LY

D
R

A
W

IN
G

S

402

K
R

O
M

IU
M

T.5
FL

O
O

R
A

SSE
M

B
L

IE
S

T.5 Floor assemblies

2

3

10

8

1

4

9

6
7

5

Henrik Bertelsen

ITEM NO. PART NUMBER
SW-Configuration

Name(Configuration
Name)

Material Weight(grams) QTY.

1 Robot car bottom floor Default 5052-H32 431.58 1

2 motor assembly Front right & back left 336.03 2

3 motor assembly Front left & back right 336.03 2

4 Nut M2,5 0.29 33

5 Battery drawer assy Default 661.46 1

6 Washer M3 0.11 9

7 M2,5 screw 10mm 0.55 16

8 Sylinder spacer 60 mm 1060 Alloy 2.04 5

9 M2,5 screw 6mm 0.40 5

10 Wall attachment
bracket female Default Clas Ohlson PLA 0.82 6

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO. 1

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:2

2473.49

Bottom floorAdrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

1 1SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.71: Bottom floor assembly

403

K
R

O
M

IU
M

T.5
FL

O
O

R
A

SSE
M

B
L

IE
S

14

1

10

138

6

5
3

11

7

2

9

12

Henrik Bertelsen

ITEM NO. PART NUMBER
SW-Configuration

Name(Configuration
Name)

Material Weight(grams) QTY.

1 Robot car middle floor Default 5052-H32 408.86 1

2 Sylinder spacer 60 mm 1060 Alloy 2.04 1

3 Sylinder spacer 50 mm 1060 Alloy 1.70 5

5 Hexagon sylinder Default 1060 Alloy 3.19 1

6 Washer M3 0.11 23

7 M2,5 screw 6mm 0.40 11

8 M2,5 screw 12mm 0.63 6

9 M2,5 screw 10mm 0.55 16

10 Basic arm assembly Default 607.00 1

11 Magnet car mount
assembly Default Material <not

specified> 9.09 3

12 Nut M2,5 0.29 20

13 Wall attachment
bracket female Default Clas Ohlson PLA 0.82 6

14 USB hub assembly Default 63.91 1

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO. 1

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:2

1150.86

Middle floor_2Adrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

1 1SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.72: Middle floor assembly

404

K
R

O
M

IU
M

T.5
FL

O
O

R
A

SSE
M

B
L

IE
S

3

2

1

8

4 5

2

7

6

Henrik Bertelsen

SCALE 1:2SCALE 1:2

ITEM NO. PART NUMBER Configuration Material Weight(grams) QTY.

1 Robot car top floor Default 5052-H32 334.89 1

2 Motor expansion board
snap fastener assembly Default 78.69 1

3 Raspberry pi with red
and white case Default 76.58 1

4 Washer M2,5 0.11 14

5 M2,5 screw 10mm 0.55 8

6 M2,5 screw 5mm 0.36 3

7 Nut M2,5 0.29 8

8 Hexagon sylinder Default 1060 Alloy 3.19 3

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO. 1

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:1

509.05

Top floorAdrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

1 1SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.73: Top floor assembly

405

K
R

O
M

IU
M

T.5
FL

O
O

R
A

SSE
M

B
L

IE
S

12

4

2

14

9

7

15

113

6

1

16

13

17

SCALE 1:2 SCALE 1:2

SCALE 1:2

SCALE 1:2

Henrik Bertelsen

ITEM NO. PART NUMBER Configuration Material Weight(grams) QTY.

1 Robot roof house roof Default HexPly 8552 81.48 1

2 Raspberry pi house side
wall Default HexPly 8552 52.23 1

3 Robot roof house wall
with hole Default HexPly 8552 7.23 1

4 Vegg tak Default HexPly 8552 18.69 1

6 Other bent connector Default Clas Ohlson PLA 2.96 1

7 Washer M2,5 0.11 16

8 Washer M2 0.13 2

9 M2,5 screw 8mm 0.47 14

10 M2,5 screw 10mm 0.55 2

11 Nut M2,5 0.29 16

12 Astra pro assembly Default 310.00 1

13 M2 screw 4mm Plain Carbon Steel 0.24 2

14 Small wall behind arm
camera Default HexPly 8552 18.02 1

15 L bracket Default Clas Ohlson PLA 0.75 2

16 Power switch Default 24.97 1

17 Top floor opening to
wall fastener print først Clas Ohlson PLA 3.03 1

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO. 1

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:1

534.94

RoofAdrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

1 1SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.74: Robot roof assembly

406

KROMIUM T.6 WALL ASSEMBLIES

T.6 Wall assemblies

5 4

8

8
2

3 7

8
5

ITEM NO. PART NUMBER Configuration Material Weight(grams) QTY.

1 Front wall Default HexPly 8552 101.28 1

2 Wall attachment
bracket male Default Clas Ohlson

PLA 1.97 3

3 Magnet wall
mount Default Material <not

specified> 6.15 1

4 Washer M2,5 0.11 8

5 M2,5 screw 12mm 0.63 2

6 M2,5 screw 10mm 0.55 6

7 Nut M2,5 0.29 12

8 Shock absorber
Kromium Default 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Front wall assembly

162.41

1:2

16.05.2024 A3 1

Detail

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.75: Front wall assembly

6

4

1

27

3

5

ITEM NO. PART NUMBER Configuration Material Weight(grams) QTY.

1 Left lower wall Default HexPly
8552 176.24 1

2 Wall attachment
bracket male Default Clas

Ohlson PLA 1.97 3

3 Magnet wall mount Default
Material

<not
specified>

6.15 1

4 Washer Default 0.11 8

5 M2,5 screw 12mm 0.63 2

6 M2,5 screw 10mm 0.55 6

7 Nut M2,5 0.29 8

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Left wall assembly

196.04

1:2

15.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.76: Left wall assembly

407

KROMIUM T.6 WALL ASSEMBLIES

1

4
6

2
3

5

ITEM NO. PART NUMBER Configuration Material Weight(grams) QTY.

1 Right wall Default HexPly 8552 109.98 1

2 Wall attachment
bracket male Default Clas Ohlson PLA 1.97 2

3 Magnet wall
mount Default Material <not

specified> 6.15 1

4 Washer M2,5 0.11 6

5 M2,5 screw 12mm 0.63 2

6 M2,5 screw 10mm 0.55 4

7 Nut M2,5 0.29 6

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Right wall assembly

125.91

1:2

16.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.77: Right wall assembly

4

3

6

6

1

2

5

ITEM NO. PART NUMBER Configuration Material Weight(grams) QTY.
1 Rear wall Default HexPly 8552 109.91 1

2 Wall attachment
bracket male Default Clas Ohlson

PLA 1.97 4
3 Washer M2,5 0.11 8
4 M2,5 screw 10mm 0.55 8
5 Nut M2,5 0.29 12
6 Shock absorber

Kromium Default 1

A A

B B

C C

D D

E E

F F

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN BY:

CHECKED BY:

GENERAL TOLERANCE

TITLE

ID

MATERIAL WEIGHT (grams)

SCALE

REV.

PROJECTION DOCUMENT TYPE

DATE:

Adrian Elias Haugjord

Henrik Bertelsen

1

Rear wall assembly

166.71

1:2

15.05.2024 A3 1

Assembly

Default

PAGE
OF

DIMENSIONS ARE IN MILLIMETERS

1

1MAIN ASSEMBLY ITEM NO. QTY.
NOTES:

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.78: Rear wall assembly

408

K
R

O
M

IU
M

T.7
M

A
IN

A
SSE

M
B

LY

T.7 Main assembly

409

K
R

O
M

IU
M

T.7
M

A
IN

A
SSE

M
B

LY

4

3

6

2

1

7

5

Henrik Bertelsen

ITEM NO. PART NUMBER Weight(grams) QTY.

1 Bottom floor 2486.13 1

2 Middle floor 1150.86 1

3 Washer 0.11 15

4 M2,5 screw 0.40 12

5 M2,5 screw 0.36 3

6 Top floor 509.05 1

7 Roof 531.91 1

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO. 1

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:2

4661.59

Robot assembly without shellAdrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

1 1SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.79: Robot assembly without walls

410

K
R

O
M

IU
M

T.7
M

A
IN

A
SSE

M
B

LY

5

4

3

2

1

Henrik Bertelsen

ITEM NO. PART NUMBER Weight(grams) QTY.

1 Robot assembly without
shell 4661.59 1

2 Front wall 162.41 1

3 Left wall 196.04 1

4 Rear wall 166.71 1

5 Right wall 125.91 1

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO.

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:2

5312.66

Robot assembly with shellAdrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

1 2SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.80: Robot assembly with shell

411

K
R

O
M

IU
M

T.7
M

A
IN

A
SSE

M
B

LY
Full assembly bill of materials

Henrik Bertelsen

ITEM NO. PART NUMBER Configuration Material Weight(grams) Total weight QTY.

1 Robot car bottom floor 5052-H32 431.58 431.58 1

2 JGB-520 DC motor Material <not
specified> 150.00 600 4

3 MecanumWheel.stp 120 480 4

4 Wheel covers HexPly 8552 20.21 80.84 4

5 Washer M3 0.11 17.05 155

6 M2,5 screw 10mm 0.55 59.4 108

7 Nut M2,5 0.29 33.93 117

8 Battery drawer rails Clas Ohlson PLA 17.99 17.99 1
9 Battey drawer Clas Ohlson PLA 122.54 122.54 1
11 Battery cell holder 0 2

110 Pole connector 0 16

111 able lug insulator 0 16

14 Cable lug metal part 0 16

16 M2.5 x10 mm 1060 Alloy 0.16 0.32 2

17 Nut M2.5 1060 Alloy 0.06 0.36 6

18 18650 cell 0 6

25 RS PRO magnetic male
connector

Material <not
specified> 6.50 6.5 1

26 Female connector
holder Clas Ohlson PLA 6.03 6.03 1

27 Female connector Material <not
specified> 9.40 9.4 1

28 Female connector
holder Clas Ohlson PLA 6.03 6.03 1

29 Sylinder spacer 1060 Alloy 2.04 12.24 6

30 M2,5 screw 6mm 0.40 11.2 28

31 Wall attachment
bracket female Clas Ohlson PLA 0.82 9.84 12

32 Robot car middle floor 5052-H32 408.86 408.86 1

33 Sylinder spacer 1060 Alloy 1.70 8.5 5

34 Hexagon sylinder 1060 Alloy 3.19 12.76 4

35 Base of arm 0 1

36 Servo 1-2 fastener 0 1

37 Simplefied arm double
male 0 2

38 Simplefied arm double
male 0 1

41 Raspberry pi camera Material <not
specified> 30.00 30 1

42 Golden fastner 0 4

43 Gripper base 0 1

44 Grip base 0 2

45 Grip end 0 1

46 Grip support 0 2

47 MirrorGrip end 0 1

48 Magnet house car front Clas Ohlson PLA 3.31 9.93 3

49 Magnet 0 6

50 Magnet house car back Clas Ohlson PLA 1.33 3.99 3

51 M2,5 screw 12mm 0.63 12.6 20

52 USB hub snap fastner
bottom Clas Ohlson PLA 14.54 14.54 1

53 USB hub Material <not
specified> 36.50 36.5 1

54 USB hub snap fastener
top Clas Ohlson PLA 10.49 10.49 1

55 M2 screw 5mm Plain Carbon
Steel 0.29 1.16 4

56 Nut M2 0.31 3.72 12

57 Robot car top floor 5052-H32 334.89 334.89 1

58 Motor expansion board
snap fastener bottom Clas Ohlson PLA 19.12 19.12 1

59 Motor expansion board
snap fastener top Clas Ohlson PLA 10.89 10.89 1

60 Motor control board Material <not
specified> 46.00 46 1

ITEM NO. PART NUMBER Configuration Material Weight(grams) Total weight QTY.

61 M2 screw 8mm Plain Carbon
Steel 0.36 2.88 8

62 Red and white case Material <not
specified> 13.38 13.38 1

63
Raspberry pi r and w
case sideways fastener
top

Clas Ohlson PLA 20.85 20.85 1

64
Raspberry pi red and
white case sideways
fastener bottom

Clas Ohlson PLA 20.86 20.86 1

65 M2,5 screw 5mm 0.36 2.16 6

66 Robot roof house roof HexPly 8552 81.48 81.48 1

67 Raspberry pi house side
wall HexPly 8552 52.23 52.23 1

68 Robot roof house wall
with hole HexPly 8552 7.23 7.23 1

69 Vegg tak HexPly 8552 18.69 18.69 1

71 Other bent connector Clas Ohlson PLA 2.96 2.96 1

72 M2,5 screw 8mm 0.47 6.58 14

73 Base joint 0 1

74 Top joint 0 1

75 Golden fastner 0 2

76 Camera (shit version) 0 1

77 Washer M2 0.13 0.52 4

78 M2 screw 3mm Plain Carbon
Steel 0.24 0.96 4

79 Small wall behind arm
camera HexPly 8552 18.02 18.02 1

80 L bracket Clas Ohlson PLA 0.75 1.5 2

81 Power switch 10.45 10.45 1

82 Switch fastener left side Clas Ohlson PLA 6.85 6.85 1

83 Switch fastener right
side Clas Ohlson PLA 6.00 6 1

84 Front wall HexPly 8552 101.28 101.28 1

85 Wall attachment
bracket male Clas Ohlson PLA 1.97 23.64 12

86 Magnet fastener wall
bottom Clas Ohlson PLA 0.59 1.77 3

87 Magnet fastener wall
top Clas Ohlson PLA 1.12 3.36 3

88 Shock absorber name 0 2

89 Shock absorber name
hollow 0 2

90 Left lower wall HexPly 8552 176.24 176.24 1

91 Rear wall HexPly 8552 109.91 109.91 1

92 Right wall HexPly 8552 109.98 109.98 1

94 RASPBERRY_PI_5 0 1

114 520 DC motor fastener Clas Ohlson PLA 9.21 36.84 4

113 Arm cam holder fixed
angle Clas Ohlson PLA 6.27 6.27 1

99 Cam cable holder Clas Ohlson PLA 6.31 6.31 1

102 Battery cell holder
seperator big Oak 19.39 19.39 1

103 Wire short 0 6

104 Wire short 0 1

105 Negative to out 0 1

106 pos to neg 0 1

107 M2.5 x12 mm 0 4

108 Battery assy box Clas Ohlson PLA 112.56 112.56 1

109 End cover w. mag Clas Ohlson PLA 12.99 12.99 1

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

NOTES:

QTY.MAIN ASSEMBLY ITEM NO.

1

DIMENSIONS ARE IN MILLIMETERS

OF
PAGE

Assembly

A116.05.2024

1:2

5312.66

Robot assembly with shellAdrian Elias Haugjord

DATE:

DOCUMENT TYPEPROJECTION

REV.

SCALE

WEIGHT (grams)MATERIAL

ID

GENERAL TOLERANCE

CHECKED BY:

DRAWN BY: TITLE

Default

2 2SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.81: Robot assembly bill of materials

412

KROMIUM T.8 PRODUCTION DRAWINGS

T.8 Production drawings

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.82: Parts layout for CNC machining

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure T.83: Parts layout for water jet cutting

413

KROMIUM U. ROBOT CODE DOCUMENTATION

U Robot code documentation

414

robot
Release 2.0.0

Kromium

May 15, 2024

CONTENTS:

1 interfaces 1
1.1 ArmAngles . 1
1.2 DepthData . 1
1.3 Message . 1
1.4 RobotData . 1
1.5 SwitchCamera . 1
1.6 VRMode . 2
1.7 VRDrive . 2
1.8 VRArm . 2
1.9 VRScrew . 2

2 vr_linker 3
2.1 vr_linker node . 3
2.2 vr_linker . 4
2.3 utils . 7

3 master 9
3.1 master node . 9
3.2 modes . 10

4 controller 11
4.1 controller node . 11
4.2 controller . 12
4.3 robot . 16
4.4 arm kinematics . 20
4.5 exceptions . 21
4.6 enums . 22
4.7 utils . 23
4.8 rosmaster . 24

5 ai_detection 31
5.1 detection . 31
5.2 database . 32
5.3 utils . 32

6 depth_data 35
6.1 depth data . 35
6.2 utils . 35

7 logger 37
7.1 logger_node . 37

i

7.2 logger . 37
7.3 utils . 38

8 robot 39
8.1 Important information . 39
8.2 Prerequisites . 40
8.3 Installation . 40
8.4 Running . 41
8.5 Development . 42
8.6 Documentation . 42

Python Module Index 45

Index 47

ii

CHAPTER

ONE

INTERFACES

Here are all the custom message interfaces used by the ROS 2 environment.

1.1 ArmAngles

uint8 rotation uint8 shoulder uint8 elbow uint8 tilt uint8 wrist uint8 pinch

1.2 DepthData

uint64 time int8[] x int8[] y int8[] z

1.3 Message

string message uint8 level

1.4 RobotData

geometry_msgs/Vector3 accelerometer geometry_msgs/Vector3 gyroscope geometry_msgs/Vector3 magnetometer
float32 cms_speed int8 speed int16 battery float32 voltage string mode

1.5 SwitchCamera

string camera bool flip_image bool draw_dot

1

robot, Release 2.0.0

1.6 VRMode

uint8 mode

1.7 VRDrive

float64 x float64 y int64 speed string drive_mode

1.8 VRArm

float64 x float64 y float64 z float64 wrist float64 strength

1.9 VRScrew

bool clockwise

2 Chapter 1. interfaces

CHAPTER

TWO

VR_LINKER

This is the node which connects the Meta Quest 3 VR headset to the ROS 2 ecosystem. It hosts a TCP socket server
the headset can connect to. Data received here gets sent to the ROS 2 ecosystem.

Subscribed topics
• robot_data (RobotData): The robot data received from the robot.

• arm_angles (ArmAngles): The arm angles received from the robot.

• depth_data (DepthData): The depth data received from the robot.

• vr_mode (VRMode): The VR mode data received from the robot.

• vr_arm (VRArm): The VR arm data received from the robot.

• vr_drive (VRDrive): The VR drive data received from the robot.

• message (Message): Message to be logged including level.

Published topics
• _vr_drive (VRDrive): The VR drive data received from the headset.

• _vr_arm (VRArm): The VR arm data received from the headset.

• _vr_mode (VRMode): The VR mode data received from the headset.

• _vr_screw (VRScrew): The VR screw data received from the headset.

• message (Message): Message to be logged including level.

2.1 vr_linker node

class robot.src.vr_linker.vr_linker.vr_linker_node.VRLinkerNode(*args: Any, **kwargs: Any)

listen()→ None
Listens for incoming connections and messages.

client_disconnected(e)→ None
Handles the case when the client disconnects.

Parameters
e – Exception message

cleanup()

Cleans up the node.

robot.src.vr_linker.vr_linker.vr_linker_node.main(args=None)

3

robot, Release 2.0.0

2.2 vr_linker

class robot.src.vr_linker.vr_linker.vr_linker.AnyMessage

class robot.src.vr_linker.vr_linker.vr_linker.VRLinker(node)

static _to_json(data: dict | bytes)→ str | bytes
Converts data to JSON.

Parameters
data – data to convert

Returns
JSON data as dict or bytes

_is_vr_connected()→ bool
Checks if the VR headset is connected.

Returns
True if the VR headset is connected

_send(data: dict)→ None
Sends data over the TCP socket.

Parameters
data – data

_send_compressed(data: dict)→ None
Sends compressed data over the TCP socket.

Parameters
data – data

static _get_vector_data(msg, key: str)→ list[float]
Gets the x, y, z data from a vector message.

Parameters
• msg – message

• key – key to get data from

Returns
x, y, z data

static _get_content_any_msg_type(msg)→ dict
Gets the content of a message of any type.

Parameters
msg – ROS 2 message

Returns
message content as dict

handle_log_backup(msg)→ None
Receives a message of any type and sends to VR headset as a backup.

Parameters
msg – message

4 Chapter 2. vr_linker

robot, Release 2.0.0

handle_robot_data(msg)→ None
Receives RobotData messages and sends over socket.

Parameters
msg – RobotData message

handle_arm_angles(msg)→ None
Receives ArmAngles messages and sends over socket.

Parameters
msg – ArmAngles message

handle_depth_data(msg)→ None
Receives DepthData messages and sends over socket.

Parameters
msg – DepthData message

process_message()→ None
Processes a message sent by the VR headset over TCP socket.

static _is_vr_arm_message(data: dict)→ bool
Checks if the message is a VRArm message.

Parameters
data – data

Returns
True if the message is a VRArm message

static _is_vr_drive_message(data: dict)→ bool
Checks if the message is a VRDrive message.

Parameters
data – data

Returns
True if the message is a VRDrive message

static _is_screw_message(data: dict)→ bool
Checks if the message is a mode message.

Parameters
data – data

Returns
True if the message is a mode message

static _is_mode_message(data: dict)→ bool
Checks if the message is a mode message.

Parameters
data – data

Returns
True if the message is a mode message

_publish_vr_arm(data: dict)→ None
Publishes VRArm messages.

Parameters
data – data

2.2. vr_linker 5

robot, Release 2.0.0

_publish_vr_drive(data: dict)→ None
Publishes VRDrive messages.

Parameters
data – data

_publish_ping(data: dict)→ None
Publishes ping messages.

Parameters
data – data

_publish_mode(data: dict)→ None
Publishes mode messages.

Parameters
data – data

_publish_screw(data: dict)→ None
Publishes screw messages.

Parameters
data – data

_publish_get_depth()→ None
Publishes get depth messages.

Parameters
data – data

static _is_drive_mode(data: dict)→ bool
Checks if the message is a drive mode message.

Parameters
data – data

Returns
True if the message is a drive mode message

static _is_get_depth_message(data: dict)→ bool
Checks if the message is a get depth message.

Parameters
data – data

Returns
True if the message is a get depth message

_set_drive_mode(data: dict)→ None
Sets the driving mode.

Parameters
data – data

static _is_ping_message(data: dict)→ bool
Checks if the message is a ping message.

Parameters
data – data

Returns
True if the message is a ping message

6 Chapter 2. vr_linker

robot, Release 2.0.0

_publish_data(data: dict)→ None
Publishes VRDrive messages.

Parameters
data – data

2.3 utils

robot.src.vr_linker.vr_linker.utils.get_config()→ dict
Reads the config file.

Returns
config

robot.src.vr_linker.vr_linker.utils.get_arm_timeout_seconds()→ float
Returns the arm timeout in seconds.

Returns
timeout in seconds

2.3. utils 7

robot, Release 2.0.0

8 Chapter 2. vr_linker

CHAPTER

THREE

MASTER

This node makes sure that the VR data is received from the headset is valid (in correct mode) and published to the rest
of the system.

Subscribed topics
• _vr_drive (VRDrive): The untrusted VR drive data received from the headset.

• _vr_arm (VRArm): The untrusted VR arm data received from the headset.

• _vr_mode (VRMode): The untrusted VR mode data received from the headset.

• _vr_screw (VRScrew): The untrusted VR screw data received from the headset.

• _robot_data (RobotData): The untrusted robot data received from the robot.

Published topics
• vr_drive (VRDrive): The VR drive data received from the headset.

• vr_arm (VRArm): The VR arm data received from the headset.

• vr_mode (VRMode): The VR mode data received from the headset.

• vr_screw (VRScrew): The VR screw data received from the headset.

• robot_data (RobotData): The robot data received from the robot.

• message (Message): Log data to send to logger.

3.1 master node

robot.src.master.master.master_node.matches_mode_and_not_emergency(mode: Mode)

class robot.src.master.master.master_node.MasterNode(*args: Any, **kwargs: Any)

_switch_camera(mode: str)→ None
Publishes a SwitchCamera message.

Parameters
mode – camera mode

set_mode(mode: Mode)→ None
Sets the mode.

Parameters
mode – mode

9

robot, Release 2.0.0

int_to_mode(mode: int)→ Mode
Converts an integer to a Mode.

Parameters
mode – mode

Returns
Mode

handle_robot_data(msg)→ None
Handles RobotData messages.

Parameters
msg – RobotData message

handle_unsafe_vr_mode(msg)→ None
Handles VRMode messages.

Parameters
msg – VRMode message

handle_unsafe_vr_drive(msg)→ None
Handles VRDrive messages.

Parameters
msg – VRDrive message

handle_unsafe_vr_arm(msg)→ None
Handles VRArm messages.

Parameters
msg – VRArm message

handle_unsafe_vr_screw(msg)→ None
Handles VRScrew messages.

Parameters
msg – VRScrew message

robot.src.master.master.master_node.main(args=None)

3.2 modes

class robot.src.master.master.modes.Mode(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

IDLE = 0

DRIVE = 1

ARM = 2

EMERGENCY = 3

10 Chapter 3. master

CHAPTER

FOUR

CONTROLLER

This is the only node which interacts with the expansion board (robot). It is responsible for controlling the robot’s
movement and arm movements.

Subscribed topics
• vr_drive (VRDrive) - The drive data from the VR headset

• vr_arm (VRArm) - The hand data from the VR headset to control the robotic arm

• vr_mode (VRMode) - The mode data from the VR headset

• vr_screw (VRScrew) - The screw data from the VR headset

Published topics
• switch_camera (SwitchCamera) - Switches the camera view depending on the mode

• arm_angles (ArmAngles) - The angles of the arm joints to publish to the digital twin

• _robot_data (RobotData) - Data from the robot such as voltage, speed, gyroscope, etc.

• message (Message) - Message to be logged including level.

4.1 controller node

class robot.src.controller.controller.controller_node.ControllerNode(*args: Any, **kwargs:
Any)

Interacts with the Expansion board.

get_robot_data()→ None
Gets robot data such as voltage, speed, gyroscope, etc. and publishes it.

_switch_to_forward_camera()→ None
Switches to the forward camera.

_switch_to_reverse_camera()→ None
Switches to the reverse camera.

handle_vr_drive(msg)→ None
Handles VRDrive messages.

Parameters
msg – VRDrive message

11

robot, Release 2.0.0

get_arm_angles()→ None
Gets the arm angles and publishes them.

robot.src.controller.controller.controller_node.main(args=None)

4.2 controller

class robot.src.controller.controller.controller.Controller(production: bool = True)

_convert_coordinates_to_direction(x: float, y: float)→ Direction
Converts x, y coordinates to a direction.

Parameters
• x – x coordinate

• y – y coordinate

Returns
direction to drive in

static convert_x_to_angle_difference(x: float)→ int
Converts x to angle difference.

Parameters
x – x

Returns
angle difference

static convert_y_to_angle_difference(y: float)→ int
Converts y to angle difference.

Parameters
y – y

Returns
angle difference

static convert_pinch_to_angle(pinch: float)→ int
Converts pinch to angle.

Parameters
pinch – pinch

Returns
angle

_set_last_arm_mode(mode: int)→ None
Sets the last arm mode.

Parameters
mode – mode

_set_mode_defaults(mode: int)→ None
Sets the mode defaults.

Parameters
mode – mode

12 Chapter 4. controller

robot, Release 2.0.0

check_last_message_received()→ None
Checks if last message was received more than sleep_mode_after seconds ago.

If so, the robot will stop and sleep. Will long beep twice to indicate this. Function gets called by rclpy
timer with the hertz specified in the config file.

static _speed_out_of_range(speed: int)→ bool
Checks if the speed is out of range.

Parameters
speed – speed

Returns
True if the speed is out of range

static _convert_value_to_angle(x: float)→ int
Converts x to angle in degrees.

Parameters
x – x

Returns
angle in degrees

static _convert_to_point(angle: int, y: float)→ tuple[float, float]
Converts angle and y to x and y coordinates.

Parameters
• angle – angle

• y – y

Returns
x and y coordinates

static _convert_coordinates(y: float, z: float)→ tuple[float]
Converts y and z coordinates from [-1, 1] to cm.

Parameters
• y – y

• z – z

Returns
y and z coordinates in cm

static _would_collide_with_front(x: float, y: float, z: float)→ bool
Checks if the point would collide with the front of the robot.

Parameters
• x – x coordinate

• y – y coordinate

• z – z coordinate

Returns
True if the point would collide with the front of the robot

4.2. controller 13

robot, Release 2.0.0

_is_illegal_point(x: float, y: float, z: float)→ bool
Checks if the point is illegal.

Parameters
• x – x coordinate

• y – y coordinate

• z – z coordinate

Returns
True if the point is illegal

handle_vr_arm(msg)→ None
Handles VRArm messages.

Parameters
msg – VRArm message

handle_vr_screw(msg)→ None
Handles VRScrew messages.

Parameters
msg – VRScrew message

static _get_reverse_direction(direction: Direction)→ Direction
Converts the direction to reverse mode direction.

Parameters
direction – direction

Returns
reverse mode direction

static _is_within_origin_buffer(x: float, y: float)→ bool
Checks if the x, y coordinates are within the origin buffer.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are within the origin buffer

static _is_in_first_quadrant(x: float, y: float)→ bool
Checks if the x, y coordinates are in the first quadrant.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the first quadrant

static _is_in_second_quadrant(x: float, y: float)→ bool
Checks if the x, y coordinates are in the second quadrant.

Parameters
• x – x coordinate

14 Chapter 4. controller

robot, Release 2.0.0

• y – y coordinate

Returns
True if the x,y coordinates are in the second quadrant

static _is_in_third_quadrant(x: float, y: float)→ bool
Checks if the x, y coordinates are in the third quadrant.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the third quadrant

static _is_in_fourth_quadrant(x: float, y: float)→ bool
Checks if the x, y coordinates are in the fourth quadrant.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the fourth quadrant

static _is_right(x: float, y: float)→ bool
Checks if the x, y coordinates are in the right side.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the right side

static _is_left(x: float, y: float)→ bool
Checks if the x, y coordinates are in the left side.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the left side

static _is_forward(x: float, y: float)→ bool
Checks if the x, y coordinates are in the forward side.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the forward side

4.2. controller 15

robot, Release 2.0.0

static _is_backward(x: float, y: float)→ bool
Checks if the x, y coordinates are in the backward side.

Parameters
• x – x coordinate

• y – y coordinate

Returns
True if the x,y coordinates are in the backward side

_get_precision_direction(x: float, y: float)→ Direction
Converts the direction to precision mode direction.

Parameters
direction – direction

Returns
precision mode direction

_set_speed(speed: int)→ None
Sets the speed of the robot.

Parameters
speed – speed

vr_drive(x: float, y: float, speed: int, drive_mode: str)→ None
Drives the robot based on ROS message input.

Parameters
• x – x VR hand coordinate

• y – y VR hand coordinate

• speed – speed (length of the xy vector)

• drive_mode – drive mode (normal, precision, reverse)

handle_vr_mode(msg)→ None
Handles VRMode messages.

Parameters
msg – VRMode message

4.3 robot

class robot.src.controller.controller.robot.Robot(production: bool = True)

get_stored_angles()→ dict

_reset_arm()→ None
Resets the arm to its default position.

reset()→ None
Resets the robot.

16 Chapter 4. controller

robot, Release 2.0.0

get_speed()→ int
Returns the speed.

Returns
speed

get_direction(direction: Direction)→ list[int]
Returns the direction vector.

Parameters
direction – direction

Returns
direction vector

Example

>>> from controller.robot import Robot, Direction
>>> robot = Robot()
>>> robot.set_speed(50)
>>> robot.get_direction(Direction.FORWARD)
[50, 50, 50, 50]

set_speed(speed: int)→ None
Sets the speed.

Parameters
speed – speed

drive(direction: Direction | tuple[int])→ None
Drives the robot in a direction.

Parameters
direction – direction

stop()→ None
Stops the robot.

forward()→ None
Drives the robot forward.

set_pinch(angle: int)→ None
Sets the pinch angle.

Parameters
angle – angle

pinch()→ None
Pinches the “fingers”.

unpinch()→ None
Unpinches the “fingers”.

get_wrist()→ int
Returns the wrist angle.

Returns
wrist angle

4.3. robot 17

robot, Release 2.0.0

set_wrist(angle: int)→ None
Turns the wrist. Angle should be between 0 and 270.

Parameters
angle – angle

reset_wrist()→ None
Resets the wrist to its default position.

_screw(clockwise: bool, timeout: int = 1)→ None
Screws the “fingers” in a direction.

Parameters
• clockwise – if True, the fingers will move clockwise

• timeout – timeout

handle_screw(clockwise: bool, rounds: int)→ None
Screws the “fingers” in a direction.

Parameters
• clockwise – if True, the fingers will move clockwise

• rounds – number of rounds

get_arm_rotation()→ int
Returns the arm rotation angle.

Returns
arm rotation angle

set_arm_rotation(angle: int)→ None
Sets the arm rotation angle.

Parameters
angle – angle

reset_arm_rotation()→ None
Resets the arm rotation to its default position.

get_arm_shoulder()→ int
Returns the arm shoulder angle.

Returns
arm shoulder angle

set_arm_shoulder(angle: int)→ None
Sets the arm shoulder angle.

Parameters
angle – angle

set_arm_rotation_difference(angle: int)→ None
Sets the arm rotation angle difference.

Parameters
angle – angle

reset_arm_shoulder()→ None
Resets the arm shoulder to its default position.

18 Chapter 4. controller

robot, Release 2.0.0

get_arm_elbow()→ int
Returns the arm elbow angle.

Returns
arm elbow angle

set_arm_elbow(angle: int)→ None
Sets the arm elbow angle.

Parameters
angle – angle

reset_arm_elbow()→ None
Resets the arm elbow to its default position.

get_arm_tilt()→ int
Returns the arm tilt angle.

Returns
arm tilt angle

set_arm_tilt(angle: int)→ None
Sets the arm tilt angle.

Parameters
angle – angle

reset_arm_tilt()→ None
Resets the arm tilt to its default position.

beep()→ None
Beeps the robot for 100ms, used for indicating mode change.

long_beep()→ None
Beeps the robot for 200ms, used for indicating robot is ready.

static _estimate_battery_percentage(voltage: float)→ int
Estimates the battery percentage based on the voltage.

Parameters
voltage – battery voltage

Returns
battery percentage

static _estimate_cms_speed(speed: int)→ float
Estimates the cm/s speed

Parameters
speed – speed in percentage

Returns
cm/s speed

get_data()→ dict
Returns the robot data.

Returns
robot data

__del__()→ None
Cleans up the robot.

4.3. robot 19

robot, Release 2.0.0

4.4 arm kinematics

robot.src.controller.controller.arm_kinematics.calculate_auxilaries(partial_point_y: float,
partial_point_z: float)→
tuple[float]

Calculates auxiliary angles alpha and beta between triangle delta_squared and the two links.

Parameters
• partial_point_y – partial point y

• partial_point_z – partial point z

Returns
tuple of alpha and beta in radians with the last element being None or np.nan

robot.src.controller.controller.arm_kinematics.calculate_elbow_up_degrees(partial_point_y:
float,
partial_point_z:
float, phi: float)→
tuple[float]

Calculates the up angles in degrees.

Parameters
• partial_point_y – partial point y

• partial_point_z – partial point z

• phi – angle in radians

Returns
tuple of theta_1, theta_2, theta_3 in degrees

robot.src.controller.controller.arm_kinematics.calculate_elbow_down_degrees(partial_point_y:
float,
partial_point_z:
float, phi: float)
→ tuple[float]

Calculates the down angles in degrees.

Parameters
• partial_point_y – partial point y

• partial_point_z – partial point z

• phi – angle in radians

Returns
tuple of theta_1, theta_2, theta_3 in degrees

robot.src.controller.controller.arm_kinematics.has_any_nan(thetas: tuple[float])→ bool
Checks if any of the thetas are np.nan.

Parameters
thetas – tuple of thetas in degrees

Returns
True if any of the thetas are np.nan, False otherwise

20 Chapter 4. controller

robot, Release 2.0.0

robot.src.controller.controller.arm_kinematics.has_out_of_range(thetas: tuple[float])→ bool
Checks if any of the thetas are out of range. The range is -90 to 90 degrees for all joints except the first one which
is 0 to 180 degrees.

Parameters
thetas – tuple of thetas in degrees

Returns
True if any of the thetas are out of range, False otherwise

robot.src.controller.controller.arm_kinematics.get_mapped_phi(z: float)→ float
Maps the z value to a phi value in degrees.

Parameters
z – z value in cm

Returns
phi value in radians

robot.src.controller.controller.arm_kinematics.calculate(y: float, z: float, phi: float = None)→
tuple[float | None]

Calculates the angles of the robotic arm.

Parameters
• y – y value in cm

• z – z value in cm

• phi – angle in degrees

Returns
tuple of theta_1, theta_2, theta_3 in degrees

robot.src.controller.controller.arm_kinematics.convert_thetas_to_servo_angles(thetas:
tuple[float])
→ tuple[int]

Converts the thetas to servo angles.

Parameters
thetas – tuple of thetas in degrees

Returns
tuple of servo angles in degrees

4.5 exceptions

exception robot.src.controller.controller.exceptions.ControllerException

Generic exception for the controller module.

exception robot.src.controller.controller.exceptions.NotInProductionMode

Raised when a method requires production mode to be enabled.

Production mode indicates if the expasion board should be used or not.

4.5. exceptions 21

robot, Release 2.0.0

4.6 enums

class robot.src.controller.controller.enums.Direction(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Direction enum.

FORWARD = (1, 1, 1, 1)

BACKWARD = (-1, -1, -1, -1)

STOP = (0, 0, 0, 0)

TURN_LEFT = (0, 0, 1, 1)

TURN_RIGHT = (1, 1, 0, 0)

REVERSE_TURN_LEFT = (-1, -1, 0, 0)

REVERSE_TURN_RIGHT = (0, 0, -1, -1)

LATERAL_LEFT = (-1, 1, 1, -1)

LATERAL_RIGHT = (1, -1, -1, 1)

DIAGONAL_LEFT = (0, 1, 1, 0)

DIAGONAL_RIGHT = (1, 0, 0, 1)

REVERSE_DIAGONAL_LEFT = (0, -1, -1, 0)

REVERSE_DIAGONAL_RIGHT = (-1, 0, 0, -1)

class robot.src.controller.controller.enums.Preset(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Preset enum.

SPEED = 50

UNPINCH_ANGLE = 45

PINCH_ANGLE = 180

WRIST_ANGLE = 100

ARM_TILT_ANGLE = 90

ARM_ROTATION_ANGLE = 90

ARM_SHOULDER_ANGLE = 90

ARM_ELBOW_ANGLE = 90

class robot.src.controller.controller.enums.Arm(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Arm enum.

22 Chapter 4. controller

robot, Release 2.0.0

ROTATION = 1

SHOULDER = 2

ELBOW = 3

TILT = 4

WRIST = 5

PINCH = 6

4.7 utils

robot.src.controller.controller.utils.in_production_mode(func)
Decorator which checks if we are in production mode or not.

If we are in production mode, the function will be executed. If not, the NotInProductionMode exception will be
raised.

Parameters
func – function to decorate

Returns
wrapper function

Return type
function_wrapper

robot.src.controller.controller.utils.set_last_message(func)
Decorator which sets the last message time and is_sleeping to False.

Parameters
func – function to decorate

Returns
wrapper function

Return type
function_wrapper

robot.src.controller.controller.utils.fill_vector_msg(msg, key: str, data: list)
Fills a std_msgs.msg.Vector3 message for given key.

Parameters
• msg – message

• key – key to fill for

• data – x, y, z data

Returns
message with filled data

robot.src.controller.controller.utils.get_config()→ dict
Returns the config from a local JSON file.

JSON files do not get compiled, so values can be changed without recompiling the code. Hence the reason for
having some options in a JSON file.

4.7. utils 23

robot, Release 2.0.0

Returns
config

robot.src.controller.controller.utils.get_threshold()→ int
Returns the threshold.

Returns
threshold

robot.src.controller.controller.utils.get_production()→ bool
Returns if we are in production mode or not.

Production mode means that the robot will interact with the expansion board (true) or not (false).

Returns
production mode

robot.src.controller.controller.utils.get_data_hertz()→ int
Returns the hertz of which robot data should be sent to the VR headset.

Returns
hertz

robot.src.controller.controller.utils.get_sleep_mode_hertz()→ int
Returns the hertz of which how often the robot should check.

Returns
hertz

robot.src.controller.controller.utils.get_sleep_mode_after()→ int
Returns the time after which the robot should go to sleep mode.

Returns
seconds

4.8 rosmaster

class robot.src.controller.controller.rosmaster.Rosmaster(car_type: int = 1, com: str =
'/dev/expbrd', delay: float = 0.002,
debug: bool = False)

This is a class for controlling the robot. Which is a modified version of yahboom.net’s code.

__uart_state = 0

__parse_data(ext_type: int, ext_data)→ None
Parses the data.

Parameters
• ext_type – the type of the data

• ext_data – the data

set_data()→ None
Receives the data.

24 Chapter 4. controller

robot, Release 2.0.0

__request_data(function, param: int = 0)→ None
Requests the data.

Parameters
• function – the function

• param – the parameter

__arm_convert_value(s_id: int, s_angle: int)→ int
Converts the value of the arm.

Parameters
• s_id – the id of the arm

• s_angle – the angle of the arm

Returns
the value of the arm

static _arm_convert_angle(s_id: int, s_value: int)→ int
Converts the angle of the arm.

Parameters
• s_id – the id of the arm

• s_value – the value of the arm

Returns
the angle of the arm

static _clamp_motor_value(value: int)→ int
Limits (clamps) the motor value.

Parameters
value – the value

Returns
the clamped value of the motor between -100 and 100

create_receive_threading()→ None
Creates the receive threading.

set_auto_report_state(enable: bool, forever: bool = False)→ None
Sets the auto report state.

Parameters
• enable – if True, the auto report state is enabled

• forever – if True, the auto report state is permanent

set_beep(on_time: int)→ None
Sets the beep (buzzer).

Parameters
on_time – the time the beep is on

set_pwm_servo(servo_id: int, angle: int)→ None
Sets the PWM servo.

Parameters

4.8. rosmaster 25

robot, Release 2.0.0

• servo_id – the id of the servo between 1 and 4

• angle – the angle of the servo between 0 and 180

set_pwm_servo_all(angle_s1: int, angle_s2: int, angle_s3: int, angle_s4: int)→ None
Sets the PWM signal for all servos. Angle values are between 0 and 180.

Parameters
• angle_s1 – the angle of the first servo

• angle_s2 – the angle of the second servo

• angle_s3 – the angle of the third servo

• angle_s4 – the angle of the fourth servo

set_colorful_lamps(led_id: int, red: int, green: int, blue: int)→ None
Sets the colorful lamps. Color values between 0 and 255.

Parameters
• led_id – the id of the led

• red – the red value

• green – the green value

• blue – the blue value

set_colorful_effect(effect: int, speed: int = 255, parm: int = 255)→ None
Sets the colorful effect.

Parameters
• effect – the effect between 0 and 6

• speed – the speed between 1 and 10

• parm – the parameter between 0 and 6

set_motor(speed_1: int, speed_2: int, speed_3: int, speed_4: int)→ None
Send PWM pulse to each of the motors. Speeds are between -100 and 100.

Parameters
• speed_1 – the speed of motor 1

• speed_2 – the speed of motor 2

• speed_3 – the speed of motor 3

• speed_4 – the speed of motor 4

set_car_run(state: int, speed: int, adjust: bool = False)→ None
Control the car to move forward, backward, left, right, etc.

Parameters
• state – the state of the car between 0 and 7

• speed – the speed of the car between -100 and 100

• adjust – if True, the gyroscope auxiliary motion direction is activated

26 Chapter 4. controller

robot, Release 2.0.0

set_car_motion(v_x: float, v_y: float, v_z: float)→ None
Control the car movement.

Parameters
• v_x – the speed of the car in the x direction

• v_y – the speed of the car in the y direction

• v_z – the speed of the car in the z direction

set_pid_param(kp: int, ki: int, kd: int, forever: bool = False)→ None
Sets the PID parameters.

Parameters
• kp – the proportional gain

• ki – the integral gain

• kd – the derivative gain

• forever – if True, the PID parameters are permanent

set_car_type(car_type: int)→ None
Sets the car type.

Parameters
car_type – the type of the car

set_uart_servo(servo_id: int, pulse_value: int, run_time: int = 500)→ None
Sets the position of one of the servos (on the arm).

Parameters
• servo_id – the id of the servo

• pulse_value – the position of the servo

• run_time – the running time in milliseconds

set_uart_servo_angle(s_id: int | Arm, s_angle: int, run_time: int = 500)→ None
Sets the angle of one of the servos (on the arm). Degrees: 1-4, 6:[0, 180], 5:[0, 270]

1 - Rotation of the arm 2 - Shoulder of the arm 3 - Elbow of the arm 4 - Tilt of the arm 5 - Wrist of the arm
(rotation) 6 - Fingers of the arm (pinch)

Parameters
• s_id – the id of the servo

• s_angle – the angle of the servo

• run_time – the running time in milliseconds

set_uart_servo_id(servo_id: int)→ None
Sets the ID of the bus servo.

Parameters
servo_id – the id of the servo

set_uart_servo_torque(enable: bool)→ None
Sets the torque of the bus servo.

Parameters
enable – if 1, the torque is enabled

4.8. rosmaster 27

robot, Release 2.0.0

set_uart_servo_ctrl_enable(enable: bool)→ None
Sets the control switch of the manipulator.

Parameters
enable – if True, the control protocol is normally sent

set_uart_servo_angle_array(angle_s: list[int] = [90, 90, 90, 90, 90, 180], run_time: int = 500)→ None
Sets the angle of all the servos in the arm.

Parameters
• angle_s – the angle of the servos

• run_time – the running time in milliseconds

set_uart_servo_offset(servo_id: int)→ int
Sets the offset of the servo.

Parameters
servo_id – the id of the servo

set_akm_default_angle(angle: int, forever: bool = False)→ None
Sets the default angle of the front wheel of the ackerman type (R2) car.

Parameters
• angle – the angle between 60 and 120

• forever – if True, the angle is permanently saved

set_akm_steering_angle(angle: int, ctrl_car: bool = False)→ None
Controls the steering angle of the ackerman type (R2) car.

Parameters
• angle – the angle between -45 and 45

• ctrl_car – if True, the steering gear angle and the speed of the left and

• modified (right motors are)

reset_flash_value()→ None
Resets the car flash saved data, restore the factory default value.

reset_car_state()→ None
Resets the car status, including parking, lights off, buzzer off.

clear_auto_report_data()→ None
Clears the cache data automatically sent by the MCU.

get_akm_default_angle()→ int
Reads the default angle of the front wheel of the ackerman type (R2) car.

get_uart_servo_value(servo_id: int)→ tuple[int]
Reads the position parameters of the bus servo.

Parameters
servo_id – the id of the servo

get_uart_servo_angle(s_id: int | Arm)→ int
Reads the angle of one of the servos (on the arm).

Parameters
s_id – the id of the servo

28 Chapter 4. controller

robot, Release 2.0.0

get_uart_servo_angle_array()→ list[int]
Reads the angles of all the servos (on the arm).

get_accelerometer_data()→ tuple[float]
Get the accelerometer triaxial data, return a_x, a_y, a_z.

get_gyroscope_data()→ tuple[float]
Get the gyro triaxial data, return g_x, g_y, g_z.

get_magnetometer_data()→ tuple[float]
Get the magnetometer triaxial data, return m_x, m_y, m_z.

get_imu_attitude_data(to_angle: bool = True)→ tuple[float]
Get the board attitude Angle, return yaw, roll, pitch.

Parameters
to_angle – if True, return the Angle; if False, return the radian

get_motion_data()→ tuple[float]
Get the car speed, val_vx, val_vy, val_vz.

get_battery_voltage()→ float
Get the battery voltage.

get_motor_encoder()→ tuple[int]
Obtain data of four-channel motor encoder.

get_motion_pid()→ list[int]
Get the motion PID parameters of the dolly and return [kp, ki, kd]

get_car_type_from_machine()→ int
Gets the current car type from machine.

get_version()→ float
Get the underlying microcontroller version number.

4.8. rosmaster 29

robot, Release 2.0.0

30 Chapter 4. controller

CHAPTER

FIVE

AI_DETECTION

This node takes care of object detection and hosts a Flask server for the VR headset to fetch images from. The node
also has access to the two cameras (drive and arm). It switches between these two depending on the current mode.

Subscribed topics
• switch_camera (SwitchCamera): Camera to switch to including information for what to show.

Published topics
• message (Message): Log information.

5.1 detection

class robot.src.ai_detection.ai_detection.detection.ObjectDetection(*args: Any, **kwargs:
Any)

ObjectDetection class for the object detection application

_switch_camera(camera: Camera)→ None
Switches the camera to the specified camera.

Parameters
camera – Camera to switch to

handle_switch_camera(msg)→ None
Handles switch camera message.

Parameters
msg – SwitchCamera message

save_result(result: mediapipe.tasks.python.vision.ObjectDetectorResult, unused_output_image:
mediapipe.Image, timestamp_ms: int)→ None

Save the detection result to the global variable

Parameters
• result (vision.ObjectDetectorResult) – The detection result

• unused_output_image (mp.Image) – The output image

• timestamp_ms (int) – The timestamp in milliseconds

inference(class_name: str, max_results=5, score_threshold=0.8)→ None
Perform the object detection inference

Parameters

31

robot, Release 2.0.0

• class_name – The class name

• max_results – The maximum number of results

• score_threshold – The score threshold

_detect_objects(frame)
Detect objects in the frame

Parameters
frame – The input frame

Returns
The frame with the detected objects

__retreive_info(object_name: str)→ dict
Retrieve all information for the object from the database

Parameters
object_name – Name of the object

Returns
Dictionary containing all information for the object

Return type
all_info_dict

websocket_handler(ws)→ None

generate_frame()→ str
Generate the frames for the object detection’s snapshot.

robot.src.ai_detection.ai_detection.detection.main(args=None)

5.2 database

class robot.src.ai_detection.ai_detection.database.Database

get_item_info(data: dict)→ dict
Finds the item in the database and returns the information

Parameters
data – dict to search for in the database

Returns
One item from the database or an empty dict

5.3 utils

class robot.src.ai_detection.ai_detection.utils.Camera(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

DRIVE =
'/dev/v4l/by-id/usb-Sonix_Technology_Co.__Ltd._Astra_Pro_HD_Camera-video-index0'

32 Chapter 5. ai_detection

robot, Release 2.0.0

ARM = '/dev/v4l/by-id/usb-Sonix_Technology_Co.__Ltd._USB_2.0_Camera-video-index0'

robot.src.ai_detection.ai_detection.utils.get_path(subpath: str)→ str
Get the path of the file.

Parameters
subpath – Subpath of the file

Returns
Path of the file

robot.src.ai_detection.ai_detection.utils.get_config()→ dict
Get the configuration.

Returns
config dict

robot.src.ai_detection.ai_detection.utils.visualize(image, detection_result)→ numpy.ndarray
Draws bounding boxes on the input image and return it. :param image: The input RGB image. :param detec-
tion_result: The list of all “Detection” entities to be visualized.

Returns
Image with bounding boxes. category_name: The category name of the detected object.

5.3. utils 33

robot, Release 2.0.0

34 Chapter 5. ai_detection

CHAPTER

SIX

DEPTH_DATA

This is the only node which interacts with the expansion board (robot). It is responsible for controlling the robot’s
movement and arm movements.

Subscribed topics
• /camera/depth/points (PointCloud2) - The depth data from the camera

• get_depth (GetDepth) - Enable the transfer of depth data for 1 image

Published topics
• depth_data (DepthData) - The compressed depth data from the camera

6.1 depth data

class robot.src.depth_data.depth_data.depth_data.DepthDataNode(*args: Any, **kwargs: Any)

handle_get_depth(msg)→ None
Enable the get_depth functionality.

Parameters
msg – GetDepth message

handle_depth_points(msg)→ None
Get the depth data from the camera, compresses it and publishes the data.

Parameters
msg – PointCloud2 message

robot.src.depth_data.depth_data.depth_data.main(args=None)

6.2 utils

robot.src.depth_data.depth_data.utils._get_struct_fmt(is_bigendian: bool, fields, field_names:
tuple[str] = None)

Get struct format string from a list of PointFields.

Parameters
• is_bigendian – Whether the data is big-endian.

• fields – List of PointFields.

35

robot, Release 2.0.0

• field_names – List of field names to include in the format string.

Returns
Format string for struct.unpack from the given fields.

robot.src.depth_data.depth_data.utils.read_points(cloud, field_names: tuple[str] = None, skip_nans:
bool = False, uvs=[])

Read points from a L{sensor_msgs.PointCloud2} message.

Parameters
• cloud – The point cloud to read from.

• field_names – The names of fields to read. If None, read all fields.

• skip_nans – If True, then don’t return any point with a NaN value.

• uvs – If specified, then only return the points at the given coordinates.

Returns
Generator which yields a list of values for each point.

36 Chapter 6. depth_data

CHAPTER

SEVEN

LOGGER

This node logs data to a .log file for easier debugging.

Subscribed topics
• arm_angles (ArmAngles): The arm angles for the robot which gets sent to the digital twin.

• _vr_dirve (VRDrive): The VR drive data received from the headset.

• _vr_arm (VRArm): The VR arm data received from the headset.

• _vr_mode (VRMode): The VR mode data received from the headset.

• switch_camera (SwitchCamera): The camera to switch to.

• robot_data (RobotData): Robot data (voltage, battery, etc.)

• message (Message): Message to be logged including level.

Published topics
• None

7.1 logger_node

class robot.src.logger.logger.logger_node.LoggerNode(*args: Any, **kwargs: Any)
Logs messages from nodes.

robot.src.logger.logger.logger_node.main(args=None)

7.2 logger

robot.src.logger.logger.logger

alias of <module ‘robot.src.logger.logger.logger’ from ‘/home/pi/robot/robot/src/logger/logger/logger.py’>

37

robot, Release 2.0.0

7.3 utils

class robot.src.logger.logger.utils.FileFormatter(fmt=None, datefmt=None, style='%',
validate=True, *, defaults=None)

_format = '%(asctime)s.%(msecs)03d - [%(levelname)s]: %(message)s'

FORMATS = {10: '%(asctime)s.%(msecs)03d - [%(levelname)s]: %(message)s', 20:
'%(asctime)s.%(msecs)03d - [%(levelname)s]: %(message)s', 30:
'%(asctime)s.%(msecs)03d - [%(levelname)s]: %(message)s', 40:
'%(asctime)s.%(msecs)03d - [%(levelname)s]: %(message)s', 50:
'%(asctime)s.%(msecs)03d - [%(levelname)s]: %(message)s'}

format(record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the time
(as determined by a call to usesTime(), formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message.

38 Chapter 7. logger

CHAPTER

EIGHT

ROBOT

Kromium’s code which controls the robot and communicates with the VR headset.

8.1 Important information

• If you want to run any ROS2 node after making changes to any Python file inside the robot/src folder, you
need to rebuild (./colcon).

• If a new Python package is added to requirements.txt you would need to run ./build_image again.

8.1.1 Test physically (production)

Physically implies using the expansion board.

Make sure that production is set to true in the config.

robot/
./run_docker_production

Enters the container as root to access the /dev/ttyUSB0 (expansion board). This device is also passed into the
container.

8.1.2 Not testing physically (not production)

Not using expansion board.

Make sure that production is set to false in the config.

robot/
./run_docker

If you get an error when trying to ./run_all, it might be because of non-root permissions. You can try to delete the
build, install and log folders and run ./colcon again.

39

robot, Release 2.0.0

8.1.3 Error: Access already in use when trying to start

Make sure the Meta Quest 3 headset has closed the app, and run ./kill_address.

8.2 Prerequisites

8.2.1 Install Docker

Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/debian/gpg -o /etc/apt/keyrings/docker.
→˓asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:
echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https:/

→˓/download.docker.com/linux/debian \
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-
→˓compose-plugin -y

8.2.2 Give permission to use Docker

sudo groupadd docker
sudo usermod -aG docker $USER

8.3 Installation

8.3.1 Build the image

robot/ (same directory as the Dockerfile)
./build_image

40 Chapter 8. robot

robot, Release 2.0.0

8.3.2 Install MongoDB

docker pull mongodb/mongodb-community-server:latest

Add data to the database.

8.3.3 Start the MongoDB container

docker run --name mongodb --network host -d mongodb/mongodb-community-server:latest

8.4 Running

robot/
./run_docker # or ./run_docker_production starts the container
./colcon # builds the ROS2 packages
./run_all # starts all ROS2 nodes

First time building will lead to this error.

--- stderr: astra_camera
In file included from /usr/include/c++/11/string:40,

from /usr/include/c++/11/stdexcept:39,
from /usr/include/c++/11/system_error:41,
from /usr/include/c++/11/bits/fs_fwd.h:35,
from /usr/include/c++/11/filesystem:44,
from /robot/src/astra_camera/src/ob_camera_node_factory.cpp:13:

In static member function ‘static constexpr std::size_t std::char_traits<char>
→˓::length(const char_type*)’,

inlined from ‘std::basic_ostream<char, _Traits>& std::operator<<(std::basic_ostream
→˓<char, _Traits>&, const char*) [with _Traits = std::char_traits<char>]’ at /usr/
→˓include/c++/11/ostream:617:44,

inlined from ‘void astra_camera::OBCameraNodeFactory::onDeviceConnected(const␣
→˓openni::DeviceInfo*)’ at /robot/src/astra_camera/src/ob_camera_node_factory.cpp:118:5:
/usr/include/c++/11/bits/char_traits.h:399:32: warning: ‘long unsigned int __builtin_
→˓strlen(const char*)’ reading 1 or more bytes from a region of size 0 [-Wstringop-
→˓overread]
399 | return __builtin_strlen(__s);

~~~~~~~~~~~~~~~~^~~~~

Running ./colcon again will fix it.

8.4. Running 41



robot, Release 2.0.0

8.5 Development

8.5.1 Start the container

# robot/
./run_docker

To exit the container use CTRL + D.

When the container is running the robot/src folder will be shared between the container and your local one. Changes
made inside here will be apply to both. After changes has been made, make sure to run ./colcon or colcon build
inside the robot/src folder. Now you can run using ./run_all (if the package is included inside that file) or by
running:

# robot/src
source install/local_setup.bash
ros2 run package_name executable_variable

8.5.2 Testing

# robot/src
./run_tests

Every unittest should output OK.

8.5.3 Create a new ROS2 package

# robot/src
ros2 pkg create --build-type ament_python package_name

8.6 Documentation

8.6.1 HTML

# install sphinx
sudo apt-get install python3-sphinx -y
pip3 install furo --break-system-packages
cd docs/
make clean
make html

42 Chapter 8. robot



robot, Release 2.0.0

8.6.2 PDF

sudo apt install latexmk texlive-latex-extra
cd docs/
make latexpdf

8.6. Documentation 43



robot, Release 2.0.0

44 Chapter 8. robot



PYTHON MODULE INDEX

r
robot.src.ai_detection.ai_detection.database,

32
robot.src.ai_detection.ai_detection.detection,

31
robot.src.ai_detection.ai_detection.utils, 32
robot.src.controller.controller.arm_kinematics,

20
robot.src.controller.controller.controller,

12
robot.src.controller.controller.controller_node,

11
robot.src.controller.controller.enums, 22
robot.src.controller.controller.exceptions,

21
robot.src.controller.controller.robot, 16
robot.src.controller.controller.rosmaster, 24
robot.src.controller.controller.utils, 23
robot.src.depth_data.depth_data.depth_data,

35
robot.src.depth_data.depth_data.utils, 35
robot.src.logger.logger.logger_node, 37
robot.src.logger.logger.utils, 38
robot.src.master.master.master_node, 9
robot.src.master.master.modes, 10
robot.src.vr_linker.vr_linker.utils, 7
robot.src.vr_linker.vr_linker.vr_linker, 4
robot.src.vr_linker.vr_linker.vr_linker_node,

3

45



robot, Release 2.0.0

46 Python Module Index



INDEX

Symbols
__arm_convert_value()

(robot.src.controller.controller.rosmaster.Rosmaster
method), 25

__del__() (robot.src.controller.controller.robot.Robot
method), 19

__parse_data() (robot.src.controller.controller.rosmaster.Rosmaster
method), 24

__request_data() (robot.src.controller.controller.rosmaster.Rosmaster
method), 24

__retreive_info() (robot.src.ai_detection.ai_detection.detection.ObjectDetection
method), 32

__uart_state (robot.src.controller.controller.rosmaster.Rosmaster
attribute), 24

_arm_convert_angle()
(robot.src.controller.controller.rosmaster.Rosmaster
static method), 25

_clamp_motor_value()
(robot.src.controller.controller.rosmaster.Rosmaster
static method), 25

_convert_coordinates()
(robot.src.controller.controller.controller.Controller
static method), 13

_convert_coordinates_to_direction()
(robot.src.controller.controller.controller.Controller
method), 12

_convert_to_point()
(robot.src.controller.controller.controller.Controller
static method), 13

_convert_value_to_angle()
(robot.src.controller.controller.controller.Controller
static method), 13

_detect_objects() (robot.src.ai_detection.ai_detection.detection.ObjectDetection
method), 32

_estimate_battery_percentage()
(robot.src.controller.controller.robot.Robot
static method), 19

_estimate_cms_speed()
(robot.src.controller.controller.robot.Robot
static method), 19

_format (robot.src.logger.logger.utils.FileFormatter at-
tribute), 38

_get_content_any_msg_type()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 4

_get_precision_direction()
(robot.src.controller.controller.controller.Controller
method), 16

_get_reverse_direction()
(robot.src.controller.controller.controller.Controller
static method), 14

_get_struct_fmt() (in module
robot.src.depth_data.depth_data.utils), 35

_get_vector_data() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 4

_is_backward() (robot.src.controller.controller.controller.Controller
static method), 15

_is_drive_mode() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 6

_is_forward() (robot.src.controller.controller.controller.Controller
static method), 15

_is_get_depth_message()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 6

_is_illegal_point()
(robot.src.controller.controller.controller.Controller
method), 13

_is_in_first_quadrant()
(robot.src.controller.controller.controller.Controller
static method), 14

_is_in_fourth_quadrant()
(robot.src.controller.controller.controller.Controller
static method), 15

_is_in_second_quadrant()
(robot.src.controller.controller.controller.Controller
static method), 14

_is_in_third_quadrant()
(robot.src.controller.controller.controller.Controller
static method), 15

_is_left() (robot.src.controller.controller.controller.Controller
static method), 15

_is_mode_message() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 5

_is_ping_message() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker

47



robot, Release 2.0.0

static method), 6
_is_right() (robot.src.controller.controller.controller.Controller

static method), 15
_is_screw_message()

(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 5

_is_vr_arm_message()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 5

_is_vr_connected() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 4

_is_vr_drive_message()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 5

_is_within_origin_buffer()
(robot.src.controller.controller.controller.Controller
static method), 14

_publish_data() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 6

_publish_get_depth()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 6

_publish_mode() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 6

_publish_ping() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 6

_publish_screw() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 6

_publish_vr_arm() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 5

_publish_vr_drive()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 5

_reset_arm() (robot.src.controller.controller.robot.Robot
method), 16

_screw() (robot.src.controller.controller.robot.Robot
method), 18

_send() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 4

_send_compressed() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 4

_set_drive_mode() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 6

_set_last_arm_mode()
(robot.src.controller.controller.controller.Controller
method), 12

_set_mode_defaults()
(robot.src.controller.controller.controller.Controller
method), 12

_set_speed() (robot.src.controller.controller.controller.Controller
method), 16

_speed_out_of_range()
(robot.src.controller.controller.controller.Controller
static method), 13

_switch_camera() (robot.src.ai_detection.ai_detection.detection.ObjectDetection
method), 31

_switch_camera() (robot.src.master.master.master_node.MasterNode
method), 9

_switch_to_forward_camera()
(robot.src.controller.controller.controller_node.ControllerNode
method), 11

_switch_to_reverse_camera()
(robot.src.controller.controller.controller_node.ControllerNode
method), 11

_to_json() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker
static method), 4

_would_collide_with_front()
(robot.src.controller.controller.controller.Controller
static method), 13

A
AnyMessage (class in robot.src.vr_linker.vr_linker.vr_linker),

4
Arm (class in robot.src.controller.controller.enums), 22
ARM (robot.src.ai_detection.ai_detection.utils.Camera at-

tribute), 32
ARM (robot.src.master.master.modes.Mode attribute), 10
ARM_ELBOW_ANGLE (robot.src.controller.controller.enums.Preset

attribute), 22
ARM_ROTATION_ANGLE (robot.src.controller.controller.enums.Preset

attribute), 22
ARM_SHOULDER_ANGLE (robot.src.controller.controller.enums.Preset

attribute), 22
ARM_TILT_ANGLE (robot.src.controller.controller.enums.Preset

attribute), 22

B
BACKWARD (robot.src.controller.controller.enums.Direction

attribute), 22
beep() (robot.src.controller.controller.robot.Robot

method), 19

C
calculate() (in module

robot.src.controller.controller.arm_kinematics),
21

calculate_auxilaries() (in module
robot.src.controller.controller.arm_kinematics),
20

calculate_elbow_down_degrees() (in module
robot.src.controller.controller.arm_kinematics),
20

calculate_elbow_up_degrees() (in module
robot.src.controller.controller.arm_kinematics),
20

Camera (class in robot.src.ai_detection.ai_detection.utils),
32

48 Index



robot, Release 2.0.0

check_last_message_received()
(robot.src.controller.controller.controller.Controller
method), 12

cleanup() (robot.src.vr_linker.vr_linker.vr_linker_node.VRLinkerNode
method), 3

clear_auto_report_data()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

client_disconnected()
(robot.src.vr_linker.vr_linker.vr_linker_node.VRLinkerNode
method), 3

Controller (class in robot.src.controller.controller.controller),
12

ControllerException, 21
ControllerNode (class in

robot.src.controller.controller.controller_node),
11

convert_pinch_to_angle()
(robot.src.controller.controller.controller.Controller
static method), 12

convert_thetas_to_servo_angles() (in module
robot.src.controller.controller.arm_kinematics),
21

convert_x_to_angle_difference()
(robot.src.controller.controller.controller.Controller
static method), 12

convert_y_to_angle_difference()
(robot.src.controller.controller.controller.Controller
static method), 12

create_receive_threading()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 25

D
Database (class in robot.src.ai_detection.ai_detection.database),

32
DepthDataNode (class in

robot.src.depth_data.depth_data.depth_data),
35

DIAGONAL_LEFT (robot.src.controller.controller.enums.Direction
attribute), 22

DIAGONAL_RIGHT (robot.src.controller.controller.enums.Direction
attribute), 22

Direction (class in robot.src.controller.controller.enums),
22

DRIVE (robot.src.ai_detection.ai_detection.utils.Camera
attribute), 32

DRIVE (robot.src.master.master.modes.Mode attribute),
10

drive() (robot.src.controller.controller.robot.Robot
method), 17

E
ELBOW (robot.src.controller.controller.enums.Arm at-

tribute), 23
EMERGENCY (robot.src.master.master.modes.Mode at-

tribute), 10

F
FileFormatter (class in robot.src.logger.logger.utils),

38
fill_vector_msg() (in module

robot.src.controller.controller.utils), 23
format() (robot.src.logger.logger.utils.FileFormatter

method), 38
FORMATS (robot.src.logger.logger.utils.FileFormatter at-

tribute), 38
FORWARD (robot.src.controller.controller.enums.Direction

attribute), 22
forward() (robot.src.controller.controller.robot.Robot

method), 17

G
generate_frame() (robot.src.ai_detection.ai_detection.detection.ObjectDetection

method), 32
get_accelerometer_data()

(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_akm_default_angle()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

get_arm_angles() (robot.src.controller.controller.controller_node.ControllerNode
method), 11

get_arm_elbow() (robot.src.controller.controller.robot.Robot
method), 18

get_arm_rotation() (robot.src.controller.controller.robot.Robot
method), 18

get_arm_shoulder() (robot.src.controller.controller.robot.Robot
method), 18

get_arm_tilt() (robot.src.controller.controller.robot.Robot
method), 19

get_arm_timeout_seconds() (in module
robot.src.vr_linker.vr_linker.utils), 7

get_battery_voltage()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_car_type_from_machine()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_config() (in module
robot.src.ai_detection.ai_detection.utils),
33

get_config() (in module
robot.src.controller.controller.utils), 23

get_config() (in module
robot.src.vr_linker.vr_linker.utils), 7

get_data() (robot.src.controller.controller.robot.Robot
method), 19

Index 49



robot, Release 2.0.0

get_data_hertz() (in module
robot.src.controller.controller.utils), 24

get_direction() (robot.src.controller.controller.robot.Robot
method), 17

get_gyroscope_data()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_imu_attitude_data()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_item_info() (robot.src.ai_detection.ai_detection.database.Database
method), 32

get_magnetometer_data()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_mapped_phi() (in module
robot.src.controller.controller.arm_kinematics),
21

get_motion_data() (robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_motion_pid() (robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_motor_encoder()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_path() (in module
robot.src.ai_detection.ai_detection.utils),
33

get_production() (in module
robot.src.controller.controller.utils), 24

get_robot_data() (robot.src.controller.controller.controller_node.ControllerNode
method), 11

get_sleep_mode_after() (in module
robot.src.controller.controller.utils), 24

get_sleep_mode_hertz() (in module
robot.src.controller.controller.utils), 24

get_speed() (robot.src.controller.controller.robot.Robot
method), 16

get_stored_angles()
(robot.src.controller.controller.robot.Robot
method), 16

get_threshold() (in module
robot.src.controller.controller.utils), 24

get_uart_servo_angle()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

get_uart_servo_angle_array()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_uart_servo_value()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

get_version() (robot.src.controller.controller.rosmaster.Rosmaster
method), 29

get_wrist() (robot.src.controller.controller.robot.Robot
method), 17

H
handle_arm_angles()

(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 5

handle_depth_data()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 5

handle_depth_points()
(robot.src.depth_data.depth_data.depth_data.DepthDataNode
method), 35

handle_get_depth() (robot.src.depth_data.depth_data.depth_data.DepthDataNode
method), 35

handle_log_backup()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 4

handle_robot_data()
(robot.src.master.master.master_node.MasterNode
method), 10

handle_robot_data()
(robot.src.vr_linker.vr_linker.vr_linker.VRLinker
method), 4

handle_screw() (robot.src.controller.controller.robot.Robot
method), 18

handle_switch_camera()
(robot.src.ai_detection.ai_detection.detection.ObjectDetection
method), 31

handle_unsafe_vr_arm()
(robot.src.master.master.master_node.MasterNode
method), 10

handle_unsafe_vr_drive()
(robot.src.master.master.master_node.MasterNode
method), 10

handle_unsafe_vr_mode()
(robot.src.master.master.master_node.MasterNode
method), 10

handle_unsafe_vr_screw()
(robot.src.master.master.master_node.MasterNode
method), 10

handle_vr_arm() (robot.src.controller.controller.controller.Controller
method), 14

handle_vr_drive() (robot.src.controller.controller.controller_node.ControllerNode
method), 11

handle_vr_mode() (robot.src.controller.controller.controller.Controller
method), 16

handle_vr_screw() (robot.src.controller.controller.controller.Controller
method), 14

has_any_nan() (in module
robot.src.controller.controller.arm_kinematics),
20

has_out_of_range() (in module
robot.src.controller.controller.arm_kinematics),

50 Index



robot, Release 2.0.0

20

I
IDLE (robot.src.master.master.modes.Mode attribute), 10
in_production_mode() (in module

robot.src.controller.controller.utils), 23
inference() (robot.src.ai_detection.ai_detection.detection.ObjectDetection

method), 31
int_to_mode() (robot.src.master.master.master_node.MasterNode

method), 9

L
LATERAL_LEFT (robot.src.controller.controller.enums.Direction

attribute), 22
LATERAL_RIGHT (robot.src.controller.controller.enums.Direction

attribute), 22
listen() (robot.src.vr_linker.vr_linker.vr_linker_node.VRLinkerNode

method), 3
logger (in module robot.src.logger.logger), 37
LoggerNode (class in robot.src.logger.logger.logger_node),

37
long_beep() (robot.src.controller.controller.robot.Robot

method), 19

M
main() (in module robot.src.ai_detection.ai_detection.detection),

32
main() (in module robot.src.controller.controller.controller_node),

12
main() (in module robot.src.depth_data.depth_data.depth_data),

35
main() (in module robot.src.logger.logger.logger_node),

37
main() (in module robot.src.master.master.master_node),

10
main() (in module robot.src.vr_linker.vr_linker.vr_linker_node),

3
MasterNode (class in robot.src.master.master.master_node),

9
matches_mode_and_not_emergency() (in module

robot.src.master.master.master_node), 9
Mode (class in robot.src.master.master.modes), 10
module

robot.src.ai_detection.ai_detection.database,
32

robot.src.ai_detection.ai_detection.detection,
31

robot.src.ai_detection.ai_detection.utils,
32

robot.src.controller.controller.arm_kinematics,
20

robot.src.controller.controller.controller,
12

robot.src.controller.controller.controller_node,
11

robot.src.controller.controller.enums, 22
robot.src.controller.controller.exceptions,

21
robot.src.controller.controller.robot, 16
robot.src.controller.controller.rosmaster,

24
robot.src.controller.controller.utils, 23
robot.src.depth_data.depth_data.depth_data,

35
robot.src.depth_data.depth_data.utils, 35
robot.src.logger.logger.logger_node, 37
robot.src.logger.logger.utils, 38
robot.src.master.master.master_node, 9
robot.src.master.master.modes, 10
robot.src.vr_linker.vr_linker.utils, 7
robot.src.vr_linker.vr_linker.vr_linker,

4
robot.src.vr_linker.vr_linker.vr_linker_node,

3

N
NotInProductionMode, 21

O
ObjectDetection (class in

robot.src.ai_detection.ai_detection.detection),
31

P
PINCH (robot.src.controller.controller.enums.Arm at-

tribute), 23
pinch() (robot.src.controller.controller.robot.Robot

method), 17
PINCH_ANGLE (robot.src.controller.controller.enums.Preset

attribute), 22
Preset (class in robot.src.controller.controller.enums),

22
process_message() (robot.src.vr_linker.vr_linker.vr_linker.VRLinker

method), 5

R
read_points() (in module

robot.src.depth_data.depth_data.utils), 36
reset() (robot.src.controller.controller.robot.Robot

method), 16
reset_arm_elbow() (robot.src.controller.controller.robot.Robot

method), 19
reset_arm_rotation()

(robot.src.controller.controller.robot.Robot
method), 18

Index 51



robot, Release 2.0.0

reset_arm_shoulder()
(robot.src.controller.controller.robot.Robot
method), 18

reset_arm_tilt() (robot.src.controller.controller.robot.Robot
method), 19

reset_car_state() (robot.src.controller.controller.rosmaster.Rosmaster
method), 28

reset_flash_value()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

reset_wrist() (robot.src.controller.controller.robot.Robot
method), 18

REVERSE_DIAGONAL_LEFT
(robot.src.controller.controller.enums.Direction
attribute), 22

REVERSE_DIAGONAL_RIGHT
(robot.src.controller.controller.enums.Direction
attribute), 22

REVERSE_TURN_LEFT (robot.src.controller.controller.enums.Direction
attribute), 22

REVERSE_TURN_RIGHT (robot.src.controller.controller.enums.Direction
attribute), 22

Robot (class in robot.src.controller.controller.robot), 16
robot.src.ai_detection.ai_detection.database

module, 32
robot.src.ai_detection.ai_detection.detection

module, 31
robot.src.ai_detection.ai_detection.utils

module, 32
robot.src.controller.controller.arm_kinematics

module, 20
robot.src.controller.controller.controller

module, 12
robot.src.controller.controller.controller_node

module, 11
robot.src.controller.controller.enums

module, 22
robot.src.controller.controller.exceptions

module, 21
robot.src.controller.controller.robot

module, 16
robot.src.controller.controller.rosmaster

module, 24
robot.src.controller.controller.utils

module, 23
robot.src.depth_data.depth_data.depth_data

module, 35
robot.src.depth_data.depth_data.utils

module, 35
robot.src.logger.logger.logger_node

module, 37
robot.src.logger.logger.utils

module, 38
robot.src.master.master.master_node

module, 9
robot.src.master.master.modes

module, 10
robot.src.vr_linker.vr_linker.utils

module, 7
robot.src.vr_linker.vr_linker.vr_linker

module, 4
robot.src.vr_linker.vr_linker.vr_linker_node

module, 3
Rosmaster (class in robot.src.controller.controller.rosmaster),

24
ROTATION (robot.src.controller.controller.enums.Arm at-

tribute), 22

S
save_result() (robot.src.ai_detection.ai_detection.detection.ObjectDetection

method), 31
set_akm_default_angle()

(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

set_akm_steering_angle()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

set_arm_elbow() (robot.src.controller.controller.robot.Robot
method), 19

set_arm_rotation() (robot.src.controller.controller.robot.Robot
method), 18

set_arm_rotation_difference()
(robot.src.controller.controller.robot.Robot
method), 18

set_arm_shoulder() (robot.src.controller.controller.robot.Robot
method), 18

set_arm_tilt() (robot.src.controller.controller.robot.Robot
method), 19

set_auto_report_state()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 25

set_beep() (robot.src.controller.controller.rosmaster.Rosmaster
method), 25

set_car_motion() (robot.src.controller.controller.rosmaster.Rosmaster
method), 26

set_car_run() (robot.src.controller.controller.rosmaster.Rosmaster
method), 26

set_car_type() (robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_colorful_effect()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 26

set_colorful_lamps()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 26

set_data() (robot.src.controller.controller.rosmaster.Rosmaster
method), 24

52 Index



robot, Release 2.0.0

set_last_message() (in module
robot.src.controller.controller.utils), 23

set_mode() (robot.src.master.master.master_node.MasterNode
method), 9

set_motor() (robot.src.controller.controller.rosmaster.Rosmaster
method), 26

set_pid_param() (robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_pinch() (robot.src.controller.controller.robot.Robot
method), 17

set_pwm_servo() (robot.src.controller.controller.rosmaster.Rosmaster
method), 25

set_pwm_servo_all()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 26

set_speed() (robot.src.controller.controller.robot.Robot
method), 17

set_uart_servo() (robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_uart_servo_angle()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_uart_servo_angle_array()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

set_uart_servo_ctrl_enable()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_uart_servo_id()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_uart_servo_offset()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 28

set_uart_servo_torque()
(robot.src.controller.controller.rosmaster.Rosmaster
method), 27

set_wrist() (robot.src.controller.controller.robot.Robot
method), 17

SHOULDER (robot.src.controller.controller.enums.Arm at-
tribute), 23

SPEED (robot.src.controller.controller.enums.Preset at-
tribute), 22

STOP (robot.src.controller.controller.enums.Direction at-
tribute), 22

stop() (robot.src.controller.controller.robot.Robot
method), 17

T
TILT (robot.src.controller.controller.enums.Arm at-

tribute), 23
TURN_LEFT (robot.src.controller.controller.enums.Direction

attribute), 22

TURN_RIGHT (robot.src.controller.controller.enums.Direction
attribute), 22

U
unpinch() (robot.src.controller.controller.robot.Robot

method), 17
UNPINCH_ANGLE (robot.src.controller.controller.enums.Preset

attribute), 22

V
visualize() (in module

robot.src.ai_detection.ai_detection.utils),
33

vr_drive() (robot.src.controller.controller.controller.Controller
method), 16

VRLinker (class in robot.src.vr_linker.vr_linker.vr_linker),
4

VRLinkerNode (class in
robot.src.vr_linker.vr_linker.vr_linker_node), 3

W
websocket_handler()

(robot.src.ai_detection.ai_detection.detection.ObjectDetection
method), 32

WRIST (robot.src.controller.controller.enums.Arm at-
tribute), 23

WRIST_ANGLE (robot.src.controller.controller.enums.Preset
attribute), 22

Index 53



KROMIUM V. OBJECT-DETECTION CODE DOCUMENTATION

V Object-detection code documentation

472



object-detection
Release 1.0.0

Kromium

Mar 01, 2024





CONTENTS:

1 objdetection_vr_2 1

2 object-detection 3
2.1 Object_Detection on Raspberry pi 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pre-trained model directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Custom-transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Python Module Index 5

Index 7

i



ii



CHAPTER

ONE

OBJDETECTION_VR_2

custom_transfer_learning.objdetection_vr_2.load_labels(label_path)
Loads the labels file. Supports files with or without index numbers.

If the file contains index numbers, then the index number is removed from the label.

Parameters
label_path – path to the labels file.

Returns
A list with the labels.

custom_transfer_learning.objdetection_vr_2.getCaps()

custom_transfer_learning.objdetection_vr_2.draw_boxes(frame, num_detections, boxes, classes, scores,
labels, threshold=0.4)

Draw bounding boxes on the frame.

Parameters
• frame – the frame to draw on.

• num_detections – the number of detections.

• boxes – the bounding boxes.

• classes – the class of the detected object.

• scores – the confidence scores of the detected object.

• labels – the labels of the detected object.

• threshold – the confidence threshold to use.

custom_transfer_learning.objdetection_vr_2.getFrame()

Get a frame from the camera.

Returns
A tuple with a boolean indicating if the frame was captured successfully and the frame.

custom_transfer_learning.objdetection_vr_2.process_frame_for_detection(frame=None)
Process a single frame for object detection and return the frame.

Parameters
frame – the frame to process.

Returns
The frame with bounding boxes drawn around the detected objects.

1



object-detection, Release 1.0.0

custom_transfer_learning.objdetection_vr_2.snapshot()

Get a snapshot from the camera when a GET request is received.

Returns
A response with the snapshot.

2 Chapter 1. objdetection_vr_2



CHAPTER

TWO

OBJECT-DETECTION

2.1 Object_Detection on Raspberry pi 5

To deploy this on the raspberry pi: 1.Create a virtual environment:

python -m venv myenv
source myenv/bin/activate

2. download requirements:

pip install -r requirements.txt

3. go to either pre-trained model or custom-transfer learning directory using cd

4. Run test.py

2.2 Pre-trained model directory

The code uses the COCO dataset and a pre-trained model called mobilenet to detect objects from the dataset. Link for
the coco dataset: https://cocodataset.org/#home Link for the Mobilenet tflite model : https://www.kaggle.com/models/
iree/ssd-mobilenet-v2 you can also stream the object detection, which the VR headset displays.

2.3 Custom-transfer learning

Here, I followed the tutorial for transfer learning on a custom dataset given my Tensorflow : https://www.tensorflow.
org/lite/models/modify/model_maker/object_detection In the directory tflite_models there are several Tensorflow lite
models to choose from. The best one for now is the people_Detection_2 one. The datasets I trained on : https:
//www.kaggle.com/datasets/sbaghbidi/human-faces-object-detection?rvi=1

‘Open Images Dataset V7’. Accessed: Feb. 23, 2024. [Online]. Available: https://storage.googleapis.com/
openimages/web/visualizer/index.html?type=detection&set=train&c=%2Fm%2F02rdsp

3



object-detection, Release 1.0.0

2.4 Documentation

2.4.1 Build HTML

# install sphinx
sudo apt-get install python3-sphinx
pip3 install furo sphinxcontrib-jquery --break-system-packages
cd docs/
make clean
make html

2.4.2 Make PDF

sudo apt install latexmk texlive-latex-extra
cd docs/
make latexpdf

4 Chapter 2. object-detection



PYTHON MODULE INDEX

c
custom_transfer_learning.objdetection_vr_2, 1

5



object-detection, Release 1.0.0

6 Python Module Index



INDEX

C
custom_transfer_learning.objdetection_vr_2

module, 1

D
draw_boxes() (in module cus-

tom_transfer_learning.objdetection_vr_2),
1

G
getCaps() (in module cus-

tom_transfer_learning.objdetection_vr_2),
1

getFrame() (in module cus-
tom_transfer_learning.objdetection_vr_2),
1

L
load_labels() (in module cus-

tom_transfer_learning.objdetection_vr_2),
1

M
module

custom_transfer_learning.objdetection_vr_2,
1

P
process_frame_for_detection() (in module cus-

tom_transfer_learning.objdetection_vr_2), 1

S
snapshot() (in module cus-

tom_transfer_learning.objdetection_vr_2),
1

7



KROMIUM W. TRANSFER LEARNING TRAINING CODE DOCUMENTATION

W Transfer learning training code documentation

484



transfer-learning-training
Release 2.0.0

Kromium

May 21, 2024





CONTENTS:

i



ii



CHAPTER

ONE

MODEL_MAKER_TRAINING

class Model_maker_training.DataLoader(csv_file_path, images_dir)

load_data()

Loads data from the csv file. :param csv_file_path: The file path to the csv file. :param images_dir: The
directory that contains images.

Returns: A Dataloader containing the data of training, validation and test set

class Model_maker_training.ModelTrainer(train_data, validation_data)
A class to train the model on the given dataset and evaluate it.

train_data

Training dataset, in the form of Dataloader.

validation_data

Validation dataset, in the form of Dataloader.

eval

The evaluation result.

model

The trained model.

train_model()

Fine tunes the EfficientDet-Lite0 model on the given dataset.

Parameters
• train_data – Training dataset, in the form of Dataloader.

• validation_data – Validation dataset, in the form of Dataloader.

Returns
A trained model.

evaluate_and_export(test_data)
Evaluates the model and exports it to the export directory.

Parameters
test_data – Test dataset, in the form of Dataloader.

class Model_maker_training.ObjectDetector(model, model_path, classes)
A class to perform object detection with a given model.

model

The trained model.

1



transfer-learning-training, Release 2.0.0

model_path

The file path to the trained model.

classes

A list of class labels.

colors

A list of colors for visualization.

interpreter

The TensorFlow Lite interpreter.

preprocess_image(image_path, input_size)

detect_objects(image, threshold=0.5)

run_odt_and_draw_results(image_path, interpreter, threshold=0.5)
Run object detection on the input image and draw the results.

Parameters
• image_path – The file path to the input image.

• interpreter – The TensorFlow Lite interpreter.

• threshold – The minimum confidence score for detected objects.

Returns
A NumPy array of the input image with the detection results.

2 Chapter 1. Model_maker_training



CHAPTER

TWO

TEST_WITH_CAMERA

test_with_camera.load_labels(path)
Load labels from text file

Parameters
path – Path to text file containing labels

Returns
List of labels

Return type
labels

class test_with_camera.Interpreter(model_path)
Load TFLite model and allocate tensors

model_path

Path to TFLite model

interpreter

TFLite interpreter

get_interpreter()

Get TFLite interpreter

Returns
TFLite interpreter

Return type
interpreter

get_details()→ tuple
Get input and output details

Returns
Input details output_details: Output details height: Height of input tensor width: Width of
input tensor

Return type
input_details

class test_with_camera.Detection(frame, height, width, interpreter, input_detail, output_detail)
Detect objects in frame using TFLite model

frame

Input frame

3



transfer-learning-training, Release 2.0.0

height

Frame height

width

Frame width

interpreter

TFLite interpreter

input_detail

Input details

output_detail

Output details

scores

Confidence scores

boxes

Bounding box coordinates

classes

Class indices

num_detections

Number of detections

nms(boxes, scores, iou_threshold)
Non-maximum suppression

Parameters
• boxes – Bounding box coordinates

• scores – Confidence scores

• iou_threshold – IoU threshold

Returns
Indices of boxes to keep

Return type
keep

interpret()

Interpret the frame and make predictions

Parameters
• frame – Input frame

• height – Frame height

• width – Frame width

• interpreter – TFLite interpreter

• input_details – Input details

• output_details – Output details

Returns
Number of detections scores: Confidence scores boxes: Bounding box coordinates classes:
Class indices

4 Chapter 2. test_with_camera



transfer-learning-training, Release 2.0.0

Return type
num_detections

classFilter(classdata)→ list
Filter classes

Parameters
classdata – Class data

Returns
Filtered classes

YOLOdetect(output_data)→ tuple
Detect objects using YOLO

Parameters
output_data – Output data

Returns
Bounding box coordinates, class indices, and confidence scores

make_boxes(scores, xyxy)
Draw bounding boxes on frame

Parameters
• frame – Input frame

• scores – Confidence scores

• xyxy – Bounding box coordinates

Returns
Frame with bounding boxes

make_boxes_2()

Draw bounding boxes on frame version 2

Returns
Frame with bounding boxes

5



transfer-learning-training, Release 2.0.0

6 Chapter 2. test_with_camera



KROMIUM X. VR HEADSET CODE DOCUMENTATION

X VR headset code documentation

495



Kromium virtual office
1.0

Generated by Doxygen 1.9.1





i

1 Kromium VR headset 1

1.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Hierarchical Index 3

2.1 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Class Index 5

3.1 Class List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 File Index 7

4.1 File List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Class Documentation 9

5.1 ArmController Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.2.1 CalculateDistances() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.2.2 CalculateNormalizedControlValues() . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.2.3 CalculateSpeed() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.2.4 HandleReceivedData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.2.5 OnTriggerEnter() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.2.6 OnTriggerExit() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.2.7 OnTriggerStay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.2.8 RepeatedlyDistanceCalculation() . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.2.9 ResetControlValues() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.2.10 SendControlValues() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.2.11 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.2.12 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.2.13 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.2.14 UpdateVisualIndicator() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.3.1 controlValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.3.2 controlX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.3.3 cubeMaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.3.4 distanceCalculationInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.3.5 dropdownHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3.6 handSkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3.7 insideColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3.8 isHandDetected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3.9 lastSendTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3.10 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.3.11 originalColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.3.12 rightHand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.3.13 sendInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Generated by Doxygen



ii

5.1.3.14 visualIndicatorTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 CameraDepthData Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.2.1 depthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.2.2 time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 DebugDisplay Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.2.1 HandleLog() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.2.2 OnDisable() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.2.3 OnEnable() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.2.4 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.3.1 debugLogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.3.2 debugText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 DebugDisplayPro Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.2.1 HandleLog() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.2.2 OnDisable() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2.3 OnEnable() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2.4 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.3.1 debugLogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.3.2 debugText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 DepthData Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.2.1 AddDepthDataPoint() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.2.2 ClearPoints() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.3.1 depthDataPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.3.2 time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.4 Property Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.4.1 Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.4.2 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 DepthDataGenerator Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6.2.1 GenerateDepthData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Generated by Doxygen



iii

5.6.3.1 Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6.3.2 MaxDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6.3.3 meshCreator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6.3.4 MinDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6.3.5 Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 DepthDataPoint Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7.2 Constructor & Destructor Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7.2.1 DepthDataPoint() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7.3 Property Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7.3.1 X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7.3.2 Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7.3.3 Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.8 DepthPointCloud Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.8.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.8.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.8.2.1 DecodeBase64() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.8.2.2 DecompressBrotli() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8.2.3 OnDepthDataReceived() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8.2.4 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8.2.5 ProcessDepthData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8.2.6 RequestDepthData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.2.7 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.2.8 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.3.1 brotlifile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.3.2 depthColorGradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8.3.3 depthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8.3.4 meshCreator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8.3.5 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8.3.6 particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8.3.7 particleSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.9 DigitalTwinController Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.9.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9.2.1 HandleReceivedRobotInfoData() . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9.2.2 SetTargetRotation() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.9.2.3 SetTargetRotationY() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.9.2.4 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9.2.5 testFunction() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9.2.6 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Generated by Doxygen



iv

5.9.3.1 frameCounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9.3.2 Link_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9.3.3 Link_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9.3.4 Link_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9.3.5 Link_4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.9.3.6 Link_5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9.3.7 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9.3.8 Pinch_left_x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9.3.9 Pinch_right_y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9.3.10 rotateTo170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.10 DriveModeController.DriveMode Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10.2.1 drive_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.11 DriveModeController Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.11.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11.2.1 normalMode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11.2.2 precisionMode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11.2.3 reverseMode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11.2.4 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.11.2.5 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.11.2.6 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.11.2.7 updateButtonColor() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.11.2.8 updateDriveModeData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.11.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.11.3.1 activeColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.11.3.2 defaultColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.11.3.3 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.11.3.4 normalButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.11.3.5 precisionButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.11.3.6 reverseButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.11.4 Event Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.11.4.1 DriveModeChanged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.12 DropdownHandler Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.12.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.12.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.12.2.1 DropdownValueChanged() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12.2.2 GetDropdownValue() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12.2.3 HandleVoiceCommand() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12.2.4 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12.2.5 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Generated by Doxygen



v

5.12.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12.3.1 dropdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12.3.2 modeValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12.3.3 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12.3.4 responsehandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12.4 Event Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12.4.1 OnDropdownValueChanged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.13 HandGestureAndRotation.HandData Class Reference . . . . . . . . . . . . . . . . . . . . . . . . 55

5.13.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.13.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13.2.1 pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13.2.2 wrist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14 HandDataTransmission Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.14.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.14.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.14.2.2 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15 HandDetectionCube Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.15.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.15.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.15.2.1 CalculateDistances() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.15.2.2 CalculateNormalizedControlValues() . . . . . . . . . . . . . . . . . . . . . . . . 60

5.15.2.3 CalculateSpeed() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.15.2.4 HandleReceivedData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.15.2.5 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.15.2.6 OnTriggerEnter() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.15.2.7 OnTriggerExit() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.15.2.8 OnTriggerStay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.15.2.9 RepeatedlyDistanceCalculation() . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.15.2.10 ResetControlValues() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15.2.11 SendControlValues() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15.2.12 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15.2.13 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.15.2.14 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.15.2.15 UpdateVisualIndicator() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.15.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.15.3.1 controlValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.15.3.2 controlX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.15.3.3 cubeMaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.15.3.4 distanceCalculationInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15.3.5 dropdownHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15.3.6 handSkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Generated by Doxygen



vi

5.15.3.7 insideColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15.3.8 isHandDetected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15.3.9 lastSendTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.15.3.10 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.15.3.11 originalColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.15.3.12 rightHand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.15.3.13 sendInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.15.3.14 visualIndicatorTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.16 HandGestureAndRotation Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.16.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.16.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.16.2.1 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.16.2.2 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.16.2.3 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.16.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.16.3.1 hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.16.3.2 handData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.16.3.3 handSkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.16.3.4 isTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.16.3.5 lastSendTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.16.3.6 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.16.3.7 sendInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.17 HandInteraction Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.17.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.17.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.17.2.1 HandleReceivedData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.17.2.2 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.17.2.3 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.17.2.4 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.17.2.5 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.17.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.17.3.1 hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.17.3.2 isTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.17.3.3 lastSendTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.17.3.4 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.17.3.5 sendInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.18 HandleReconnectButton Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.18.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.18.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18.2.1 OnReconnectButtonClicked() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18.2.2 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18.2.3 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Generated by Doxygen



vii

5.18.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18.3.1 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.18.3.2 reconnectButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.19 Heap_up_controller Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.19.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.19.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.19.2.1 HandleConnectionStatusChanged() . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.19.2.2 HandleReceivedPingData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.19.2.3 HandleReceivedRobotInfoData() . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.19.2.4 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19.2.5 OnDisable() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19.2.6 OnEnable() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19.2.7 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19.2.8 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.19.2.9 update_head_up_canvas_position_and_rotation() . . . . . . . . . . . . . . . . . 87

5.19.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.19.3.1 accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.19.3.2 battery_precentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.19.3.3 battery_precentage_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.19.3.4 cms_speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19.3.5 conenctionStatus_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19.3.6 connectedColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19.3.7 disconnectedColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19.3.8 gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19.3.9 head_up_canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.19.3.10 head_up_canvas_distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19.3.11 latecy_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19.3.12 magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19.3.13 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19.3.14 mode_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19.3.15 motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19.3.16 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19.3.17 offset_ovr_camera_rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19.3.18 ovr_camera_rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19.3.19 robot_view_plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19.3.20 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19.3.21 speed_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19.3.22 voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.19.3.23 voltage_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.20 HelloWorldScript Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.20.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.20.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Generated by Doxygen



viii

5.20.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.20.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.20.3.1 myName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.20.3.2 textMeshPro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.21 JsonArmLengthInfo Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.21.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.21.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.21.2.1 Link_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.21.2.2 Link_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.21.2.3 Link_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.21.2.4 Link_4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.21.2.5 Link_5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.21.2.6 pintch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.22 JsonRobotInfo Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.22.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.22.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.22.2.1 accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.22.2.2 battery_precentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.22.2.3 cms_speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.22.2.4 gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22.2.5 magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22.2.6 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22.2.7 motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22.2.8 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22.2.9 voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.23 Logger Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.23.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.23.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.23.2.1 Awake() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.23.2.2 Log() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.23.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.23.3.1 logFilePath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.24 MainController Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.24.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.24.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.24.2.1 HandleDropdownChange() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.24.2.2 HandleEmergencyStop() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.24.2.3 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.24.2.4 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.24.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.24.3.1 armScene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.24.3.2 driveScene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Generated by Doxygen



ix

5.24.3.3 dropdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.24.3.4 dropdownHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.24.3.5 EmergencyStopButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.24.3.6 modeAudioPlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.25 MeshCreator Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.25.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.25.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.25.2.1 clearVolumeBoxes() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.25.2.2 CreateCubeGridTest() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.25.2.3 CreateMeshInBoxVolume() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.25.2.4 NormalizeDepthData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.25.2.5 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.25.2.6 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.25.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.25.3.1 depthColorGradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.25.3.2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.26 MeshReplacement Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.26.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.26.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.26.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.26.2.2 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.26.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.26.3.1 mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.26.3.2 ply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.27 ModeAudioPlay Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.27.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.27.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.27.2.1 PlayArm() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.27.2.2 PlayDrive() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.27.2.3 PlayEmergency() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.27.2.4 PlayIdle() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.27.2.5 PlayScrew() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.27.2.6 PlayUnScrew() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.27.2.7 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.27.2.8 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.27.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.27.3.1 armSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.27.3.2 driveSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.27.3.3 emergencySource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.27.3.4 idleSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.27.3.5 screwSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.27.3.6 unScrewSource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Generated by Doxygen



x

5.28 DropdownHandler.ModeValues Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.28.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.28.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.28.2.1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.29 NetworkManager Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.29.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.29.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.29.2.1 Awake() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.29.2.2 ConnectToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.29.2.3 DecodeBase64() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.29.2.4 DecompressBrotli() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.29.2.5 Disconnect() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.29.2.6 InvokeConnectionStatus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.29.2.7 IsBrotli() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.29.2.8 OnApplicationQuit() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.29.2.9 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.29.2.10 ParseArmLengthInfo() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.29.2.11 ParseFloatList() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.29.2.12 ParseJsonRobotInfo() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.29.2.13 PingRobot() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.29.2.14 ProcessDataCoroutine() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.29.2.15 ProcessDepthData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.29.2.16 ProcessPingData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.29.2.17 processRecievedData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.29.2.18 ReceiveData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.29.2.19 ReceiveDataAsync() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.29.2.20 Reconnect() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.29.2.21 SendData() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.29.2.22 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.29.2.23 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.29.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.29.3.1 broHeader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.29.3.2 brotliTestFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.29.3.3 cameraDepthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.29.3.4 client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.29.3.5 connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.29.3.6 depthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.29.3.7 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.29.3.8 isListening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.29.3.9 port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.29.3.10 receivedDataQueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.29.3.11 receiveThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Generated by Doxygen



xi

5.29.3.12 serverIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.29.3.13 sizeBeforeUpdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.29.3.14 stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.29.3.15 udpPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.29.4 Event Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.29.4.1 onArmLengthDataReceived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.29.4.2 OnConnected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.29.4.3 OnConnectionStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.29.4.4 OnDataReceived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.29.4.5 onDepthDataReceived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.29.4.6 onPingDataReceived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.29.4.7 OnRobotInfoDataReceived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.30 ObjectController Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.30.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.30.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.30.2.1 SendDataToServer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.30.2.2 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.30.2.3 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.30.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.30.3.1 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.31 PingData Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.31.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.31.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.31.2.1 ping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.31.2.2 type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.32 DepthPointCloud.RequestDepthDataMsg Class Reference . . . . . . . . . . . . . . . . . . . . . . 135

5.32.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.32.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.32.2.1 get_depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.33 Responsehandler Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.33.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.33.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.33.2.1 HandleResponseTest() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.33.2.2 OnEmergency() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.33.2.3 OnEmergencyVoiceCommandActivated() . . . . . . . . . . . . . . . . . . . . . . 137

5.33.2.4 OnStartListening() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.33.2.5 sendScrewCommandToTheTobot() . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.33.2.6 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.33.2.7 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.33.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.33.3.1 index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.33.3.2 modeAudioPlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Generated by Doxygen



xii

5.33.3.3 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.33.3.4 voiceExperience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.33.4 Event Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.33.4.1 OnVoiceCommandReceived . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.34 RobotCamStream Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.34.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.34.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.34.2.1 HandlePrepareCompleted() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.34.2.2 HandleVideoError() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.34.2.3 SetupVideoPlayer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.34.2.4 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.34.2.5 TryPrepareVideo() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.34.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.34.3.1 currentRetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.34.3.2 maxRetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.34.3.3 retryDelay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.34.3.4 streamUrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.34.3.5 videoPlayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.35 ArmController.RobotControlValues Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.35.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.35.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.35.2.1 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.35.2.2 x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.35.2.3 y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.36 HandDetectionCube.RobotControlValues Class Reference . . . . . . . . . . . . . . . . . . . . . . 145

5.36.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.36.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.36.2.1 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.36.2.2 x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.36.2.3 y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.37 ArmController.RobotControlX Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.37.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.37.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.37.2.1 pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.37.2.2 strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.37.2.3 x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.37.2.4 y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.37.2.5 z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.38 HandDetectionCube.RobotControlX Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.38.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.38.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.38.2.1 pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Generated by Doxygen



xiii

5.38.2.2 strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.38.2.3 x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.38.2.4 y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.39 Responsehandler.ScrewCommand Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.39.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.39.2 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.39.2.1 screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.40 SetAttachTransform Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.40.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.40.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.40.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.40.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.40.3.1 handSkeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.40.3.2 poke_finger_tip_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.40.3.3 pokeInteractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.41 UdpListener Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.41.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.41.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.41.2.1 Main() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.41.2.2 StartListener() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.41.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.41.3.1 listenPort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.42 UnityMainThreadDispatcher Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.42.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.42.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.42.2.1 Awake() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.42.2.2 Enqueue() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.42.2.3 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.42.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.42.3.1 _executionQueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.42.4 Property Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.42.4.1 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.43 Vector3Data Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.43.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.43.2 Constructor & Destructor Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.43.2.1 Vector3Data() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.43.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.43.3.1 x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.43.3.2 y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.43.3.3 z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.44 VideoStream Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.44.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Generated by Doxygen



xiv

5.44.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.44.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.44.2.2 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.45 VideoStreamController Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.45.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.45.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.45.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.45.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.45.3.1 videoPlayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.46 VideoStreamReceiver Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.46.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.47 WebcamStreamDisplay Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.47.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.47.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.47.2.1 ApplyTexture() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.47.2.2 FetchSnapshotRoutine() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.47.2.3 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.47.2.4 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.47.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.47.3.1 _refreshWait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.47.3.2 _renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.47.3.3 refreshRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.47.3.4 snapshotUrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.48 WebRTCReceiver Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.48.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.48.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.48.2.1 OnDestroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.48.2.2 OnError() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.48.2.3 OnMessage() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.48.2.4 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.48.2.5 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.48.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.48.3.1 _webSocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.48.3.2 index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.48.3.3 networkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.48.3.4 rawImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.48.3.5 texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.49 WristMarker Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.49.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.49.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.49.2.1 Start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.49.2.2 Update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Generated by Doxygen



xv

5.49.3 Member Data Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.49.3.1 greenDot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.49.3.2 Hand_MiddleTip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.49.3.3 skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6 File Documentation 173

6.1 Assets/DebugDisplay.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Assets/DebugDisplayPro.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Assets/HandDataTransmission.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Assets/HandInteraction.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5 Assets/HelloWorldScript.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Assets/ObjectController.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.7 Assets/RobotCamStream.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.8 Assets/Scripts/ArmController/ArmController.cs File Reference . . . . . . . . . . . . . . . . . . . . . 174

6.9 Assets/Scripts/DigitalTwin/DigitalTwinController.cs File Reference . . . . . . . . . . . . . . . . . . . 174

6.10 Assets/Scripts/DriveModeController/DriveModeController.cs File Reference . . . . . . . . . . . . . 175

6.11 Assets/Scripts/DropdownHandler.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.12 Assets/Scripts/HandDetectionCube.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . 175

6.13 Assets/Scripts/HandGestureAndRotation.cs File Reference . . . . . . . . . . . . . . . . . . . . . . 175

6.14 Assets/Scripts/HandleReconnectButton.cs File Reference . . . . . . . . . . . . . . . . . . . . . . 175

6.15 Assets/Scripts/Head up display/Heap_up_controller.cs File Reference . . . . . . . . . . . . . . . . 176

6.16 Assets/Scripts/log/Logger.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.17 Assets/Scripts/LogicController/MainController.cs File Reference . . . . . . . . . . . . . . . . . . . 176

6.18 Assets/Scripts/NetworkNamager/NetworkManager.cs File Reference . . . . . . . . . . . . . . . . 176

6.19 Assets/Scripts/NetworkNamager/UdpListener.cs File Reference . . . . . . . . . . . . . . . . . . . 176

6.20 Assets/Scripts/PlotCameraDepthData/DepthDataGenerator.cs File Reference . . . . . . . . . . . . 177

6.21 Assets/Scripts/PlotCameraDepthData/DepthPointCloud.cs File Reference . . . . . . . . . . . . . . 177

6.22 Assets/Scripts/PlotCameraDepthData/MeshCreator.cs File Reference . . . . . . . . . . . . . . . . 177

6.23 Assets/Scripts/PlotCameraDepthData/MeshReplacement.cs File Reference . . . . . . . . . . . . . 177

6.24 Assets/Scripts/SetAttachTransform.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.25 Assets/Scripts/UnityMainThreadDispatcher.cs File Reference . . . . . . . . . . . . . . . . . . . . 177

6.26 Assets/Scripts/VideoStreamer/VideoStream.cs File Reference . . . . . . . . . . . . . . . . . . . . 178

6.27 Assets/Scripts/VideoStreamer/VideoStreamReceiver.cs File Reference . . . . . . . . . . . . . . . 178

6.28 Assets/Scripts/WebRTCReceiver.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.29 Assets/Scripts/WristMarker.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.30 Assets/VideoStreamController.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.31 Assets/Voice Controll/ModeAudioPlay.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . 178

6.32 Assets/Voice Controll/Responsehandler.cs File Reference . . . . . . . . . . . . . . . . . . . . . . 179

6.33 Assets/WebcamStreamDisplay.cs File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.34 obj/Debug/.NETStandard,Version=v2.1.AssemblyAttributes.cs File Reference . . . . . . . . . . . . 179

6.35 README_.md File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Index 181

Generated by Doxygen





Chapter 1

Kromium VR headset

Welcome to the Kromium VR Headset repository! This repository contains all the necessary files to build and modify
the Kromium VR Headset application.

1.1 Getting started

• Set up development environment and headset

• Get started with Meta Quest 3 development in Unity

Generated by Doxygen



2 Kromium VR headset

Generated by Doxygen



Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CameraDepthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DepthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DepthDataGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DepthDataPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DriveModeController.DriveMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
HandGestureAndRotation.HandData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
JsonArmLengthInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
JsonRobotInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
DropdownHandler.ModeValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
MonoBehaviour

ArmController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DebugDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DebugDisplayPro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DepthPointCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DigitalTwinController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DriveModeController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DropdownHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
HandDataTransmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
HandDetectionCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HandGestureAndRotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HandInteraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
HandleReconnectButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Heap_up_controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
HelloWorldScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
MainController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
MeshCreator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
MeshReplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ModeAudioPlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
NetworkManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ObjectController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Responsehandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
RobotCamStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SetAttachTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
UdpListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Generated by Doxygen



4 Hierarchical Index

UnityMainThreadDispatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
VideoStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
VideoStreamController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
VideoStreamReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
WebRTCReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
WebcamStreamDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
WristMarker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

PingData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DepthPointCloud.RequestDepthDataMsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
ArmController.RobotControlValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
HandDetectionCube.RobotControlValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
ArmController.RobotControlX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
HandDetectionCube.RobotControlX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Responsehandler.ScrewCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Vector3Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Generated by Doxygen



Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ArmController
This script is used to detect the hand position within a cube and send control values to the robot
based on the hand position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CameraDepthData
depth camera interface datatype The data is recieved from the robot as this type . . . . . . . . 21

DebugDisplay
This script is used to display debug logs on the a VR screen for testing purposes . . . . . . . 22

DebugDisplayPro
This script is used to display debug logs on the a VR screen for testing purposes . . . . . . . 25

DepthData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DepthDataGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DepthDataPoint

Depth data interface Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DepthPointCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DigitalTwinController

This class is used to control the digital twin robot . . . . . . . . . . . . . . . . . . . . . . . . 39
DriveModeController.DriveMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DriveModeController

This class is used to control the drive mode of the robot . . . . . . . . . . . . . . . . . . . . . 45
DropdownHandler

This script is used to handle the dropdown in the UI . . . . . . . . . . . . . . . . . . . . . . . 51
HandGestureAndRotation.HandData

The HandData interface used to send the data to the robot . . . . . . . . . . . . . . . . . . . 55
HandDataTransmission

This script is used for testing porpuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
HandDetectionCube

This script is used to detect the hand position within a cube and send control values to the robot
based on the hand position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

HandGestureAndRotation
This class is used to get the hand gesture and rotation data and send it to the server . . . . . 70

HandInteraction
This script is used to send hand tracking data to the server at regular intervals . . . . . . . . . 75

HandleReconnectButton
This script is used to handle the reconnect button in the UI . . . . . . . . . . . . . . . . . . . 79

Generated by Doxygen



6 Class Index

Heap_up_controller
This class is used to control the head up display of the robot . . . . . . . . . . . . . . . . . . 82

HelloWorldScript
This script is used to display a simple "Hello World" message on the screen for testing purposes 91

JsonArmLengthInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
JsonRobotInfo

Class JsonRobotInfo Represents the JSON data structure for the robot information . . . 94
Logger

This script is used to log messages to a file . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
MainController

This class is the main controller for handling scene changes and mode changes . . . . . . . . 99
MeshCreator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
MeshReplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ModeAudioPlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
DropdownHandler.ModeValues

The ModeValues interface used to send the mode value to the robot . . . . . . . . . . . . . . 113
NetworkManager

Class NetworkManager Manages network communications for the application, implement-
ing a singleton pattern to ensure only one instance exists . . . . . . . . . . . . . . . . . . . . 114

ObjectController
This class is used to send data to the server by pressing the space key . . . . . . . . . . . . . 131

PingData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DepthPointCloud.RequestDepthDataMsg

Interface for requesting depth camera from the robot . . . . . . . . . . . . . . . . . . . . . . 135
Responsehandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
RobotCamStream

140
ArmController.RobotControlValues

The control values used to control the robot for controlling the robot (car) . . . . . . . . . . . . 144
HandDetectionCube.RobotControlValues

The control values used to control the robot for controlling the robot (car) . . . . . . . . . . . . 145
ArmController.RobotControlX

The control values used to control the robot for controlling the arm . . . . . . . . . . . . . . . 146
HandDetectionCube.RobotControlX

The control values used to control the robot for controlling the arm . . . . . . . . . . . . . . . 148
Responsehandler.ScrewCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
SetAttachTransform

This script is used to set the attach transform of an XR poke interactor to a specific bone in the
hand skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

UdpListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
UnityMainThreadDispatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Vector3Data

Vector data to store tdepth data (x, y, z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
VideoStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
VideoStreamController

This script is used to play a video stream from a server . . . . . . . . . . . . . . . . . . . . . 160
VideoStreamReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
WebcamStreamDisplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
WebRTCReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
WristMarker

This class is used to display a green dot that is attached to the Tip of the Middle Finger of the
Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Generated by Doxygen



Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

Assets/DebugDisplay.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Assets/DebugDisplayPro.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Assets/HandDataTransmission.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Assets/HandInteraction.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Assets/HelloWorldScript.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Assets/ObjectController.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Assets/RobotCamStream.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Assets/VideoStreamController.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assets/WebcamStreamDisplay.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Assets/Scripts/DropdownHandler.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Assets/Scripts/HandDetectionCube.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Assets/Scripts/HandGestureAndRotation.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Assets/Scripts/HandleReconnectButton.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Assets/Scripts/SetAttachTransform.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Assets/Scripts/UnityMainThreadDispatcher.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Assets/Scripts/WebRTCReceiver.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assets/Scripts/WristMarker.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assets/Scripts/ArmController/ArmController.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Assets/Scripts/DigitalTwin/DigitalTwinController.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Assets/Scripts/DriveModeController/DriveModeController.cs . . . . . . . . . . . . . . . . . . . . . . . 175
Assets/Scripts/Head up display/Heap_up_controller.cs . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Assets/Scripts/log/Logger.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Assets/Scripts/LogicController/MainController.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Assets/Scripts/NetworkNamager/NetworkManager.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Assets/Scripts/NetworkNamager/UdpListener.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Assets/Scripts/PlotCameraDepthData/DepthDataGenerator.cs . . . . . . . . . . . . . . . . . . . . . . 177
Assets/Scripts/PlotCameraDepthData/DepthPointCloud.cs . . . . . . . . . . . . . . . . . . . . . . . . 177
Assets/Scripts/PlotCameraDepthData/MeshCreator.cs . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Assets/Scripts/PlotCameraDepthData/MeshReplacement.cs . . . . . . . . . . . . . . . . . . . . . . . 177
Assets/Scripts/VideoStreamer/VideoStream.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assets/Scripts/VideoStreamer/VideoStreamReceiver.cs . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assets/Voice Controll/ModeAudioPlay.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Assets/Voice Controll/Responsehandler.cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
obj/Debug/.NETStandard,Version=v2.1.AssemblyAttributes.cs . . . . . . . . . . . . . . . . . . . . . . 179

Generated by Doxygen



8 File Index

Generated by Doxygen



Chapter 5

Class Documentation

5.1 ArmController Class Reference

This script is used to detect the hand position within a cube and send control values to the robot based on the hand
position.

Inheritance diagram for ArmController:

ArmController

MonoBehaviour

Collaboration diagram for ArmController:

ArmController

MonoBehaviour

DropdownHandlerResponsehandler

NetworkManager

ModeAudioPlay

 dropdownHandler

 responsehandler

 networkManager

 networkManager networkManager

 Instance

CameraDepthData  cameraDepthData

DepthData

 depthData

 modeAudioPlay

DropdownHandler.ModeValues  modeValues

ArmController.RobotControlX

 controlX

ArmController.RobotControl
Values

 controlValues

Generated by Doxygen



10 Class Documentation

Classes

• class RobotControlValues

The control values used to control the robot for controlling the robot (car).

• class RobotControlX

The control values used to control the robot for controlling the arm.

Public Attributes

• DropdownHandler dropdownHandler

The DropdownHandler component used to get the mode values from the UI(VR).

• OVRSkeleton handSkeleton

The OVRSkeleton component used to track hand gestures.

• OVRHand rightHand

The OVRHand component used to track hand gestures.

• float distanceCalculationInterval = 0.5f

The interval at which to calculate the distances.

• float sendInterval = 0.5f

The interval at which to send data to the server.

• Color insideColor = new Color(1, 0, 0, 0.2f)

Private Member Functions

• void Start ()

The script is called before the first frame update and is used to initialize the necessary variables.

• void Update ()

Update is called once per frame and is used to log the position of the Hand_WristRoot bone in the VR headset.

• void OnTriggerEnter (Collider other)

This method is called when the hand enters the cube area.

• void OnTriggerExit (Collider other)

Stop the coroutine when the hand leaves the cube

• void OnTriggerStay (Collider other)
• void ResetControlValues ()

Reset the control values to stop the robot, this makes the robot stop when the hand leaves the cube

• IEnumerator RepeatedlyDistanceCalculation (Transform handTransform)

Asynchronous method to calculate the distances repeatedly when the coroutine is started.

• void CalculateDistances (Vector3 handPosition)

Calculate the distances from the hand to the edges of the cube This is used for debugging and understanding the
hand position within the cube

• void CalculateNormalizedControlValues (Vector3 handPosition)

Calculate the normalized control values based on the hand position within the cube

• void UpdateVisualIndicator (float normalizedX, float normalizedZ, float normalizedY)

Update the position of the visual indicator within the detection cube according to the normalized X and Z values.

• void SendControlValues (float normalizedX, float normalizedY, float normalizedZ)

Sending the information to the robot through socket communication.

• int CalculateSpeed (float normalizedX, float normalizedZ)

Calculate the speed based on the normalized X and Z values

• void HandleReceivedData (string data)

Handles the recieved data from the server.

• void SendDataToServer (string data)

Sends the data to the server.

Generated by Doxygen



5.1 ArmController Class Reference 11

Private Attributes

• RobotControlValues controlValues = new RobotControlValues()
• RobotControlX controlX = new RobotControlX()
• NetworkManager networkManager

The NetworkManager component used to send data to the server.

• bool isHandDetected = false

The flag to indicate if the hand is detected within the cube.

• float lastSendTime
• Transform visualIndicatorTransform

The transform of the visual indicator.

• Material cubeMaterial
• Color originalColor

5.1.1 Detailed Description

This script is used to detect the hand position within a cube and send control values to the robot based on the hand
position.

This class is used for both controlling the arm. This class will be refactored to be more modular and to use interfaces
which implemented as state machines.

Definition at line 15 of file ArmController.cs.

5.1.2 Member Function Documentation

5.1.2.1 CalculateDistances()

void ArmController.CalculateDistances (

Vector3 handPosition ) [inline], [private]

Calculate the distances from the hand to the edges of the cube This is used for debugging and understanding the
hand position within the cube

Parameters

handPosition

Definition at line 206 of file ArmController.cs.
207 {
208 float halfScaleX = transform.localScale.x / 2;
209 float halfScaleZ = transform.localScale.z / 2;
210
211 float distanceToLeftEdge = handPosition.x - (transform.position.x - halfScaleX);
212 float distanceToRightEdge = (transform.position.x + halfScaleX) - handPosition.x;
213 float distanceToFrontEdge = (transform.position.z + halfScaleZ) - handPosition.z;
214 float distanceToBackEdge = handPosition.z - (transform.position.z - halfScaleZ);
215
216 // Log distances to the console
217 Debug.Log($"Distance to Left Edge: {distanceToLeftEdge}");
218 Debug.Log($"Distance to Right Edge: {distanceToRightEdge}");
219 Debug.Log($"Distance to Front Edge: {distanceToFrontEdge}");

Generated by Doxygen



12 Class Documentation

220 Debug.Log($"Distance to Back Edge: {distanceToBackEdge}");
221 }

5.1.2.2 CalculateNormalizedControlValues()

void ArmController.CalculateNormalizedControlValues (

Vector3 handPosition ) [inline], [private]

Calculate the normalized control values based on the hand position within the cube

Parameters

handPosition

Definition at line 227 of file ArmController.cs.
228 {
229 // Convert hand position to the cube’s local space
230 Vector3 handLocalPosition = transform.InverseTransformPoint(handPosition);
231
232 // Calculate normalized X within -1 to 1 range
233 float normalizedX = Mathf.Clamp(handLocalPosition.x / (transform.localScale.x / 2), -1, 1);
234
235 // Calculate normalized Z within 0 to 1 range
236 float normalizedZ = Mathf.Clamp((handLocalPosition.z / (transform.localScale.z / 2) + 1) / 2, 0,

1);
237
238 float normalizedY = handLocalPosition.y + 0.50000f;
239 float mappedY;
240
241 if (normalizedY < 0.3)
242 {
243 mappedY = normalizedY - 0.3f;
244 }
245 else
246 {
247 // Range which comes inside here is 0,3 between and 1 is mapped
248 mappedY = (normalizedY - 0.3f) / (1 - 0.3f);
249 }
250
251 normalizedY = mappedY;
252 // Debug.Log($"HandLocalPosition: {handLocalPosition.y}");
253 // Debug.Log($"Transform localScale: {transform.localScale.y}");
254 // Debug.Log($"Normalized X: {normalizedX}");
255 // Debug.Log($"Normalized Z: {normalizedZ}");
256 // Debug.Log($"Normalized Y: {normalizedY}");
257
258 SendControlValues(normalizedX, normalizedY, normalizedZ);
259 // UpdateVisualIndicator(normalizedX, normalizedZ, normalizedY);
260 }

5.1.2.3 CalculateSpeed()

int ArmController.CalculateSpeed (

float normalizedX,

float normalizedZ ) [inline], [private]

Calculate the speed based on the normalized X and Z values

Parameters

normalizedX
normalizedZ

Generated by Doxygen



5.1 ArmController Class Reference 13

Returns

Definition at line 367 of file ArmController.cs.
368 {
369 float calculatedSpeed = 0;
370 if (normalizedX < 0.3 && normalizedX > -0.3 && normalizedZ < 0.3)
371 {
372 calculatedSpeed = 0;
373 }
374 else if (normalizedX > 0.3 || normalizedX < -0.3)
375 {
376 calculatedSpeed = Math.Abs(100 * normalizedX);
377 }
378 else if (normalizedZ > 0.4)
379 {
380 calculatedSpeed = Math.Abs(100 * normalizedZ);
381 }
382 return (int)calculatedSpeed;
383 }

5.1.2.4 HandleReceivedData()

void ArmController.HandleReceivedData (

string data ) [inline], [private]

Handles the recieved data from the server.

It is not in use at the moment.

Definition at line 389 of file ArmController.cs.
390 {
391 // Process the received data
392 Debug.Log($"ObjectController received data: {data}");
393 }

5.1.2.5 OnTriggerEnter()

void ArmController.OnTriggerEnter (

Collider other ) [inline], [private]

This method is called when the hand enters the cube area.

It changes the color of the cube and starts the coroutine to calculate the distances repeatedly.

Parameters

other

Definition at line 128 of file ArmController.cs.
129 {
130 // Check if TipBoneEnd is in the cube
131 if (other.CompareTag("TipboneSphere"))
132 {
133 isHandDetected = true;
134 // Debug.Log($"Visualindicator entered cube area.{other.bounds.size}");
135 // Debug.Log($"Other size: {other.bounds.size}");

Generated by Doxygen



14 Class Documentation

136
137 // Change the color of the cube when the hand enters the cube
138 cubeMaterial.color = insideColor;
139
140 // Start coroutine to calculate distances repeatedly
141 int Hand_WristRoot = (int)OVRPlugin.BoneId.Hand_MiddleTip;
142 OVRBone WristBone = handSkeleton.Bones[Hand_WristRoot];
143 StartCoroutine(RepeatedlyDistanceCalculation(WristBone.Transform));
144 }
145 }

5.1.2.6 OnTriggerExit()

void ArmController.OnTriggerExit (

Collider other ) [inline], [private]

Stop the coroutine when the hand leaves the cube

Parameters

other

Definition at line 151 of file ArmController.cs.
152 {
153 if (other.CompareTag("TipboneSphere"))
154 {
155 isHandDetected = false;
156 // Debug.Log("Hand exited cube area.");
157 // Reset the color of the cube when the hand leaves the cube
158 cubeMaterial.color = originalColor;
159
160 // Stop the coroutine when the hand leaves the Cude
161 StopAllCoroutines();
162
163 // Reset the control values to stop the robot
164 ResetControlValues();
165
166 // Stop the robot when the had leaves the control area(Cube)
167 string json = JsonUtility.ToJson(controlValues);
168 SendDataToServer(json);
169 }
170 }

5.1.2.7 OnTriggerStay()

void ArmController.OnTriggerStay (

Collider other ) [inline], [private]

Definition at line 172 of file ArmController.cs.
173 {
174 // not sure if this is necessary
175 }

5.1.2.8 RepeatedlyDistanceCalculation()

IEnumerator ArmController.RepeatedlyDistanceCalculation (

Transform handTransform ) [inline], [private]

Asynchronous method to calculate the distances repeatedly when the coroutine is started.

Generated by Doxygen



5.1 ArmController Class Reference 15

Parameters

handTransform

Definition at line 191 of file ArmController.cs.
192 {
193
194 while (isHandDetected)
195 {
196 CalculateNormalizedControlValues(handTransform.position);
197 yield return new WaitForSeconds(sendInterval);
198 }
199 }

5.1.2.9 ResetControlValues()

void ArmController.ResetControlValues ( ) [inline], [private]

Reset the control values to stop the robot, this makes the robot stop when the hand leaves the cube

Definition at line 180 of file ArmController.cs.
181 {
182 controlValues.x = 0;
183 controlValues.y = 0;
184 controlValues.speed = 0;
185 }

5.1.2.10 SendControlValues()

void ArmController.SendControlValues (

float normalizedX,

float normalizedY,

float normalizedZ ) [inline], [private]

Sending the information to the robot through socket communication.

The directions is calculated based on the normalized X and Z values. X goes from -1 (drive left) to 1 (drive right)
and Z goes from 0 (stop) to 1 (drive forward). Speed is calculated based in how far the hand is from the edges, the
closer the hand is to the edge the faster the robot moves. The max speed is when the hand reaches the edge of the
cube.

Parameters

normalizedX
normalizedZ
normalizedY
=speed

"

Definition at line 302 of file ArmController.cs.

Generated by Doxygen



16 Class Documentation

303 {
304
305 // int dropdownValue = dropdownHandler.GetDropdownValue();
306 // string data = "";
307 controlX.x = normalizedX;
308 controlX.z = normalizedY;
309 controlX.y = normalizedZ;
310 controlX.pinch = rightHand.GetFingerIsPinching(OVRHand.HandFinger.Index) ? 1 : 0;
311 controlX.strength = rightHand.GetFingerPinchStrength(OVRHand.HandFinger.Index);
312 string data = JsonUtility.ToJson(controlX);
313 // Debug.Log($"Control ARM values: {data}");
314
315 SendDataToServer(data);
316
317 // switch (dropdownValue)
318 // {
319 // case 0:
320 // // Idle mode
321 // break;
322 // // case 1:
323 // // // Drive mode
324 // // controlValues.x = normalizedX;
325 // // controlValues.y = normalizedZ;
326 // // controlValues.speed = speed;
327 // // data = JsonUtility.ToJson(controlValues);
328 // // Debug.Log($"Drive values: {data}");
329 // // Debug.Log($"Speed: {speed}");
330 // // break;
331 // case 2:
332 // // Arm mode
333 // controlX.x = normalizedX;
334 // controlX.z = normalizedY;
335 // controlX.y = normalizedZ;
336 // controlX.pinch = rightHand.GetFingerIsPinching(OVRHand.HandFinger.Index) ? 1 : 0;
337 // controlX.strength = rightHand.GetFingerPinchStrength(OVRHand.HandFinger.Index);
338 // data = JsonUtility.ToJson(controlX);
339 // Debug.Log($"Control ARM values: {data}");
340
341 // break;
342 // case 3:
343 // // Emergency stop
344
345 // break;
346 // }
347
348 // if (!dropdownValue.Equals(0) && (lastSendTime == 0 || Time.time - lastSendTime >

sendInterval))
349 // {
350 // SendDataToServer(data);
351 // lastSendTime = Time.time;
352 // // Convert the control values to a string
353 // }
354 // else
355 // {
356 // Debug.Log("No data sent to the robot.");
357 // }
358
359 }

5.1.2.11 SendDataToServer()

void ArmController.SendDataToServer (

string data ) [inline], [private]

Sends the data to the server.

Definition at line 398 of file ArmController.cs.
399 {
400 if (networkManager != null)
401 {
402 networkManager.SendData(data);
403 }
404 else
405 {
406 Debug.Log("NetworkManager component not found.");
407 }
408 }

Generated by Doxygen



5.1 ArmController Class Reference 17

5.1.2.12 Start()

void ArmController.Start ( ) [inline], [private]

The script is called before the first frame update and is used to initialize the necessary variables.

Definition at line 95 of file ArmController.cs.
96 {
97 // Working but we have to install some packages to get access to the logfile in VR headset
98 // It should be easly accessible in the VR headset
99 FindObjectOfType<Logger>().Log("Test log file.");
100 // Finding the visualIndicator child of the cube
101 visualIndicatorTransform = transform.Find("VisualIndicatorHand");
102 // Debug.Log($"Indicator position: {visualIndicatorTransform.localPosition.y}");
103 if (visualIndicatorTransform == null)
104 {
105 Debug.LogError("VisualIndicator child not found!");
106 }
107
108 // Get the material and the color of the visualIndocatorCube
109 cubeMaterial = GetComponent<Renderer>().material;
110 originalColor = cubeMaterial.color; // Save the original color
111 networkManager = NetworkManager.Instance;
112 }

5.1.2.13 Update()

void ArmController.Update ( ) [inline], [private]

Update is called once per frame and is used to log the position of the Hand_WristRoot bone in the VR headset.

This is used for testing purposes.

Definition at line 119 of file ArmController.cs.
120 {
121 }

5.1.2.14 UpdateVisualIndicator()

void ArmController.UpdateVisualIndicator (

float normalizedX,

float normalizedZ,

float normalizedY ) [inline], [private]

Update the position of the visual indicator within the detection cube according to the normalized X and Z values.

This is to give a feedback to the user about the hand position within the cube which indicates the direction and the
speed of the robot.

Parameters

normalizedX
normalizedZ

Definition at line 268 of file ArmController.cs.

Generated by Doxygen



18 Class Documentation

269 {
270
271 float unchangedY = visualIndicatorTransform.localPosition.y;
272
273 float scaleX = transform.localScale.x / 2; // Half size of the detection cube in X
274 float scaleZ = transform.localScale.z / 2; // Half size of the detection cube in Z
275 float scaleY = transform.localScale.y + ((1.1f - (-0.3f) - 1) / 2);
276
277 // Map the normalized control values back to the world position within the detection cube
278 float worldX = normalizedX * scaleX;
279 float worldZ = normalizedZ * scaleZ * 2 - scaleZ;
280 float worldY = normalizedY * scaleY;
281
282 worldZ = Mathf.Clamp(worldZ, -scaleZ, scaleZ);
283
284 Debug.Log($"New Position - X: {worldX}");
285 Debug.Log($"New Position -Y: {worldY}");
286 Debug.Log($"New Position -Z: {worldZ}");
287
288 Vector3 newPosition = new Vector3(worldX, worldY, worldZ);
289 visualIndicatorTransform.localPosition = newPosition;
290 }

5.1.3 Member Data Documentation

5.1.3.1 controlValues

RobotControlValues ArmController.controlValues = new RobotControlValues() [private]

Definition at line 59 of file ArmController.cs.

5.1.3.2 controlX

RobotControlX ArmController.controlX = new RobotControlX() [private]

Definition at line 60 of file ArmController.cs.

5.1.3.3 cubeMaterial

Material ArmController.cubeMaterial [private]

Definition at line 88 of file ArmController.cs.

5.1.3.4 distanceCalculationInterval

float ArmController.distanceCalculationInterval = 0.5f

The interval at which to calculate the distances.

Definition at line 75 of file ArmController.cs.

Generated by Doxygen



5.1 ArmController Class Reference 19

5.1.3.5 dropdownHandler

DropdownHandler ArmController.dropdownHandler

The DropdownHandler component used to get the mode values from the UI(VR).

Modes are: Idle, Drive, Arm, and Emergency stop

The mode values (0 , 1, 2, 3) has to match with the ROS2 interface from the robot

Definition at line 48 of file ArmController.cs.

5.1.3.6 handSkeleton

OVRSkeleton ArmController.handSkeleton

The OVRSkeleton component used to track hand gestures.

Definition at line 53 of file ArmController.cs.

5.1.3.7 insideColor

Color ArmController.insideColor = new Color(1, 0, 0, 0.2f)

Definition at line 89 of file ArmController.cs.

5.1.3.8 isHandDetected

bool ArmController.isHandDetected = false [private]

The flag to indicate if the hand is detected within the cube.

Definition at line 70 of file ArmController.cs.

5.1.3.9 lastSendTime

float ArmController.lastSendTime [private]

Definition at line 76 of file ArmController.cs.

Generated by Doxygen



20 Class Documentation

5.1.3.10 networkManager

NetworkManager ArmController.networkManager [private]

The NetworkManager component used to send data to the server.

Definition at line 65 of file ArmController.cs.

5.1.3.11 originalColor

Color ArmController.originalColor [private]

Definition at line 90 of file ArmController.cs.

5.1.3.12 rightHand

OVRHand ArmController.rightHand

The OVRHand component used to track hand gestures.

Definition at line 58 of file ArmController.cs.

5.1.3.13 sendInterval

float ArmController.sendInterval = 0.5f

The interval at which to send data to the server.

Definition at line 81 of file ArmController.cs.

5.1.3.14 visualIndicatorTransform

Transform ArmController.visualIndicatorTransform [private]

The transform of the visual indicator.

That is a dot which indicates the x and z position of the TipBoneEnd of the users hand.

Definition at line 86 of file ArmController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/ArmController/ArmController.cs

Generated by Doxygen



5.2 CameraDepthData Class Reference 21

5.2 CameraDepthData Class Reference

depth camera interface datatype The data is recieved from the robot as this type

Public Attributes

• int time
• List< Vector3Data > depthData = new List<Vector3Data>()

5.2.1 Detailed Description

depth camera interface datatype The data is recieved from the robot as this type

Definition at line 79 of file NetworkManager.cs.

5.2.2 Member Data Documentation

5.2.2.1 depthData

List<Vector3Data> CameraDepthData.depthData = new List<Vector3Data>()

Definition at line 83 of file NetworkManager.cs.

5.2.2.2 time

int CameraDepthData.time

Definition at line 82 of file NetworkManager.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

Generated by Doxygen



22 Class Documentation

5.3 DebugDisplay Class Reference

This script is used to display debug logs on the a VR screen for testing purposes.

Inheritance diagram for DebugDisplay:

DebugDisplay

MonoBehaviour

Collaboration diagram for DebugDisplay:

DebugDisplay

MonoBehaviour Text

 debugText

Public Attributes

• Text debugText

Private Member Functions

• void Update ()
• void OnEnable ()
• void OnDisable ()
• void HandleLog (string logString, string stackTrace, LogType type)

Private Attributes

• Dictionary< string, string > debugLogs = new Dictionary<string, string>()

Generated by Doxygen



5.3 DebugDisplay Class Reference 23

5.3.1 Detailed Description

This script is used to display debug logs on the a VR screen for testing purposes.

This is a simplified version of the DebugDisplayPro script, it is the first version of the script. For documentation on
the DebugDisplayPro script, see the DebugDisplayPro class.

Definition at line 11 of file DebugDisplay.cs.

5.3.2 Member Function Documentation

5.3.2.1 HandleLog()

void DebugDisplay.HandleLog (

string logString,

string stackTrace,

LogType type ) [inline], [private]

Definition at line 34 of file DebugDisplay.cs.
35 {
36 if (type == LogType.Log)
37 {
38 string[] splitString = logString.Split(char.Parse(":"));
39 string debugKey = splitString[0];
40 string debugValue = splitString.Length > 1 ? splitString[1] : "";
41
42 if (debugLogs.ContainsKey(debugKey))
43 {
44 debugLogs[debugKey] = debugValue;
45 }
46 else
47 {
48 debugLogs.Add(debugKey, debugValue);
49 }
50
51 }
52
53 string debugTextString = "";
54 foreach (KeyValuePair<string, string> log in debugLogs)
55 {
56 if (log.Value == "")
57 {
58 debugTextString += log.Key + "\n";
59 }
60 else
61 {
62 debugTextString += log.Key + ": " + log.Value + "\n";
63 }
64 }
65 debugText.text = debugTextString;
66 }

5.3.2.2 OnDisable()

void DebugDisplay.OnDisable ( ) [inline], [private]

Definition at line 29 of file DebugDisplay.cs.
30 {
31 Application.logMessageReceived -= HandleLog;
32 }

Generated by Doxygen



24 Class Documentation

5.3.2.3 OnEnable()

void DebugDisplay.OnEnable ( ) [inline], [private]

Definition at line 24 of file DebugDisplay.cs.
25 {
26 Application.logMessageReceived += HandleLog;
27 }

5.3.2.4 Update()

void DebugDisplay.Update ( ) [inline], [private]

Definition at line 17 of file DebugDisplay.cs.
18 {
19 Debug.Log("time:" + Time.time);
20 // Debug.Log(gameObject.name);
21 }

5.3.3 Member Data Documentation

5.3.3.1 debugLogs

Dictionary<string, string> DebugDisplay.debugLogs = new Dictionary<string, string>() [private]

Definition at line 14 of file DebugDisplay.cs.

5.3.3.2 debugText

Text DebugDisplay.debugText

Definition at line 15 of file DebugDisplay.cs.

The documentation for this class was generated from the following file:

• Assets/DebugDisplay.cs

Generated by Doxygen



5.4 DebugDisplayPro Class Reference 25

5.4 DebugDisplayPro Class Reference

This script is used to display debug logs on the a VR screen for testing purposes.

Inheritance diagram for DebugDisplayPro:

DebugDisplayPro

MonoBehaviour

Collaboration diagram for DebugDisplayPro:

DebugDisplayPro

MonoBehaviour

Public Attributes

• TMP_Text debugText

The TextMeshPro component used to display the debug logs.

Private Member Functions

• void Update ()
• void OnEnable ()

This method is called when the script is enabled and is used to subscribe to the log message event.

• void OnDisable ()

This method is called when the script is disabled and is used to unsubscribe from the log message event.

• void HandleLog (string logString, string stackTrace, LogType type)

This method is used to handle the log messages and store them in the debugLogs dictionary.

Generated by Doxygen



26 Class Documentation

Private Attributes

• Dictionary< string, string > debugLogs = new Dictionary<string, string>()

A dictionary to store the debug logs.

5.4.1 Detailed Description

This script is used to display debug logs on the a VR screen for testing purposes.

It is used to display the logs in a more readable format inside the VR environment.

Definition at line 11 of file DebugDisplayPro.cs.

5.4.2 Member Function Documentation

5.4.2.1 HandleLog()

void DebugDisplayPro.HandleLog (

string logString,

string stackTrace,

LogType type ) [inline], [private]

This method is used to handle the log messages and store them in the debugLogs dictionary.

It also updates the debugText component with the latest logs.

Parameters

logString

stackTrace
type

Definition at line 60 of file DebugDisplayPro.cs.
61 {
62
63 if (debugLogs.Count > 30)
64 {
65 debugLogs.Clear();
66 }
67 if (type == LogType.Log)
68 {
69 string[] splitString = logString.Split(char.Parse(":"));
70 string debugKey = splitString[0];
71 string debugValue = splitString.Length > 1 ? splitString[1] : "";
72
73 // if (debugKey.ToLower().Contains("voice") || debugKey.ToLower().Contains("log"))
74 // {
75 // return;
76 // }
77 if (debugLogs.ContainsKey(debugKey))
78 {
79 debugLogs[debugKey] = debugValue;
80 }
81 else
82 {

Generated by Doxygen



5.4 DebugDisplayPro Class Reference 27

83 debugLogs.Add(debugKey, debugValue);
84 }
85 }
86
87 string debugTextString = "";
88 foreach (KeyValuePair<string, string> log in debugLogs)
89 {
90 if (log.Value == "")
91 {
92 debugTextString += log.Key + "\n";
93 }
94 else
95 {
96 debugTextString += log.Key + ": " + log.Value + "\n";
97 }
98 }
99 debugText.text = debugTextString;
100 }

5.4.2.2 OnDisable()

void DebugDisplayPro.OnDisable ( ) [inline], [private]

This method is called when the script is disabled and is used to unsubscribe from the log message event.

Definition at line 48 of file DebugDisplayPro.cs.
49 {
50 Application.logMessageReceived -= HandleLog;
51 }

5.4.2.3 OnEnable()

void DebugDisplayPro.OnEnable ( ) [inline], [private]

This method is called when the script is enabled and is used to subscribe to the log message event.

Definition at line 40 of file DebugDisplayPro.cs.
41 {
42 Application.logMessageReceived += HandleLog;
43 }

5.4.2.4 Update()

void DebugDisplayPro.Update ( ) [inline], [private]

Definition at line 31 of file DebugDisplayPro.cs.
32 {
33 // Debug.Log("time:" + Time.time);
34 // Debug.Log(gameObject.name);
35 }

5.4.3 Member Data Documentation

Generated by Doxygen



28 Class Documentation

5.4.3.1 debugLogs

Dictionary<string, string> DebugDisplayPro.debugLogs = new Dictionary<string, string>() [private]

A dictionary to store the debug logs.

Definition at line 17 of file DebugDisplayPro.cs.

5.4.3.2 debugText

TMP_Text DebugDisplayPro.debugText

The TextMeshPro component used to display the debug logs.

Definition at line 22 of file DebugDisplayPro.cs.

The documentation for this class was generated from the following file:

• Assets/DebugDisplayPro.cs

5.5 DepthData Class Reference

Public Member Functions

• void AddDepthDataPoint (float x, float y, float z)
• void ClearPoints ()

Public Attributes

• int time

Properties

• IEnumerable< DepthDataPoint > Points [get]
• int Count [get]

Private Attributes

• List< DepthDataPoint > depthDataPoints = new List<DepthDataPoint>()

5.5.1 Detailed Description

Definition at line 111 of file NetworkManager.cs.

Generated by Doxygen



5.5 DepthData Class Reference 29

5.5.2 Member Function Documentation

5.5.2.1 AddDepthDataPoint()

void DepthData.AddDepthDataPoint (

float x,

float y,

float z ) [inline]

Definition at line 116 of file NetworkManager.cs.
117 {
118 depthDataPoints.Add(new DepthDataPoint(x, y, z));
119 }

5.5.2.2 ClearPoints()

void DepthData.ClearPoints ( ) [inline]

Definition at line 124 of file NetworkManager.cs.
125 {
126 depthDataPoints.Clear();
127 }

5.5.3 Member Data Documentation

5.5.3.1 depthDataPoints

List<DepthDataPoint> DepthData.depthDataPoints = new List<DepthDataPoint>() [private]

Definition at line 114 of file NetworkManager.cs.

5.5.3.2 time

int DepthData.time

Definition at line 113 of file NetworkManager.cs.

5.5.4 Property Documentation

Generated by Doxygen



30 Class Documentation

5.5.4.1 Count

int DepthData.Count [get]

Definition at line 123 of file NetworkManager.cs.

5.5.4.2 Points

IEnumerable<DepthDataPoint> DepthData.Points [get]

Definition at line 121 of file NetworkManager.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

5.6 DepthDataGenerator Class Reference

Collaboration diagram for DepthDataGenerator:

DepthDataGenerator

MeshCreator

 meshCreator

MonoBehaviour

Static Public Member Functions

• static CameraDepthData GenerateDepthData ()

Private Attributes

• MeshCreator meshCreator

Generated by Doxygen



5.6 DepthDataGenerator Class Reference 31

Static Private Attributes

• const int Width = 640
• const int Height = 480
• const float MaxDepth = 5.0f
• const float MinDepth = 0.5f

5.6.1 Detailed Description

Definition at line 4 of file DepthDataGenerator.cs.

5.6.2 Member Function Documentation

5.6.2.1 GenerateDepthData()

static CameraDepthData DepthDataGenerator.GenerateDepthData ( ) [inline], [static]

Definition at line 13 of file DepthDataGenerator.cs.
14 {
15 var depthData = new CameraDepthData
16 {
17 time = Environment.TickCount // Use system tick count as a timestamp
18 };
19
20 for (int y = 0; y < Height; y++)
21 {
22 for (int x = 0; x < Width; x++)
23 {
24 // Normalize the x, y positions to simulate a real-world field of view
25 float realX = (x - Width / 2) * (6.4f / Width); // Center x around 0 and scale to

real-world meters
26 float realY = (y - Height / 2) * (4.8f / Height); // Center y around 0 and scale to

real-world meters
27
28 // Generate a random depth between MinDepth and MaxDepth
29 float depth = MinDepth + (float)(new Random().NextDouble() * (MaxDepth - MinDepth));
30
31 // Add the generated point to the dataset
32 depthData.depthData.Add(new Vector3Data(realX, realY, depth));
33 }
34 }
35
36 return depthData;
37 }

5.6.3 Member Data Documentation

5.6.3.1 Height

const int DepthDataGenerator.Height = 480 [static], [private]

Definition at line 7 of file DepthDataGenerator.cs.

Generated by Doxygen



32 Class Documentation

5.6.3.2 MaxDepth

const float DepthDataGenerator.MaxDepth = 5.0f [static], [private]

Definition at line 8 of file DepthDataGenerator.cs.

5.6.3.3 meshCreator

MeshCreator DepthDataGenerator.meshCreator [private]

Definition at line 11 of file DepthDataGenerator.cs.

5.6.3.4 MinDepth

const float DepthDataGenerator.MinDepth = 0.5f [static], [private]

Definition at line 9 of file DepthDataGenerator.cs.

5.6.3.5 Width

const int DepthDataGenerator.Width = 640 [static], [private]

Definition at line 6 of file DepthDataGenerator.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/PlotCameraDepthData/DepthDataGenerator.cs

5.7 DepthDataPoint Class Reference

Depth data interface Datatype

Public Member Functions

• DepthDataPoint (float x, float y, float z)

Properties

• float X [get, set]
• float Y [get, set]
• float Z [get, set]

Generated by Doxygen



5.7 DepthDataPoint Class Reference 33

5.7.1 Detailed Description

Depth data interface Datatype

Definition at line 96 of file NetworkManager.cs.

5.7.2 Constructor & Destructor Documentation

5.7.2.1 DepthDataPoint()

DepthDataPoint.DepthDataPoint (

float x,

float y,

float z ) [inline]

Definition at line 102 of file NetworkManager.cs.
103 {
104 X = x;
105 Y = y;
106 Z = z;
107 }

5.7.3 Property Documentation

5.7.3.1 X

float DepthDataPoint.X [get], [set]

Definition at line 98 of file NetworkManager.cs.
98 { get; set; }

5.7.3.2 Y

float DepthDataPoint.Y [get], [set]

Definition at line 99 of file NetworkManager.cs.
99 { get; set; }

Generated by Doxygen



34 Class Documentation

5.7.3.3 Z

float DepthDataPoint.Z [get], [set]

Definition at line 100 of file NetworkManager.cs.
100 { get; set; }

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

5.8 DepthPointCloud Class Reference

Inheritance diagram for DepthPointCloud:

DepthPointCloud

MonoBehaviour

Collaboration diagram for DepthPointCloud:

DepthPointCloud

MonoBehaviour

NetworkManagerMeshCreator

DepthData

 depthData

 depthData

 networkManager

 Instance

CameraDepthData

 cameraDepthData

 meshCreator

Classes

• class RequestDepthDataMsg

Interface for requesting depth camera from the robot

Generated by Doxygen



5.8 DepthPointCloud Class Reference 35

Public Member Functions

• byte[ ] DecompressBrotli (byte[ ] compressedData)
• byte[ ] DecodeBase64 (string base64EncodedData)
• void RequestDepthData ()

This method is used to request depth data from the server.

Public Attributes

• ParticleSystem particleSystem
• Gradient depthColorGradient
• TextAsset brotlifile
• MeshCreator meshCreator

Private Member Functions

• void ProcessDepthData (OVRSimpleJSON.JSONNode jsonData)
• void Start ()
• void Update ()
• void OnDepthDataReceived (DepthData depthData)
• void OnDestroy ()

This method is used

Private Attributes

• NetworkManager networkManager
• List< ParticleSystem.Particle > particles = new List<ParticleSystem.Particle>()
• DepthData depthData = new DepthData()

5.8.1 Detailed Description

Definition at line 10 of file DepthPointCloud.cs.

5.8.2 Member Function Documentation

5.8.2.1 DecodeBase64()

byte [] DepthPointCloud.DecodeBase64 (

string base64EncodedData ) [inline]

Definition at line 35 of file DepthPointCloud.cs.
36 {
37 try
38 {
39 byte[] data = Convert.FromBase64String(base64EncodedData);
40 return data;
41 }
42 catch (FormatException ex)
43 {
44 Debug.LogError("Base64 string is not in a valid format: " + ex.Message);
45 return null;
46 }
47 }

Generated by Doxygen



36 Class Documentation

5.8.2.2 DecompressBrotli()

byte [] DepthPointCloud.DecompressBrotli (

byte[] compressedData ) [inline]

Definition at line 23 of file DepthPointCloud.cs.
24 {
25 using (var inputStream = new MemoryStream(compressedData))
26 using (var outputStream = new MemoryStream())
27 using (var brotliStream = new BrotliStream(inputStream, CompressionMode.Decompress))
28 {
29 brotliStream.CopyToAsync(outputStream);
30 return outputStream.ToArray();
31 }
32
33 }

5.8.2.3 OnDepthDataReceived()

void DepthPointCloud.OnDepthDataReceived (

DepthData depthData ) [inline], [private]

Definition at line 82 of file DepthPointCloud.cs.
83 {
84 meshCreator.CreateCubeGridTest(depthData);
85 // Processing depth data
86 foreach (DepthDataPoint point in depthData.Points)
87 {
88 Debug.Log($"X, Y, Z: {point.X}, {point.Y}, {point.Z}");
89 Debug.Log($"Time for depthData: {depthData.time}");
90 }
91 }

5.8.2.4 OnDestroy()

void DepthPointCloud.OnDestroy ( ) [inline], [private]

This method is used

Definition at line 116 of file DepthPointCloud.cs.
117 {
118 networkManager.onDepthDataReceived -= OnDepthDataReceived;
119 }

5.8.2.5 ProcessDepthData()

void DepthPointCloud.ProcessDepthData (

OVRSimpleJSON.JSONNode jsonData ) [inline], [private]

Definition at line 49 of file DepthPointCloud.cs.
50 {
51 depthData.ClearPoints();
52 depthData.time = jsonData["time"].AsInt;
53
54 for (var i = 0; i < jsonData["data"][0].Count; i++)
55 {
56 depthData.AddDepthDataPoint(jsonData["data"][0][i].AsInt, jsonData["data"][1][i].AsInt,

jsonData["data"][2][i].AsInt);
57 }
58 }

Generated by Doxygen



5.8 DepthPointCloud Class Reference 37

5.8.2.6 RequestDepthData()

void DepthPointCloud.RequestDepthData ( ) [inline]

This method is used to request depth data from the server.

When it is sent, the robot will respond with the depth data only once.

Definition at line 106 of file DepthPointCloud.cs.
107 {
108 RequestDepthDataMsg msg = new RequestDepthDataMsg();
109 msg.get_depth = true;
110 networkManager.SendData(JsonUtility.ToJson(msg));
111 }

5.8.2.7 Start()

void DepthPointCloud.Start ( ) [inline], [private]

Definition at line 59 of file DepthPointCloud.cs.
60 {
61 networkManager = NetworkManager.Instance;
62 networkManager.onDepthDataReceived += OnDepthDataReceived;
63 }

5.8.2.8 Update()

void DepthPointCloud.Update ( ) [inline], [private]

Definition at line 65 of file DepthPointCloud.cs.
66 {
67 // if (Time.frameCount % 100 == 0)
68 // {
69 // string receivedData = brotlifile.text;
70 // byte[] compressedData = DecodeBase64(receivedData);
71 // byte[] decompressedData = DecompressBrotli(compressedData);
72 // if (compressedData != null && decompressedData != null)
73 // {
74 // receivedData = Encoding.UTF8.GetString(decompressedData);
75 // }
76 // var jsonData = OVRSimpleJSON.JSON.Parse(receivedData);
77 // ProcessDepthData(jsonData);
78 // OnDepthDataReceived(depthData);
79 // }
80 }

5.8.3 Member Data Documentation

5.8.3.1 brotlifile

TextAsset DepthPointCloud.brotlifile

Definition at line 21 of file DepthPointCloud.cs.

Generated by Doxygen



38 Class Documentation

5.8.3.2 depthColorGradient

Gradient DepthPointCloud.depthColorGradient

Definition at line 15 of file DepthPointCloud.cs.

5.8.3.3 depthData

DepthData DepthPointCloud.depthData = new DepthData() [private]

Definition at line 20 of file DepthPointCloud.cs.

5.8.3.4 meshCreator

MeshCreator DepthPointCloud.meshCreator

Definition at line 22 of file DepthPointCloud.cs.

5.8.3.5 networkManager

NetworkManager DepthPointCloud.networkManager [private]

Definition at line 13 of file DepthPointCloud.cs.

5.8.3.6 particles

List<ParticleSystem.Particle> DepthPointCloud.particles = new List<ParticleSystem.Particle>()

[private]

Definition at line 16 of file DepthPointCloud.cs.

5.8.3.7 particleSystem

ParticleSystem DepthPointCloud.particleSystem

Definition at line 14 of file DepthPointCloud.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/PlotCameraDepthData/DepthPointCloud.cs

Generated by Doxygen



5.9 DigitalTwinController Class Reference 39

5.9 DigitalTwinController Class Reference

This class is used to control the digital twin robot.

Inheritance diagram for DigitalTwinController:

DigitalTwinController

MonoBehaviour

Collaboration diagram for DigitalTwinController:

DigitalTwinController

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Public Attributes

• ArticulationBody Link_1

The Articulation Link 1 of the robot.

• ArticulationBody Link_2

The Articulation Link 2 of the robot.

• ArticulationBody Link_3

The Articulation Link 3 of the robot.

• ArticulationBody Link_4

The Articulation Link 4 of the robot.

• ArticulationBody Link_5

Generated by Doxygen



40 Class Documentation

The Articulation Link 5 of the robot.

• GameObject Pinch_left_x

The Articulation pinch hand left of the robot.

• GameObject Pinch_right_y

The Articulation pinch hand right of the robot.

Private Member Functions

• void Start ()
• void HandleReceivedRobotInfoData (JsonArmLengthInfo armInfo)

This method is used to handle the received robot info data.

• void Update ()
• void testFunction ()
• void SetTargetRotation (ArticulationBody body, float targetAngle)

This method is used to set the target rotation of an Articulation Body.

• void SetTargetRotationY (ArticulationBody body, float targetAngle)

This method is used to set the target rotation of an Articulation Body.

Private Attributes

• int frameCounter = 0
• bool rotateTo170 = true
• NetworkManager networkManager

5.9.1 Detailed Description

This class is used to control the digital twin robot.

It updated the position of the digital twin robot based on the received data from the physical robot arm.

Definition at line 18 of file DigitalTwinController.cs.

5.9.2 Member Function Documentation

5.9.2.1 HandleReceivedRobotInfoData()

void DigitalTwinController.HandleReceivedRobotInfoData (

JsonArmLengthInfo armInfo ) [inline], [private]

This method is used to handle the received robot info data.

Parameters

robotInfo The robot info data

Generated by Doxygen



5.9 DigitalTwinController Class Reference 41

Definition at line 75 of file DigitalTwinController.cs.
76 {
77 SetTargetRotation(Link_1, -armInfo.Link_1);
78 SetTargetRotation(Link_2, armInfo.Link_2);
79 SetTargetRotation(Link_3, armInfo.Link_3);
80 SetTargetRotation(Link_4, armInfo.Link_4);
81 SetTargetRotationY(Link_5, armInfo.Link_5);
82 // SetTargetRotationY(Link_5, armInfo.Link_5);
83 }

5.9.2.2 SetTargetRotation()

void DigitalTwinController.SetTargetRotation (

ArticulationBody body,

float targetAngle ) [inline], [private]

This method is used to set the target rotation of an Articulation Body.

Definition at line 142 of file DigitalTwinController.cs.
143 {
144 // Get the current xDrive from the Articulation Body
145 ArticulationDrive drive = body.xDrive;
146
147 // Set the new target position (degrees)
148 drive.target = targetAngle;
149
150 // Apply the modified drive back to the Articulation Body
151 body.xDrive = drive;
152 }

5.9.2.3 SetTargetRotationY()

void DigitalTwinController.SetTargetRotationY (

ArticulationBody body,

float targetAngle ) [inline], [private]

This method is used to set the target rotation of an Articulation Body.

Parameters

body

targetAngle

Definition at line 159 of file DigitalTwinController.cs.
160 {
161 // Get the current xDrive from the Articulation Body
162 ArticulationDrive drive = body.yDrive;
163
164 // Set the new target position (degrees)
165 drive.target = targetAngle;
166
167 // Apply the modified drive back to the Articulation Body
168 body.yDrive = drive;
169 }

Generated by Doxygen



42 Class Documentation

5.9.2.4 Start()

void DigitalTwinController.Start ( ) [inline], [private]

Definition at line 61 of file DigitalTwinController.cs.
62 {
63 networkManager = NetworkManager.Instance;
64 networkManager.onArmLengthDataReceived += HandleReceivedRobotInfoData;
65
66 // Link_1.transform.localRotation = Quaternion.Euler(0, 0, -90);
67 }

5.9.2.5 testFunction()

void DigitalTwinController.testFunction ( ) [inline], [private]

Definition at line 90 of file DigitalTwinController.cs.
91 {
92 // frameCounter++; // Increment frame counter each frame
93
94 // if (frameCounter >= 500) // Check if 10 frames have passed
95 // {
96 // if (rotateTo170)
97 // {
98 // SetTargetRotation(Link_2, 180);
99 // // SetTargetRotation(Link_1, 180);
100 // // Rotate to 170 degrees on the Y-axis
101 // // SetTargetRotation(Link_1, 170);
102 // // SetTargetRotation(Link_2, 53);
103 // for (int i = 90; i >= 0; i -= 5)
104 // {
105 // SetTargetRotation(Link_3, i);
106 // }
107 // SetTargetRotation(Link_4, 90);
108 // // SetTargetRotation(Link_3, 90);
109 // // SetTargetRotation(Link_3, 90);
110 // // Link_2.transform.localRotation = Quaternion.Euler(8, -90, -90);
111 // // Link_3.transform.localRotation = Quaternion.Euler(0, 240, 0);
112 // // Link_4.transform.localRotation = Quaternion.Euler(0, -140, 0);
113 // SetTargetRotationY(Link_5, 180);
114 // rotateTo170 = false;
115 // }
116 // else
117 // {
118 // // Rotate back to 0 degrees on the Y-axis
119 // // SetTargetRotation(Link_1, 0);
120 // // SetTargetRotation(Link_2, -55);
121 // // SetTargetRotation(Link_2, 0);
122 // // // SetTargetRotation(Link_1, 0);
123 // // for (int i = 0; i <= 180; i += 5)
124 // // {
125 // // SetTargetRotation(Link_3, i);
126 // // }
127 // // SetTargetRotation(Link_4, 180);
128 // // // Link_2.transform.localRotation = Quaternion.Euler(-25, -90, -90);
129 // // // Link_3.transform.localRotation = Quaternion.Euler(0, 180, 0);
130 // // // Link_4.transform.localRotation = Quaternion.Euler(0, -199, 0);
131 // SetTargetRotationY(Link_5, 0);
132 // rotateTo170 = true;
133 // }
134
135 // frameCounter = 0; // Reset frame counter
136 // }
137 }

5.9.2.6 Update()

void DigitalTwinController.Update ( ) [inline], [private]

Definition at line 85 of file DigitalTwinController.cs.
86 {
87
88 }

Generated by Doxygen



5.9 DigitalTwinController Class Reference 43

5.9.3 Member Data Documentation

5.9.3.1 frameCounter

int DigitalTwinController.frameCounter = 0 [private]

Definition at line 20 of file DigitalTwinController.cs.

5.9.3.2 Link_1

ArticulationBody DigitalTwinController.Link_1

The Articulation Link 1 of the robot.

Definition at line 28 of file DigitalTwinController.cs.

5.9.3.3 Link_2

ArticulationBody DigitalTwinController.Link_2

The Articulation Link 2 of the robot.

Definition at line 33 of file DigitalTwinController.cs.

5.9.3.4 Link_3

ArticulationBody DigitalTwinController.Link_3

The Articulation Link 3 of the robot.

Definition at line 38 of file DigitalTwinController.cs.

5.9.3.5 Link_4

ArticulationBody DigitalTwinController.Link_4

The Articulation Link 4 of the robot.

Definition at line 43 of file DigitalTwinController.cs.

Generated by Doxygen



44 Class Documentation

5.9.3.6 Link_5

ArticulationBody DigitalTwinController.Link_5

The Articulation Link 5 of the robot.

Definition at line 48 of file DigitalTwinController.cs.

5.9.3.7 networkManager

NetworkManager DigitalTwinController.networkManager [private]

Definition at line 23 of file DigitalTwinController.cs.

5.9.3.8 Pinch_left_x

GameObject DigitalTwinController.Pinch_left_x

The Articulation pinch hand left of the robot.

Definition at line 53 of file DigitalTwinController.cs.

5.9.3.9 Pinch_right_y

GameObject DigitalTwinController.Pinch_right_y

The Articulation pinch hand right of the robot.

Definition at line 58 of file DigitalTwinController.cs.

5.9.3.10 rotateTo170

bool DigitalTwinController.rotateTo170 = true [private]

Definition at line 21 of file DigitalTwinController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/DigitalTwin/DigitalTwinController.cs

Generated by Doxygen



5.10 DriveModeController.DriveMode Class Reference 45

5.10 DriveModeController.DriveMode Class Reference

Public Attributes

• string drive_mode

5.10.1 Detailed Description

Definition at line 24 of file DriveModeController.cs.

5.10.2 Member Data Documentation

5.10.2.1 drive_mode

string DriveModeController.DriveMode.drive_mode

Definition at line 26 of file DriveModeController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/DriveModeController/DriveModeController.cs

5.11 DriveModeController Class Reference

This class is used to control the drive mode of the robot.

Inheritance diagram for DriveModeController:

DriveModeController

MonoBehaviour

Generated by Doxygen



46 Class Documentation

Collaboration diagram for DriveModeController:

DriveModeController

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Classes

• class DriveMode

Public Member Functions

• void precisionMode ()
• void normalMode ()
• void reverseMode ()

Public Attributes

• Button precisionButton
• Button normalButton
• Button reverseButton
• Color activeColor
• Color defaultColor

Events

• Action< string > DriveModeChanged

Private Member Functions

• void Start ()
• void Update ()
• void updateDriveModeData (string mode)

This method is used to update the drive mode data.

• void updateButtonColor (Color precisionColor, Color normalColor, Color reverseColor)

This method is used to update the color of the buttons.

• void SendDataToServer (string data)

This method is used to send the mode value to the server.

Generated by Doxygen



5.11 DriveModeController Class Reference 47

Private Attributes

• NetworkManager networkManager

5.11.1 Detailed Description

This class is used to control the drive mode of the robot.

It allows the user to change the drive mode of the robot.

Definition at line 12 of file DriveModeController.cs.

5.11.2 Member Function Documentation

5.11.2.1 normalMode()

void DriveModeController.normalMode ( ) [inline]

Definition at line 46 of file DriveModeController.cs.
47 {
48 updateDriveModeData("normal");
49 updateButtonColor(defaultColor, activeColor, defaultColor);
50 }

5.11.2.2 precisionMode()

void DriveModeController.precisionMode ( ) [inline]

Definition at line 40 of file DriveModeController.cs.
41 {
42 updateDriveModeData("precision");
43 updateButtonColor(activeColor, defaultColor, defaultColor);
44 }

5.11.2.3 reverseMode()

void DriveModeController.reverseMode ( ) [inline]

Definition at line 52 of file DriveModeController.cs.
53 {
54 updateDriveModeData("reverse");
55 updateButtonColor(defaultColor, defaultColor, activeColor);
56 }

5.11.2.4 SendDataToServer()

void DriveModeController.SendDataToServer (

string data ) [inline], [private]

This method is used to send the mode value to the server.

Generated by Doxygen



48 Class Documentation

Parameters

data

Definition at line 92 of file DriveModeController.cs.
93 {
94 if (networkManager != null)
95 {
96 networkManager.SendData(data);
97 }
98 else
99 {
100 Debug.Log("NetworkManager component not found.");
101 }
102 }

5.11.2.5 Start()

void DriveModeController.Start ( ) [inline], [private]

Definition at line 29 of file DriveModeController.cs.
30 {
31 networkManager = NetworkManager.Instance;
32 }

5.11.2.6 Update()

void DriveModeController.Update ( ) [inline], [private]

Definition at line 35 of file DriveModeController.cs.
36 {
37
38 }

5.11.2.7 updateButtonColor()

void DriveModeController.updateButtonColor (

Color precisionColor,

Color normalColor,

Color reverseColor ) [inline], [private]

This method is used to update the color of the buttons.

Parameters

precisionColor

normalColor
reverseColor

Generated by Doxygen



5.11 DriveModeController Class Reference 49

Definition at line 76 of file DriveModeController.cs.
77 {
78 // precisionButton.GetComponent<Image>().color = precisionColor;
79 // normalButton.GetComponent<Image>().color = normalColor;
80 // reverseButton.GetComponent<Image>().color = reverseColor;
81
82 precisionButton.image.color = precisionColor;
83 normalButton.image.color = normalColor;
84 reverseButton.image.color = reverseColor;
85
86 }

5.11.2.8 updateDriveModeData()

void DriveModeController.updateDriveModeData (

string mode ) [inline], [private]

This method is used to update the drive mode data.

Definition at line 61 of file DriveModeController.cs.
62 {
63 DriveMode driveMode = new DriveMode();
64 driveMode.drive_mode = mode;
65 SendDataToServer(JsonUtility.ToJson(driveMode));
66 DriveModeChanged?.Invoke(mode);
67 }

5.11.3 Member Data Documentation

5.11.3.1 activeColor

Color DriveModeController.activeColor

Definition at line 22 of file DriveModeController.cs.

5.11.3.2 defaultColor

Color DriveModeController.defaultColor

Definition at line 23 of file DriveModeController.cs.

5.11.3.3 networkManager

NetworkManager DriveModeController.networkManager [private]

Definition at line 14 of file DriveModeController.cs.

Generated by Doxygen



50 Class Documentation

5.11.3.4 normalButton

Button DriveModeController.normalButton

Definition at line 19 of file DriveModeController.cs.

5.11.3.5 precisionButton

Button DriveModeController.precisionButton

Definition at line 18 of file DriveModeController.cs.

5.11.3.6 reverseButton

Button DriveModeController.reverseButton

Definition at line 20 of file DriveModeController.cs.

5.11.4 Event Documentation

5.11.4.1 DriveModeChanged

Action<string> DriveModeController.DriveModeChanged

Definition at line 16 of file DriveModeController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/DriveModeController/DriveModeController.cs

Generated by Doxygen



5.12 DropdownHandler Class Reference 51

5.12 DropdownHandler Class Reference

This script is used to handle the dropdown in the UI.

Inheritance diagram for DropdownHandler:

DropdownHandler

MonoBehaviour

Collaboration diagram for DropdownHandler:

DropdownHandler

MonoBehaviour

Responsehandler

NetworkManagerModeAudioPlay

 responsehandler

 networkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

 modeAudioPlay

DropdownHandler.ModeValues

 modeValues

Classes

• class ModeValues

The ModeValues interface used to send the mode value to the robot.

Public Member Functions

• int GetDropdownValue ()

Get method for the dropdown value.

Public Attributes

• TMP_Dropdown dropdown
• Responsehandler responsehandler

Generated by Doxygen



52 Class Documentation

Events

• Action< int > OnDropdownValueChanged

Private Member Functions

• void Start ()

Initialization of the script by finding the NetworkManager component in the scene and subscribing to the onValue←↩

Changed event of the dropdown.

• void HandleVoiceCommand (int mode)
• void DropdownValueChanged (TMP_Dropdown change)

This method is called when the dropdown value is changed.

• void SendDataToServer (string data)

This method is used to send the mode value to the server.

Private Attributes

• NetworkManager networkManager
• ModeValues modeValues = new ModeValues()

5.12.1 Detailed Description

This script is used to handle the dropdown in the UI.

When the dropdown value is changed, it sends the new value to the server. The Dropdown is used to controll the
mode of the robot.

• Supported modes at the moment:

– Idle

– Drive

– Arm

– Emergency Stop

Definition at line 18 of file DropdownHandler.cs.

5.12.2 Member Function Documentation

Generated by Doxygen



5.12 DropdownHandler Class Reference 53

5.12.2.1 DropdownValueChanged()

void DropdownHandler.DropdownValueChanged (

TMP_Dropdown change ) [inline], [private]

This method is called when the dropdown value is changed.

It sends the new value to the server.

Definition at line 63 of file DropdownHandler.cs.
64 {
65 Debug.Log($"New Dropdown Value Selected: {change.value}");
66 // Perform your action here
67 // For example, if (change.value == 0) { // Do something }
68 modeValues.mode = change.value;
69 SendDataToServer(JsonUtility.ToJson(modeValues));
70 OnDropdownValueChanged?.Invoke(change.value);
71 }

5.12.2.2 GetDropdownValue()

int DropdownHandler.GetDropdownValue ( ) [inline]

Get method for the dropdown value.

Returns

Dropdown.value

Definition at line 93 of file DropdownHandler.cs.
94 {
95 return dropdown.value;
96 }

5.12.2.3 HandleVoiceCommand()

void DropdownHandler.HandleVoiceCommand (

int mode ) [inline], [private]

Definition at line 54 of file DropdownHandler.cs.
55 {
56 Debug.Log($"Voice Command Received: {mode}");
57 dropdown.value = mode;
58 }

5.12.2.4 SendDataToServer()

void DropdownHandler.SendDataToServer (

string data ) [inline], [private]

This method is used to send the mode value to the server.

Generated by Doxygen



54 Class Documentation

Parameters

data

Definition at line 77 of file DropdownHandler.cs.
78 {
79 if (networkManager != null)
80 {
81 networkManager.SendData(data);
82 }
83 else
84 {
85 Debug.Log("NetworkManager component not found.");
86 }
87 }

5.12.2.5 Start()

void DropdownHandler.Start ( ) [inline], [private]

Initialization of the script by finding the NetworkManager component in the scene and subscribing to the onValue←↩

Changed event of the dropdown.

Definition at line 40 of file DropdownHandler.cs.
41 {
42
43 // Ensure the Dropdown is assigned
44 if (dropdown != null)
45 {
46 // Subscribe to the onValueChanged event
47 dropdown.onValueChanged.AddListener(delegate { DropdownValueChanged(dropdown); });
48 }
49 networkManager = NetworkManager.Instance;
50 responsehandler.OnVoiceCommandReceived += HandleVoiceCommand;
51 }

5.12.3 Member Data Documentation

5.12.3.1 dropdown

TMP_Dropdown DropdownHandler.dropdown

Definition at line 30 of file DropdownHandler.cs.

5.12.3.2 modeValues

ModeValues DropdownHandler.modeValues = new ModeValues() [private]

Definition at line 32 of file DropdownHandler.cs.

Generated by Doxygen



5.13 HandGestureAndRotation.HandData Class Reference 55

5.12.3.3 networkManager

NetworkManager DropdownHandler.networkManager [private]

Definition at line 31 of file DropdownHandler.cs.

5.12.3.4 responsehandler

Responsehandler DropdownHandler.responsehandler

Definition at line 34 of file DropdownHandler.cs.

5.12.4 Event Documentation

5.12.4.1 OnDropdownValueChanged

Action<int> DropdownHandler.OnDropdownValueChanged

Definition at line 35 of file DropdownHandler.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/DropdownHandler.cs

5.13 HandGestureAndRotation.HandData Class Reference

The HandData interface used to send the data to the robot.

Public Attributes

• int pinch
• int wrist

5.13.1 Detailed Description

The HandData interface used to send the data to the robot.

This interface has to match with the ROS2 interface from the robot

Definition at line 39 of file HandGestureAndRotation.cs.

Generated by Doxygen



56 Class Documentation

5.13.2 Member Data Documentation

5.13.2.1 pinch

int HandGestureAndRotation.HandData.pinch

Definition at line 41 of file HandGestureAndRotation.cs.

5.13.2.2 wrist

int HandGestureAndRotation.HandData.wrist

Definition at line 42 of file HandGestureAndRotation.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/HandGestureAndRotation.cs

5.14 HandDataTransmission Class Reference

This script is used for testing porpuses.

Inheritance diagram for HandDataTransmission:

HandDataTransmission

MonoBehaviour

Collaboration diagram for HandDataTransmission:

HandDataTransmission

MonoBehaviour

Generated by Doxygen



5.14 HandDataTransmission Class Reference 57

Private Member Functions

• void Start ()
• void Update ()

5.14.1 Detailed Description

This script is used for testing porpuses.

Definition at line 8 of file HandDataTransmission.cs.

5.14.2 Member Function Documentation

5.14.2.1 Start()

void HandDataTransmission.Start ( ) [inline], [private]

Definition at line 11 of file HandDataTransmission.cs.
12 {
13
14 }

5.14.2.2 Update()

void HandDataTransmission.Update ( ) [inline], [private]

Definition at line 17 of file HandDataTransmission.cs.
18 {
19
20 }

The documentation for this class was generated from the following file:

• Assets/HandDataTransmission.cs

Generated by Doxygen



58 Class Documentation

5.15 HandDetectionCube Class Reference

This script is used to detect the hand position within a cube and send control values to the robot based on the hand
position.

Inheritance diagram for HandDetectionCube:

HandDetectionCube

MonoBehaviour

Collaboration diagram for HandDetectionCube:

HandDetectionCube

MonoBehaviour

DropdownHandlerResponsehandler

NetworkManager

ModeAudioPlay

 dropdownHandler

 responsehandler

 networkManager

 networkManager networkManager

 Instance

CameraDepthData  cameraDepthData

DepthData

 depthData

 modeAudioPlay

DropdownHandler.ModeValues  modeValues

HandDetectionCube.RobotControl
Values

 controlValues

HandDetectionCube.RobotControlX

 controlX

Classes

• class RobotControlValues

The control values used to control the robot for controlling the robot (car).
• class RobotControlX

The control values used to control the robot for controlling the arm.

Public Attributes

• DropdownHandler dropdownHandler

The DropdownHandler component used to get the mode values from the UI(VR).
• OVRSkeleton handSkeleton

The OVRSkeleton component used to track hand gestures.
• OVRHand rightHand

The OVRHand component used to track hand gestures.
• float distanceCalculationInterval = 0.5f

The interval at which to calculate the distances.
• float sendInterval = 0.5f

The interval at which to send data to the server.
• Color insideColor = new Color(1, 0, 0, 0.1f)

Generated by Doxygen



5.15 HandDetectionCube Class Reference 59

Private Member Functions

• void Start ()

The script is called before the first frame update and is used to initialize the necessary variables.
• void Update ()

Update is called once per frame and is used to log the position of the Hand_WristRoot bone in the VR headset.
• void OnTriggerEnter (Collider other)

This method is called when the hand enters the cube area.
• void OnTriggerExit (Collider other)

Stop the coroutine when the hand leaves the cube
• void OnTriggerStay (Collider other)
• void ResetControlValues ()

Reset the control values to stop the robot, this makes the robot stop when the hand leaves the cube
• IEnumerator RepeatedlyDistanceCalculation (Transform handTransform)

Asynchronous method to calculate the distances repeatedly when the coroutine is started.
• void CalculateDistances (Vector3 handPosition)

Calculate the distances from the hand to the edges of the cube This is used for debugging and understanding the
hand position within the cube

• void CalculateNormalizedControlValues (Vector3 handPosition)

Calculate the normalized control values based on the hand position within the cube
• void UpdateVisualIndicator (float normalizedX, float normalizedZ)

Update the position of the visual indicator within the detection cube according to the normalized X and Z values.
• void SendControlValues (float normalizedX, float normalizedZ, float normalizedY, int speed=50)

Sending the information to the robot through socket communication.
• int CalculateSpeed (float normalizedX, float normalizedZ)

Calculate the speed based on the normalized X and Z values
• void HandleReceivedData (string data)

Handles the recieved data from the server.
• void SendDataToServer (string data)

Sends the data to the server.
• void OnDestroy ()

Private Attributes

• RobotControlValues controlValues = new RobotControlValues()
• RobotControlX controlX = new RobotControlX()
• NetworkManager networkManager

The NetworkManager component used to send data to the server.
• bool isHandDetected = false

The flag to indicate if the hand is detected within the cube.
• float lastSendTime
• Transform visualIndicatorTransform

The transform of the visual indicator.
• Material cubeMaterial
• Color originalColor

5.15.1 Detailed Description

This script is used to detect the hand position within a cube and send control values to the robot based on the hand
position.

This class is used for both controlling the robot and the arm. This class will be refactored to be more modular and
to use interfaces which implemented as state machines.

Definition at line 15 of file HandDetectionCube.cs.

Generated by Doxygen



60 Class Documentation

5.15.2 Member Function Documentation

5.15.2.1 CalculateDistances()

void HandDetectionCube.CalculateDistances (

Vector3 handPosition ) [inline], [private]

Calculate the distances from the hand to the edges of the cube This is used for debugging and understanding the
hand position within the cube

Parameters

handPosition

Definition at line 215 of file HandDetectionCube.cs.
216 {
217 float halfScaleX = transform.localScale.x / 2;
218 float halfScaleZ = transform.localScale.z / 2;
219
220 float distanceToLeftEdge = handPosition.x - (transform.position.x - halfScaleX);
221 float distanceToRightEdge = (transform.position.x + halfScaleX) - handPosition.x;
222 float distanceToFrontEdge = (transform.position.z + halfScaleZ) - handPosition.z;
223 float distanceToBackEdge = handPosition.z - (transform.position.z - halfScaleZ);
224
225 // Log distances to the console
226 Debug.Log($"Distance to Left Edge: {distanceToLeftEdge}");
227 Debug.Log($"Distance to Right Edge: {distanceToRightEdge}");
228 Debug.Log($"Distance to Front Edge: {distanceToFrontEdge}");
229 Debug.Log($"Distance to Back Edge: {distanceToBackEdge}");
230 }

5.15.2.2 CalculateNormalizedControlValues()

void HandDetectionCube.CalculateNormalizedControlValues (

Vector3 handPosition ) [inline], [private]

Calculate the normalized control values based on the hand position within the cube

Parameters

handPosition

Definition at line 236 of file HandDetectionCube.cs.
237 {
238 // Convert hand position to the cube’s local space
239 Vector3 handLocalPosition = transform.InverseTransformPoint(handPosition);
240
241 // Calculate normalized X within -1 to 1 range
242 float normalizedX = Mathf.Clamp(handLocalPosition.x / (transform.localScale.x / 2), -1, 1);
243
244 // Calculate normalized Z within 0 to 1 range
245 float normalizedZ = Mathf.Clamp((handLocalPosition.z / (transform.localScale.z / 2) + 1) / 2, 0,

1);
246
247 // Calculate normalized Y within 0 to 1 range
248 float scaleY = transform.localScale.y;
249

Generated by Doxygen



5.15 HandDetectionCube Class Reference 61

250 // Calculate the normalized Y value within 0 to 1 range
251 float normalizedY = (handLocalPosition.y + scaleY / 2) / scaleY;
252 normalizedY = Mathf.Clamp(normalizedY, 0, 1);
253
254 // Map the normalized Y value to a range of -1 to 1
255 float mappedY = (normalizedY - 0.3f) * 3.0f;
256
257 // Debug.Log($"Normalized X: {normalizedX}");
258 // Debug.Log($"Normalized Z: {normalizedZ}");
259 // Debug.Log($"Normalized Y: {mappedY}");
260
261 // Calculate speed, send control values to the robot, and update the visual indicator
262 int speed = CalculateSpeed(normalizedX, normalizedZ);
263 SendControlValues(normalizedX, normalizedZ, mappedY, speed); // Modify to calculate tresholds

for X and Z?
264 // UpdateVisualIndicator(normalizedX, normalizedZ);
265 }

5.15.2.3 CalculateSpeed()

int HandDetectionCube.CalculateSpeed (

float normalizedX,

float normalizedZ ) [inline], [private]

Calculate the speed based on the normalized X and Z values

Parameters

normalizedX
normalizedZ

Returns

Definition at line 324 of file HandDetectionCube.cs.
325 {
326 float calculatedSpeed = 0;
327 if (normalizedX < 0.3 && normalizedX > -0.3 && normalizedZ < 0.3)
328 {
329 calculatedSpeed = 0;
330 }
331 else if (normalizedX > 0.3 || normalizedX < -0.3)
332 {
333 calculatedSpeed = Math.Abs(100 * normalizedX);
334 }
335 else if (normalizedZ > 0.4)
336 {
337 calculatedSpeed = Math.Abs(100 * normalizedZ);
338 }
339 return (int)calculatedSpeed;
340 }

5.15.2.4 HandleReceivedData()

void HandDetectionCube.HandleReceivedData (

string data ) [inline], [private]

Handles the recieved data from the server.

Generated by Doxygen



62 Class Documentation

It is not in use at the moment.

Definition at line 346 of file HandDetectionCube.cs.
347 {
348 // Process the received data
349 Debug.Log($"ObjectController received data: {data}");
350 }

5.15.2.5 OnDestroy()

void HandDetectionCube.OnDestroy ( ) [inline], [private]

Definition at line 367 of file HandDetectionCube.cs.
368 {
369 StopAllCoroutines();
370 networkManager.OnDataReceived -= HandleReceivedData;
371 }

5.15.2.6 OnTriggerEnter()

void HandDetectionCube.OnTriggerEnter (

Collider other ) [inline], [private]

This method is called when the hand enters the cube area.

It changes the color of the cube and starts the coroutine to calculate the distances repeatedly.

Parameters

other

Definition at line 137 of file HandDetectionCube.cs.
138 {
139 // Check if TipBoneEnd is in the cube
140 if (other.CompareTag("TipboneSphere"))
141 {
142 isHandDetected = true;
143 // Debug.Log($"Visualindicator entered cube area.{other.bounds.size}");
144 // Debug.Log($"Other size: {other.bounds.size}");
145
146 // Change the color of the cube when the hand enters the cube
147 cubeMaterial.color = insideColor;
148
149 // Start coroutine to calculate distances repeatedly
150 int Hand_WristRoot = (int)OVRPlugin.BoneId.Hand_MiddleTip;
151 OVRBone WristBone = handSkeleton.Bones[Hand_WristRoot];
152 StartCoroutine(RepeatedlyDistanceCalculation(WristBone.Transform));
153 }
154 }

5.15.2.7 OnTriggerExit()

void HandDetectionCube.OnTriggerExit (

Collider other ) [inline], [private]

Stop the coroutine when the hand leaves the cube

Generated by Doxygen



5.15 HandDetectionCube Class Reference 63

Parameters

other

Definition at line 160 of file HandDetectionCube.cs.
161 {
162 if (other.CompareTag("TipboneSphere"))
163 {
164 isHandDetected = false;
165 // Debug.Log("Hand exited cube area.");
166 // Reset the color of the cube when the hand leaves the cube
167 cubeMaterial.color = originalColor;
168
169 // Stop the coroutine when the hand leaves the Cude
170 StopAllCoroutines();
171
172 // Reset the control values to stop the robot
173 ResetControlValues();
174
175 // Stop the robot when the had leaves the control area(Cube)
176 string json = JsonUtility.ToJson(controlValues);
177 SendDataToServer(json);
178 }
179 }

5.15.2.8 OnTriggerStay()

void HandDetectionCube.OnTriggerStay (

Collider other ) [inline], [private]

Definition at line 181 of file HandDetectionCube.cs.
182 {
183 // not sure if this is necessary
184 }

5.15.2.9 RepeatedlyDistanceCalculation()

IEnumerator HandDetectionCube.RepeatedlyDistanceCalculation (

Transform handTransform ) [inline], [private]

Asynchronous method to calculate the distances repeatedly when the coroutine is started.

Parameters

handTransform

Definition at line 200 of file HandDetectionCube.cs.
201 {
202
203 while (isHandDetected)
204 {
205 CalculateNormalizedControlValues(handTransform.position);
206 yield return new WaitForSeconds(sendInterval);
207 }
208 }

Generated by Doxygen



64 Class Documentation

5.15.2.10 ResetControlValues()

void HandDetectionCube.ResetControlValues ( ) [inline], [private]

Reset the control values to stop the robot, this makes the robot stop when the hand leaves the cube

Definition at line 189 of file HandDetectionCube.cs.
190 {
191 controlValues.x = 0;
192 controlValues.y = 0;
193 controlValues.speed = 0;
194 }

5.15.2.11 SendControlValues()

void HandDetectionCube.SendControlValues (

float normalizedX,

float normalizedZ,

float normalizedY,

int speed = 50 ) [inline], [private]

Sending the information to the robot through socket communication.

The directions is calculated based on the normalized X and Z values. X goes from -1 (drive left) to 1 (drive right)
and Z goes from 0 (stop) to 1 (drive forward). Speed is calculated based in how far the hand is from the edges, the
closer the hand is to the edge the faster the robot moves. The max speed is when the hand reaches the edge of the
cube.

Parameters

normalizedX
normalizedZ
normalizedY
=speed

"

Definition at line 305 of file HandDetectionCube.cs.
306 {
307
308 // int dropdownValue = dropdownHandler.GetDropdownValue();
309 // string data = "";
310 controlValues.x = normalizedX;
311 controlValues.y = normalizedZ;
312 controlValues.speed = speed;
313 string data = JsonUtility.ToJson(controlValues);
314 SendDataToServer(data);
315
316 }

5.15.2.12 SendDataToServer()

void HandDetectionCube.SendDataToServer (

string data ) [inline], [private]

Generated by Doxygen



5.15 HandDetectionCube Class Reference 65

Sends the data to the server.

Definition at line 355 of file HandDetectionCube.cs.
356 {
357 if (networkManager != null)
358 {
359 networkManager.SendData(data);
360 }
361 else
362 {
363 Debug.Log("NetworkManager component not found.");
364 }
365 }

5.15.2.13 Start()

void HandDetectionCube.Start ( ) [inline], [private]

The script is called before the first frame update and is used to initialize the necessary variables.

Definition at line 94 of file HandDetectionCube.cs.
95 {
96 // Working but we have to install some packages to get access to the logfile in VR headset
97 // It should be easly accessible in the VR headset
98 FindObjectOfType<Logger>().Log("Test log file.");
99 // Finding the visualIndicator child of the cube
100 visualIndicatorTransform = transform.Find("visualIndicator");
101 // Debug.Log($"Indicator position: {visualIndicatorTransform.localPosition.y}");
102 if (visualIndicatorTransform == null)
103 {
104 Debug.LogError("VisualIndicator child not found!");
105 }
106
107 // Get the material and the color of the visualIndocatorCube
108 cubeMaterial = GetComponent<Renderer>().material;
109 originalColor = cubeMaterial.color; // Save the original color
110 networkManager = NetworkManager.Instance;
111 }

5.15.2.14 Update()

void HandDetectionCube.Update ( ) [inline], [private]

Update is called once per frame and is used to log the position of the Hand_WristRoot bone in the VR headset.

This is used for testing purposes.

Definition at line 118 of file HandDetectionCube.cs.
119 {
120 // int Hand_WristRoot = (int)OVRPlugin.BoneId.Hand_WristRoot;
121
122 // // Loging to the VR LOG screen in the VR headset
123 // OVRBone WristBone = handSkeleton.Bones[Hand_WristRoot];
124 // Debug.Log($"Hand_WristRoot bone ID: {Hand_WristRoot}");
125 // Debug.Log($"Hand_WristRoot bone position: {WristBone.Transform.position}");
126
127 // Debug.Log($"CurrentNumBones: {handSkeleton.GetCurrentNumBones()}");
128 // Debug.Log($"Right Hand start: {handSkeleton.GetCurrentStartBoneId()}");
129 // Debug.Log($"Right Hanh end: {handSkeleton.GetCurrentEndBoneId()}");
130 }

Generated by Doxygen



66 Class Documentation

5.15.2.15 UpdateVisualIndicator()

void HandDetectionCube.UpdateVisualIndicator (

float normalizedX,

float normalizedZ ) [inline], [private]

Update the position of the visual indicator within the detection cube according to the normalized X and Z values.

This is to give a feedback to the user about the hand position within the cube which indicates the direction and the
speed of the robot.

Generated by Doxygen



5.15 HandDetectionCube Class Reference 67

Parameters

normalizedX
normalizedZ

Definition at line 273 of file HandDetectionCube.cs.
274 {
275
276 float unchangedY = visualIndicatorTransform.localPosition.y;
277
278 float scaleX = transform.localScale.x / 2; // Half size of the detection cube in X
279 float scaleZ = transform.localScale.z / 2; // Half size of the detection cube in Z
280
281 // Map the normalized control values back to the world position within the detection cube
282 float worldX = normalizedX * scaleX;
283 float worldZ = normalizedZ * scaleZ * 2 - scaleZ;
284
285 worldZ = Mathf.Clamp(worldZ, -scaleZ, scaleZ);
286
287 // Debug.Log($"New Position - X: {worldX}");
288 // Debug.Log($"New Position -Y: {unchangedY}");
289 // Debug.Log($"New Position -Z: {worldZ}");
290
291 Vector3 newPosition = new Vector3(worldX, unchangedY, worldZ);
292 visualIndicatorTransform.localPosition = newPosition;
293 }

5.15.3 Member Data Documentation

5.15.3.1 controlValues

RobotControlValues HandDetectionCube.controlValues = new RobotControlValues() [private]

Definition at line 58 of file HandDetectionCube.cs.

5.15.3.2 controlX

RobotControlX HandDetectionCube.controlX = new RobotControlX() [private]

Definition at line 59 of file HandDetectionCube.cs.

5.15.3.3 cubeMaterial

Material HandDetectionCube.cubeMaterial [private]

Definition at line 87 of file HandDetectionCube.cs.

Generated by Doxygen



68 Class Documentation

5.15.3.4 distanceCalculationInterval

float HandDetectionCube.distanceCalculationInterval = 0.5f

The interval at which to calculate the distances.

Definition at line 74 of file HandDetectionCube.cs.

5.15.3.5 dropdownHandler

DropdownHandler HandDetectionCube.dropdownHandler

The DropdownHandler component used to get the mode values from the UI(VR).

Modes are: Idle, Drive, Arm, and Emergency stop

The mode values (0 , 1, 2, 3) has to match with the ROS2 interface from the robot

Definition at line 47 of file HandDetectionCube.cs.

5.15.3.6 handSkeleton

OVRSkeleton HandDetectionCube.handSkeleton

The OVRSkeleton component used to track hand gestures.

Definition at line 52 of file HandDetectionCube.cs.

5.15.3.7 insideColor

Color HandDetectionCube.insideColor = new Color(1, 0, 0, 0.1f)

Definition at line 88 of file HandDetectionCube.cs.

5.15.3.8 isHandDetected

bool HandDetectionCube.isHandDetected = false [private]

The flag to indicate if the hand is detected within the cube.

Definition at line 69 of file HandDetectionCube.cs.

Generated by Doxygen



5.15 HandDetectionCube Class Reference 69

5.15.3.9 lastSendTime

float HandDetectionCube.lastSendTime [private]

Definition at line 75 of file HandDetectionCube.cs.

5.15.3.10 networkManager

NetworkManager HandDetectionCube.networkManager [private]

The NetworkManager component used to send data to the server.

Definition at line 64 of file HandDetectionCube.cs.

5.15.3.11 originalColor

Color HandDetectionCube.originalColor [private]

Definition at line 89 of file HandDetectionCube.cs.

5.15.3.12 rightHand

OVRHand HandDetectionCube.rightHand

The OVRHand component used to track hand gestures.

Definition at line 57 of file HandDetectionCube.cs.

5.15.3.13 sendInterval

float HandDetectionCube.sendInterval = 0.5f

The interval at which to send data to the server.

Definition at line 80 of file HandDetectionCube.cs.

Generated by Doxygen



70 Class Documentation

5.15.3.14 visualIndicatorTransform

Transform HandDetectionCube.visualIndicatorTransform [private]

The transform of the visual indicator.

That is a dot which indicates the x and z position of the TipBoneEnd of the users hand.

Definition at line 85 of file HandDetectionCube.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/HandDetectionCube.cs

5.16 HandGestureAndRotation Class Reference

This class is used to get the hand gesture and rotation data and send it to the server.

Inheritance diagram for HandGestureAndRotation:

HandGestureAndRotation

MonoBehaviour

Collaboration diagram for HandGestureAndRotation:

HandGestureAndRotation

MonoBehaviour

NetworkManager HandGestureAndRotation.HandData

 handData networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Generated by Doxygen



5.16 HandGestureAndRotation Class Reference 71

Classes

• class HandData

The HandData interface used to send the data to the robot.

Public Attributes

• OVRSkeleton handSkeleton

The OVRSkeleton component used to track hand gestures.
• OVRHand hand

The OVRHand component used to track hand gestures.
• float sendInterval = 0.3f

The interval at which to send data to the server.
• bool isTesting = false

Flag to indicate if the script is running in testing mode.

Private Member Functions

• void Start ()

Initilization of the script by finding the NetworkManager component in the scene.
• void Update ()

Update is called once per frame and is used to get the hand gesture and rotation data and send it to the server.
• void SendDataToServer (string data)

Sends the data to the server.

Private Attributes

• NetworkManager networkManager

The NetworkManager component used to send data to the server.
• float lastSendTime
• HandData handData = new HandData()

5.16.1 Detailed Description

This class is used to get the hand gesture and rotation data and send it to the server.

It is used for testing purposes to control the robot arm with hand gestures.

This class does not work as expected and needs to be fixed

Definition at line 8 of file HandGestureAndRotation.cs.

5.16.2 Member Function Documentation

5.16.2.1 SendDataToServer()

void HandGestureAndRotation.SendDataToServer (

string data ) [inline], [private]

Sends the data to the server.

Generated by Doxygen



72 Class Documentation

Parameters

data The data to send.

Definition at line 124 of file HandGestureAndRotation.cs.
125 {
126 if (networkManager != null)
127 {
128 networkManager.SendData(data);
129 }
130 else
131 {
132 Debug.Log("NetworkManager component not found.");
133 }
134 }

5.16.2.2 Start()

void HandGestureAndRotation.Start ( ) [inline], [private]

Initilization of the script by finding the NetworkManager component in the scene.

Definition at line 50 of file HandGestureAndRotation.cs.
51 {
52 if (!isTesting) return;
53 networkManager = NetworkManager.Instance;
54
55 }

5.16.2.3 Update()

void HandGestureAndRotation.Update ( ) [inline], [private]

Update is called once per frame and is used to get the hand gesture and rotation data and send it to the server.

Returns if isTesting is false.

Definition at line 61 of file HandGestureAndRotation.cs.
62 {
63 if (!isTesting) return;
64 if (handSkeleton == null || hand == null)
65 {
66 Debug.LogWarning("HandSkeleton or OVRHand reference is missing.");
67 return;
68 }
69
70 // Ensure the skeleton and hand are fully tracked
71 if (!handSkeleton.IsDataValid || !handSkeleton.IsDataHighConfidence || !hand.IsTracked)
72 {
73 return;
74 }
75
76 // Accessing the MiddleTip bone
77 int handMiddleTipIndex = (int)OVRPlugin.BoneId.Hand_MiddleTip;
78 if (handMiddleTipIndex < 0 || handMiddleTipIndex >= handSkeleton.Bones.Count)
79 {
80 Debug.LogWarning("Hand_MiddleTip index is out of range.");
81 return;
82 }
83 OVRBone middleTipBone = handSkeleton.Bones[handMiddleTipIndex];
84
85 // Check for pinch
86 bool isPinching = hand.GetFingerIsPinching(OVRHand.HandFinger.Index);
87

Generated by Doxygen



5.16 HandGestureAndRotation Class Reference 73

88 // Output the pinch status and rotation of the MiddleTip bone
89 Debug.Log($"Is Pinching: {isPinching}");
90 Debug.Log($"MiddleTip Bone Rotation: {middleTipBone.Transform.rotation}");
91
92 handData.pinch = isPinching ? 1 : 0;
93
94 Quaternion handRootRotation =

handSkeleton.Bones[(int)OVRPlugin.BoneId.Hand_WristRoot].Transform.rotation;
95
96 // To display or use this rotation:
97 // Convert to Euler angles for easier understanding or display
98 Vector3 handRootEuler = handRootRotation.eulerAngles;
99
100 // Optionally convert to radians
101 Vector3 handRootRadians = new Vector3(handRootEuler.x * Mathf.Deg2Rad, handRootEuler.y *

Mathf.Deg2Rad, handRootEuler.z * Mathf.Deg2Rad);
102
103 Debug.Log($"Hand Root Rotation (Euler): {handRootEuler}");
104 Debug.Log($"Hand Root Rotation (Radians): {handRootRadians}");
105
106 // Convert the handData object to a JSON string
107 string data = JsonUtility.ToJson(handData);
108
109 // Send the data to the server
110 if (Time.time - lastSendTime > 0.1f)
111 {
112 SendDataToServer(data);
113 lastSendTime = Time.time;
114 }
115
116 // Optionally perform actions based on pinch status and bone rotation
117 // For example, you could trigger an event or control an object in your scene
118 }

5.16.3 Member Data Documentation

5.16.3.1 hand

OVRHand HandGestureAndRotation.hand

The OVRHand component used to track hand gestures.

Definition at line 18 of file HandGestureAndRotation.cs.

5.16.3.2 handData

HandData HandGestureAndRotation.handData = new HandData() [private]

Definition at line 45 of file HandGestureAndRotation.cs.

5.16.3.3 handSkeleton

OVRSkeleton HandGestureAndRotation.handSkeleton

The OVRSkeleton component used to track hand gestures.

Definition at line 13 of file HandGestureAndRotation.cs.

Generated by Doxygen



74 Class Documentation

5.16.3.4 isTesting

bool HandGestureAndRotation.isTesting = false

Flag to indicate if the script is running in testing mode.

Definition at line 34 of file HandGestureAndRotation.cs.

5.16.3.5 lastSendTime

float HandGestureAndRotation.lastSendTime [private]

Definition at line 24 of file HandGestureAndRotation.cs.

5.16.3.6 networkManager

NetworkManager HandGestureAndRotation.networkManager [private]

The NetworkManager component used to send data to the server.

Definition at line 23 of file HandGestureAndRotation.cs.

5.16.3.7 sendInterval

float HandGestureAndRotation.sendInterval = 0.3f

The interval at which to send data to the server.

Definition at line 29 of file HandGestureAndRotation.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/HandGestureAndRotation.cs

Generated by Doxygen



5.17 HandInteraction Class Reference 75

5.17 HandInteraction Class Reference

This script is used to send hand tracking data to the server at regular intervals.

Inheritance diagram for HandInteraction:

HandInteraction

MonoBehaviour

Collaboration diagram for HandInteraction:

HandInteraction

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Public Attributes

• float sendInterval = 0.1f

The interval at which to send data to the server.

• bool isTesting = false

Flag to indicate if the script is running in testing mode.

Generated by Doxygen



76 Class Documentation

Private Member Functions

• void Start ()

Start is called before the first frame update and is used to initialize the script.

• void Update ()

Update is called once per frame and is used to send hand tracking data to the server at regular intervals.

• void HandleReceivedData (string data)

Handles the received data from the server.

• void SendDataToServer (string data)

Sends the data to the server.

• void OnDestroy ()

Private Attributes

• OVRHand hand

The OVRHand component used to track hand gestures.

• float lastSendTime

The time of the last data send.

• NetworkManager networkManager

The NetworkManager component used to send data to the server.

5.17.1 Detailed Description

This script is used to send hand tracking data to the server at regular intervals.

It is used for testing purposes.

Definition at line 11 of file HandInteraction.cs.

5.17.2 Member Function Documentation

5.17.2.1 HandleReceivedData()

void HandInteraction.HandleReceivedData (

string data ) [inline], [private]

Handles the received data from the server.

Parameters

data The received data.

Definition at line 88 of file HandInteraction.cs.
89 {
90 // Process the received data
91 Debug.Log($"ObjectController received data: {data}");

Generated by Doxygen



5.17 HandInteraction Class Reference 77

92 }

5.17.2.2 OnDestroy()

void HandInteraction.OnDestroy ( ) [inline], [private]

Definition at line 110 of file HandInteraction.cs.
111 {
112 // It’s important to unsubscribe when the GameObject is destroyed
113 NetworkManager.Instance.OnDataReceived -= HandleReceivedData;
114 }

5.17.2.3 SendDataToServer()

void HandInteraction.SendDataToServer (

string data ) [inline], [private]

Sends the data to the server.

Parameters

data The data to send.

Definition at line 98 of file HandInteraction.cs.
99 {
100 if (networkManager != null)
101 {
102 networkManager.SendData(data);
103 }
104 else
105 {
106 Debug.Log("NetworkManager component not found.");
107 }
108 }

5.17.2.4 Start()

void HandInteraction.Start ( ) [inline], [private]

Start is called before the first frame update and is used to initialize the script.

Returns is isTesting is false.

Definition at line 43 of file HandInteraction.cs.
44 {
45 if (!isTesting) return;
46
47 hand = GetComponent<OVRHand>();
48 Debug.Log("Hand Interaction Script is running!");
49 // Find the NetworkManager component on this GameObject
50 networkManager = NetworkManager.Instance;
51 NetworkManager.Instance.OnDataReceived += HandleReceivedData;
52 }

Generated by Doxygen



78 Class Documentation

5.17.2.5 Update()

void HandInteraction.Update ( ) [inline], [private]

Update is called once per frame and is used to send hand tracking data to the server at regular intervals.

Returns if isTesting is false.Hand Tracking

Definition at line 58 of file HandInteraction.cs.
59 {
60 if (!isTesting) return;
61
62 bool isIndexFingerPinching = hand.GetFingerIsPinching(OVRHand.HandFinger.Index);
63 float indexFingerPinchStrength = hand.GetFingerPinchStrength(OVRHand.HandFinger.Index);
64 OVRHand.TrackingConfidence confidence = hand.GetFingerConfidence(OVRHand.HandFinger.Index);
65 Debug.Log($"Index finger pinching: {isIndexFingerPinching}");
66 Debug.Log($"Strength: {indexFingerPinchStrength}");
67 Debug.Log($"Confidence: {confidence}");
71 Vector3 handPosition = hand.transform.position;
72 Debug.Log($"Hand Position: {handPosition}");
73 // Send data at intervals
74 if (Time.time - lastSendTime > sendInterval)
75 {
76 string data = $"{handPosition}";
77 SendDataToServer(data);
78 SendDataToServer($"{handPosition.y}".ToString());
79 lastSendTime = Time.time;
80 }
81
82 }

5.17.3 Member Data Documentation

5.17.3.1 hand

OVRHand HandInteraction.hand [private]

The OVRHand component used to track hand gestures.

Definition at line 17 of file HandInteraction.cs.

5.17.3.2 isTesting

bool HandInteraction.isTesting = false

Flag to indicate if the script is running in testing mode.

Definition at line 37 of file HandInteraction.cs.

Generated by Doxygen



5.18 HandleReconnectButton Class Reference 79

5.17.3.3 lastSendTime

float HandInteraction.lastSendTime [private]

The time of the last data send.

Definition at line 22 of file HandInteraction.cs.

5.17.3.4 networkManager

NetworkManager HandInteraction.networkManager [private]

The NetworkManager component used to send data to the server.

Definition at line 32 of file HandInteraction.cs.

5.17.3.5 sendInterval

float HandInteraction.sendInterval = 0.1f

The interval at which to send data to the server.

Definition at line 27 of file HandInteraction.cs.

The documentation for this class was generated from the following file:

• Assets/HandInteraction.cs

5.18 HandleReconnectButton Class Reference

This script is used to handle the reconnect button in the UI.

Inheritance diagram for HandleReconnectButton:

HandleReconnectButton

MonoBehaviour

Generated by Doxygen



80 Class Documentation

Collaboration diagram for HandleReconnectButton:

HandleReconnectButton

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Public Member Functions

• void OnReconnectButtonClicked ()

This method is called when the reconnect button is clicked.

Public Attributes

• GameObject reconnectButton

The GameObject used to display the reconnect button in the UI.

Private Member Functions

• void Start ()

Initializes the script by finding the NetworkManager component in the scene.

• void Update ()

Private Attributes

• NetworkManager networkManager

The NetworkManager component used to handle the network connection.

5.18.1 Detailed Description

This script is used to handle the reconnect button in the UI.

When the button is clicked, it calls the Reconnect method of the NetworkManager to disconnect and reconnect to
the server. It is used for testing purposes.

This script is used for testing purposes.

Definition at line 10 of file HandleReconnectButton.cs.

Generated by Doxygen



5.18 HandleReconnectButton Class Reference 81

5.18.2 Member Function Documentation

5.18.2.1 OnReconnectButtonClicked()

void HandleReconnectButton.OnReconnectButtonClicked ( ) [inline]

This method is called when the reconnect button is clicked.

It calls the Reconnect method of the NetworkManager to disconnect and reconnect to the server.

Definition at line 35 of file HandleReconnectButton.cs.
36 {
37 if (networkManager != null)
38 {
39 networkManager.Reconnect();
40 }
41 else
42 {
43 Debug.Log("NetworkManager component not found.");
44 }
45 }

5.18.2.2 Start()

void HandleReconnectButton.Start ( ) [inline], [private]

Initializes the script by finding the NetworkManager component in the scene.

Definition at line 27 of file HandleReconnectButton.cs.
28 {
29 networkManager = NetworkManager.Instance;
30 }

5.18.2.3 Update()

void HandleReconnectButton.Update ( ) [inline], [private]

Definition at line 49 of file HandleReconnectButton.cs.
50 {
51 }

5.18.3 Member Data Documentation

Generated by Doxygen



82 Class Documentation

5.18.3.1 networkManager

NetworkManager HandleReconnectButton.networkManager [private]

The NetworkManager component used to handle the network connection.

Definition at line 22 of file HandleReconnectButton.cs.

5.18.3.2 reconnectButton

GameObject HandleReconnectButton.reconnectButton

The GameObject used to display the reconnect button in the UI.

A rectangular button is used for this purpose.

Definition at line 17 of file HandleReconnectButton.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/HandleReconnectButton.cs

5.19 Heap_up_controller Class Reference

This class is used to control the head up display of the robot.

Inheritance diagram for Heap_up_controller:

Heap_up_controller

MonoBehaviour

Generated by Doxygen



5.19 Heap_up_controller Class Reference 83

Collaboration diagram for Heap_up_controller:

Heap_up_controller

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Public Attributes

• Canvas head_up_canvas

The heap up canvas game object that hostes the heap up display

• Plane robot_view_plane

Robot view plane(Robot camera monitor)

• OVRCameraRig ovr_camera_rig

The OVR camera rig that is used to get the position of the camera

• TMP_Text speed_text
• TMP_Text voltage_text
• TMP_Text battery_precentage_text
• TMP_Text mode_text
• TMP_Text latecy_text
• TMP_Text conenctionStatus_text

Private Member Functions

• void update_head_up_canvas_position_and_rotation ()

Updates the position and rotation of the head up canvas to match the position and rotation of the camera This allows
the user to allways see the head up display in front of them

• void Start ()
• void HandleConnectionStatusChanged (bool connected)
• void HandleReceivedRobotInfoData (JsonRobotInfo info)

This method is used to handle the received robot info data.

• void HandleReceivedPingData (float ping)

This method is used to handle the received ping data.

• void Update ()
• void OnEnable ()
• void OnDisable ()
• void OnDestroy ()

Generated by Doxygen



84 Class Documentation

Private Attributes

• float head_up_canvas_distance = 4f
• Vector3 offset_ovr_camera_rig = new Vector3(0, 0, 0)
• NetworkManager networkManager
• Color connectedColor
• Color disconnectedColor
• List< float > accelerometer
• List< float > gyroscope
• List< float > magnetometer
• List< float > motion
• float speed = 0
• float voltage
• int battery_precentage
• string mode
• float cms_speed

5.19.1 Detailed Description

This class is used to control the head up display of the robot.

It allows the user to see the robot info on the head up display.

Definition at line 12 of file Heap_up_controller.cs.

5.19.2 Member Function Documentation

5.19.2.1 HandleConnectionStatusChanged()

void Heap_up_controller.HandleConnectionStatusChanged (

bool connected ) [inline], [private]

Definition at line 94 of file Heap_up_controller.cs.
95 {
96
97 conenctionStatus_text.text = connected ? "Connected" : "Disconnected";
98 conenctionStatus_text.color = connected ? connectedColor : disconnectedColor;
99
100 }

5.19.2.2 HandleReceivedPingData()

void Heap_up_controller.HandleReceivedPingData (

float ping ) [inline], [private]

This method is used to handle the received ping data.

It updates the latency on the head up display.

Generated by Doxygen



5.19 Heap_up_controller Class Reference 85

Parameters

ping

Definition at line 155 of file Heap_up_controller.cs.
156 {
157 latecy_text.text = ping.ToString();
158 Debug.Log("LatencyPing: " + ping);
159 }

5.19.2.3 HandleReceivedRobotInfoData()

void Heap_up_controller.HandleReceivedRobotInfoData (

JsonRobotInfo info ) [inline], [private]

This method is used to handle the received robot info data.

It updates the robot info on the head up display if the data has changed.

Parameters

info

Definition at line 108 of file Heap_up_controller.cs.
109 {
110 if (accelerometer != info.accelerometer)
111 {
112 accelerometer = info.accelerometer;
113 }
114 if (gyroscope != info.gyroscope)
115 {
116 gyroscope = info.gyroscope;
117 }
118 if (magnetometer != info.magnetometer)
119 {
120 magnetometer = info.magnetometer;
121 }
122 if (motion != info.motion)
123 {
124 motion = info.motion;
125 }
126 if (speed != info.speed)
127 {
128 speed = info.cms_speed;
129 speed_text.text = cms_speed.ToString();
130 }
131 if (voltage != info.voltage)
132 {
133 voltage = info.voltage;
134 voltage_text.text = voltage.ToString();
135 }
136 if (battery_precentage != info.battery_precentage)
137 {
138 battery_precentage = info.battery_precentage;
139 battery_precentage_text.text = battery_precentage.ToString();
140 }
141 if (mode != info.mode)
142 {
143 mode = info.mode;
144 mode_text.text = mode;
145 }
146
147 }

Generated by Doxygen



86 Class Documentation

5.19.2.4 OnDestroy()

void Heap_up_controller.OnDestroy ( ) [inline], [private]

Definition at line 176 of file Heap_up_controller.cs.
177 {
178 networkManager.OnRobotInfoDataReceived -= HandleReceivedRobotInfoData;
179 }

5.19.2.5 OnDisable()

void Heap_up_controller.OnDisable ( ) [inline], [private]

Definition at line 171 of file Heap_up_controller.cs.
172 {
173
174 }

5.19.2.6 OnEnable()

void Heap_up_controller.OnEnable ( ) [inline], [private]

Definition at line 166 of file Heap_up_controller.cs.
167 {
168
169 }

5.19.2.7 Start()

void Heap_up_controller.Start ( ) [inline], [private]

Definition at line 83 of file Heap_up_controller.cs.
84 {
85 networkManager = NetworkManager.Instance;
86 networkManager.OnRobotInfoDataReceived += HandleReceivedRobotInfoData;
87 networkManager.onPingDataReceived += HandleReceivedPingData;
88 networkManager.OnConnectionStatus += HandleConnectionStatusChanged;
89 disconnectedColor = conenctionStatus_text.color;
90 connectedColor = latecy_text.color;
91 }

5.19.2.8 Update()

void Heap_up_controller.Update ( ) [inline], [private]

Definition at line 161 of file Heap_up_controller.cs.
162 {
163 update_head_up_canvas_position_and_rotation();
164 }

Generated by Doxygen



5.19 Heap_up_controller Class Reference 87

5.19.2.9 update_head_up_canvas_position_and_rotation()

void Heap_up_controller.update_head_up_canvas_position_and_rotation ( ) [inline], [private]

Updates the position and rotation of the head up canvas to match the position and rotation of the camera This allows
the user to allways see the head up display in front of them

Definition at line 62 of file Heap_up_controller.cs.
63 {
64 // Move the head up canvas to the position of the camera
65 Vector3 newPosition = ovr_camera_rig.centerEyeAnchor.position +

ovr_camera_rig.centerEyeAnchor.forward * head_up_canvas_distance + offset_ovr_camera_rig;
66
67
68 newPosition.y = head_up_canvas.transform.position.y;
69 newPosition.z = head_up_canvas.transform.position.z;
70
71 head_up_canvas.transform.position = newPosition;
72 head_up_canvas.transform.LookAt(ovr_camera_rig.centerEyeAnchor);
73
74 head_up_canvas.transform.Rotate(0, 180f, 0);
75
76 //Upright relativ to the camera (Users head)
77
78 // The rotation on the X and Z axes but allows it to rotate freely around the Y axis
79 // head_up_canvas.transform.rotation = Quaternion.Euler(0,

head_up_canvas.transform.rotation.eulerAngles.y, 0);
80 }

5.19.3 Member Data Documentation

5.19.3.1 accelerometer

List<float> Heap_up_controller.accelerometer [private]

Definition at line 48 of file Heap_up_controller.cs.

5.19.3.2 battery_precentage

int Heap_up_controller.battery_precentage [private]

Definition at line 54 of file Heap_up_controller.cs.

5.19.3.3 battery_precentage_text

TMP_Text Heap_up_controller.battery_precentage_text

Definition at line 39 of file Heap_up_controller.cs.

Generated by Doxygen



88 Class Documentation

5.19.3.4 cms_speed

float Heap_up_controller.cms_speed [private]

Definition at line 56 of file Heap_up_controller.cs.

5.19.3.5 conenctionStatus_text

TMP_Text Heap_up_controller.conenctionStatus_text

Definition at line 43 of file Heap_up_controller.cs.

5.19.3.6 connectedColor

Color Heap_up_controller.connectedColor [private]

Definition at line 44 of file Heap_up_controller.cs.

5.19.3.7 disconnectedColor

Color Heap_up_controller.disconnectedColor [private]

Definition at line 45 of file Heap_up_controller.cs.

5.19.3.8 gyroscope

List<float> Heap_up_controller.gyroscope [private]

Definition at line 49 of file Heap_up_controller.cs.

5.19.3.9 head_up_canvas

Canvas Heap_up_controller.head_up_canvas

The heap up canvas game object that hostes the heap up display

Definition at line 18 of file Heap_up_controller.cs.

Generated by Doxygen



5.19 Heap_up_controller Class Reference 89

5.19.3.10 head_up_canvas_distance

float Heap_up_controller.head_up_canvas_distance = 4f [private]

Definition at line 29 of file Heap_up_controller.cs.

5.19.3.11 latecy_text

TMP_Text Heap_up_controller.latecy_text

Definition at line 41 of file Heap_up_controller.cs.

5.19.3.12 magnetometer

List<float> Heap_up_controller.magnetometer [private]

Definition at line 50 of file Heap_up_controller.cs.

5.19.3.13 mode

string Heap_up_controller.mode [private]

Definition at line 55 of file Heap_up_controller.cs.

5.19.3.14 mode_text

TMP_Text Heap_up_controller.mode_text

Definition at line 40 of file Heap_up_controller.cs.

5.19.3.15 motion

List<float> Heap_up_controller.motion [private]

Definition at line 51 of file Heap_up_controller.cs.

Generated by Doxygen



90 Class Documentation

5.19.3.16 networkManager

NetworkManager Heap_up_controller.networkManager [private]

Definition at line 34 of file Heap_up_controller.cs.

5.19.3.17 offset_ovr_camera_rig

Vector3 Heap_up_controller.offset_ovr_camera_rig = new Vector3(0, 0, 0) [private]

Definition at line 32 of file Heap_up_controller.cs.

5.19.3.18 ovr_camera_rig

OVRCameraRig Heap_up_controller.ovr_camera_rig

The OVR camera rig that is used to get the position of the camera

Definition at line 26 of file Heap_up_controller.cs.

5.19.3.19 robot_view_plane

Plane Heap_up_controller.robot_view_plane

Robot view plane(Robot camera monitor)

Definition at line 22 of file Heap_up_controller.cs.

5.19.3.20 speed

float Heap_up_controller.speed = 0 [private]

Definition at line 52 of file Heap_up_controller.cs.

5.19.3.21 speed_text

TMP_Text Heap_up_controller.speed_text

Definition at line 37 of file Heap_up_controller.cs.

Generated by Doxygen



5.20 HelloWorldScript Class Reference 91

5.19.3.22 voltage

float Heap_up_controller.voltage [private]

Definition at line 53 of file Heap_up_controller.cs.

5.19.3.23 voltage_text

TMP_Text Heap_up_controller.voltage_text

Definition at line 38 of file Heap_up_controller.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/Head up display/Heap_up_controller.cs

5.20 HelloWorldScript Class Reference

This script is used to display a simple "Hello World" message on the screen for testing purposes.

Inheritance diagram for HelloWorldScript:

HelloWorldScript

MonoBehaviour

Collaboration diagram for HelloWorldScript:

HelloWorldScript

MonoBehaviour

Generated by Doxygen



92 Class Documentation

Public Attributes

• string myName = "Kromium Kromiumsen"

Private Member Functions

• void Start ()

Start is called before the first frame update and is used to initialize the script.

Private Attributes

• TextMeshProUGUI textMeshPro

The TextMeshPro component used to display the message.

5.20.1 Detailed Description

This script is used to display a simple "Hello World" message on the screen for testing purposes.

Definition at line 9 of file HelloWorldScript.cs.

5.20.2 Member Function Documentation

5.20.2.1 Start()

void HelloWorldScript.Start ( ) [inline], [private]

Start is called before the first frame update and is used to initialize the script.

It sets the text of the TextMeshPro component to a simple "Hello World" message. It also logs a message to the
console.

Definition at line 23 of file HelloWorldScript.cs.
24 {
25 Debug.Log("Hello from the other side!");
26 textMeshPro = GetComponent<TextMeshProUGUI>();
27 textMeshPro.text = $"We are {myName}";
28 }

5.20.3 Member Data Documentation

Generated by Doxygen



5.21 JsonArmLengthInfo Class Reference 93

5.20.3.1 myName

string HelloWorldScript.myName = "Kromium Kromiumsen"

Definition at line 11 of file HelloWorldScript.cs.

5.20.3.2 textMeshPro

TextMeshProUGUI HelloWorldScript.textMeshPro [private]

The TextMeshPro component used to display the message.

Definition at line 16 of file HelloWorldScript.cs.

The documentation for this class was generated from the following file:

• Assets/HelloWorldScript.cs

5.21 JsonArmLengthInfo Class Reference

Public Attributes

• int Link_1
• int Link_2
• int Link_3
• int Link_4
• int Link_5
• int pintch

5.21.1 Detailed Description

Definition at line 44 of file NetworkManager.cs.

5.21.2 Member Data Documentation

5.21.2.1 Link_1

int JsonArmLengthInfo.Link_1

Definition at line 46 of file NetworkManager.cs.

Generated by Doxygen



94 Class Documentation

5.21.2.2 Link_2

int JsonArmLengthInfo.Link_2

Definition at line 47 of file NetworkManager.cs.

5.21.2.3 Link_3

int JsonArmLengthInfo.Link_3

Definition at line 48 of file NetworkManager.cs.

5.21.2.4 Link_4

int JsonArmLengthInfo.Link_4

Definition at line 50 of file NetworkManager.cs.

5.21.2.5 Link_5

int JsonArmLengthInfo.Link_5

Definition at line 51 of file NetworkManager.cs.

5.21.2.6 pintch

int JsonArmLengthInfo.pintch

Definition at line 52 of file NetworkManager.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

5.22 JsonRobotInfo Class Reference

Class JsonRobotInfo Represents the JSON data structure for the robot information.

Generated by Doxygen



5.22 JsonRobotInfo Class Reference 95

Public Attributes

• List< float > accelerometer
• List< float > gyroscope
• List< float > magnetometer
• List< float > motion
• float speed = 88
• float voltage
• int battery_precentage
• string mode
• float cms_speed

5.22.1 Detailed Description

Class JsonRobotInfo Represents the JSON data structure for the robot information.

Definition at line 29 of file NetworkManager.cs.

5.22.2 Member Data Documentation

5.22.2.1 accelerometer

List<float> JsonRobotInfo.accelerometer

Definition at line 32 of file NetworkManager.cs.

5.22.2.2 battery_precentage

int JsonRobotInfo.battery_precentage

Definition at line 38 of file NetworkManager.cs.

5.22.2.3 cms_speed

float JsonRobotInfo.cms_speed

Definition at line 40 of file NetworkManager.cs.

Generated by Doxygen



96 Class Documentation

5.22.2.4 gyroscope

List<float> JsonRobotInfo.gyroscope

Definition at line 33 of file NetworkManager.cs.

5.22.2.5 magnetometer

List<float> JsonRobotInfo.magnetometer

Definition at line 34 of file NetworkManager.cs.

5.22.2.6 mode

string JsonRobotInfo.mode

Definition at line 39 of file NetworkManager.cs.

5.22.2.7 motion

List<float> JsonRobotInfo.motion

Definition at line 35 of file NetworkManager.cs.

5.22.2.8 speed

float JsonRobotInfo.speed = 88

Definition at line 36 of file NetworkManager.cs.

5.22.2.9 voltage

float JsonRobotInfo.voltage

Definition at line 37 of file NetworkManager.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

Generated by Doxygen



5.23 Logger Class Reference 97

5.23 Logger Class Reference

This script is used to log messages to a file.

Inheritance diagram for Logger:

Logger

MonoBehaviour

Collaboration diagram for Logger:

Logger

MonoBehaviour

Public Member Functions

• void Log (string message)

This method is used to log messages to the log file and the Unity Console.

Private Member Functions

• void Awake ()

Awake is called when the script instance is being loaded.

Private Attributes

• string logFilePath

Generated by Doxygen



98 Class Documentation

5.23.1 Detailed Description

This script is used to log messages to a file.

It is used for testing purposes.

Definition at line 7 of file Logger.cs.

5.23.2 Member Function Documentation

5.23.2.1 Awake()

void Logger.Awake ( ) [inline], [private]

Awake is called when the script instance is being loaded.

It gets the path to the log file and clears it at the start of the session.

Definition at line 14 of file Logger.cs.
15 {
16 // Set the log file path to the persistent data path
17 logFilePath = Path.Combine(Application.persistentDataPath, "gameLog.txt");
18
19 // // Clear the log file at the start of the session.
20 File.WriteAllText(logFilePath, string.Empty);
21 }

5.23.2.2 Log()

void Logger.Log (

string message ) [inline]

This method is used to log messages to the log file and the Unity Console.

Parameters

message

Definition at line 27 of file Logger.cs.
28 {
29 // string logMessage = System.DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss") + ": " + message;
30 // File.AppendAllText(logFilePath, logMessage + "\n");
31
32 // // For testing purposes, also log the message to the Unity Console
33 // Debug.Log(message);
34 }

5.23.3 Member Data Documentation

Generated by Doxygen



5.24 MainController Class Reference 99

5.23.3.1 logFilePath

string Logger.logFilePath [private]

Definition at line 9 of file Logger.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/log/Logger.cs

5.24 MainController Class Reference

This class is the main controller for handling scene changes and mode changes.

Inheritance diagram for MainController:

MainController

MonoBehaviour

Collaboration diagram for MainController:

MainController

MonoBehaviour

DropdownHandler

Responsehandler

NetworkManagerModeAudioPlay

 dropdownHandler

 responsehandler

 networkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

 modeAudioPlay

 modeAudioPlay

DropdownHandler.ModeValues

 modeValues

Generated by Doxygen



100 Class Documentation

Public Attributes

• DropdownHandler dropdownHandler
• GameObject driveScene
• GameObject armScene
• TMP_Dropdown dropdown
• ModeAudioPlay modeAudioPlay
• XRPokeFollowAffordance EmergencyStopButton

Private Member Functions

• void Start ()

Start is called before the first frame update, it is used to initialize the controller, subscribe to relevant events, and
deactivate scenes.

• void HandleEmergencyStop (bool emergency)

This method is used to handle the emergency stop event.

• void OnDestroy ()
• void HandleDropdownChange (int newValue)

This method is used to enabling/disabling scenes based on the selected mode.

5.24.1 Detailed Description

This class is the main controller for handling scene changes and mode changes.

It enables and disables scenes based on the selected mode dynamically.

Definition at line 12 of file MainController.cs.

5.24.2 Member Function Documentation

5.24.2.1 HandleDropdownChange()

void MainController.HandleDropdownChange (

int newValue ) [inline], [private]

This method is used to enabling/disabling scenes based on the selected mode.

Parameters

newValue

Definition at line 75 of file MainController.cs.
76 {
77 Debug.Log($"Dropdown value changed to: {newValue}");
78 // Modify the switch statement to activate/deactivate scenes
79 switch (newValue) // Changed to use newValue directly
80 {
81 case 0:

Generated by Doxygen



5.24 MainController Class Reference 101

82 // Idle mode
83 driveScene.SetActive(false);
84 armScene.SetActive(false);
85 modeAudioPlay.PlayIdle();
86 break;
87 case 1:
88 // Drive mode
89 driveScene.SetActive(true);
90 armScene.SetActive(false);
91 modeAudioPlay.PlayDrive();
92 break;
93 case 2:
94 // Arm mode
95 driveScene.SetActive(false);
96 armScene.SetActive(true);
97 modeAudioPlay.PlayArm();
98 break;
99 case 3:
100 // Emergency Stop mode
101 driveScene.SetActive(false);
102 armScene.SetActive(false);
103 modeAudioPlay.PlayEmergency();
104 break;
105 default:
106 // Default case
107 break;
108 }
109 }

5.24.2.2 HandleEmergencyStop()

void MainController.HandleEmergencyStop (

bool emergency ) [inline], [private]

This method is used to handle the emergency stop event.

Parameters

emergency

Definition at line 51 of file MainController.cs.
52 {
53 Debug.Log($"Emergency Stop: {emergency}");
54 // Modify the switch statement to activate/deactivate scenes
55 if (emergency)
56 {
57 driveScene.SetActive(false);
58 armScene.SetActive(false);
59 dropdown.value = 3;
60 }
61 }

5.24.2.3 OnDestroy()

void MainController.OnDestroy ( ) [inline], [private]

Definition at line 63 of file MainController.cs.
64 {
65 if (dropdownHandler != null)
66 {
67 dropdownHandler.OnDropdownValueChanged -= HandleDropdownChange;
68 }
69 }

Generated by Doxygen



102 Class Documentation

5.24.2.4 Start()

void MainController.Start ( ) [inline], [private]

Start is called before the first frame update, it is used to initialize the controller, subscribe to relevant events, and
deactivate scenes.

Definition at line 26 of file MainController.cs.
27 {
28 if (dropdownHandler != null)
29 {
30 dropdownHandler.OnDropdownValueChanged += HandleDropdownChange;
31 EmergencyStopButton.OnEmergency += HandleEmergencyStop;
32 }
33
34 // Deactivate both scenes at the start
35 if (driveScene != null)
36 {
37 driveScene.SetActive(false);
38 }
39
40 if (armScene != null)
41 {
42 armScene.SetActive(false);
43 }
44
45 }

5.24.3 Member Data Documentation

5.24.3.1 armScene

GameObject MainController.armScene

Definition at line 16 of file MainController.cs.

5.24.3.2 driveScene

GameObject MainController.driveScene

Definition at line 15 of file MainController.cs.

5.24.3.3 dropdown

TMP_Dropdown MainController.dropdown

Definition at line 18 of file MainController.cs.

Generated by Doxygen



5.25 MeshCreator Class Reference 103

5.24.3.4 dropdownHandler

DropdownHandler MainController.dropdownHandler

Definition at line 14 of file MainController.cs.

5.24.3.5 EmergencyStopButton

XRPokeFollowAffordance MainController.EmergencyStopButton

Definition at line 21 of file MainController.cs.

5.24.3.6 modeAudioPlay

ModeAudioPlay MainController.modeAudioPlay

Definition at line 20 of file MainController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/LogicController/MainController.cs

5.25 MeshCreator Class Reference

Inheritance diagram for MeshCreator:

MeshCreator

MonoBehaviour

Generated by Doxygen



104 Class Documentation

Collaboration diagram for MeshCreator:

MeshCreator

MonoBehaviour

Public Member Functions

• void CreateCubeGridTest (DepthData depthData)

Public Attributes

• Volume volume
• Gradient depthColorGradient

Private Member Functions

• void Start ()
• void Update ()
• void clearVolumeBoxes ()
• void CreateMeshInBoxVolume (DepthData depthData)
• DepthData NormalizeDepthData (DepthData depthData)

5.25.1 Detailed Description

Definition at line 8 of file MeshCreator.cs.

5.25.2 Member Function Documentation

5.25.2.1 clearVolumeBoxes()

void MeshCreator.clearVolumeBoxes ( ) [inline], [private]

Definition at line 63 of file MeshCreator.cs.
64 {
65 foreach (Transform child in volume.transform)
66 {
67 GameObject.Destroy(child.gameObject);
68 }
69 }

Generated by Doxygen



5.25 MeshCreator Class Reference 105

5.25.2.2 CreateCubeGridTest()

void MeshCreator.CreateCubeGridTest (

DepthData depthData ) [inline]

Definition at line 46 of file MeshCreator.cs.
47 {
48 clearVolumeBoxes();
49 depthData = NormalizeDepthData(depthData); // Normalize the depth data
50 float localScale = 0.03578f;
51 // Create a cube grid
52
53 foreach (DepthDataPoint point in depthData.Points)
54 {
55 GameObject quad = GameObject.CreatePrimitive(PrimitiveType.Quad);
56 quad.transform.parent = volume.transform;
57 quad.transform.localPosition = new Vector3(point.X, point.Y, point.Z);
58 quad.transform.localScale = new Vector3(localScale, localScale, 1); // Note that the z-scale

is irrelevant for quads.
59 quad.GetComponent<Renderer>().material.color = depthColorGradient.Evaluate(point.Z);
60 }
61 }

5.25.2.3 CreateMeshInBoxVolume()

void MeshCreator.CreateMeshInBoxVolume (

DepthData depthData ) [inline], [private]

Definition at line 71 of file MeshCreator.cs.
72 {
73 depthData = NormalizeDepthData(depthData); // Normalize the depth data
74 Mesh mesh = new Mesh();
75
76 // Create vertices array
77 Vector3[] vertices = new Vector3[depthData.Count];
78 int[] triangles = new int[(depthData.Count - 2) * 3]; // Only valid if you have at least 3 points
79
80 // Fill vertices array
81 int i = 0;
82 foreach (DepthDataPoint point in depthData.Points)
83 {
84 vertices[i++] = new Vector3(point.X, point.Y, point.Z);
85 }
86
87 // Assuming you want to create a mesh from vertices like a connected series of triangles
88 if (depthData.Count >= 3)
89 {
90 for (int j = 0; j < depthData.Count - 2; j++)
91 {
92 triangles[j * 3] = 0;
93 triangles[j * 3 + 1] = j + 1;
94 triangles[j * 3 + 2] = j + 2;
95 }
96 }
97
98 // Set the mesh vertices and triangles
99 mesh.vertices = vertices;
100 mesh.triangles = triangles;
101 mesh.RecalculateNormals(); // To make sure the mesh is rendered correctly
102
103 // Assign the mesh to a MeshFilter component
104 MeshFilter meshFilter = GetComponent<MeshFilter>();
105 meshFilter.mesh = mesh;
106 }

Generated by Doxygen



106 Class Documentation

5.25.2.4 NormalizeDepthData()

DepthData MeshCreator.NormalizeDepthData (

DepthData depthData ) [inline], [private]

Definition at line 108 of file MeshCreator.cs.
109 {
110 // Optional: Define min and max depth for color normalization
111 float minX = float.MaxValue;
112 float maxX = float.MinValue;
113 float minY = float.MaxValue;
114 float maxY = float.MinValue;
115 float minZ = float.MaxValue;
116 float maxZ = float.MinValue;
117
118 // Find the minimum and maximum values for each axis
119 foreach (DepthDataPoint point in depthData.Points)
120 {
121 minX = Mathf.Min(minX, point.X);
122 maxX = Mathf.Max(maxX, point.X);
123 minY = Mathf.Min(minY, point.Y);
124 maxY = Mathf.Max(maxY, point.Y);
125 minZ = Mathf.Min(minZ, point.Z);
126 maxZ = Mathf.Max(maxZ, point.Z);
127 }
128
129 DepthData normalizedDepthData = new DepthData();
130
131 // Volume scales
132 float scaleX = 1f;
133 float scaleY = 1f;
134 float scaleZ = 1f;
135
136 // Normalize the depth data to the volume’s scales
137 foreach (DepthDataPoint point in depthData.Points)
138 {
139 float normalizedX = Mathf.InverseLerp(minX, maxX, point.X) * scaleX - scaleX / 2;
140 float normalizedY = Mathf.InverseLerp(minY, maxY, point.Y) * scaleY - scaleY / 2;
141 float normalizedZ = Mathf.InverseLerp(minZ, maxZ, point.Z) * scaleZ - scaleZ / 2;
142 normalizedDepthData.AddDepthDataPoint(normalizedX, normalizedY, normalizedZ);
143 }
144
145 return normalizedDepthData;
146 }

5.25.2.5 Start()

void MeshCreator.Start ( ) [inline], [private]

Definition at line 15 of file MeshCreator.cs.
16 {
17 depthColorGradient = new Gradient();
18
19 // Create gradient keys
20 GradientColorKey[] colorKeys = new GradientColorKey[2];
21 colorKeys[0].color = Color.blue;
22 colorKeys[0].time = 0.0f; // Start of the gradient
23 colorKeys[1].color = Color.red;
24 colorKeys[1].time = 1.0f; // End of the gradient
25
26 // Create alpha keys
27 GradientAlphaKey[] alphaKeys = new GradientAlphaKey[2];
28 alphaKeys[0].alpha = 1.0f;
29 alphaKeys[0].time = 0.0f;
30 alphaKeys[1].alpha = 1.0f;
31 alphaKeys[1].time = 1.0f;
32
33 // Assign keys to the gradient
34 depthColorGradient.SetKeys(colorKeys, alphaKeys);
35 }

Generated by Doxygen



5.26 MeshReplacement Class Reference 107

5.25.2.6 Update()

void MeshCreator.Update ( ) [inline], [private]

Definition at line 38 of file MeshCreator.cs.
39 {
40 if (Time.frameCount % 1000 == 0)
41 {
42 clearVolumeBoxes();
43 }
44 }

5.25.3 Member Data Documentation

5.25.3.1 depthColorGradient

Gradient MeshCreator.depthColorGradient

Definition at line 13 of file MeshCreator.cs.

5.25.3.2 volume

Volume MeshCreator.volume

Definition at line 12 of file MeshCreator.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/PlotCameraDepthData/MeshCreator.cs

5.26 MeshReplacement Class Reference

Inheritance diagram for MeshReplacement:

MeshReplacement

MonoBehaviour

Generated by Doxygen



108 Class Documentation

Collaboration diagram for MeshReplacement:

MeshReplacement

MonoBehaviour

Public Attributes

• GameObject mesh
• GameObject ply

Private Member Functions

• void Start ()
• void Update ()

5.26.1 Detailed Description

Definition at line 6 of file MeshReplacement.cs.

5.26.2 Member Function Documentation

5.26.2.1 Start()

void MeshReplacement.Start ( ) [inline], [private]

Definition at line 13 of file MeshReplacement.cs.
14 {
15 }

5.26.2.2 Update()

void MeshReplacement.Update ( ) [inline], [private]

Definition at line 18 of file MeshReplacement.cs.
19 {
20
21 }

Generated by Doxygen



5.27 ModeAudioPlay Class Reference 109

5.26.3 Member Data Documentation

5.26.3.1 mesh

GameObject MeshReplacement.mesh

Definition at line 9 of file MeshReplacement.cs.

5.26.3.2 ply

GameObject MeshReplacement.ply

Definition at line 10 of file MeshReplacement.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/PlotCameraDepthData/MeshReplacement.cs

5.27 ModeAudioPlay Class Reference

Inheritance diagram for ModeAudioPlay:

ModeAudioPlay

MonoBehaviour

Collaboration diagram for ModeAudioPlay:

ModeAudioPlay

MonoBehaviour

Generated by Doxygen



110 Class Documentation

Public Member Functions

• void PlayIdle ()
• void PlayDrive ()
• void PlayArm ()
• void PlayEmergency ()
• void PlayScrew ()
• void PlayUnScrew ()

Public Attributes

• AudioSource idleSource
• AudioSource driveSource
• AudioSource armSource
• AudioSource emergencySource
• AudioSource screwSource
• AudioSource unScrewSource

Private Member Functions

• void Start ()
• void Update ()

5.27.1 Detailed Description

Definition at line 5 of file ModeAudioPlay.cs.

5.27.2 Member Function Documentation

5.27.2.1 PlayArm()

void ModeAudioPlay.PlayArm ( ) [inline]

Definition at line 27 of file ModeAudioPlay.cs.
28 {
29 armSource.Play();
30 }

5.27.2.2 PlayDrive()

void ModeAudioPlay.PlayDrive ( ) [inline]

Definition at line 22 of file ModeAudioPlay.cs.
23 {
24 driveSource.Play();
25 }

Generated by Doxygen



5.27 ModeAudioPlay Class Reference 111

5.27.2.3 PlayEmergency()

void ModeAudioPlay.PlayEmergency ( ) [inline]

Definition at line 32 of file ModeAudioPlay.cs.
33 {
34 emergencySource.Play();
35 }

5.27.2.4 PlayIdle()

void ModeAudioPlay.PlayIdle ( ) [inline]

Definition at line 17 of file ModeAudioPlay.cs.
18 {
19 idleSource.Play();
20 }

5.27.2.5 PlayScrew()

void ModeAudioPlay.PlayScrew ( ) [inline]

Definition at line 37 of file ModeAudioPlay.cs.
38 {
39 screwSource.Play();
40 }

5.27.2.6 PlayUnScrew()

void ModeAudioPlay.PlayUnScrew ( ) [inline]

Definition at line 42 of file ModeAudioPlay.cs.
43 {
44 unScrewSource.Play();
45 }

5.27.2.7 Start()

void ModeAudioPlay.Start ( ) [inline], [private]

Definition at line 47 of file ModeAudioPlay.cs.
48 {
49
50 }

Generated by Doxygen



112 Class Documentation

5.27.2.8 Update()

void ModeAudioPlay.Update ( ) [inline], [private]

Definition at line 53 of file ModeAudioPlay.cs.
54 {
55
56 }

5.27.3 Member Data Documentation

5.27.3.1 armSource

AudioSource ModeAudioPlay.armSource

Definition at line 11 of file ModeAudioPlay.cs.

5.27.3.2 driveSource

AudioSource ModeAudioPlay.driveSource

Definition at line 10 of file ModeAudioPlay.cs.

5.27.3.3 emergencySource

AudioSource ModeAudioPlay.emergencySource

Definition at line 12 of file ModeAudioPlay.cs.

5.27.3.4 idleSource

AudioSource ModeAudioPlay.idleSource

Definition at line 9 of file ModeAudioPlay.cs.

Generated by Doxygen



5.28 DropdownHandler.ModeValues Class Reference 113

5.27.3.5 screwSource

AudioSource ModeAudioPlay.screwSource

Definition at line 13 of file ModeAudioPlay.cs.

5.27.3.6 unScrewSource

AudioSource ModeAudioPlay.unScrewSource

Definition at line 14 of file ModeAudioPlay.cs.

The documentation for this class was generated from the following file:

• Assets/Voice Controll/ModeAudioPlay.cs

5.28 DropdownHandler.ModeValues Class Reference

The ModeValues interface used to send the mode value to the robot.

Public Attributes

• int mode

5.28.1 Detailed Description

The ModeValues interface used to send the mode value to the robot.

This interface has to match with the ROS2 interface from the robot

Definition at line 25 of file DropdownHandler.cs.

5.28.2 Member Data Documentation

5.28.2.1 mode

int DropdownHandler.ModeValues.mode

Definition at line 27 of file DropdownHandler.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/DropdownHandler.cs

Generated by Doxygen



114 Class Documentation

5.29 NetworkManager Class Reference

Class NetworkManager Manages network communications for the application, implementing a singleton pat-
tern to ensure only one instance exists.

Inheritance diagram for NetworkManager:

NetworkManager

MonoBehaviour

Collaboration diagram for NetworkManager:

NetworkManager  Instance

MonoBehaviour CameraDepthData

 cameraDepthData

DepthData

 depthData

Public Member Functions

• bool SendData (string data)

Sends data to the server.

• byte[ ] DecompressBrotli (byte[ ] compressedData)

Decodes a base64 string to a byte array.

• byte[ ] DecodeBase64 (string base64EncodedData)

Decodes a base64 string to a byte array.

• void Reconnect ()

Reconnects to the server, closing the existing connection if any.

Public Attributes

• TextAsset brotliTestFile
• string serverIP = "192.168.1.6"

The server IP address.

Generated by Doxygen



5.29 NetworkManager Class Reference 115

Static Public Attributes

• static NetworkManager Instance

Singleton instance of the NetworkManager class.

Events

• Action< string > OnDataReceived

Event to handle received data.
• Action OnConnected

Emit event when connected to the server.
• Action< bool > OnConnectionStatus

Event connection status
• Action< JsonRobotInfo > OnRobotInfoDataReceived
• Action< DepthData > onDepthDataReceived
• Action< JsonArmLengthInfo > onArmLengthDataReceived
• Action< float > onPingDataReceived

Private Member Functions

• void Awake ()

Awake is called when the script instance is being loaded.
• void Start ()

Start is called before the first frame update.
• IEnumerator InvokeConnectionStatus ()

Coroutine for invoking event for connection status
• IEnumerator PingRobot ()

Coroutine for pinging the robot each second
• void ConnectToServer ()

Connects to the server.
• void ReceiveData ()
• async Task ReceiveDataAsync ()
• void OnApplicationQuit ()

Called when the application quits.
• void Update ()
• void processRecievedData (OVRSimpleJSON.JSONNode jsonData)
• void ProcessPingData (OVRSimpleJSON.JSONNode jsonData)

process ping data

• bool IsBrotli (string data)

Checks if the data is compressed using Brotli.
• IEnumerator ProcessDataCoroutine (List< string > batchData)

For testing
• JsonRobotInfo ParseJsonRobotInfo (OVRSimpleJSON.JSONNode jsonNode)

Parse the depth data from the JSON node
• JsonArmLengthInfo ParseArmLengthInfo (OVRSimpleJSON.JSONNode jsonNode)
• List< float > ParseFloatList (OVRSimpleJSON.JSONNode node)
• void ProcessDepthData (OVRSimpleJSON.JSONNode jsonData)

Parse the depth data from the JSON node
• void OnDestroy ()

Called when the object is destroyed.
• void Disconnect ()

Disconnects from the server.

Generated by Doxygen



116 Class Documentation

Private Attributes

• ConcurrentQueue< string > receivedDataQueue = new ConcurrentQueue<string>()

Queue to store received data.

• TcpClient client

The TCP client for the network connection.

• NetworkStream stream

The network stream for reading and writing data to the server.

• int port = 8080

The port number for the server.

• int udpPort = 12000

UDP port

• Thread receiveThread

The receive thread for processing incoming data.

• bool isListening = false

Flag to indicate if the client is listening for incoming data.

• bool connected = false
• CameraDepthData cameraDepthData = new CameraDepthData()

The camera depth data.

• DepthData depthData = new DepthData()

Camera Depth data

• int sizeBeforeUpdate = 10000

Size before updating camera depth data

• byte[ ] broHeader = new byte[ ] { (byte)'b', (byte)'r', (byte)'o' }

Receives data from the server.

5.29.1 Detailed Description

Class NetworkManager Manages network communications for the application, implementing a singleton pat-
tern to ensure only one instance exists.

This class handles the creation of a TCP client, manages connections, and processes incoming data asyn-
chronously.

Definition at line 135 of file NetworkManager.cs.

5.29.2 Member Function Documentation

Generated by Doxygen



5.29 NetworkManager Class Reference 117

5.29.2.1 Awake()

void NetworkManager.Awake ( ) [inline], [private]

Awake is called when the script instance is being loaded.

Definition at line 241 of file NetworkManager.cs.
242 {
243 if (depthData == null)
244 {
245 depthData = new DepthData();
246 }
247 if (Instance == null)
248 {
249 Instance = this;
250 DontDestroyOnLoad(gameObject); // Keep the instance alive across scenes
251 }
252 else if (Instance != this)
253 {
254 Destroy(gameObject); // Ensures only one instance exists
255 }
256 }

5.29.2.2 ConnectToServer()

void NetworkManager.ConnectToServer ( ) [inline], [private]

Connects to the server.

Starts also the receiving thread to process incoming data.

Definition at line 307 of file NetworkManager.cs.
308 {
309 try
310 {
311 client = new TcpClient(serverIP, port);
312 if (client.Connected)
313 {
314 stream = client.GetStream();
315 isListening = true;
316
317 // Start the receiving thread
318 receiveThread = new Thread(new ThreadStart(ReceiveData));
319 // receiveThread = new Thread(new ThreadStart(ReceiveDataAsync));
320 receiveThread.IsBackground = true;
321 receiveThread.Start();
322
323 // await ReceiveDataAsync();
324 Debug.Log("Connected to server.");
325 OnConnected?.Invoke();
326 }
327 }
328 catch (Exception e)
329 {
330 Debug.LogError("Error connecting to server: " + e.Message);
331 }
332 }

5.29.2.3 DecodeBase64()

byte [] NetworkManager.DecodeBase64 (

string base64EncodedData ) [inline]

Decodes a base64 string to a byte array.

Generated by Doxygen



118 Class Documentation

Parameters

base64EncodedData

Returns

Definition at line 581 of file NetworkManager.cs.
582 {
583 try
584 {
585 byte[] data = Convert.FromBase64String(base64EncodedData);
586 return data;
587 }
588 catch (FormatException ex)
589 {
590 Debug.Log($"Base64 string is not in a valid format: {ex.Message}");
591 return null;
592 }
593 }

5.29.2.4 DecompressBrotli()

byte [] NetworkManager.DecompressBrotli (

byte[] compressedData ) [inline]

Decodes a base64 string to a byte array.

Parameters

compressedData

Returns

Definition at line 564 of file NetworkManager.cs.
565 {
566 using (var inputStream = new MemoryStream(compressedData))
567 using (var outputStream = new MemoryStream())
568 using (var brotliStream = new BrotliStream(inputStream, CompressionMode.Decompress))
569 {
570 brotliStream.CopyToAsync(outputStream);
571 return outputStream.ToArray();
572 }
573
574 }

5.29.2.5 Disconnect()

void NetworkManager.Disconnect ( ) [inline], [private]

Disconnects from the server.

Generated by Doxygen



5.29 NetworkManager Class Reference 119

Definition at line 759 of file NetworkManager.cs.
760 {
761 isListening = false;
762
763 // Wait for the receive thread to finish, if it’s running
764 if (receiveThread != null && receiveThread.IsAlive)
765 {
766 receiveThread.Join();
767 }
768
769 // Close the client connection and the stream
770 if (client != null)
771 {
772 if (stream != null)
773 {
774 stream.Close();
775 stream = null;
776 }
777 client.Close();
778 client = null;
779 }
780
781 Debug.Log("Disconnected from server.");
782 }

5.29.2.6 InvokeConnectionStatus()

IEnumerator NetworkManager.InvokeConnectionStatus ( ) [inline], [private]

Coroutine for invoking event for connection status

Definition at line 278 of file NetworkManager.cs.
279 {
280 while (true)
281 {
282 OnConnectionStatus?.Invoke(connected);
283 connected = false;
284 yield return new WaitForSeconds(5);
285 }
286 }

5.29.2.7 IsBrotli()

bool NetworkManager.IsBrotli (

string data ) [inline], [private]

Checks if the data is compressed using Brotli.

Parameters

data

Returns

Definition at line 554 of file NetworkManager.cs.

Generated by Doxygen



120 Class Documentation

555 {
556 return data.Contains("brotli");
557 }

5.29.2.8 OnApplicationQuit()

void NetworkManager.OnApplicationQuit ( ) [inline], [private]

Called when the application quits.

Closes the client connection and the receive thread.

Definition at line 440 of file NetworkManager.cs.
441 {
442 isListening = false;
443 if (receiveThread != null && receiveThread.IsAlive)
444 {
445 receiveThread.Join();
446 }
447
448 if (client != null)
449 {
450 client.Close();
451 }
452 }

5.29.2.9 OnDestroy()

void NetworkManager.OnDestroy ( ) [inline], [private]

Called when the object is destroyed.

Closes the client connection as well.

Definition at line 738 of file NetworkManager.cs.
739 {
740 if (client != null)
741 client.Close();
742 }

5.29.2.10 ParseArmLengthInfo()

JsonArmLengthInfo NetworkManager.ParseArmLengthInfo (

OVRSimpleJSON.JSONNode jsonNode ) [inline], [private]

Definition at line 689 of file NetworkManager.cs.
690 {
691 return new JsonArmLengthInfo
692 {
693 Link_1 = jsonNode["rotation"].AsInt,
694 Link_2 = jsonNode["shoulder"].AsInt,
695 Link_3 = jsonNode["elbow"].AsInt,
696 Link_4 = jsonNode["tilt"].AsInt,
697 Link_5 = jsonNode["wrist"].AsInt,
698 pintch = jsonNode["pinch"].AsInt
699 };
700 }

Generated by Doxygen



5.29 NetworkManager Class Reference 121

5.29.2.11 ParseFloatList()

List<float> NetworkManager.ParseFloatList (

OVRSimpleJSON.JSONNode node ) [inline], [private]

Definition at line 703 of file NetworkManager.cs.
704 {
705 List<float> list = new List<float>();
706 if (node.IsArray)
707 {
708 foreach (OVRSimpleJSON.JSONNode n in node.AsArray)
709 {
710 list.Add(n.AsFloat);
711 }
712 }
713 else
714 {
715 Debug.LogError("Node is not an array");
716 }
717 return list;
718 }

5.29.2.12 ParseJsonRobotInfo()

JsonRobotInfo NetworkManager.ParseJsonRobotInfo (

OVRSimpleJSON.JSONNode jsonNode ) [inline], [private]

Parse the depth data from the JSON node

Parameters

jsonNode

Returns

Definition at line 673 of file NetworkManager.cs.
674 {
675 return new JsonRobotInfo
676 {
677 accelerometer = ParseFloatList(jsonNode["accelerometer"]),
678 gyroscope = ParseFloatList(jsonNode["gyroscope"]),
679 magnetometer = ParseFloatList(jsonNode["magnetometer"]),
680 motion = ParseFloatList(jsonNode["motion"]),
681 speed = jsonNode["speed"].AsFloat,
682 voltage = jsonNode["voltage"].AsFloat,
683 battery_precentage = jsonNode["battery"],
684 mode = jsonNode["mode"],
685 cms_speed = jsonNode["cms_speed"].AsFloat
686 };
687 }

5.29.2.13 PingRobot()

IEnumerator NetworkManager.PingRobot ( ) [inline], [private]

Coroutine for pinging the robot each second

Generated by Doxygen



122 Class Documentation

Definition at line 291 of file NetworkManager.cs.
292 {
293 while (true)
294 {
295 PingData pingData = new PingData();
296 pingData.ping = Time.realtimeSinceStartup;
297 SendData(JsonUtility.ToJson(pingData));
298
299 yield return new WaitForSeconds(1);
300 }
301 }

5.29.2.14 ProcessDataCoroutine()

IEnumerator NetworkManager.ProcessDataCoroutine (

List< string > batchData ) [inline], [private]

For testing

Definition at line 620 of file NetworkManager.cs.
621 {
622 foreach (string recievedData in batchData)
623 {
624 try
625 {
626 var jsonData = OVRSimpleJSON.JSON.Parse(recievedData);
627 if (jsonData != null)
628 {
629 if (jsonData.HasKey("type"))
630 {
631
632 if (jsonData["type"] == "log")
633 {
634
635 }
636 else if (jsonData["type"] == "depth")
637 {
638 // CameraDepthData depthData = ParseCameraDepthData(jsonData);
639 // ParseCameraDepthData(jsonData);
640
641 // if (cameraDepthData.depthData.Count > sizeBeforeUpdate)
642 // {
643 // // onDepthDataReceived?.Invoke(cameraDepthData);
644 // cameraDepthData.depthData.Clear();
645 // }
646 }
647 else if (jsonData["type"] == "robot_data")
648 {
649 JsonRobotInfo info = ParseJsonRobotInfo(jsonData);
650 OnRobotInfoDataReceived?.Invoke(info);
651 }
652 }
653 }
654 else
655 {
656 Debug.LogError("Error parsing JSON: " + recievedData);
657 }
658 }
659 catch (Exception e)
660 {
661 Debug.LogError($"Error parsing JSON: {e.Message}");
662 }
663 }
664 yield return null;
665
666 }

5.29.2.15 ProcessDepthData()

void NetworkManager.ProcessDepthData (

OVRSimpleJSON.JSONNode jsonData ) [inline], [private]

Parse the depth data from the JSON node

Generated by Doxygen



5.29 NetworkManager Class Reference 123

Parameters

jsonNode

Definition at line 724 of file NetworkManager.cs.
725 {
726 depthData.ClearPoints();
727 depthData.time = jsonData["time"].AsInt;
728 Debug.Log($"ProcessDepthData res time: {depthData.time}");
729
730 for (var i = 0; i < jsonData["data"][0].Count; i++)
731 {
732 depthData.AddDepthDataPoint(jsonData["data"][0][i].AsInt, jsonData["data"][1][i].AsInt,

jsonData["data"][2][i].AsInt);
733 }
734 }

5.29.2.16 ProcessPingData()

void NetworkManager.ProcessPingData (

OVRSimpleJSON.JSONNode jsonData ) [inline], [private]

process ping data

Parameters

jsonData

Definition at line 541 of file NetworkManager.cs.
542 {
543 float latency = Mathf.Round((Time.realtimeSinceStartup - jsonData["ping"].AsFloat) * 100000) /

100;
544 Debug.Log($"LatencyNetwork: {latency}");
545 onPingDataReceived?.Invoke(latency);
546 connected = true;
547 }

5.29.2.17 processRecievedData()

void NetworkManager.processRecievedData (

OVRSimpleJSON.JSONNode jsonData ) [inline], [private]

Definition at line 482 of file NetworkManager.cs.
483 {
484 if (!jsonData.HasKey("type"))
485 {
486 Debug.Log($"No type key found in the JSON data: a{jsonData}");
487 return;
488 }
489 // switch (jsonData["type"].ToString())
490 // {
491 // case "log":
492 // // TODO process log data
493 // break;
494 // case "robot_data":
495 // JsonRobotInfo info = ParseJsonRobotInfo(jsonData);
496 // OnRobotInfoDataReceived?.Invoke(info);
497 // break;

Generated by Doxygen



124 Class Documentation

498 // case "depth":
499 // ProcessDepthData(jsonData);
500 // onDepthDataReceived?.Invoke(depthData);
501 // break;
502 // default:
503 // Debug.Log($"Unknown data type: {jsonData["type"].ToString()}");
504 // break;
505 // }
506
507 if (jsonData["type"] == "log")
508 {
509 Debug.Log($"Log from robot: {jsonData}");
510 // Logger.Log(jsonData); // Store the loging data in a file
511 }
512 else if (jsonData["type"] == "ping")
513 {
514 ProcessPingData(jsonData);
515 }
516 else if (jsonData["type"] == "robot_data")
517 {
518 JsonRobotInfo info = ParseJsonRobotInfo(jsonData);
519 OnRobotInfoDataReceived?.Invoke(info);
520 }
521 else if (jsonData["type"] == "depth")
522 {
523 ProcessDepthData(jsonData);
524 Debug.Log($"Pricess res Depth data: {jsonData}");
525 onDepthDataReceived?.Invoke(depthData);
526 }
527 else if (jsonData["type"] == "arm_angles")
528 {
529 JsonArmLengthInfo armLengthInfo = ParseArmLengthInfo(jsonData);
530 onArmLengthDataReceived?.Invoke(armLengthInfo);
531 Debug.Log($"Arm angels data: {jsonData}");
532 }
533 }

5.29.2.18 ReceiveData()

void NetworkManager.ReceiveData ( ) [inline], [private]

Definition at line 367 of file NetworkManager.cs.
368 {
369 byte[] buffer = new byte[4096];
370 int byteLength;
371 string dataReceived = string.Empty;
372
373 while (isListening && client != null && client.Connected)
374 {
375 try
376 {
377 if (stream.DataAvailable)
378 {
379 byteLength = stream.Read(buffer, 0, buffer.Length);
380 if (buffer.Take(3).SequenceEqual(broHeader))
381 {
382 byte[] compressedData = DecompressBrotli(buffer.Skip(3).ToArray()); // Skip the

first 3 bytes which are the header
383 if (compressedData != null)
384 {
385 dataReceived = Encoding.UTF8.GetString(compressedData); // Decode the

entire decompressed data
386 }
387 }
388 else
389 {
390 dataReceived = Encoding.ASCII.GetString(buffer, 0, byteLength);
391 }
392 receivedDataQueue.Enqueue(dataReceived);
393 }
394 }
395 catch (Exception e)
396 {
397 Debug.LogError($"Error receiving data: A{e.Message}");
398 isListening = false;
399 }
400 }
401 }

Generated by Doxygen



5.29 NetworkManager Class Reference 125

5.29.2.19 ReceiveDataAsync()

async Task NetworkManager.ReceiveDataAsync ( ) [inline], [private]

Definition at line 403 of file NetworkManager.cs.
404 {
405 byte[] buffer = new byte[8192]; // Increased buffer size
406
407 try
408 {
409 while (isListening && client != null && client.Connected)
410 {
411 if (stream.DataAvailable)
412 {
413
414 int byteLength = await stream.ReadAsync(buffer, 0, buffer.Length);
415 if (byteLength > 0)
416 {
417 string dataReceived = Encoding.ASCII.GetString(buffer, 0, byteLength);
418 lock (receivedDataQueue)
419 {
420 receivedDataQueue.Enqueue(dataReceived);
421 }
422 // Debug.Log($"Received data: {dataReceived}");
423 }
424 else
425 {
426 }
427 }
428 await Task.Delay(10); // Yield to maintain responsiveness, adjust timing as necessary
429 }
430 }
431 catch (Exception e)
432 {
433 Debug.LogError($"Error receiving data asynchronously: {e.Message}");
434 isListening = false;
435 }
436 }

5.29.2.20 Reconnect()

void NetworkManager.Reconnect ( ) [inline]

Reconnects to the server, closing the existing connection if any.

Definition at line 747 of file NetworkManager.cs.
748 {
749 // First, disconnect existing connection if any
750 Disconnect();
751
752 // Then, attempt to reconnect
753 ConnectToServer();
754 }

5.29.2.21 SendData()

bool NetworkManager.SendData (

string data ) [inline]

Sends data to the server.

Parameters

data

Generated by Doxygen



126 Class Documentation

Returns

Definition at line 340 of file NetworkManager.cs.
341 {
342 if (stream == null)
343 {
344 Debug.LogError("Network stream is not available.");
345 return false;
346 }
347
348 try
349 {
350 byte[] bytes = Encoding.ASCII.GetBytes(data);
351 stream.Write(bytes, 0, bytes.Length);
352 Debug.Log($"Sent: {data}");
353 return true;
354 }
355 catch (Exception e)
356 {
357 Debug.LogError($"Error sending data: {e.Message}");
358 return false;
359 }
360 }

5.29.2.22 Start()

void NetworkManager.Start ( ) [inline], [private]

Start is called before the first frame update.

Connects to the server when the application starts.

Definition at line 262 of file NetworkManager.cs.
263 {
264 // ConnectToServer();
265 Debug.Log($"Network manager is a live: {true}");
266 // if (depthData == null)
267 // {
268 // depthData = new DepthData();
269 // }
270 StartCoroutine(PingRobot());
271 StartCoroutine(InvokeConnectionStatus());
272 }

5.29.2.23 Update()

void NetworkManager.Update ( ) [inline], [private]

Definition at line 457 of file NetworkManager.cs.
458 {
459 // Process all pending messages
460 while (receivedDataQueue.TryDequeue(out string receivedData))
461 {
462 try
463 {
464 var jsonData = OVRSimpleJSON.JSON.Parse(receivedData);
465 if (jsonData != null)
466 {
467 processRecievedData(jsonData);
468 }
469 else
470 {
471 Debug.Log($"Error parsing JSON: {receivedData}");
472 }
473 }
474 catch (Exception e)
475 {
476 Debug.LogError($"Error parsing JSON: {e.Message}");
477 }
478 }
479 }

Generated by Doxygen



5.29 NetworkManager Class Reference 127

5.29.3 Member Data Documentation

5.29.3.1 broHeader

byte [] NetworkManager.broHeader = new byte[] { (byte)'b', (byte)'r', (byte)'o' } [private]

Receives data from the server.

This method runs on a separate thread.

Definition at line 366 of file NetworkManager.cs.

5.29.3.2 brotliTestFile

TextAsset NetworkManager.brotliTestFile

Definition at line 138 of file NetworkManager.cs.

5.29.3.3 cameraDepthData

CameraDepthData NetworkManager.cameraDepthData = new CameraDepthData() [private]

The camera depth data.

Definition at line 225 of file NetworkManager.cs.

5.29.3.4 client

TcpClient NetworkManager.client [private]

The TCP client for the network connection.

Definition at line 160 of file NetworkManager.cs.

5.29.3.5 connected

bool NetworkManager.connected = false [private]

Definition at line 212 of file NetworkManager.cs.

Generated by Doxygen



128 Class Documentation

5.29.3.6 depthData

DepthData NetworkManager.depthData = new DepthData() [private]

Camera Depth data

Definition at line 230 of file NetworkManager.cs.

5.29.3.7 Instance

NetworkManager NetworkManager.Instance [static]

Singleton instance of the NetworkManager class.

NetworkManager = NetworkManager.Instance;

Definition at line 145 of file NetworkManager.cs.

5.29.3.8 isListening

bool NetworkManager.isListening = false [private]

Flag to indicate if the client is listening for incoming data.

true

if the client is listening; otherwise,

false

Definition at line 193 of file NetworkManager.cs.

5.29.3.9 port

int NetworkManager.port = 8080 [private]

The port number for the server.

Definition at line 177 of file NetworkManager.cs.

Generated by Doxygen



5.29 NetworkManager Class Reference 129

5.29.3.10 receivedDataQueue

ConcurrentQueue<string> NetworkManager.receivedDataQueue = new ConcurrentQueue<string>()

[private]

Queue to store received data.

The received data queue.

Definition at line 155 of file NetworkManager.cs.

5.29.3.11 receiveThread

Thread NetworkManager.receiveThread [private]

The receive thread for processing incoming data.

Definition at line 187 of file NetworkManager.cs.

5.29.3.12 serverIP

string NetworkManager.serverIP = "192.168.1.6"

The server IP address.

Definition at line 171 of file NetworkManager.cs.

5.29.3.13 sizeBeforeUpdate

int NetworkManager.sizeBeforeUpdate = 10000 [private]

Size before updating camera depth data

Definition at line 236 of file NetworkManager.cs.

5.29.3.14 stream

NetworkStream NetworkManager.stream [private]

The network stream for reading and writing data to the server.

Definition at line 165 of file NetworkManager.cs.

Generated by Doxygen



130 Class Documentation

5.29.3.15 udpPort

int NetworkManager.udpPort = 12000 [private]

UDP port

Definition at line 182 of file NetworkManager.cs.

5.29.4 Event Documentation

5.29.4.1 onArmLengthDataReceived

Action<JsonArmLengthInfo> NetworkManager.onArmLengthDataReceived

Definition at line 218 of file NetworkManager.cs.

5.29.4.2 OnConnected

Action NetworkManager.OnConnected

Emit event when connected to the server.

Definition at line 205 of file NetworkManager.cs.

5.29.4.3 OnConnectionStatus

Action<bool> NetworkManager.OnConnectionStatus

Event connection status

Definition at line 210 of file NetworkManager.cs.

5.29.4.4 OnDataReceived

Action<string> NetworkManager.OnDataReceived

Event to handle received data.

NetworkManager.OnDataReceived += OnDataReceivedHandler;

Definition at line 199 of file NetworkManager.cs.

Generated by Doxygen



5.30 ObjectController Class Reference 131

5.29.4.5 onDepthDataReceived

Action<DepthData> NetworkManager.onDepthDataReceived

Definition at line 216 of file NetworkManager.cs.

5.29.4.6 onPingDataReceived

Action<float> NetworkManager.onPingDataReceived

Definition at line 221 of file NetworkManager.cs.

5.29.4.7 OnRobotInfoDataReceived

Action<JsonRobotInfo> NetworkManager.OnRobotInfoDataReceived

Definition at line 214 of file NetworkManager.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

5.30 ObjectController Class Reference

This class is used to send data to the server by pressing the space key.

Inheritance diagram for ObjectController:

ObjectController

MonoBehaviour

Generated by Doxygen



132 Class Documentation

Collaboration diagram for ObjectController:

ObjectController

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Private Member Functions

• void Start ()

Initialization of the script by finding the NetworkManager component in the scene.

• void Update ()

Update is called once per frame and is used to send data to the server when the space key is pressed.

• void SendDataToServer (string data)

This method is used to send data to the server.

Private Attributes

• NetworkManager networkManager

The NetworkManager component used to send data to the server.

5.30.1 Detailed Description

This class is used to send data to the server by pressing the space key.

It is used only for testing the communication with the server.

This class is used for testing purposes.

Definition at line 8 of file ObjectController.cs.

5.30.2 Member Function Documentation

Generated by Doxygen



5.30 ObjectController Class Reference 133

5.30.2.1 SendDataToServer()

void ObjectController.SendDataToServer (

string data ) [inline], [private]

This method is used to send data to the server.

Definition at line 40 of file ObjectController.cs.
41 {
42 if (networkManager != null)
43 {
44 networkManager.SendData(data);
45 }
46 else
47 {
48 Debug.LogError("NetworkManager component not found.");
49 }
50
51
52 }

5.30.2.2 Start()

void ObjectController.Start ( ) [inline], [private]

Initialization of the script by finding the NetworkManager component in the scene.

Definition at line 19 of file ObjectController.cs.
20 {
21 // Get the singelton instance of the NetworkManager
22 networkManager = NetworkManager.Instance;
23 }

5.30.2.3 Update()

void ObjectController.Update ( ) [inline], [private]

Update is called once per frame and is used to send data to the server when the space key is pressed.

Definition at line 28 of file ObjectController.cs.
29 {
30 if (Input.GetKeyDown(KeyCode.Space))
31 {
32 SendDataToServer("Space key pressed!");
33 }
34 // SendDataToServer("hello world!");
35 }

5.30.3 Member Data Documentation

Generated by Doxygen



134 Class Documentation

5.30.3.1 networkManager

NetworkManager ObjectController.networkManager [private]

The NetworkManager component used to send data to the server.

Definition at line 14 of file ObjectController.cs.

The documentation for this class was generated from the following file:

• Assets/ObjectController.cs

5.31 PingData Class Reference

Public Attributes

• string type = "ping"
• float ping

5.31.1 Detailed Description

Definition at line 87 of file NetworkManager.cs.

5.31.2 Member Data Documentation

5.31.2.1 ping

float PingData.ping

Definition at line 90 of file NetworkManager.cs.

5.31.2.2 type

string PingData.type = "ping"

Definition at line 89 of file NetworkManager.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

Generated by Doxygen



5.32 DepthPointCloud.RequestDepthDataMsg Class Reference 135

5.32 DepthPointCloud.RequestDepthDataMsg Class Reference

Interface for requesting depth camera from the robot

Public Attributes

• bool get_depth

5.32.1 Detailed Description

Interface for requesting depth camera from the robot

Definition at line 97 of file DepthPointCloud.cs.

5.32.2 Member Data Documentation

5.32.2.1 get_depth

bool DepthPointCloud.RequestDepthDataMsg.get_depth

Definition at line 99 of file DepthPointCloud.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/PlotCameraDepthData/DepthPointCloud.cs

5.33 Responsehandler Class Reference

Inheritance diagram for Responsehandler:

Responsehandler

MonoBehaviour

Generated by Doxygen



136 Class Documentation

Collaboration diagram for Responsehandler:

Responsehandler

MonoBehaviour

NetworkManagerModeAudioPlay

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

 modeAudioPlay

Classes

• class ScrewCommand

Public Member Functions

• void HandleResponseTest (WitResponseNode response)
• void OnStartListening ()
• void OnEmergencyVoiceCommandActivated (string[ ] em)
• void OnEmergency (string emergency)

Public Attributes

• AppVoiceExperience voiceExperience
• ModeAudioPlay modeAudioPlay

Events

• Action< int > OnVoiceCommandReceived

Private Member Functions

• void Start ()
• void sendScrewCommandToTheTobot (string screw)
• void Update ()

Private Attributes

• NetworkManager networkManager
• int index = 0

Generated by Doxygen



5.33 Responsehandler Class Reference 137

5.33.1 Detailed Description

Definition at line 9 of file Responsehandler.cs.

5.33.2 Member Function Documentation

5.33.2.1 HandleResponseTest()

void Responsehandler.HandleResponseTest (

WitResponseNode response ) [inline]

Definition at line 35 of file Responsehandler.cs.
36 {
37 // string value = response["entities"]["intent"][0]["value"];
38
39 string value = response["entities"];
40 Debug.Log($"ResponseKromium: {response}");
41 Debug.Log($"Value Response: {value}");
42 Debug.Log($"Got Response from voice command: {true}");
43 string command = "Voice command" + index++;
44 // OnVoiceCommandReceived?.Invoke(command);
45 }

5.33.2.2 OnEmergency()

void Responsehandler.OnEmergency (

string emergency ) [inline]

Definition at line 97 of file Responsehandler.cs.
98 {
99 Debug.Log($"Vocie controll Listening Emergency: {emergency} +{index++}");
100 }

5.33.2.3 OnEmergencyVoiceCommandActivated()

void Responsehandler.OnEmergencyVoiceCommandActivated (

string[] em ) [inline]

Definition at line 52 of file Responsehandler.cs.
53 {
54 Debug.Log($"Emerg index: {index++}");
55 Debug.Log($"Vocie controll Listening Emergency STRING NAME: {em[0]}");
56
57 int mode = -1;
58 switch (em[0].ToLower())
59 {
60 case "idle":
61 Debug.Log($"Vocie controll Listening Emergency: {em[0]}");
62 mode = 0;
63 break;
64 case "drive":
65 mode = 1;
66 Debug.Log($"Vocie controll Listening Emergency: {em[0]}");
67 break;

Generated by Doxygen



138 Class Documentation

68 case "arm":
69 mode = 2;
70 break;
71 case "emergency":
72 mode = 3;
73 Debug.Log($"Vocie controll Listening Emergency: {em[0]}");
74 break;
75 case "screw":
76 sendScrewCommandToTheTobot("right");
77 modeAudioPlay.PlayScrew();
78 break;
79 case "unscrew":
80 sendScrewCommandToTheTobot("left");
81 modeAudioPlay.PlayUnScrew();
82 break;
83 }
84
85 if (mode != -1)
86 {
87 OnVoiceCommandReceived?.Invoke(mode);
88 }
89 }

5.33.2.4 OnStartListening()

void Responsehandler.OnStartListening ( ) [inline]

Definition at line 47 of file Responsehandler.cs.
48 {
49 Debug.Log($"Vocie controll Listening: {index++}");
50 }

5.33.2.5 sendScrewCommandToTheTobot()

void Responsehandler.sendScrewCommandToTheTobot (

string screw ) [inline], [private]

Definition at line 90 of file Responsehandler.cs.
91 {
92 ScrewCommand screwCommand = new ScrewCommand();
93 screwCommand.screw = screw;
94 networkManager.SendData(JsonUtility.ToJson(screwCommand));
95
96 }

5.33.2.6 Start()

void Responsehandler.Start ( ) [inline], [private]

Definition at line 17 of file Responsehandler.cs.
18 {
19 // voiceExperience.OnVoiceCommandReceived += HandleResponseTest;
20 // voiceExperience.OnStartListening += OnStartListening;
21 // voiceExperience.OnEmergencyVoiceCommandActivated += OnEmergencyVoiceCommandActivated;
22 // voiceExperience.OnEmergency += OnEmergency;
23 networkManager = NetworkManager.Instance;
24 }

Generated by Doxygen



5.33 Responsehandler Class Reference 139

5.33.2.7 Update()

void Responsehandler.Update ( ) [inline], [private]

Definition at line 106 of file Responsehandler.cs.
107 {
108 if (!voiceExperience.Active)
109 {
110 voiceExperience.Activate();
111 }
112 }

5.33.3 Member Data Documentation

5.33.3.1 index

int Responsehandler.index = 0 [private]

Definition at line 31 of file Responsehandler.cs.

5.33.3.2 modeAudioPlay

ModeAudioPlay Responsehandler.modeAudioPlay

Definition at line 15 of file Responsehandler.cs.

5.33.3.3 networkManager

NetworkManager Responsehandler.networkManager [private]

Definition at line 12 of file Responsehandler.cs.

5.33.3.4 voiceExperience

AppVoiceExperience Responsehandler.voiceExperience

Definition at line 11 of file Responsehandler.cs.

5.33.4 Event Documentation

Generated by Doxygen



140 Class Documentation

5.33.4.1 OnVoiceCommandReceived

Action<int> Responsehandler.OnVoiceCommandReceived

Definition at line 33 of file Responsehandler.cs.

The documentation for this class was generated from the following file:

• Assets/Voice Controll/Responsehandler.cs

5.34 RobotCamStream Class Reference

Inheritance diagram for RobotCamStream:

RobotCamStream

MonoBehaviour

Collaboration diagram for RobotCamStream:

RobotCamStream

MonoBehaviour

Public Attributes

• string streamUrl = "http://192.168.1.5:8000/stream.m3u8"
• int maxRetries = 3
• float retryDelay = 2f

Generated by Doxygen



5.34 RobotCamStream Class Reference 141

Private Member Functions

• void Start ()

Start is called before the first frame and gets the VideoPlayer component and sets up the video player.

• void SetupVideoPlayer ()

Sets up the video player with the stream URL and other settings.

• void TryPrepareVideo ()

Tries to prepare the video for playback.

• void HandlePrepareCompleted (VideoPlayer source)

Handles the prepare completed event of the video player.

• void HandleVideoError (VideoPlayer source, string message)

Handles the video error event of the video player.

Private Attributes

• VideoPlayer videoPlayer
• int currentRetries = 0

5.34.1 Detailed Description

This script is used to stream video from a URL and handle errors and retries. It does not work! There is a problem
with the format that it receives from the server.

Definition at line 14 of file RobotCamStream.cs.

5.34.2 Member Function Documentation

5.34.2.1 HandlePrepareCompleted()

void RobotCamStream.HandlePrepareCompleted (

VideoPlayer source ) [inline], [private]

Handles the prepare completed event of the video player.

Parameters

source The video player source.

Definition at line 64 of file RobotCamStream.cs.
65 {
66 videoPlayer.Play();
67 }

Generated by Doxygen



142 Class Documentation

5.34.2.2 HandleVideoError()

void RobotCamStream.HandleVideoError (

VideoPlayer source,

string message ) [inline], [private]

Handles the video error event of the video player.

Parameters

source The video player source.

Definition at line 73 of file RobotCamStream.cs.
74 {
75 Debug.LogError("Video Player Error: " + message);
76 currentRetries++;
77
78 if (currentRetries < maxRetries)
79 {
80 Debug.Log($"Retry {currentRetries}/{maxRetries} in {retryDelay} seconds.");
81 Invoke(nameof(TryPrepareVideo), retryDelay); // Wait for retryDelay seconds before retrying
82 }
83 else
84 {
85 Debug.LogError("Max retries reached. Stopping attempts to play video.");
86 }
87 }

5.34.2.3 SetupVideoPlayer()

void RobotCamStream.SetupVideoPlayer ( ) [inline], [private]

Sets up the video player with the stream URL and other settings.

Definition at line 35 of file RobotCamStream.cs.
36 {
37 videoPlayer.url = streamUrl;
38 videoPlayer.playOnAwake = false;
39 videoPlayer.renderMode = VideoRenderMode.MaterialOverride;
40 videoPlayer.targetMaterialRenderer = GetComponent<Renderer>();
41 videoPlayer.audioOutputMode = VideoAudioOutputMode.None;
42 videoPlayer.isLooping = false; // Change to false to prevent auto-retry on reaching the end
43 videoPlayer.errorReceived += HandleVideoError;
44 videoPlayer.prepareCompleted += HandlePrepareCompleted;
45
46 TryPrepareVideo();
47 }

5.34.2.4 Start()

void RobotCamStream.Start ( ) [inline], [private]

Start is called before the first frame and gets the VideoPlayer component and sets up the video player.

Definition at line 26 of file RobotCamStream.cs.
27 {
28 videoPlayer = GetComponent<VideoPlayer>();
29 SetupVideoPlayer();
30 }

Generated by Doxygen



5.34 RobotCamStream Class Reference 143

5.34.2.5 TryPrepareVideo()

void RobotCamStream.TryPrepareVideo ( ) [inline], [private]

Tries to prepare the video for playback.

Definition at line 52 of file RobotCamStream.cs.
53 {
54 if (currentRetries < maxRetries)
55 {
56 videoPlayer.Prepare();
57 }
58 }

5.34.3 Member Data Documentation

5.34.3.1 currentRetries

int RobotCamStream.currentRetries = 0 [private]

Definition at line 21 of file RobotCamStream.cs.

5.34.3.2 maxRetries

int RobotCamStream.maxRetries = 3

Definition at line 17 of file RobotCamStream.cs.

5.34.3.3 retryDelay

float RobotCamStream.retryDelay = 2f

Definition at line 18 of file RobotCamStream.cs.

5.34.3.4 streamUrl

string RobotCamStream.streamUrl = "http://192.168.1.5:8000/stream.m3u8"

Definition at line 16 of file RobotCamStream.cs.

Generated by Doxygen



144 Class Documentation

5.34.3.5 videoPlayer

VideoPlayer RobotCamStream.videoPlayer [private]

Definition at line 20 of file RobotCamStream.cs.

The documentation for this class was generated from the following file:

• Assets/RobotCamStream.cs

5.35 ArmController.RobotControlValues Class Reference

The control values used to control the robot for controlling the robot (car).

Public Attributes

• float x
• float y
• int speed

5.35.1 Detailed Description

The control values used to control the robot for controlling the robot (car).

The is the interface between the VR and the Robot.

This interface has to match with the ROS2 interface from the robot

Definition at line 22 of file ArmController.cs.

5.35.2 Member Data Documentation

5.35.2.1 speed

int ArmController.RobotControlValues.speed

Definition at line 26 of file ArmController.cs.

Generated by Doxygen



5.36 HandDetectionCube.RobotControlValues Class Reference 145

5.35.2.2 x

float ArmController.RobotControlValues.x

Definition at line 24 of file ArmController.cs.

5.35.2.3 y

float ArmController.RobotControlValues.y

Definition at line 25 of file ArmController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/ArmController/ArmController.cs

5.36 HandDetectionCube.RobotControlValues Class Reference

The control values used to control the robot for controlling the robot (car).

Public Attributes

• float x
• float y
• int speed

5.36.1 Detailed Description

The control values used to control the robot for controlling the robot (car).

The is the interface between the VR and the Robot.

This interface has to match with the ROS2 interface from the robot

Definition at line 22 of file HandDetectionCube.cs.

5.36.2 Member Data Documentation

Generated by Doxygen



146 Class Documentation

5.36.2.1 speed

int HandDetectionCube.RobotControlValues.speed

Definition at line 26 of file HandDetectionCube.cs.

5.36.2.2 x

float HandDetectionCube.RobotControlValues.x

Definition at line 24 of file HandDetectionCube.cs.

5.36.2.3 y

float HandDetectionCube.RobotControlValues.y

Definition at line 25 of file HandDetectionCube.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/HandDetectionCube.cs

5.37 ArmController.RobotControlX Class Reference

The control values used to control the robot for controlling the arm.

Public Attributes

• float x
• float y
• float z
• int pinch
• float strength

5.37.1 Detailed Description

The control values used to control the robot for controlling the arm.

The is the interface between the VR and the Robot.

This interface has to match with the ROS2 interface from the robot

Definition at line 34 of file ArmController.cs.

Generated by Doxygen



5.37 ArmController.RobotControlX Class Reference 147

5.37.2 Member Data Documentation

5.37.2.1 pinch

int ArmController.RobotControlX.pinch

Definition at line 39 of file ArmController.cs.

5.37.2.2 strength

float ArmController.RobotControlX.strength

Definition at line 40 of file ArmController.cs.

5.37.2.3 x

float ArmController.RobotControlX.x

Definition at line 36 of file ArmController.cs.

5.37.2.4 y

float ArmController.RobotControlX.y

Definition at line 37 of file ArmController.cs.

5.37.2.5 z

float ArmController.RobotControlX.z

Definition at line 38 of file ArmController.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/ArmController/ArmController.cs

Generated by Doxygen



148 Class Documentation

5.38 HandDetectionCube.RobotControlX Class Reference

The control values used to control the robot for controlling the arm.

Public Attributes

• float x
• float y
• int pinch
• float strength

5.38.1 Detailed Description

The control values used to control the robot for controlling the arm.

The is the interface between the VR and the Robot.

This interface has to match with the ROS2 interface from the robot

Definition at line 34 of file HandDetectionCube.cs.

5.38.2 Member Data Documentation

5.38.2.1 pinch

int HandDetectionCube.RobotControlX.pinch

Definition at line 38 of file HandDetectionCube.cs.

5.38.2.2 strength

float HandDetectionCube.RobotControlX.strength

Definition at line 39 of file HandDetectionCube.cs.

5.38.2.3 x

float HandDetectionCube.RobotControlX.x

Definition at line 36 of file HandDetectionCube.cs.

Generated by Doxygen



5.39 Responsehandler.ScrewCommand Class Reference 149

5.38.2.4 y

float HandDetectionCube.RobotControlX.y

Definition at line 37 of file HandDetectionCube.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/HandDetectionCube.cs

5.39 Responsehandler.ScrewCommand Class Reference

Public Attributes

• string screw

5.39.1 Detailed Description

Definition at line 27 of file Responsehandler.cs.

5.39.2 Member Data Documentation

5.39.2.1 screw

string Responsehandler.ScrewCommand.screw

Definition at line 29 of file Responsehandler.cs.

The documentation for this class was generated from the following file:

• Assets/Voice Controll/Responsehandler.cs

Generated by Doxygen



150 Class Documentation

5.40 SetAttachTransform Class Reference

This script is used to set the attach transform of an XR poke interactor to a specific bone in the hand skeleton.

Inheritance diagram for SetAttachTransform:

SetAttachTransform

MonoBehaviour

Collaboration diagram for SetAttachTransform:

SetAttachTransform

MonoBehaviour

Public Attributes

• XRBaseInteractor pokeInteractor

The XRBaseInteractor component used to interact with the UI Menu.

• OVRSkeleton handSkeleton

The OVRSkeleton component used to get the bone data.

Private Member Functions

• void Start ()

Start is called before the first frame update and is used to set the attach transform of the poke interactor to the middle
finger tip bone.

Generated by Doxygen



5.40 SetAttachTransform Class Reference 151

Private Attributes

• int poke_finger_tip_id = 20

The index of the finger tip bone in the OVRSkeleton.Bones array.

5.40.1 Detailed Description

This script is used to set the attach transform of an XR poke interactor to a specific bone in the hand skeleton.

The middle finger tip bone is used as the attach transform and it is used for poking interactions, such as poking
buttons. This is used for interaction with the UI Menu in the VR environment.

Definition at line 9 of file SetAttachTransform.cs.

5.40.2 Member Function Documentation

5.40.2.1 Start()

void SetAttachTransform.Start ( ) [inline], [private]

Start is called before the first frame update and is used to set the attach transform of the poke interactor to the
middle finger tip bone.

Definition at line 29 of file SetAttachTransform.cs.
30 {
31 if (handSkeleton != null && pokeInteractor != null)
32 {
33 // Attempt to find the desired bone in the skeleton
34 OVRBone bone = handSkeleton.Bones[poke_finger_tip_id];
35 if (bone != null)
36 {
37 // If the bone is found, set the interactor’s attach transform to the bone’s transform
38 pokeInteractor.attachTransform = bone.Transform;
39 }
40 else
41 {
42 Debug.LogError("Desired bone not found in the skeleton.");
43 }
44 }
45 else
46 {
47 Debug.LogError("HandSkeleton or Interactor is not assigned.");
48 }
49 }

5.40.3 Member Data Documentation

Generated by Doxygen



152 Class Documentation

5.40.3.1 handSkeleton

OVRSkeleton SetAttachTransform.handSkeleton

The OVRSkeleton component used to get the bone data.

Definition at line 19 of file SetAttachTransform.cs.

5.40.3.2 poke_finger_tip_id

int SetAttachTransform.poke_finger_tip_id = 20 [private]

The index of the finger tip bone in the OVRSkeleton.Bones array.

Definition at line 24 of file SetAttachTransform.cs.

5.40.3.3 pokeInteractor

XRBaseInteractor SetAttachTransform.pokeInteractor

The XRBaseInteractor component used to interact with the UI Menu.

Definition at line 14 of file SetAttachTransform.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/SetAttachTransform.cs

5.41 UdpListener Class Reference

Inheritance diagram for UdpListener:

UdpListener

MonoBehaviour

Generated by Doxygen



5.41 UdpListener Class Reference 153

Collaboration diagram for UdpListener:

UdpListener

MonoBehaviour

Static Public Member Functions

• static void Main ()

Static Public Attributes

• const int listenPort = 12000

Static Private Member Functions

• static void StartListener ()

5.41.1 Detailed Description

Definition at line 8 of file UdpListener.cs.

5.41.2 Member Function Documentation

5.41.2.1 Main()

static void UdpListener.Main ( ) [inline], [static]

Definition at line 40 of file UdpListener.cs.
41 {
42 Task.Run(() => StartListener());
43 Console.WriteLine("Listening on port 12000. Press a key to quit.");
44 Console.ReadKey();
45 }

Generated by Doxygen



154 Class Documentation

5.41.2.2 StartListener()

static void UdpListener.StartListener ( ) [inline], [static], [private]

Definition at line 12 of file UdpListener.cs.
13 {
14 UdpClient listener = new UdpClient(listenPort);
15 IPEndPoint groupEP = new IPEndPoint(IPAddress.Any, listenPort);
16
17 try
18 {
19 while (true)
20 {
21 Console.WriteLine("Waiting for broadcast");
22 byte[] bytes = listener.Receive(ref groupEP);
23
24 Console.WriteLine($"Received broadcast from {groupEP} :");
25 Console.WriteLine($"Data: {Encoding.UTF8.GetString(bytes, 0, bytes.Length)}");
26
27 // Process the data as needed
28 }
29 }
30 catch (SocketException e)
31 {
32 Console.WriteLine(e);
33 }
34 finally
35 {
36 listener.Close();
37 }
38 }

5.41.3 Member Data Documentation

5.41.3.1 listenPort

const int UdpListener.listenPort = 12000 [static]

Definition at line 10 of file UdpListener.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/NetworkNamager/UdpListener.cs

5.42 UnityMainThreadDispatcher Class Reference

Inheritance diagram for UnityMainThreadDispatcher:

UnityMainThreadDispatcher

MonoBehaviour

Generated by Doxygen



5.42 UnityMainThreadDispatcher Class Reference 155

Collaboration diagram for UnityMainThreadDispatcher:

UnityMainThreadDispatcher

MonoBehaviour

Public Member Functions

• void Enqueue (Action action)

Properties

• static UnityMainThreadDispatcher Instance [get, private set]

Private Member Functions

• void Awake ()
• void Update ()

Static Private Attributes

• static readonly Queue< Action > _executionQueue = new Queue<Action>()

5.42.1 Detailed Description

Definition at line 5 of file UnityMainThreadDispatcher.cs.

5.42.2 Member Function Documentation

Generated by Doxygen



156 Class Documentation

5.42.2.1 Awake()

void UnityMainThreadDispatcher.Awake ( ) [inline], [private]

Definition at line 11 of file UnityMainThreadDispatcher.cs.
12 {
13 if (Instance == null)
14 {
15 Instance = this;
16 DontDestroyOnLoad(this.gameObject);
17 }
18 else
19 {
20 Destroy(gameObject);
21 }
22 }

5.42.2.2 Enqueue()

void UnityMainThreadDispatcher.Enqueue (

Action action ) [inline]

Definition at line 35 of file UnityMainThreadDispatcher.cs.
36 {
37 lock (_executionQueue)
38 {
39 _executionQueue.Enqueue(action);
40 }
41 }

5.42.2.3 Update()

void UnityMainThreadDispatcher.Update ( ) [inline], [private]

Definition at line 24 of file UnityMainThreadDispatcher.cs.
25 {
26 lock (_executionQueue)
27 {
28 while (_executionQueue.Count > 0)
29 {
30 _executionQueue.Dequeue().Invoke();
31 }
32 }
33 }

5.42.3 Member Data Documentation

5.42.3.1 _executionQueue

readonly Queue<Action> UnityMainThreadDispatcher._executionQueue = new Queue<Action>() [static],

[private]

Definition at line 7 of file UnityMainThreadDispatcher.cs.

Generated by Doxygen



5.43 Vector3Data Struct Reference 157

5.42.4 Property Documentation

5.42.4.1 Instance

UnityMainThreadDispatcher UnityMainThreadDispatcher.Instance [static], [get], [private set]

Definition at line 9 of file UnityMainThreadDispatcher.cs.
9 { get; private set; }

The documentation for this class was generated from the following file:

• Assets/Scripts/UnityMainThreadDispatcher.cs

5.43 Vector3Data Struct Reference

Vector data to store tdepth data (x, y, z)

Public Member Functions

• Vector3Data (float x, float y, float z)

Public Attributes

• float x
• float y
• float z

5.43.1 Detailed Description

Vector data to store tdepth data (x, y, z)

Definition at line 60 of file NetworkManager.cs.

5.43.2 Constructor & Destructor Documentation

Generated by Doxygen



158 Class Documentation

5.43.2.1 Vector3Data()

Vector3Data.Vector3Data (

float x,

float y,

float z ) [inline]

Definition at line 66 of file NetworkManager.cs.
67 {
68 this.x = x;
69 this.y = y;
70 this.z = z;
71 }

5.43.3 Member Data Documentation

5.43.3.1 x

float Vector3Data.x

Definition at line 62 of file NetworkManager.cs.

5.43.3.2 y

float Vector3Data.y

Definition at line 63 of file NetworkManager.cs.

5.43.3.3 z

float Vector3Data.z

Definition at line 64 of file NetworkManager.cs.

The documentation for this struct was generated from the following file:

• Assets/Scripts/NetworkNamager/NetworkManager.cs

Generated by Doxygen



5.44 VideoStream Class Reference 159

5.44 VideoStream Class Reference

Inheritance diagram for VideoStream:

VideoStream

MonoBehaviour

Collaboration diagram for VideoStream:

VideoStream

MonoBehaviour

Private Member Functions

• void Start ()
• void Update ()

5.44.1 Detailed Description

Definition at line 5 of file VideoStream.cs.

5.44.2 Member Function Documentation

Generated by Doxygen



160 Class Documentation

5.44.2.1 Start()

void VideoStream.Start ( ) [inline], [private]

Definition at line 8 of file VideoStream.cs.
9 {
10
11 }

5.44.2.2 Update()

void VideoStream.Update ( ) [inline], [private]

Definition at line 14 of file VideoStream.cs.
15 {
16
17 }

The documentation for this class was generated from the following file:

• Assets/Scripts/VideoStreamer/VideoStream.cs

5.45 VideoStreamController Class Reference

This script is used to play a video stream from a server.

Inheritance diagram for VideoStreamController:

VideoStreamController

MonoBehaviour

Collaboration diagram for VideoStreamController:

VideoStreamController

MonoBehaviour

Generated by Doxygen



5.45 VideoStreamController Class Reference 161

Private Member Functions

• void Start ()

Private Attributes

• VideoPlayer videoPlayer

5.45.1 Detailed Description

This script is used to play a video stream from a server.

Used for testing purposes. It does not work with HSL as intended.

Definition at line 10 of file VideoStreamController.cs.

5.45.2 Member Function Documentation

5.45.2.1 Start()

void VideoStreamController.Start ( ) [inline], [private]

Definition at line 14 of file VideoStreamController.cs.
15 {
16 videoPlayer = GetComponent<VideoPlayer>();
17 videoPlayer.url = "http://192.168.0.21:5000/stream/stream.m3u8";
18 videoPlayer.Play();
19 }

5.45.3 Member Data Documentation

5.45.3.1 videoPlayer

VideoPlayer VideoStreamController.videoPlayer [private]

Definition at line 12 of file VideoStreamController.cs.

The documentation for this class was generated from the following file:

• Assets/VideoStreamController.cs

Generated by Doxygen



162 Class Documentation

5.46 VideoStreamReceiver Class Reference

Inheritance diagram for VideoStreamReceiver:

VideoStreamReceiver

MonoBehaviour

Collaboration diagram for VideoStreamReceiver:

VideoStreamReceiver

MonoBehaviour

5.46.1 Detailed Description

Definition at line 4 of file VideoStreamReceiver.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/VideoStreamer/VideoStreamReceiver.cs

Generated by Doxygen



5.47 WebcamStreamDisplay Class Reference 163

5.47 WebcamStreamDisplay Class Reference

Inheritance diagram for WebcamStreamDisplay:

WebcamStreamDisplay

MonoBehaviour

Collaboration diagram for WebcamStreamDisplay:

WebcamStreamDisplay

MonoBehaviour

Public Attributes

• string snapshotUrl = "http://192.168.1.11:5000/snapshot"
• float refreshRate = 0.1f

Private Member Functions

• void Start ()
• IEnumerator FetchSnapshotRoutine ()
• void ApplyTexture (Texture2D texture)
• void OnDestroy ()

Private Attributes

• Renderer _renderer
• WaitForSeconds _refreshWait

Generated by Doxygen



164 Class Documentation

5.47.1 Detailed Description

Definition at line 8 of file WebcamStreamDisplay.cs.

5.47.2 Member Function Documentation

5.47.2.1 ApplyTexture()

void WebcamStreamDisplay.ApplyTexture (

Texture2D texture ) [inline], [private]

Definition at line 50 of file WebcamStreamDisplay.cs.
51 {
52 _renderer.material.mainTexture = texture;
53 }

5.47.2.2 FetchSnapshotRoutine()

IEnumerator WebcamStreamDisplay.FetchSnapshotRoutine ( ) [inline], [private]

Definition at line 23 of file WebcamStreamDisplay.cs.
24 {
25 while (true)
26 {
27 // Start a new asynchronous request
28 UnityWebRequest www = UnityWebRequestTexture.GetTexture(snapshotUrl);
29 yield return www.SendWebRequest(); // Asynchronously wait for the web request to complete
30
31 if (www.result == UnityWebRequest.Result.Success)
32 {
33 // Asynchronously get the texture content
34 Texture2D texture = DownloadHandlerTexture.GetContent(www);
35 if (texture != null)
36 {
37 ApplyTexture(texture);
38 }
39 }
40 else
41 {
42 // Debug.LogError("Error fetching snapshot: " + www.error);
43 }
44
45 www.Dispose(); // Clean up the web request
46 yield return _refreshWait; // Wait before making the next request
47 }
48 }

5.47.2.3 OnDestroy()

void WebcamStreamDisplay.OnDestroy ( ) [inline], [private]

Definition at line 55 of file WebcamStreamDisplay.cs.
56 {
57 StopAllCoroutines();
58 }

Generated by Doxygen



5.47 WebcamStreamDisplay Class Reference 165

5.47.2.4 Start()

void WebcamStreamDisplay.Start ( ) [inline], [private]

Definition at line 16 of file WebcamStreamDisplay.cs.
17 {
18 _renderer = GetComponent<Renderer>();
19 _refreshWait = new WaitForSeconds(refreshRate);
20 StartCoroutine(FetchSnapshotRoutine());
21 }

5.47.3 Member Data Documentation

5.47.3.1 _refreshWait

WaitForSeconds WebcamStreamDisplay._refreshWait [private]

Definition at line 14 of file WebcamStreamDisplay.cs.

5.47.3.2 _renderer

Renderer WebcamStreamDisplay._renderer [private]

Definition at line 13 of file WebcamStreamDisplay.cs.

5.47.3.3 refreshRate

float WebcamStreamDisplay.refreshRate = 0.1f

Definition at line 11 of file WebcamStreamDisplay.cs.

5.47.3.4 snapshotUrl

string WebcamStreamDisplay.snapshotUrl = "http://192.168.1.11:5000/snapshot"

Definition at line 10 of file WebcamStreamDisplay.cs.

The documentation for this class was generated from the following file:

• Assets/WebcamStreamDisplay.cs

Generated by Doxygen



166 Class Documentation

5.48 WebRTCReceiver Class Reference

Inheritance diagram for WebRTCReceiver:

WebRTCReceiver

MonoBehaviour

Collaboration diagram for WebRTCReceiver:

WebRTCReceiver

MonoBehaviour

NetworkManager

 networkManager

 Instance

CameraDepthData

 cameraDepthData

DepthData

 depthData

Public Attributes

• RawImage rawImage

Private Member Functions

• void Start ()
• void Update ()
• void OnMessage (object sender, MessageEventArgs e)
• void OnError (object sender, ErrorEventArgs e)
• void OnDestroy ()

Generated by Doxygen



5.48 WebRTCReceiver Class Reference 167

Private Attributes

• WebSocket _webSocket
• NetworkManager networkManager
• Texture2D texture
• int index = 0

5.48.1 Detailed Description

Definition at line 7 of file WebRTCReceiver.cs.

5.48.2 Member Function Documentation

5.48.2.1 OnDestroy()

void WebRTCReceiver.OnDestroy ( ) [inline], [private]

Definition at line 78 of file WebRTCReceiver.cs.
79 {
80 if (_webSocket != null)
81 {
82 _webSocket.OnMessage -= OnMessage;
83 _webSocket.OnError -= OnError;
84 _webSocket.Close();
85 _webSocket = null;
86 }
87 }

5.48.2.2 OnError()

void WebRTCReceiver.OnError (

object sender,

ErrorEventArgs e ) [inline], [private]

Definition at line 73 of file WebRTCReceiver.cs.
74 {
75 Debug.LogError("Camera: WebSocket Error" + e.Message);
76 }

Generated by Doxygen



168 Class Documentation

5.48.2.3 OnMessage()

void WebRTCReceiver.OnMessage (

object sender,

MessageEventArgs e ) [inline], [private]

Definition at line 54 of file WebRTCReceiver.cs.
55 {
56 Debug.Log($"Camera: Received data {index++}");
57 byte[] bytes = System.Convert.FromBase64String(e.Data);
58
59 UnityMainThreadDispatcher.Instance.Enqueue(() =>
60 {
61 if (texture.LoadImage(bytes))
62 {
63 texture.Apply();
64 rawImage.texture = texture;
65 Debug.Log("Camera: Texture applied successfully");
66 }
67 else
68 {
69 Debug.LogError("Camera: Failed to load texture from received data");
70 }
71 });
72 }

5.48.2.4 Start()

void WebRTCReceiver.Start ( ) [inline], [private]

Definition at line 13 of file WebRTCReceiver.cs.
14 {
15 networkManager = NetworkManager.Instance;
16 texture = new Texture2D(27, 15, TextureFormat.RGB24, false); // Adjust format as necessary
17 networkManager.OnConnected += () =>
18 {
19 _webSocket = new WebSocket("ws://192.168.1.6:5000");
20 _webSocket.OnMessage += OnMessage;
21 _webSocket.OnError += OnError;
22 _webSocket.Connect();
23 };
24
25 }

5.48.2.5 Update()

void WebRTCReceiver.Update ( ) [inline], [private]

Definition at line 27 of file WebRTCReceiver.cs.
28 {
29
30 }

5.48.3 Member Data Documentation

Generated by Doxygen



5.48 WebRTCReceiver Class Reference 169

5.48.3.1 _webSocket

WebSocket WebRTCReceiver._webSocket [private]

Definition at line 9 of file WebRTCReceiver.cs.

5.48.3.2 index

int WebRTCReceiver.index = 0 [private]

Definition at line 32 of file WebRTCReceiver.cs.

5.48.3.3 networkManager

NetworkManager WebRTCReceiver.networkManager [private]

Definition at line 10 of file WebRTCReceiver.cs.

5.48.3.4 rawImage

RawImage WebRTCReceiver.rawImage

Definition at line 11 of file WebRTCReceiver.cs.

5.48.3.5 texture

Texture2D WebRTCReceiver.texture [private]

Definition at line 12 of file WebRTCReceiver.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/WebRTCReceiver.cs

Generated by Doxygen



170 Class Documentation

5.49 WristMarker Class Reference

This class is used to display a green dot that is attached to the Tip of the Middle Finger of the Hand.

Inheritance diagram for WristMarker:

WristMarker

MonoBehaviour

Collaboration diagram for WristMarker:

WristMarker

MonoBehaviour

Public Attributes

• OVRSkeleton skeleton

The OVRSkeleton component used to get the bone data.

• GameObject greenDot

The GameObject used to display the green dot.

Private Member Functions

• void Start ()
• void Update ()

Update is called once per frame and is used to update the position of the green dot to the wrist bone's position.

Generated by Doxygen



5.49 WristMarker Class Reference 171

Private Attributes

• int Hand_MiddleTip = (int)OVRPlugin.BoneId.Hand_MiddleTip

The index of the Hand_MiddleTip bone in the OVRSkeleton.Bones array.

5.49.1 Detailed Description

This class is used to display a green dot that is attached to the Tip of the Middle Finger of the Hand.

It displays the green dot in the VR environment with 2 cm offset from the wrist bone.

Definition at line 7 of file WristMarker.cs.

5.49.2 Member Function Documentation

5.49.2.1 Start()

void WristMarker.Start ( ) [inline], [private]

Definition at line 23 of file WristMarker.cs.
24 {
25 }

5.49.2.2 Update()

void WristMarker.Update ( ) [inline], [private]

Update is called once per frame and is used to update the position of the green dot to the wrist bone's position.

Definition at line 30 of file WristMarker.cs.
31 {
32 if (skeleton == null || greenDot == null)
33 return;
34
35 // Debug.Log("Time.captureFramerate: " + Time.captureFramerate);
36 OVRBone WristBone = skeleton.Bones[Hand_MiddleTip];
37 if (WristBone != null)
38 {
39 // Update the green dot’s position to the wrist bone’s position
40 // Assuming an offset of 0.02 meters (2 cm) above the wrist bone
41 greenDot.transform.position = WristBone.Transform.position + Vector3.up * 0.01f;
42
43 Debug.Log($"Green dot position: {greenDot.transform.position}");
44 }
45
46 }

5.49.3 Member Data Documentation

Generated by Doxygen



172 Class Documentation

5.49.3.1 greenDot

GameObject WristMarker.greenDot

The GameObject used to display the green dot.

A sphere is used to display the green dot.

Definition at line 17 of file WristMarker.cs.

5.49.3.2 Hand_MiddleTip

int WristMarker.Hand_MiddleTip = (int)OVRPlugin.BoneId.Hand_MiddleTip [private]

The index of the Hand_MiddleTip bone in the OVRSkeleton.Bones array.

Definition at line 22 of file WristMarker.cs.

5.49.3.3 skeleton

OVRSkeleton WristMarker.skeleton

The OVRSkeleton component used to get the bone data.

Definition at line 12 of file WristMarker.cs.

The documentation for this class was generated from the following file:

• Assets/Scripts/WristMarker.cs

Generated by Doxygen



Chapter 6

File Documentation

6.1 Assets/DebugDisplay.cs File Reference

Classes

• class DebugDisplay

This script is used to display debug logs on the a VR screen for testing purposes.

6.2 Assets/DebugDisplayPro.cs File Reference

Classes

• class DebugDisplayPro

This script is used to display debug logs on the a VR screen for testing purposes.

6.3 Assets/HandDataTransmission.cs File Reference

Classes

• class HandDataTransmission

This script is used for testing porpuses.

6.4 Assets/HandInteraction.cs File Reference

Classes

• class HandInteraction

This script is used to send hand tracking data to the server at regular intervals.

Generated by Doxygen



174 File Documentation

6.5 Assets/HelloWorldScript.cs File Reference

Classes

• class HelloWorldScript

This script is used to display a simple "Hello World" message on the screen for testing purposes.

6.6 Assets/ObjectController.cs File Reference

Classes

• class ObjectController

This class is used to send data to the server by pressing the space key.

6.7 Assets/RobotCamStream.cs File Reference

Classes

• class RobotCamStream

6.8 Assets/Scripts/ArmController/ArmController.cs File Reference

Classes

• class ArmController

This script is used to detect the hand position within a cube and send control values to the robot based on the hand
position.

• class ArmController.RobotControlValues

The control values used to control the robot for controlling the robot (car).

• class ArmController.RobotControlX

The control values used to control the robot for controlling the arm.

6.9 Assets/Scripts/DigitalTwin/DigitalTwinController.cs File Reference

Classes

• class DigitalTwinController

This class is used to control the digital twin robot.

Generated by Doxygen



6.10 Assets/Scripts/DriveModeController/DriveModeController.cs File Reference 175

6.10 Assets/Scripts/DriveModeController/DriveModeController.cs File
Reference

Classes

• class DriveModeController

This class is used to control the drive mode of the robot.

• class DriveModeController.DriveMode

6.11 Assets/Scripts/DropdownHandler.cs File Reference

Classes

• class DropdownHandler

This script is used to handle the dropdown in the UI.

• class DropdownHandler.ModeValues

The ModeValues interface used to send the mode value to the robot.

6.12 Assets/Scripts/HandDetectionCube.cs File Reference

Classes

• class HandDetectionCube

This script is used to detect the hand position within a cube and send control values to the robot based on the hand
position.

• class HandDetectionCube.RobotControlValues

The control values used to control the robot for controlling the robot (car).

• class HandDetectionCube.RobotControlX

The control values used to control the robot for controlling the arm.

6.13 Assets/Scripts/HandGestureAndRotation.cs File Reference

Classes

• class HandGestureAndRotation

This class is used to get the hand gesture and rotation data and send it to the server.

• class HandGestureAndRotation.HandData

The HandData interface used to send the data to the robot.

6.14 Assets/Scripts/HandleReconnectButton.cs File Reference

Classes

• class HandleReconnectButton

This script is used to handle the reconnect button in the UI.

Generated by Doxygen



176 File Documentation

6.15 Assets/Scripts/Head up display/Heap_up_controller.cs File
Reference

Classes

• class Heap_up_controller

This class is used to control the head up display of the robot.

6.16 Assets/Scripts/log/Logger.cs File Reference

Classes

• class Logger

This script is used to log messages to a file.

6.17 Assets/Scripts/LogicController/MainController.cs File Reference

Classes

• class MainController

This class is the main controller for handling scene changes and mode changes.

6.18 Assets/Scripts/NetworkNamager/NetworkManager.cs File Reference

Classes

• class JsonRobotInfo

Class JsonRobotInfo Represents the JSON data structure for the robot information.

• class JsonArmLengthInfo
• struct Vector3Data

Vector data to store tdepth data (x, y, z)

• class CameraDepthData

depth camera interface datatype The data is recieved from the robot as this type

• class PingData
• class DepthDataPoint

Depth data interface Datatype

• class DepthData
• class NetworkManager

Class NetworkManager Manages network communications for the application, implementing a singleton pattern
to ensure only one instance exists.

6.19 Assets/Scripts/NetworkNamager/UdpListener.cs File Reference

Classes

• class UdpListener

Generated by Doxygen



6.20 Assets/Scripts/PlotCameraDepthData/DepthDataGenerator.cs File Reference 177

6.20 Assets/Scripts/PlotCameraDepthData/DepthDataGenerator.cs File
Reference

Classes

• class DepthDataGenerator

6.21 Assets/Scripts/PlotCameraDepthData/DepthPointCloud.cs File
Reference

Classes

• class DepthPointCloud
• class DepthPointCloud.RequestDepthDataMsg

Interface for requesting depth camera from the robot

6.22 Assets/Scripts/PlotCameraDepthData/MeshCreator.cs File
Reference

Classes

• class MeshCreator

6.23 Assets/Scripts/PlotCameraDepthData/MeshReplacement.cs File
Reference

Classes

• class MeshReplacement

6.24 Assets/Scripts/SetAttachTransform.cs File Reference

Classes

• class SetAttachTransform

This script is used to set the attach transform of an XR poke interactor to a specific bone in the hand skeleton.

6.25 Assets/Scripts/UnityMainThreadDispatcher.cs File Reference

Classes

• class UnityMainThreadDispatcher

Generated by Doxygen



178 File Documentation

6.26 Assets/Scripts/VideoStreamer/VideoStream.cs File Reference

Classes

• class VideoStream

6.27 Assets/Scripts/VideoStreamer/VideoStreamReceiver.cs File
Reference

Classes

• class VideoStreamReceiver

6.28 Assets/Scripts/WebRTCReceiver.cs File Reference

Classes

• class WebRTCReceiver

6.29 Assets/Scripts/WristMarker.cs File Reference

Classes

• class WristMarker

This class is used to display a green dot that is attached to the Tip of the Middle Finger of the Hand.

6.30 Assets/VideoStreamController.cs File Reference

Classes

• class VideoStreamController

This script is used to play a video stream from a server.

6.31 Assets/Voice Controll/ModeAudioPlay.cs File Reference

Classes

• class ModeAudioPlay

Generated by Doxygen



6.32 Assets/Voice Controll/Responsehandler.cs File Reference 179

6.32 Assets/Voice Controll/Responsehandler.cs File Reference

Classes

• class Responsehandler
• class Responsehandler.ScrewCommand

6.33 Assets/WebcamStreamDisplay.cs File Reference

Classes

• class WebcamStreamDisplay

6.34 obj/Debug/.NETStandard,Version=v2.1.AssemblyAttributes.cs File
Reference

6.35 README_.md File Reference

Generated by Doxygen



180 File Documentation

Generated by Doxygen



Index

_executionQueue
UnityMainThreadDispatcher, 156

_refreshWait
WebcamStreamDisplay, 165

_renderer
WebcamStreamDisplay, 165

_webSocket
WebRTCReceiver, 168

accelerometer
Heap_up_controller, 87
JsonRobotInfo, 95

activeColor
DriveModeController, 49

AddDepthDataPoint
DepthData, 29

ApplyTexture
WebcamStreamDisplay, 164

ArmController, 9
CalculateDistances, 11
CalculateNormalizedControlValues, 12
CalculateSpeed, 12
controlValues, 18
controlX, 18
cubeMaterial, 18
distanceCalculationInterval, 18
dropdownHandler, 18
HandleReceivedData, 13
handSkeleton, 19
insideColor, 19
isHandDetected, 19
lastSendTime, 19
networkManager, 19
OnTriggerEnter, 13
OnTriggerExit, 14
OnTriggerStay, 14
originalColor, 20
RepeatedlyDistanceCalculation, 14
ResetControlValues, 15
rightHand, 20
SendControlValues, 15
SendDataToServer, 16
sendInterval, 20
Start, 16
Update, 17
UpdateVisualIndicator, 17
visualIndicatorTransform, 20

ArmController.RobotControlValues, 144
speed, 144
x, 144

y, 145
ArmController.RobotControlX, 146

pinch, 147
strength, 147
x, 147
y, 147
z, 147

armScene
MainController, 102

armSource
ModeAudioPlay, 112

Assets/DebugDisplay.cs, 173
Assets/DebugDisplayPro.cs, 173
Assets/HandDataTransmission.cs, 173
Assets/HandInteraction.cs, 173
Assets/HelloWorldScript.cs, 174
Assets/ObjectController.cs, 174
Assets/RobotCamStream.cs, 174
Assets/Scripts/ArmController/ArmController.cs, 174
Assets/Scripts/DigitalTwin/DigitalTwinController.cs, 174
Assets/Scripts/DriveModeController/DriveModeController.cs,

175
Assets/Scripts/DropdownHandler.cs, 175
Assets/Scripts/HandDetectionCube.cs, 175
Assets/Scripts/HandGestureAndRotation.cs, 175
Assets/Scripts/HandleReconnectButton.cs, 175
Assets/Scripts/Head up display/Heap_up_controller.cs,

176
Assets/Scripts/log/Logger.cs, 176
Assets/Scripts/LogicController/MainController.cs, 176
Assets/Scripts/NetworkNamager/NetworkManager.cs,

176
Assets/Scripts/NetworkNamager/UdpListener.cs, 176
Assets/Scripts/PlotCameraDepthData/DepthDataGenerator.cs,

177
Assets/Scripts/PlotCameraDepthData/DepthPointCloud.cs,

177
Assets/Scripts/PlotCameraDepthData/MeshCreator.cs,

177
Assets/Scripts/PlotCameraDepthData/MeshReplacement.cs,

177
Assets/Scripts/SetAttachTransform.cs, 177
Assets/Scripts/UnityMainThreadDispatcher.cs, 177
Assets/Scripts/VideoStreamer/VideoStream.cs, 178
Assets/Scripts/VideoStreamer/VideoStreamReceiver.cs,

178
Assets/Scripts/WebRTCReceiver.cs, 178
Assets/Scripts/WristMarker.cs, 178
Assets/VideoStreamController.cs, 178

Generated by Doxygen



182 INDEX

Assets/Voice Controll/ModeAudioPlay.cs, 178
Assets/Voice Controll/Responsehandler.cs, 179
Assets/WebcamStreamDisplay.cs, 179
Awake

Logger, 98
NetworkManager, 116
UnityMainThreadDispatcher, 155

battery_precentage
Heap_up_controller, 87
JsonRobotInfo, 95

battery_precentage_text
Heap_up_controller, 87

broHeader
NetworkManager, 127

brotlifile
DepthPointCloud, 37

brotliTestFile
NetworkManager, 127

CalculateDistances
ArmController, 11
HandDetectionCube, 60

CalculateNormalizedControlValues
ArmController, 12
HandDetectionCube, 60

CalculateSpeed
ArmController, 12
HandDetectionCube, 61

CameraDepthData, 21
depthData, 21
time, 21

cameraDepthData
NetworkManager, 127

ClearPoints
DepthData, 29

clearVolumeBoxes
MeshCreator, 104

client
NetworkManager, 127

cms_speed
Heap_up_controller, 87
JsonRobotInfo, 95

conenctionStatus_text
Heap_up_controller, 88

connected
NetworkManager, 127

connectedColor
Heap_up_controller, 88

ConnectToServer
NetworkManager, 117

controlValues
ArmController, 18
HandDetectionCube, 67

controlX
ArmController, 18
HandDetectionCube, 67

Count
DepthData, 29

CreateCubeGridTest
MeshCreator, 104

CreateMeshInBoxVolume
MeshCreator, 105

cubeMaterial
ArmController, 18
HandDetectionCube, 67

currentRetries
RobotCamStream, 143

DebugDisplay, 22
debugLogs, 24
debugText, 24
HandleLog, 23
OnDisable, 23
OnEnable, 23
Update, 24

DebugDisplayPro, 25
debugLogs, 27
debugText, 28
HandleLog, 26
OnDisable, 27
OnEnable, 27
Update, 27

debugLogs
DebugDisplay, 24
DebugDisplayPro, 27

debugText
DebugDisplay, 24
DebugDisplayPro, 28

DecodeBase64
DepthPointCloud, 35
NetworkManager, 117

DecompressBrotli
DepthPointCloud, 35
NetworkManager, 118

defaultColor
DriveModeController, 49

depthColorGradient
DepthPointCloud, 37
MeshCreator, 107

DepthData, 28
AddDepthDataPoint, 29
ClearPoints, 29
Count, 29
depthDataPoints, 29
Points, 30
time, 29

depthData
CameraDepthData, 21
DepthPointCloud, 38
NetworkManager, 127

DepthDataGenerator, 30
GenerateDepthData, 31
Height, 31
MaxDepth, 31
meshCreator, 32
MinDepth, 32
Width, 32

Generated by Doxygen



INDEX 183

DepthDataPoint, 32
DepthDataPoint, 33
X, 33
Y, 33
Z, 33

depthDataPoints
DepthData, 29

DepthPointCloud, 34
brotlifile, 37
DecodeBase64, 35
DecompressBrotli, 35
depthColorGradient, 37
depthData, 38
meshCreator, 38
networkManager, 38
OnDepthDataReceived, 36
OnDestroy, 36
particles, 38
particleSystem, 38
ProcessDepthData, 36
RequestDepthData, 36
Start, 37
Update, 37

DepthPointCloud.RequestDepthDataMsg, 135
get_depth, 135

DigitalTwinController, 39
frameCounter, 43
HandleReceivedRobotInfoData, 40
Link_1, 43
Link_2, 43
Link_3, 43
Link_4, 43
Link_5, 43
networkManager, 44
Pinch_left_x, 44
Pinch_right_y, 44
rotateTo170, 44
SetTargetRotation, 41
SetTargetRotationY, 41
Start, 41
testFunction, 42
Update, 42

Disconnect
NetworkManager, 118

disconnectedColor
Heap_up_controller, 88

distanceCalculationInterval
ArmController, 18
HandDetectionCube, 67

drive_mode
DriveModeController.DriveMode, 45

DriveModeChanged
DriveModeController, 50

DriveModeController, 45
activeColor, 49
defaultColor, 49
DriveModeChanged, 50
networkManager, 49

normalButton, 49
normalMode, 47
precisionButton, 50
precisionMode, 47
reverseButton, 50
reverseMode, 47
SendDataToServer, 47
Start, 48
Update, 48
updateButtonColor, 48
updateDriveModeData, 49

DriveModeController.DriveMode, 45
drive_mode, 45

driveScene
MainController, 102

driveSource
ModeAudioPlay, 112

dropdown
DropdownHandler, 54
MainController, 102

DropdownHandler, 51
dropdown, 54
DropdownValueChanged, 52
GetDropdownValue, 53
HandleVoiceCommand, 53
modeValues, 54
networkManager, 54
OnDropdownValueChanged, 55
responsehandler, 55
SendDataToServer, 53
Start, 54

dropdownHandler
ArmController, 18
HandDetectionCube, 68
MainController, 102

DropdownHandler.ModeValues, 113
mode, 113

DropdownValueChanged
DropdownHandler, 52

emergencySource
ModeAudioPlay, 112

EmergencyStopButton
MainController, 103

Enqueue
UnityMainThreadDispatcher, 156

FetchSnapshotRoutine
WebcamStreamDisplay, 164

frameCounter
DigitalTwinController, 43

GenerateDepthData
DepthDataGenerator, 31

get_depth
DepthPointCloud.RequestDepthDataMsg, 135

GetDropdownValue
DropdownHandler, 53

greenDot

Generated by Doxygen



184 INDEX

WristMarker, 171
gyroscope

Heap_up_controller, 88
JsonRobotInfo, 95

hand
HandGestureAndRotation, 73
HandInteraction, 78

Hand_MiddleTip
WristMarker, 172

handData
HandGestureAndRotation, 73

HandDataTransmission, 56
Start, 57
Update, 57

HandDetectionCube, 58
CalculateDistances, 60
CalculateNormalizedControlValues, 60
CalculateSpeed, 61
controlValues, 67
controlX, 67
cubeMaterial, 67
distanceCalculationInterval, 67
dropdownHandler, 68
HandleReceivedData, 61
handSkeleton, 68
insideColor, 68
isHandDetected, 68
lastSendTime, 68
networkManager, 69
OnDestroy, 62
OnTriggerEnter, 62
OnTriggerExit, 62
OnTriggerStay, 63
originalColor, 69
RepeatedlyDistanceCalculation, 63
ResetControlValues, 63
rightHand, 69
SendControlValues, 64
SendDataToServer, 64
sendInterval, 69
Start, 65
Update, 65
UpdateVisualIndicator, 65
visualIndicatorTransform, 69

HandDetectionCube.RobotControlValues, 145
speed, 145
x, 146
y, 146

HandDetectionCube.RobotControlX, 148
pinch, 148
strength, 148
x, 148
y, 148

HandGestureAndRotation, 70
hand, 73
handData, 73
handSkeleton, 73
isTesting, 73

lastSendTime, 74
networkManager, 74
SendDataToServer, 71
sendInterval, 74
Start, 72
Update, 72

HandGestureAndRotation.HandData, 55
pinch, 56
wrist, 56

HandInteraction, 75
hand, 78
HandleReceivedData, 76
isTesting, 78
lastSendTime, 78
networkManager, 79
OnDestroy, 77
SendDataToServer, 77
sendInterval, 79
Start, 77
Update, 77

HandleConnectionStatusChanged
Heap_up_controller, 84

HandleDropdownChange
MainController, 100

HandleEmergencyStop
MainController, 101

HandleLog
DebugDisplay, 23
DebugDisplayPro, 26

HandlePrepareCompleted
RobotCamStream, 141

HandleReceivedData
ArmController, 13
HandDetectionCube, 61
HandInteraction, 76

HandleReceivedPingData
Heap_up_controller, 84

HandleReceivedRobotInfoData
DigitalTwinController, 40
Heap_up_controller, 85

HandleReconnectButton, 79
networkManager, 81
OnReconnectButtonClicked, 81
reconnectButton, 82
Start, 81
Update, 81

HandleResponseTest
Responsehandler, 137

HandleVideoError
RobotCamStream, 141

HandleVoiceCommand
DropdownHandler, 53

handSkeleton
ArmController, 19
HandDetectionCube, 68
HandGestureAndRotation, 73
SetAttachTransform, 151

head_up_canvas

Generated by Doxygen



INDEX 185

Heap_up_controller, 88
head_up_canvas_distance

Heap_up_controller, 88
Heap_up_controller, 82

accelerometer, 87
battery_precentage, 87
battery_precentage_text, 87
cms_speed, 87
conenctionStatus_text, 88
connectedColor, 88
disconnectedColor, 88
gyroscope, 88
HandleConnectionStatusChanged, 84
HandleReceivedPingData, 84
HandleReceivedRobotInfoData, 85
head_up_canvas, 88
head_up_canvas_distance, 88
latecy_text, 89
magnetometer, 89
mode, 89
mode_text, 89
motion, 89
networkManager, 89
offset_ovr_camera_rig, 90
OnDestroy, 85
OnDisable, 86
OnEnable, 86
ovr_camera_rig, 90
robot_view_plane, 90
speed, 90
speed_text, 90
Start, 86
Update, 86
update_head_up_canvas_position_and_rotation,

86
voltage, 90
voltage_text, 91

Height
DepthDataGenerator, 31

HelloWorldScript, 91
myName, 92
Start, 92
textMeshPro, 93

idleSource
ModeAudioPlay, 112

index
Responsehandler, 139
WebRTCReceiver, 169

insideColor
ArmController, 19
HandDetectionCube, 68

Instance
NetworkManager, 128
UnityMainThreadDispatcher, 157

InvokeConnectionStatus
NetworkManager, 119

IsBrotli
NetworkManager, 119

isHandDetected
ArmController, 19
HandDetectionCube, 68

isListening
NetworkManager, 128

isTesting
HandGestureAndRotation, 73
HandInteraction, 78

JsonArmLengthInfo, 93
Link_1, 93
Link_2, 93
Link_3, 94
Link_4, 94
Link_5, 94
pintch, 94

JsonRobotInfo, 94
accelerometer, 95
battery_precentage, 95
cms_speed, 95
gyroscope, 95
magnetometer, 96
mode, 96
motion, 96
speed, 96
voltage, 96

lastSendTime
ArmController, 19
HandDetectionCube, 68
HandGestureAndRotation, 74
HandInteraction, 78

latecy_text
Heap_up_controller, 89

Link_1
DigitalTwinController, 43
JsonArmLengthInfo, 93

Link_2
DigitalTwinController, 43
JsonArmLengthInfo, 93

Link_3
DigitalTwinController, 43
JsonArmLengthInfo, 94

Link_4
DigitalTwinController, 43
JsonArmLengthInfo, 94

Link_5
DigitalTwinController, 43
JsonArmLengthInfo, 94

listenPort
UdpListener, 154

Log
Logger, 98

logFilePath
Logger, 98

Logger, 97
Awake, 98
Log, 98
logFilePath, 98

Generated by Doxygen



186 INDEX

magnetometer
Heap_up_controller, 89
JsonRobotInfo, 96

Main
UdpListener, 153

MainController, 99
armScene, 102
driveScene, 102
dropdown, 102
dropdownHandler, 102
EmergencyStopButton, 103
HandleDropdownChange, 100
HandleEmergencyStop, 101
modeAudioPlay, 103
OnDestroy, 101
Start, 101

MaxDepth
DepthDataGenerator, 31

maxRetries
RobotCamStream, 143

mesh
MeshReplacement, 109

MeshCreator, 103
clearVolumeBoxes, 104
CreateCubeGridTest, 104
CreateMeshInBoxVolume, 105
depthColorGradient, 107
NormalizeDepthData, 105
Start, 106
Update, 106
volume, 107

meshCreator
DepthDataGenerator, 32
DepthPointCloud, 38

MeshReplacement, 107
mesh, 109
ply, 109
Start, 108
Update, 108

MinDepth
DepthDataGenerator, 32

mode
DropdownHandler.ModeValues, 113
Heap_up_controller, 89
JsonRobotInfo, 96

mode_text
Heap_up_controller, 89

ModeAudioPlay, 109
armSource, 112
driveSource, 112
emergencySource, 112
idleSource, 112
PlayArm, 110
PlayDrive, 110
PlayEmergency, 110
PlayIdle, 111
PlayScrew, 111
PlayUnScrew, 111

screwSource, 112
Start, 111
unScrewSource, 113
Update, 111

modeAudioPlay
MainController, 103
Responsehandler, 139

modeValues
DropdownHandler, 54

motion
Heap_up_controller, 89
JsonRobotInfo, 96

myName
HelloWorldScript, 92

NetworkManager, 114
Awake, 116
broHeader, 127
brotliTestFile, 127
cameraDepthData, 127
client, 127
connected, 127
ConnectToServer, 117
DecodeBase64, 117
DecompressBrotli, 118
depthData, 127
Disconnect, 118
Instance, 128
InvokeConnectionStatus, 119
IsBrotli, 119
isListening, 128
OnApplicationQuit, 120
onArmLengthDataReceived, 130
OnConnected, 130
OnConnectionStatus, 130
OnDataReceived, 130
onDepthDataReceived, 130
OnDestroy, 120
onPingDataReceived, 131
OnRobotInfoDataReceived, 131
ParseArmLengthInfo, 120
ParseFloatList, 120
ParseJsonRobotInfo, 121
PingRobot, 121
port, 128
ProcessDataCoroutine, 122
ProcessDepthData, 122
ProcessPingData, 123
processRecievedData, 123
ReceiveData, 124
ReceiveDataAsync, 124
receivedDataQueue, 128
receiveThread, 129
Reconnect, 125
SendData, 125
serverIP, 129
sizeBeforeUpdate, 129
Start, 126
stream, 129

Generated by Doxygen



INDEX 187

udpPort, 129
Update, 126

networkManager
ArmController, 19
DepthPointCloud, 38
DigitalTwinController, 44
DriveModeController, 49
DropdownHandler, 54
HandDetectionCube, 69
HandGestureAndRotation, 74
HandInteraction, 79
HandleReconnectButton, 81
Heap_up_controller, 89
ObjectController, 133
Responsehandler, 139
WebRTCReceiver, 169

normalButton
DriveModeController, 49

NormalizeDepthData
MeshCreator, 105

normalMode
DriveModeController, 47

obj/Debug/.NETStandard,Version=v2.1.AssemblyAttributes.cs,
179

ObjectController, 131
networkManager, 133
SendDataToServer, 132
Start, 133
Update, 133

offset_ovr_camera_rig
Heap_up_controller, 90

OnApplicationQuit
NetworkManager, 120

onArmLengthDataReceived
NetworkManager, 130

OnConnected
NetworkManager, 130

OnConnectionStatus
NetworkManager, 130

OnDataReceived
NetworkManager, 130

OnDepthDataReceived
DepthPointCloud, 36

onDepthDataReceived
NetworkManager, 130

OnDestroy
DepthPointCloud, 36
HandDetectionCube, 62
HandInteraction, 77
Heap_up_controller, 85
MainController, 101
NetworkManager, 120
WebcamStreamDisplay, 164
WebRTCReceiver, 167

OnDisable
DebugDisplay, 23
DebugDisplayPro, 27
Heap_up_controller, 86

OnDropdownValueChanged
DropdownHandler, 55

OnEmergency
Responsehandler, 137

OnEmergencyVoiceCommandActivated
Responsehandler, 137

OnEnable
DebugDisplay, 23
DebugDisplayPro, 27
Heap_up_controller, 86

OnError
WebRTCReceiver, 167

OnMessage
WebRTCReceiver, 167

onPingDataReceived
NetworkManager, 131

OnReconnectButtonClicked
HandleReconnectButton, 81

OnRobotInfoDataReceived
NetworkManager, 131

OnStartListening
Responsehandler, 138

OnTriggerEnter
ArmController, 13
HandDetectionCube, 62

OnTriggerExit
ArmController, 14
HandDetectionCube, 62

OnTriggerStay
ArmController, 14
HandDetectionCube, 63

OnVoiceCommandReceived
Responsehandler, 139

originalColor
ArmController, 20
HandDetectionCube, 69

ovr_camera_rig
Heap_up_controller, 90

ParseArmLengthInfo
NetworkManager, 120

ParseFloatList
NetworkManager, 120

ParseJsonRobotInfo
NetworkManager, 121

particles
DepthPointCloud, 38

particleSystem
DepthPointCloud, 38

pinch
ArmController.RobotControlX, 147
HandDetectionCube.RobotControlX, 148
HandGestureAndRotation.HandData, 56

Pinch_left_x
DigitalTwinController, 44

Pinch_right_y
DigitalTwinController, 44

ping
PingData, 134

Generated by Doxygen



188 INDEX

PingData, 134
ping, 134
type, 134

PingRobot
NetworkManager, 121

pintch
JsonArmLengthInfo, 94

PlayArm
ModeAudioPlay, 110

PlayDrive
ModeAudioPlay, 110

PlayEmergency
ModeAudioPlay, 110

PlayIdle
ModeAudioPlay, 111

PlayScrew
ModeAudioPlay, 111

PlayUnScrew
ModeAudioPlay, 111

ply
MeshReplacement, 109

Points
DepthData, 30

poke_finger_tip_id
SetAttachTransform, 152

pokeInteractor
SetAttachTransform, 152

port
NetworkManager, 128

precisionButton
DriveModeController, 50

precisionMode
DriveModeController, 47

ProcessDataCoroutine
NetworkManager, 122

ProcessDepthData
DepthPointCloud, 36
NetworkManager, 122

ProcessPingData
NetworkManager, 123

processRecievedData
NetworkManager, 123

rawImage
WebRTCReceiver, 169

README_.md, 179
ReceiveData

NetworkManager, 124
ReceiveDataAsync

NetworkManager, 124
receivedDataQueue

NetworkManager, 128
receiveThread

NetworkManager, 129
Reconnect

NetworkManager, 125
reconnectButton

HandleReconnectButton, 82
refreshRate

WebcamStreamDisplay, 165
RepeatedlyDistanceCalculation

ArmController, 14
HandDetectionCube, 63

RequestDepthData
DepthPointCloud, 36

ResetControlValues
ArmController, 15
HandDetectionCube, 63

Responsehandler, 135
HandleResponseTest, 137
index, 139
modeAudioPlay, 139
networkManager, 139
OnEmergency, 137
OnEmergencyVoiceCommandActivated, 137
OnStartListening, 138
OnVoiceCommandReceived, 139
sendScrewCommandToTheTobot, 138
Start, 138
Update, 138
voiceExperience, 139

responsehandler
DropdownHandler, 55

Responsehandler.ScrewCommand, 149
screw, 149

retryDelay
RobotCamStream, 143

reverseButton
DriveModeController, 50

reverseMode
DriveModeController, 47

rightHand
ArmController, 20
HandDetectionCube, 69

robot_view_plane
Heap_up_controller, 90

RobotCamStream, 140
currentRetries, 143
HandlePrepareCompleted, 141
HandleVideoError, 141
maxRetries, 143
retryDelay, 143
SetupVideoPlayer, 142
Start, 142
streamUrl, 143
TryPrepareVideo, 142
videoPlayer, 143

rotateTo170
DigitalTwinController, 44

screw
Responsehandler.ScrewCommand, 149

screwSource
ModeAudioPlay, 112

SendControlValues
ArmController, 15
HandDetectionCube, 64

SendData

Generated by Doxygen



INDEX 189

NetworkManager, 125
SendDataToServer

ArmController, 16
DriveModeController, 47
DropdownHandler, 53
HandDetectionCube, 64
HandGestureAndRotation, 71
HandInteraction, 77
ObjectController, 132

sendInterval
ArmController, 20
HandDetectionCube, 69
HandGestureAndRotation, 74
HandInteraction, 79

sendScrewCommandToTheTobot
Responsehandler, 138

serverIP
NetworkManager, 129

SetAttachTransform, 150
handSkeleton, 151
poke_finger_tip_id, 152
pokeInteractor, 152
Start, 151

SetTargetRotation
DigitalTwinController, 41

SetTargetRotationY
DigitalTwinController, 41

SetupVideoPlayer
RobotCamStream, 142

sizeBeforeUpdate
NetworkManager, 129

skeleton
WristMarker, 172

snapshotUrl
WebcamStreamDisplay, 165

speed
ArmController.RobotControlValues, 144
HandDetectionCube.RobotControlValues, 145
Heap_up_controller, 90
JsonRobotInfo, 96

speed_text
Heap_up_controller, 90

Start
ArmController, 16
DepthPointCloud, 37
DigitalTwinController, 41
DriveModeController, 48
DropdownHandler, 54
HandDataTransmission, 57
HandDetectionCube, 65
HandGestureAndRotation, 72
HandInteraction, 77
HandleReconnectButton, 81
Heap_up_controller, 86
HelloWorldScript, 92
MainController, 101
MeshCreator, 106
MeshReplacement, 108

ModeAudioPlay, 111
NetworkManager, 126
ObjectController, 133
Responsehandler, 138
RobotCamStream, 142
SetAttachTransform, 151
VideoStream, 159
VideoStreamController, 161
WebcamStreamDisplay, 164
WebRTCReceiver, 168
WristMarker, 171

StartListener
UdpListener, 153

stream
NetworkManager, 129

streamUrl
RobotCamStream, 143

strength
ArmController.RobotControlX, 147
HandDetectionCube.RobotControlX, 148

testFunction
DigitalTwinController, 42

textMeshPro
HelloWorldScript, 93

texture
WebRTCReceiver, 169

time
CameraDepthData, 21
DepthData, 29

TryPrepareVideo
RobotCamStream, 142

type
PingData, 134

UdpListener, 152
listenPort, 154
Main, 153
StartListener, 153

udpPort
NetworkManager, 129

UnityMainThreadDispatcher, 154
_executionQueue, 156
Awake, 155
Enqueue, 156
Instance, 157
Update, 156

unScrewSource
ModeAudioPlay, 113

Update
ArmController, 17
DebugDisplay, 24
DebugDisplayPro, 27
DepthPointCloud, 37
DigitalTwinController, 42
DriveModeController, 48
HandDataTransmission, 57
HandDetectionCube, 65
HandGestureAndRotation, 72

Generated by Doxygen



190 INDEX

HandInteraction, 77
HandleReconnectButton, 81
Heap_up_controller, 86
MeshCreator, 106
MeshReplacement, 108
ModeAudioPlay, 111
NetworkManager, 126
ObjectController, 133
Responsehandler, 138
UnityMainThreadDispatcher, 156
VideoStream, 160
WebRTCReceiver, 168
WristMarker, 171

update_head_up_canvas_position_and_rotation
Heap_up_controller, 86

updateButtonColor
DriveModeController, 48

updateDriveModeData
DriveModeController, 49

UpdateVisualIndicator
ArmController, 17
HandDetectionCube, 65

Vector3Data, 157
Vector3Data, 157
x, 158
y, 158
z, 158

videoPlayer
RobotCamStream, 143
VideoStreamController, 161

VideoStream, 159
Start, 159
Update, 160

VideoStreamController, 160
Start, 161
videoPlayer, 161

VideoStreamReceiver, 162
visualIndicatorTransform

ArmController, 20
HandDetectionCube, 69

voiceExperience
Responsehandler, 139

voltage
Heap_up_controller, 90
JsonRobotInfo, 96

voltage_text
Heap_up_controller, 91

volume
MeshCreator, 107

WebcamStreamDisplay, 163
_refreshWait, 165
_renderer, 165
ApplyTexture, 164
FetchSnapshotRoutine, 164
OnDestroy, 164
refreshRate, 165
snapshotUrl, 165

Start, 164
WebRTCReceiver, 166

_webSocket, 168
index, 169
networkManager, 169
OnDestroy, 167
OnError, 167
OnMessage, 167
rawImage, 169
Start, 168
texture, 169
Update, 168

Width
DepthDataGenerator, 32

wrist
HandGestureAndRotation.HandData, 56

WristMarker, 170
greenDot, 171
Hand_MiddleTip, 172
skeleton, 172
Start, 171
Update, 171

X
DepthDataPoint, 33

x
ArmController.RobotControlValues, 144
ArmController.RobotControlX, 147
HandDetectionCube.RobotControlValues, 146
HandDetectionCube.RobotControlX, 148
Vector3Data, 158

Y
DepthDataPoint, 33

y
ArmController.RobotControlValues, 145
ArmController.RobotControlX, 147
HandDetectionCube.RobotControlValues, 146
HandDetectionCube.RobotControlX, 148
Vector3Data, 158

Z
DepthDataPoint, 33

z
ArmController.RobotControlX, 147
Vector3Data, 158

Generated by Doxygen



KROMIUM Y. WORKING HOURS

Y Working hours

704



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Total

Shahin 0 26 24 25 29 32 27 25 48 52 27 0 1 26 40 32 48 53 46 71 13 0 0 0 644

Aditi 0 8 21 22 30 33 18 29 39 43 19 0 18 33 49 47 41 47 38 58 18 0 0 0 606

Oscar 2 18 22 6 31 37 19 22 40 44 26 0 1 37 44 39 41 41 40 71 20 0 0 0 598

Adrian 0 6 20 10 15 20 15 19 19 32 22 3 13 28 49 51 57 53 39 85 17 0 0 0 570

Henrik 0 0 20 9 29 28 23 26 24 40 23 0 1 36 43 41 49 51 45 78 18 0 0 0 580

Total 2 56 106 72 133 150 101 120 170 210 116 3 34 159 224 210 236 245 208 362 86 0 0 0

Technical

Name/ w
eek

2997

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Total

Shahin 11 15 8 0 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48

Aditi 9 17 4 2 0 1 2 2 1 0 2 0 0 3 1 2 0 2 0 0 0 0 0 0 47

Oscar 7 6 6 3 3 0 0 2 0 11 2 0 0 1 0 0 0 0 0 0 0 0 0 0 38

Adrian 8 20 5 1 15 6 3 2 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80

Henrik 8 22 6 0 3 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47

Total 41 80 27 6 30 12 5 6 23 20 4 0 0 4 1 2 0 2 0 0 0 0 0 0

Name / 
week

259

Administrative

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Total

Shahin 11 41 32 25 39 37 27 25 48 52 27 0 1 26 40 32 48 53 46 71 13 0 0 0 692

Aditi 9 24 25 24 30 34 20 31 40 43 21 0 18 36 50 49 41 49 38 58 18 0 0 0 653

Oscar 9 24 28 9 34 37 19 23 40 55 27 0 1 37 44 39 41 41 40 71 20 0 0 0 636

Adrian 8 26 24 11 29 26 18 21 32 41 22 3 13 28 49 51 57 53 39 85 17 0 0 0 649
Henrik 8 22 25 9 32 28 23 26 33 40 23 0 1 36 43 41 49 51 45 78 18 0 0 0 627

Total 43 136 133 77 163 161 106 125 193 230 119 3 34 163 225 212 236 247 208 362 86 0 0 0 3256

Name / 
week Technical & administrative 



KROMIUM Y. WORKING HOURS

This page was intentionally left blank.

706


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Glossary
	Nomenclature
	Introduction
	About the project
	Group members
	Problem domain
	Introduction
	Virtual Reality
	Artificial Intelligence
	Robotics
	Robotic arms
	Integration of VR, AI, and Robotics

	Project overview
	The customer
	Project goal

	Requirements
	Definition of priority order
	Additional requirements
	Validation
	Related work: Object detection


	Project Management & Risk Assessment
	Organizational structure
	Member responsibilities
	Team building

	Project tools
	ChatGPT

	Website
	Hardware used
	Virtual reality headset
	Development platform

	Software tools
	Git & GitHub
	ROS 2
	Operating system
	Docker
	Unity
	Programming languages
	Google Colab
	Integrated development environment
	Doxygen
	Sphinx
	GitHub Workflows & Pages
	Python standards
	GitHub CoPilot
	Miscellaneous tools

	Project development process
	GitHub workflow

	Mechanical development tools
	Computer-aided design
	SolidWorks simulation
	UltiMakrer Cura

	Electronics
	Tools used for electrical development

	Project model
	Risk Assessment: Rapid Risk Ranking (RRR)
	Consequence severity
	Probability levels
	Risk Matrix
	Risk levels
	Hazardous events
	Risk analysis form


	Design overview
	Project design overview
	System functionalities
	VR application features
	Operator Information Features

	Hardware design
	Robot specifications
	Structure of the robot
	Building the robot
	Easy accessible power switch
	Easily accessible electronics
	How to change the battery
	Turning on the power
	Wheels

	Electrical design
	Battery design


	Software Implementation
	Software setup
	Network configuration
	VR application environment
	Robot & AI environment

	The VR application
	Visual overview of the application
	Communication between VR and the robot
	Robot visual view
	VR application and robot modes
	Controlling the robot car
	Controlling the robot arm
	Robot status: information display
	Emergency control

	Robot
	Using ROS 2
	Node architecture
	Communicating with the Meta Quest 3
	Video stream
	Interacting with the expansion board
	Handling modes and safety features
	Changing modes
	Driving the robot
	Logging functionality
	Sending of robot data & status

	Robotic arm
	Arm movement concept
	Servo and arm limitations
	End effector placement and arm dimensions
	Deciding on an arm manipulation method
	Inverse kinematics
	Implementation
	Simulation

	Artificial Intelligence: Object Detection
	Neural networks
	Loss functions and gradient descent
	Convolutional Neural Networks
	How convolution works
	Architectural components of data transformation in CNNs
	Putting together a simple CNN
	Transfer learning
	CNNs for edge devices
	Object detector CNNs
	Loss functions in object detectors
	Framework for object detection
	TensorFlow object detection with MediaPipe
	Preparing the dataset
	Dataset augmentation
	Training the model
	Displaying object information

	Additional work
	Getting depth data
	Showing depth data in the VR Space
	Digital twin of the robot arm
	Detection of bolts using a self-made dataset
	Automated fastening of bolts
	Reversing camera
	Backup logging
	Integration of voice commands in the VR application
	Arm safety limits
	Optimizing the video stream
	Caching of object detection boxes
	Displaying latency of the robot
	Internal logging
	Database integration with object detection


	Electrical
	Electrical components
	Yahboom Battery
	Custom built battery
	DC motors
	Servos
	USB 3.0 HUB expansion board
	ROS robot expansion board


	Mechanical hardware development
	Given equipment
	Robot design requirements
	Robot design ideas
	Robot iteration one
	Robot iteration one, assembly

	Robot iteration two
	Iteration two assembly

	Robot iteration three
	Robot iteration three redesigns
	Robot iteration three assembly

	Robot iteration four
	Robot iteration four redesigns
	Robot iteration four assembly

	Iteration five design
	Robot iteration five redesigns
	Robot iteration five assembly

	Battery design
	Battery iteration one
	Battery iteration two
	Battery iteration three
	Battery iteration four
	Battery iteration five
	Battery iteration six

	Exporting the model for the digital twin
	Production
	Robot car sheet floors
	Robot car cover
	Post processing
	3D printed components


	Testing & Results
	Integration testing
	Object detection model performance
	People detection
	Bolt detection
	Analyzing the results

	Running inference
	Pre-processing
	Detection and post-processing

	Production mode
	Unit tests
	Writing an unit test
	Ignoring messages in wrong mode
	Battery percentage verification

	robot-test-client
	Simulations
	Testing of 520 DC motor brackets
	Arm camera bracket
	Wall attachment bracket assembly

	Visual physical testing
	Robot iteration one testing
	Robot iteration two testing
	Robot iteration three testing
	Robot iteration four testing
	Robot iteration five test

	Battery testing
	Test of battery cells
	Test of battery iterations

	User survey testing

	Future Work
	Software
	3D mapping using depth information
	Autonomous movement, object avoidance and operation
	Avoid arm collisions with MoveIt
	Simultaneous driving and arm manipulation
	Increase performance with Ubuntu OS
	Offload heavy computation
	Tracking of object detection boxes
	3D object recognition with graph CNNs

	Mechanical
	Increase lifting capacity of the arm

	Electrical
	Upgrade hardware
	Battery


	Challenges
	Non-technical challenges
	Electrical engineer could not continue
	Previous report being exempt from public
	Carbon CNC mill broken
	External supervisor changing job during the project

	Technical challenges
	Corrupting one of our microSD cards
	Frying an expansion board diode
	Problems with downloading tflite-model-maker
	Difficulties in using the PyTorch library
	Robot randomly going unresponsive
	Issues with MoveIt
	Trouble transferring 300,000 points of depth data
	Frying a BMS


	Conclusion
	References
	User stories
	Use cases
	System requirement specification 
	Global requirements
	Software testing documentation
	Estimated project timeline
	Budget
	Rapid risk ranking
	Schematic diagrams
	Expansion board schematics

	Battery
	Introduction
	Design
	General design
	Components
	Research
	Design

	Building the battery with BMS
	Building the battery without BMS
	Test of battery cells
	Introduction
	Equipment
	Testing
	Results

	Testing of batteries
	Battery with BMS
	Battery without BMS
	Discussion

	Using the battery
	General use
	Assembly
	Swapping cells
	Charging


	Initial software implementation for arm
	Electronics interface description
	Motor expansion board YB-ERF01-V1.0 interface description

	Earlier iterations of object detection 
	First iteration
	Second iteration
	Testing of the custom model
	Previous bolt detection dataset

	Implementation of detection caching
	Robot: Detailed Implementation and Configuration
	Example code a ROS 2 node
	Example of Rosmaster Library code modifications
	Installing Docker
	Permissions to use Docker
	Dockerfile
	requirements.txt
	Expansion board symlink
	MongoDB database implementation
	Installing the Docker image
	Running the container

	Measuring the speed of the robot
	Speed at 0%
	Speed at 50%
	Speed at 100%
	Errors with estimation

	Finding arm camera angle
	Finding and drawing end effector point
	Mapping servo ids to names
	Mesh plotting code
	Dealing with different paths
	Flask video stream implementation
	Missing packages for the Astra driver
	Docker robot container options
	Building ROS 2 from source
	Building code documentation
	Robot repository timeline & lines of code

	VR application
	Unity Scene and Game Object Elements
	Scene
	Game objects
	Prefab

	First Two Iterations
	First iteration: Initial design
	Conceptualization
	Second Iteration: New feature and improvements


	Calculations
	Degrees of freedom for robot arm
	Battery duration calculation

	Code statistics
	Repositories timeline

	Netron Object detection model analyzation
	Bolt detection
	People detection

	Technical drawings
	Robot design iteration one
	Arm cover iteration one
	Car cover iteration one
	Camera holder iteration one
	Shock absorber iteration one

	Electronics
	Motor expansion board YB-ERF01-V1.0 dimensions

	Final parts technical drawings
	Floors
	Walls
	Expansion board brackets
	Raspberry Pi case bracket
	Magnet brackets
	Brackets
	Battery drawer
	Yahboom battery case
	KROMIUM battery

	Subassembly drawings
	Floor assemblies
	Wall assemblies
	Main assembly
	Production drawings

	Robot code documentation
	Object-detection code documentation
	Transfer learning training code documentation
	VR headset code documentation
	Working hours

